2.003 Fall 2001 Prelab 9

In this lab, we will use feedback to control the position of the second-order mechanical system that we studied in Labs 3 and 4. The spring rod has a stiffness k of 1.3 N/cm, the total moving mass m is 0.85 kg, and the LVDT has a gain K_s of 5 V/cm. The voice coil has a force constant K_f of 8.8 N/A and its coils have a resistance R_c of 5.5 Ω .

- 1. Assuming that the power op amp has a large constant gain, show that the voltage v_c at the input to the voice coil is given by $2v_i$.
- 2. Derive an expression for the transfer function G(s) relating the input v_i of the power op amp to the position x of the bearing shaft. Be sure to write the full expression for G(s) in terms of k, m, and so on before plugging in the numerical values.
- 3. Where are the poles and zeros of the system? Make an accurate sketch of the step response.
- 4. Design an op-amp circuit that can be used to obtain the block diagram shown below, where the constant gain K is set by adjusting resistances and the op-amp gain is modeled as a large constant.

In this system, v_r is an input "reference" voltage and v_o is the output voltage of the LVDT. The block G(s) is the transfer function from v_i to x that was derived in Problem 1.

2.003 Fall 2001 Prelab 9

5. Make an s-plane plot showing how the poles of the system move as the gain K varies from 1 to 100.

6. Design an op-amp circuit that can be used to obtain the block diagram shown below, where K, α , and τ are set by adjusting values of resistors and capacitors. Take the op amp gain to be a large constant.

