Lecture 7: Hydrogel Biomaterials: Structure and Physical Chemistry

Last Day:	programmed/regulated/multifactor controlled release for drug delivery and tissue engineering
Today:	Applications of hydrogels in bioengineering Covalent hydrogels structure and chemistry of biomedical gels Thermodynamics of hydrogel swelling
Reading:	N.A. Peppas et al., 'Physicochemical foundations and structural design of hydrogels in medicine and biology,' <i>Annu. Rev. Biomed. Eng.</i> , 2 , 9-29 (2000).
Supplementary Reading:	P.J. Flory, 'Principles of Polymer Chemistry,' Cornell University Press, Ithaca, pp. 464- 469, pp. 576-581 (Statistical thermodynamics of networks and network swelling)

Applications of hydrogels in bioengineering

• Hydrogels: insoluble network of polymer chains that swell in aqueous solutions

- Gels can be classified by the type of crosslinker:¹
 - Covalent covalent junctions
 - Physical non-covalent junctions

- degradability
 responsive swelling
- 4. tissue-like structure/properties
- In situ formability
 - Gelation of liquid solutions by:
 - Irradiation with light
 - Temperature change (e.g. 4°C to 37°C)
 - Cross-linking enzymes
 - Presence of divalent salts

ON BOARD:

In situ formation

¥hν ¥Heat ¥Crosslinking by enzymes ¥ntroduction of divalent cations (e.g. Ca⁺⁺, Mg⁺⁺)

Degradability

ON BOARD:

Degradability

¥Hydrolysis ¥Enzymatic attack

Gel with degradable crosslinks or network chains

Eliminible/metabolizable Water-soluble fragments

- Responsive swelling
 - Temperature-, pH-, and molecule-responsive swelling
 - Basis of sensors and 'smart' materials
 - (to be covered later)

ON BOARD:

Responsive swelling

- Tissue-like structure/properties
 - Form swollen networks similar to collagen, elastin, proteoglycans
- General areas of application in bioengineering:
 - Controlled release

- Tissue barriers (Hubbell^{2,3})
 - Prevent thrombosis (vessel blocked by coagulating platelets) and restenosis (re-narrowing of blood vessel after operation) in vessels after vascular injury/angioplasty/etc.
 - Prevent tissue-tissue adhesion after an operation

Tissue barriers and conformal coatings

• TE scaffolds/cell encapsulation/immunoisolation^{4,5}

- Biosensors (to be covered later)
- Contact lenses

60 μm

Structure of covalent hydrogel biomaterials

Chemical and physical structure

Structure and swelling of hydrogel materials

- Networks formed by stitching together monomers in aqueous solutions via cross-linkers that are multifunctional units

 Draw an example of a crosslinker: bisacrylamide
 - networks from hydrophilic vinyl monomers
 - hydroxyethyl methacrylate
 - poly(ethylene glycol) methacrylate
 - acrylic acid
 - acrylamide, N-isopropylacrylamide
 - Common crosslinkers:
 - PEGDMA, EGDMA
 - bis-acrylamide
- Hydrogels undergo swelling in analogy to dilution of free polymer chains in solution
- Difference lies in limit to 'dilution' when chains are cross-linked together (ENTROPIC)
- Poly(2-hydroxyethyl methacrylate) hydrogels
 - One of the first biomedical hydrogels; applied to contact lenses in late 1950s

PEGDMA-co-PHEMA

Interpenetrating networks

- Useful for obtaining gels with properties in between two different materials
 - E.g. mix a swelling polymer with a temperature- or pH-responsive polymer to obtain networks that have a defined amount of swelling in response to changes in temperature or pH

Biological recognition of hydrogels

- Inclusion of peptide-functionalized co-monomers allows hydrogels to have tailored biological recognition properties similar to solid degradable polymers
 - Promoting cell adhesion:

Incorporating biological recognition:

NR6 fibroblast adhesion on PEG-RGD hydrogel

(no cell adhesion on ligand-free hydrogels)

• Promoting remodeling/cell migration through synthetic networks:

Example synthesis strategy: photoencapsulation of live cells⁵

 Photoencapsulation: expose solution of cells, prepolymer/cross-linker/monomer, and photoinitiator to light to initiate free radical polymerization

- Provides very rapid polymerization (2-20 seconds typical), at neutral pH and room temp. 37°C
- 'soft' UV photoinitiators are common and non-toxic (illuminate at 365 nm)

• Cells can be entrapped with high viability^{4,8}:

Figure 3. Biochemical analysis. Evolution of GAG and total collagen contents (% wet weight) over 14 days of photoen-capsulated bovine chondrocytes.

