COST ESTIMATION

Outline

- 1. Roles for Cost Models
- 2. Conventional Model Types
 - Fully Allocated Causal Factor Models
 - Temporal Variation Models
 - Incremental Fixed Variable Cost Models
- 3. New Approaches
 - HASTUS MACRO

Roles For Cost Models

- A. Predict cost change associated with a service change
 - -- concerned with marginal (incremental) costs
 - -- different impacts over different time periods
- B. Predict cost change associated with change in production process
 - -- introduce part-time operators
 - contract out maintenance work
- C. Subsidy allocation among jurisdictions
 - -- fairly allocate joint or overhead costs

Classification of Transit System Expenses

Capital Costs:

Vehicles

Fixed facility construction -- track, garages, stations

Other long term physical assets

Operating Costs:

Labor wages and benefits

Materials and supplies

Other expenses incurred in operations

National Transit Profile (2000)

Characteristics	Bus	Heavy Rail	Commuter Rail	Light Rail	Demand Response	Total
Operating Expense (millions)	12,966.1	3,930.8	2,685.3	606.4	1,804.9	21,993.5
Capital Funding (millions)	2,755.7	2,852.2	1,783.5	1,239.7	99.0	8,730.1
Annual Passenger Miles (millions)	21,241.0	13,843.0	9,402.0	1,355.9	838.4	46,680.3
Annual Vehicle Revenue Miles (millions)	2,001.7	578.2	247.9	52.1	645.8	3,525.7
Annual Unlinked Trips (millions)	5,677.7	2,632.2	412.9	320.1	104.5	9,147.4
Average Weekday Unlinked Trips (millions)	19.8	8.7	1.4	1.0	0.4	31.3
Annual Vehicle Revenue Hours (millions)	156.6	28.3	8.7	3.4	43.8	240.8
Fixed Guideway Directional Route Miles	1,691.0	1,557.7	5,208.7	834.4	N/A	9,291.8
Vehicles Available for Maximum Service	78,441.0	10,653.0	5,244.0	1,768.0	34,535.0	130,641.0
Average Fleet Age in Years	6.9	22.5	20.4	17.9	2.6	70.3
Vehicles Operated in Maximum Service	75,013	10,591	5,073	1,577	33,080	125,334
Incidents	44,312	14,997	2,338	1,382	4,609	67,638
Fatalities	101	39	65	22	17	244

Performance Measures					
Service Efficiency					
Service Efficiency					
Operating Expense/ Vehicle Revenue Mile	\$6.48	\$6.80	\$10.83	\$11.64	\$2.79
Operating Expense/ Vehicle Revenue Hour	\$82.80	\$138.90	\$308.66	\$178.35	\$41.21
Cost Effectiveness					
Operating Expense/ Passenger Mile	\$0.61	\$0.28	\$0.29	\$0.45	\$2.15
Operating Expense/ Unlinked Passenger Trip	\$2.28	\$1.49	\$6.50	\$1.89	\$17.27
Service Effectiveness					
Unlinked Passenger Trips/ Vehicle Revenue Mile	2.8	4.6	1.7	6.1	0.2

Operating Expenses (Millions of Dollars) - 2000

Expense Type	Vehicle Operations	Vehicle Maintenance	Non- Vehicle Maintenance	General Administration	Total Expenses for 2000
Operators' salaries and wages	5,605.4	2,085.3	1,412.5	1,297.0	10,400.2
Fringe Benefits	3,007.9	966.4	728.1	710.5	5,412.9
Services	107.3	204.6	150.0	827.7	1,289.6
Fuels & Lubricants	563.0	76.5	2.9	0.0	642.4
Materials and Supplies	130.4	929.0	242.2	315.6	1,617.2
Utilities	123.4	41.8	358.8	195.8	719.8
Casualty & Liability	33.1	7.5	11.6	454.3	506.5
Purchased Transportation					2,761.0
Other	540.4	-44.0	-728.4	-472.1	-704.1
Total Transit Agency Expenses	10,110.9	4,267.1	2,117.7	3,328.8	22,645.5

Source: National Transit Database, 2000

Types of Cost Models

- A. Fully allocated causal factor models
- B. Temporal variation models
- C. Incremental fixed/variable cost models

Fully Allocated Causal Factor Models

Steps:

- 1. Select causal factors: e.g. vehicle hours, vehicle miles, and peak vehicles.
- 2. Assign each expense type to appropriate factor. e.g. operator wages and benefits assigned to vehicle hours, fuel assigned to vehicle miles, administration assigned to peak vehicles
- 3. Calculate average costs per unit of Factor A, B, and C:
 - A = costs assigned to vehicle hours etc.
 total vehicle hours
- 4. Define cost model as:
 cost = A *vehicle hours + B *vehicle miles + C *peak vehicles

Fully Allocated Approach: MBTA 1996 Cost Model: Motor Bus

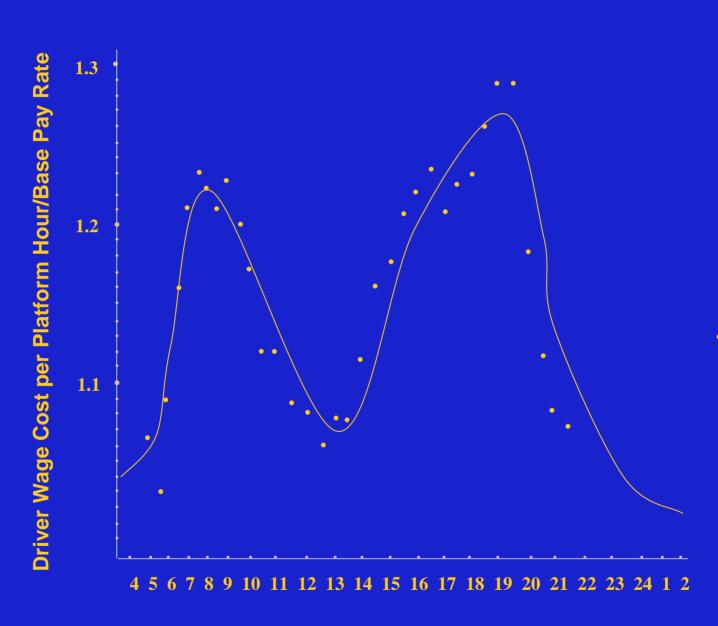
Basis of Assignment	F/V	Cost Assigned (\$ Mill)	% of Total	Operating Stat. (Annual)	Unit Costs
Rev. Veh Hours	V	79.0	45.5	2.13 million	37.13
	F	5.7	3.3		2.69
Rev. Veh Miles	V	50.0	28.8	22.0 million	2.27
	F	3.0	1.7		0.14
Peak Vehicles	F	35.9	20.7	775	\$46,323
Total		173.6			

Possible Cost Models:

Full Annual Cost = (39.82 * Rev Veh Hrs + 2.41 * Rev Veh Miles) x 1.261

Full Annual Cost = 39.82 * Rev Veh Hrs + 2.41 * Rev Veh Miles + 46,323 * Peak Veh

Variable Annual Cost = 37.13 * Rev Veh Hrs + 2.27 * Rev Veh Miles


Temporal Variation Models

Steps:

- 1. Follow fully allocated causal factor model procedure for all except operator (crew) costs.
- 2. To estimate operator costs, select a sample of runs, then for each 30-minute time period *t:*
 - a) identify all runs, *i*, with at least 15 minutes of vehicle time in period *t*
 - b) for each run i compute the average pay per vehicle hour by dividing daily pay W_i by vehicle hours H_i
 - c) find the minimum, average and maximum pay per vehicle hour in period *t*. Average given by:

$$W_t = \frac{\sum_{i=1}^{n} \left(\frac{W_i}{H_i}\right)}{n}$$

Wage per Platform Hour for MBTA Drivers

Time

Cost Estimation Exercise

For an agency which cannot employ part-time operators, the following operator costs have been determined based on an analysis of existing operator runs:

	<u>Peak</u>	Off-peak	Combined
Minimum cost/operator hour	\$30	\$30	\$30
Average cost/operator hour	\$38	\$31	\$35
Maximum cost/operator hour	\$45	\$33	\$45

What would you estimate the incremental cost impact per operator hour to be for the following possible service changes:

- a) Proportional increases in both peak and off peak services.
- b) Proportional decreases in both peak and off peak services.
- c) Increases in peak period services only.
- d) Decreases in peak period services only.
- e) Increases in off peak period services only.
- f) Decreases in off peak period services only.

