18.337 Final Report
Parallel Implementation of a Multi-Length Scale
Finite Element Method

Trevor Tippetts
May 8, 2003

1 Introduction

For years the finite element method (FEM) has held a dominant position in the
field of computational structural analysis. As finite element users have demon-
strated an insatiable appetite for computational resources, many software de-
velopers have tried various approaches to parallelize finite element simulations.
Most have focused on distributing the system assembly and/or solution algo-
rithm across multiple processors.

This usually leads to a situation in which the finite element model and the
parallel algorithms for solving it place constraints on each other that are not
necessary for achieving an acceptable solution. For example, for two points in
the physical structure that are separated by large distance, small length scale
field behavior near the two points typically has little interaction. Additionally,
in many cases a representation of a structure at different length scales seems
inherent to the problem, as is the case with composite materials.

However, if a finite element fomulation is developed for serial computation
and later solved with a parallel algorithm, interprocessor communication repre-
senting this small-scale interaction is required. This interprocessor communica-
tion is potentially much more expensive than necessary to accurately model the
physical structure.

In contrast, this attempt takes a step back to the derivation of the finite
element governing equations. The variational equilibrium equations are recast
with an awareness of the subsequent parallelization. The result will be a finite
element model that is more amenable to parallel computation.

2 Multi-length scale finite element method

The multi-length scale finite element method (MLSFEM) is a method for de-
riving a system of finite element equations with degrees of freedom and inter-
polation functions on more than one length scale. This multi-length scale rep-
resentation of the fields can give great computational advantages. Of particular

importance for parallel compution is the potential for greatly reduced system
bandwidth, which decreases the need for interprocessor communication. This is
possible because only large-scale field information is passed between processors.
With MLSFEM, some accuracy is lost in comparison to a monolithic fine mesh.
However, for many simulations this lost accuracy is minimal, and the improved
computational efficiency more than makes up for this disadvantage.

A second, perhaps more subtle, advantage is the capability to use different
integration schemes in time for dynamic problems. For example, the large scale
degrees of freedom can be integrated in time with an explicit integration method,
while the small scale degrees of freedom would be integrated implicitly. This
would allow the maximum time step to be limited by the Courant condition
on the coarser large scale mesh rather than on the small scale mesh, greatly
decreasing the number of required time steps.

2.1 MLSFEM formulation

A typical displacement-based finite element formulation is derived from a po-
tential functional, II, which is a functional of the diplacement fields. The dis-
placement fields, u, are determined by the shape functions, n;, and the degrees
of freedom, g;.

u = n;g; (1)
This functional is minimized with respect to the degrees of freedom.

oIl

Because the variations dg; are arbitrary, a set of i equilibrium equations must
be satisfied.

o
0qi B
In the two-scale MLSFEM formulation, the displacement fields are deter-

mined by both global (@Q;) and local (g;) degrees of freedom and their corre-
sponding shape functions as simply the sum of the two fields.

0 (3)

u = NjQJ‘ + n;q; (4)
The equilibrium equations are therefore
o1l o1l

o= =)
aQ] a‘h

A constraint must be applied to make the fields for the two scales indepen-
dent. Otherwise, the system matrices would be singular.

/ (N;Q;)(nsgs)dV = 0 (6)

The implementation of this finite element formulation, is greatly simplified
by defining a field on the small length scale as the sum of the two fields.

u=U+u = nggg (7)
The equilibrium equations then allow the problem to be solved as a single-
scale finite element model in the new degrees of freedom.
on
Odk
The local fields are coupled to each other through the constraint (Equa-
tion 6), which is expressed with the new degrees of freedom.

=0 8)

/ (N;Q)) (xdk) — (N;Q;)) dV = 0 (9)

It is convenient for both accuracy and computational efficiency to linearize
Equation 9 with respect to ;. This yeilds a linear system of equations that
can be implemented in finite element code as multiple point constraints.

Amj = [NoN;dV Bpp = [NyigdV (11)

In this way, a model with two length scales can be solved as two single-scale
models. The interaction between the two is accomplished with multiple point
constraints. This allows a MLSFEM developer to use existing finite element
source code to speed the software development.

2.2 Implementation

The MLSFEM is implemented in the finite element program CalculiX!. CalculiX
is an open source serial FE code with which the author is already familiar. The
MPT library is used for interprocessor communication between multiple identical
intstances of the program.

I implemented module in the finite element code that computes the con-
straint matrices A and B. The code takes a model definition of the superele-
ment and the subelements in the same format as a finite element simulation
and performs the integrations of the shape functions over the volumes as shown
in Equation 11. It then outputs the elements of the constraint matrices in the
form of coefficients in multiple point constraints that can be read in an in-
put file by the finite element code. An example of a multiple point constraint
equation is shown in Listing 1. The format of the listing will be recognized
by users of the finite element codes ABAQUS™ or CalculiX. The listing means
0.0138888889¢1, + 0.0370370370¢t + ... = 0, where ¢{, is the displacement in
direction 1 at node 11, etc.