Example Biomedical Hydrogel Materials⁶

Formed from hydrophilic biocompatible polymers, often polymers that can be safely eliminated by the body if the gel breaks down.

TABLE 1 Important hydrogel polymers in medicine			
Hydrogel polymer	Medical applications		
Poly(vinyl alcohol) (PVA] Polytacrylamide (PAAm] Poly(N-vinyl pyrrolidone) (PNVP] Poly(ydroxysychigh methaceylate) (PHEMA] Poly(ethylene oxide) (PEO] Poly(ethylene glycol) (PEG) Poly(ethylene glycol) monomethyl ether (PEGME] Cilulose	Blood-Compatible Hydrogels		CH=C C=O
Poly(hydroxyethyl methacrylate) [PHEMA] copolymerized with: NVP Methacrylic acid [MAA] Butyl methacrylate [BMA] Methyl methacrylate [MMA] 3-methacry-2-hydroxypropylmethacrylate [MHPM]	Contact Lenses		R General methacryla
PHEMA/poly(ethylene terephthalate) [PTFE]	Artificial Tendons		-
	Other Medical Applications		
2ellulose acetate VA and cellulose acetate VA and PHEMA ferpolymers of HEMA, MMA and NVP PHEMA, cellulose acetate VA and PHEMA-co-MMA) PHEMA, P(HEMA-co-MMA) VA P(HEMA-b-siloxane) PVA, poly(acrylic acid) [PAA], poly (glyceriyl methacrylate) PVA, HEMA, MMA Poly(glycolic acid) [PGA], Poly(lactic acid) [PLA],	Artificial kidney Membranes for plasmapheresis Artificial liver Artificial skin Mammaplassy Maxilofacial reconstruction Vocal cord reconstruction Sexual organ reconstruction Ophthalmic applications Articular Cartilage Controlled Drug Delivery* Biolegradable hydrogels	TABLE 1 (Continued)	
PLA-PGA, PLA-PEG, Chitosan, Dextran, Dextran-PEG, polycyanoacrylates, furnaric acid-PEG, sebacic		Hydrogel polymer	Medical applications
acid/1,3-bis(p-carboxyphenoxy) propane [P (CPP-SA)]	Non-Biodegradable Hydrogels Neutral	Poly(methacrylic acid-grafted-poly(ethylene glycol)) [P(MAA-g-EG)], poly(acrylic acid-grafted-poly(ethylene glycol) [P(PAA-g-EG)]	Complexing hydrogels
[PEVAc] Poly(acrylamide) [PAAm], Poly (acrylic acid) [PAA], PMAA, poly (diethylaminoethyl methacrylate) [PDEAEMA], poly (dimethylaminoethyl methacrylate) [PDMAEMA]	pH-Sensitive	Poly(N-isopropyl acrylamide) [PNIPAAm]	Temperature-sensitive
		PNIPAAm/PAA, PNIPAAm/PMAA	pH/Temperature-sensitive
	(continued)	"These drug delivery applications have been used for the controlled release caption, antiarity/datica, paptides, proteins, anticencer agents, anticengular not include all the copolynears of such hydrogels.	of several therapeutic agents such as contra- ts, antiboxies, among others. This table does

Chemical structure of biodegradable hydrogels

Mechanism I: (non-degradable water-soluble polymers with degradable cross-links)

- Degradable cross-links
 - e.g. dextran hydrogels⁹
 - bacterial exo-polysaccharide
 - branched polymer composed of α -1,6-linked D-glucopyranose residues with a low % of α -1,2 and 1,3 side chainsDextran with polylactide crosslinks: hydrolyzable crosslinks⁹

Figure 1. The chemical structure of dextran.

 dextran can be functionalized with methacrylate and then crosslinked in the presence of a small amount of vinyl monomer:

Figure 8. Reaction scheme for the synthesis of dex-lactateHEMA.

d

Figure 3. Schematic representation of the formation of dextran hydrogels.

degradable gels show first swelling then dissolution as cross-links are hydrolyzed:

Figure 12. Swelling behavior of dex-HEMA (\bullet), dex-lactate-HEMA (\blacksquare) and dex-lactate₂-HEMA (\blacktriangle) hydrogels in aqueous solution (pH 7.2, 37 °C). The initial water content of the hydrogels was 80%, the degree of methacryloyl substitution was approximately 6.