Allocation of Fixed Costs Example: MBTA Bus (1996)

Total fixed costs to be allocated (see p. 7) = \$44.6 mill

		Weekday	Sat	Sun	
	Base	Peak	Evening		
# Buses operating	775	375	250	375	250
Hours/day	4.5	6	4	12	12

A. Allocate share of fixed costs for 250 buses across all time periods:

Share of fixed costs to be allocated 250/775 = 32%

Fixed costs to be allocated = 44.6 * 0.32 = \$14.4 mill

Annual bus hours operated by 250 buses

- = 250(wkday hrs + Sat hrs + Sun hrs)
- = 250(14.5*250 + 12*58 + 12*57)
- = 1.25 mill

Average Cost/bus hour = \$11.52

Allocation of Fixed Costs Example: MBTA Bus (1996)

B. Allocate share of fixed costs for next 125 buses across all time periods except Sundays and weekday evenings Fixed costs to be allocated = 44.6(125/775) = \$7.2 mill

Annual bus hours operated by 125 buses = 125(10.5*250 + 12*58) = 0.42 mill

Average Cost/bus hour = \$17.14

- C. Allocate remaining fixed costs to weekday peak service: Fixed costs to be allocated = \$23 mill
 - Annual bus hours operated by peak buses only = 400*4.5*250 = 0.45 mill

Average Cost/bus hour = \$51.11

- D. Fixed costs will increase the variable vehicle hourly cost (\$36.97) by:
 - \$11.52 for Sunday/evening service;
 - \$13.97 for Saturday and weekday base service; (11.52*250/375 + 17.14*125/375)
 - \$32.86 for weekday peak service (11.52*250/775 + 17.14*125/775 + 51.11*400/775)

Comparison of Traditional and Peak/Base Models: MBTA 1996 Cost Model: Motor Bus

Traditional Model:

Full Annual Cost = (39.82 * Rev Veh Hrs + 2.40 * Rev Veh Miles) *1.261

Variable Cost Model:

Variable Cost = 37.13 * Rev Veh Hrs + 2.27 * Rev Veh Miles

Peak Period Model:

Full Annual Peak Cost = 72.68 * Peak Rev Veh Hrs + 2.40 * Peak Rev Veh Miles

Off-Peak Period Model:

Full Annual Base Cost = 52.73 *Off-Peak Rev Veh Hrs + 2.40 *Off-Peak Rev Veh Miles

Incremental Fixed/ Variable Models

Steps

- 1. Classify costs on the basis of variable, semivariable, and fixed <u>as well as</u> the causal factors.
- 2. Determine unit costs for each cell of the matrix.

	<u>Variable</u>	Semi-Variable	Fixed
Vehicle Hours	X	X	X
Vehicle Miles	X	X	X
Peak Vehicles	X	X	X

3. Apply the 9 variable cost model.

Fixed/Variable Approach Example Expense Assignment

	Resource			Cost Type		
Expense	Bus	Bus	Peak	Variable	Semi-	Fixed
	Hours	Miles	<u>Buses</u>	<u>\</u>	/ariable	
Crew Wages	X			X		
Vehicle Servicing	X			X		
Fuel		X		X		
Tires		X		X		
Insurance		X		X		
Traffic Staff	X				X	
Miscellaneous Traffic Expenses	X				X	
Maintenance Supervisors	X				X	
Vehicle Maintenance	X				X	
Workshop Expenses	X				X	
Tickets			X		X	
Publicity			X		X	
Vehicle Depreciation			X		X	
Licenses			X		X	
Vehicle Leasing			X		X	
Administrative Staff Costs	X					X
Rent			X			X
Building Maintenance			X			X
Building Utilities			X			X
Staff Cars			X			X
General Expenses			X			X

New Approach: HASTUS -- Macro

Solve the Crew-Scheduling Problem in Simplified Form Using Mathematical Programming of Heuristics

INPUT: Vehicle Service Requirements (Blocks) by

30-Minute (Approx.) Intervals

Driver Contract Provisions

Current Runcutting Practices

PROCEDURE: Solves a Linear Programming Relaxation of Run-Cutting Problem to Minimize Costs by:

Ignoring Integrality Constraints

Rounding Off Runs to 30 Minute Intervals

Ignoring Spatial Issues

Covering All Vehicle Service Hours

OUTPUT: Estimate a Number of Drivers by Type and

Time of Run

Estimate of Total Cost