Mechanism III:

0

- Co-encapsulation of degradation catalyst
 - e.g. dextran hydrogels⁹ encapsulating dextranase enzyme
 - polymerization is carried out in the presence of protein to be delivered and a bacterial dextranase: dextranase breaks down the dextran chains over time, releasing protein
 - degradation/protein release rate depends on amount of enzyme encapsulated

Figure 6. The cumulative release of reducing oligosaccharides from dex-MA hydrogels (DS 4, initial water content 70% w/w) containing dextranase (0.03 U/g gel (\bullet), 0.1 U/g gel (\blacksquare), 1 U/g gel (\blacktriangle).

Thermodynamics of hydrogel swelling

Derivation of the free energy of polymer chains cross-linked in the presence of solvent

- Theory originally developed by Flory and Rehner for solid rubber networks exposed to solvent^{10,11}
- Adapted to describe hydrogels in biomedical applications by Bray and Merrill¹²

Description of the model

FIG. 110.—Segments of a chain polymer molecule located in the liquid lattice.

Polymer and solvent (water) are modeled as segments of equal volume- polymer chains are composed of connected segments

Energy of contacts:

(Flory¹³)

Model parameters

$\begin{array}{c}\mu_{1}^{\text{bath}}\\\mu_{1}\\\mu_{1}\\\Delta w_{12}\\z\\\omega \end{array}$	chemical potential of water in external bath (= μ_1^{0}) chemical potential of water in the hydrogel chemical potential of pure water in standard state pair contact interaction energy for polymer with water model lattice coordination number
х	number of segments per polymer molecule

М	Molecular weight of polymer chains before cross-linking
M _c	Molecular weight of cross-linked subchains
n ₁	number of water molecules in swollen gel
χ	polymer-solvent interaction parameter
k _B	Boltzman constant
Т	absolute temperature (Kelvin)
V _m ,1	molar volume of solvent (water)
V _{m,2}	molar volume of polymer
V _{sp,1}	specific volume of solvent (water)
V _{sp,2}	specific volume of polymer
V_2	total volume of polymer
Vs	total volume of swollen hydrogel
Vr	total volume of relaxed hydrogel
ν	number of subchains in network
ve	number of 'effective' subchains in network
φ ₁	volume fraction of water in swollen gel
φ _{2,s}	volume fraction of polymer in swollen gel
\$r	volume fraction of polymer in relaxed gel

• Subchains, M_c, and 'effective' chains

Assume cross-links are randomly placed; on average, all are equidistant

v = number of subchains in cross-linked network $v_e =$ number of **@ffectiveO**subchains: tethered at both ends

M = MW of original chains

 M_c = MW of subchains = MW between cross-links

Example: assume polymer chains have a molecular weight M = 4A and each \hat{G} ubchain \tilde{O} has molecular weight A:

$$v = 24$$
 $v_e = 12$

Two useful relationships:

$$v = V_2 / v_{sp,2} M_c$$

$$v_e = v(1 - 2(M_c/M))$$

- Physical picture of the equilibrium described:
 - Polymer chains are cross-linked in water
 - o Relaxed network is moved to a large bath of water and swells to a new equilibrium

Derivation of the equilibrium properties

 $\mu_1^0 = \mu_1$

- We want to calculate the change in free energy as the network is cross-linked and first exposed to a surrounding solvent bath that can trigger solvent to enters/leave the hydrogel
- The free energy of the system can be written as a contribution from mixing and an elastic retracting energy:

$$\Delta G_{\text{total}} = \Delta G_{\text{mix}} + \Delta G_{\text{el}}$$

At equilibrium, the chemical potentials of solvent inside and outside the gel are equal:

`

Eqn 1 $\mu_1^{\text{bath}} = \mu_1$

Eqn 2

chemical potential of bath is water's standard state

Eqn 3

$$0 = \Delta(\mu_1)_{total} = \left(\frac{\partial(\Delta G_{total})}{dn_1}\right)_{T,P} = \Delta(\mu_1)_{mix} + \Delta(\mu_1)_{el}$$

1

- Δ(µ₁)_{mix} and Δ(µ₁)_{el} will depend on the degree of swelling and thus allow us to calculate the swelling if we know the physicochemical parameters of the system...
- Determining the contribution from mixing:
 - Based on Flory's original lattice liquid model

Eqn 4 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

Free energy can be decreased by entropy gain on mixing (more configurations, ΔS_{mix} > 0) and favorable solvent-polymer interactions (ΔH_{mix} < 0)

- o ...drives SWELLING of hydrophilic networks in water
- Enthalpy of mixing: count contacts and provide $\Delta \omega_{12}$ energy per contact:
 - \circ $\Delta \omega_{12}$ accounts for energy of moving a molecule of solvent from pure water into pure polymer
 - # contacts between 1 and 2 = (total number of polymer segments in system)(# contacts with solvent)

$$= (n_2 v_2)(z)(\phi_1) = z n_1 \phi_2$$

Eqn 5 $\Delta H_{mix} = z \Delta \omega_{12} x_1 n_1 \phi_2$

- Define the polymer-solvent interaction parameter:
- Eqn 6 $\chi = z \Delta \omega_{12} x_1 / k_B T$ (unitless)

Eqn 7 therefore $\Delta H_{mix} = k_B T n_1 \phi_2$

Now derive ∆S_{mix}: we won't derive it here:
 Based on fundamental equation:

Eqn 8 $S = k_B \ln \Omega$

- Where $\boldsymbol{\Omega}$ is the number of configurations possible in the system.
- Lower configurational entropy if chains of network are stretched

- Resists chain stretching, competes *against* ΔG_{mix} and ΔG_{ion} , driving network *collapse*
- Flory derived an expression for the # ways free polymer chains could be arranged on the lattice:

Eqn 9 $\Delta S_{mix} = k_B ln(\Omega^{solution}/\Omega^{separate}) = -k_B [n_1 ln \phi_1 + n_2 ln \phi_2]$

• For a gel, the number of 'free' polymer chains n2 = 0, so:

Eqn 10 $\Delta G_{mix} = k_B T[n_1 ln \phi_1 + \chi n_1 \phi_2]$

• The chemical potential change can be obtained by differentiating Eqn 10:

Eqn 11

References

- 1. Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. *Biomaterials* **23**, 4307-14 (2002).
- 2. An, Y. & Hubbell, J. A. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. *J Control Release* **64**, 205-15 (2000).
- 3. Hubbell, J. A. Hydrogel systems for barriers and local drug delivery in the control of wound healing. *Journal of Controlled Release* **39**, 305-313 (1996).
- 4. Elisseeff, J. et al. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. *Journal of Biomedical Materials Research* **51**, 164-171 (2000).
- 5. Jen, A. C., Wake, M. C. & Mikos, A. G. Review: Hydrogels for cell immobilization. *Biotechnology and Bioengineering* **50**, 357-364 (1996).
- 6. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H. & Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. *Annu Rev Biomed Eng* **2**, 9-29 (2000).
- 7. Chiellini, F., Petrucci, F., Ranucci, E. & Solaro, R. in *Biomedical Polymers and Polymer Therapeutics* (eds. Chiellini, E., Sunamoto, J., Migliaresi, C., Ottenbrite, R. M. & Cohn, D.) 63-74 (Kluwer, New York, 1999).
- 8. Anseth, K. S. & Burdick, J. A. New directions in photopolymerizable biomaterials. *Mrs Bulletin* 27, 130-136 (2002).
- 9. Hennink, W. E. et al. in *Biomedical Polymers and Polymer Therapeutics* (eds. Chiellini, E., Sunamoto, J., Migliaresi, C., Ottenbrite, R. M. & Cohn, D.) 3-18 (Kluwer, New York, 2001).
- 10. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling. *J. Chem. Phys.* **11**, 521-526 (1943).
- 11. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. *J. Chem. Phys.* **11**, 512-520 (1943).
- 12. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels Reinforcement of Radiation-Crosslinked Networks by Crystallization. *Journal of Polymer Science Part a-Polymer Chemistry* **14**, 441-457 (1976).
- 13. Flory, P. J. *Principles of Polymer Chemistry* (Cornell University Press, Ithaca, 1953).