ISee http://www.calculix.de/ and http://www.dhondt.de/

Figure 1: Schematic of MLSFEM. Each superelement is associated with a set
of subelements.

Algorithm 1 Example multiple point constraint equation.

*EQUATION

40

11,1, 0.0138888889, 1,1, 0.0370370370, 2,1, 0.0185185185, 3,1, 0.0092592593,
4,1, 0.0185185185, 5,1, 0.0185185185, 6,1, 0.0092592593, 7,1, 0.0046296296,
8,1, 0.0092592593, 12,1, 0.0127314815, 13,1, 0.0092592593, 14,1, 0.0127314815,
15,1, 0.0185185185, 16,1, 0.0162037037, 17,1, 0.0115740741, 18,1, 0.0162037037,
19,1, -0.0231481481, 20,1, -0.0115740741, 21,1, -0.0115740741, 22,1, -
0.0231481481,

23,1, -0.0277777778, 24,1, -0.0138888889, 25,1, -0.0138888889, 26,1, -
0.0277777778,

27,1, -0.0277777778, 28,1, -0.0138888889, 29,1, -0.0069444444, 30,1, -
0.0138888889,

35,1, 0.0046296296, 36,1, 0.0034722222, 37,1, 0.0023148148, 38,1, 0.0034722222,
43,1, -0.0046296296, 44,1, -0.0023148148, 45,1, -0.0023148148, 46,1, -
0.0046296296,

47,1, -0.0092592593, 48,1, -0.0046296296, 49,1, -0.0023148148, 50,1, -
0.0046296296,

As a MLSFEM simulation is running under MPI, the root process is set
up to run the simulation of the assembly of superelements. Each of the other
processes runs a simulation for a group of subelements, each with its own set
of constraint equations. At each time step, the root process sends the nodal
displacements at the current time step to the other processes, which use this
information to take their own time steps. At the end of the simulation, each
process writes an output file for the elements it contains. These output files
may then be analysed separately or merged into a single file with information
from all super- and subelements.

3 Results

3.1 Implementation test case

In order to test the code as it is being developed, a small model was created
with one superelement and two subelements. The superelement is an eight-
node cube, which gives a linear global displacement field. The subelements are
twenty-node parallelepipeds (each half the height of the superelement) which
give quadratic local fields within each subelement.

Figure 2 shows the (amplified) displacements in the subelements in response
to a force applied at the corner node of the superelement. There are no boundary
conditions imposed on the subelements directly. Instead, resulting displacement
fields in the subelements are due only to the boundary conditions on the su-
perelement degrees of freedom, connected to the subelement degrees of freedom
through the constraint equations.

At each step, the root process passes its state vector of degrees of freedom
(@) to the processes simulating the subelements. Each of these processes then
uses the received degrees of freedom in the constraint equation, 10.

It is clear from Figure 2 that the global fields are being transferred effectively
to the local fields in an average sense. But it can also be seen that the increased
number of degrees of freedom allow for small scale refinement of the field. This
is most easily seen along the edges of the deformed cube in Figure 2. If the
edges are compared to the undeformed wire frame edges, it is clear that the
deformed shape is not quite linear. This local refinement of the displacement
(from the linear global field) is exactly what the MLSFEM is intended to do.

3.2 Laminated composite plate

Building on the apparent success of the single-superelement test case, more
complex model was simulated with the MLSFEM software. This example uses
2304 elements for the global field, assembled to form a plate. This plate is then
subjected to impact loading.

Figures 3 and 4 show snapshots of the plate and of a group of superelements
offset from the center of the plate, along one of the planes of symmetry. Figure 3
corresponds to the displacements at 0.00025 seconds after impact; Figure 4

LC199:0T5P Amplitude * 1000000 .00
Tim:0.16051E-01

tune-value:
1000000.0

Animated

subelements_0000.frd

Figure 2: Snapshot of deformed subelements.

(a) (b)

Figure 3: The plate (a) and subelements (b), at time = 0.00025 seconds

(a) (b)

Figure 4: The plate (a) and subelements (b), at time = 0.00049 seconds

corresponds to the displacements at 0.00049 seconds after impact. As in the case
of the test case presented in Section 3.1, no boundary conditions were applied
to the subelements that make up the superelements. All displacements in the
subelements are due to the constraint equations and the vector of superelement
displacements that is passed to the process simulating the subelements at each
time step.

4 Conclusions

A parallel implementation of the Multiple Length Scale Finite Element Method
was performed using the MPI library. The implementation was tested using
a simple test case with a single superelement and with a plate assembly. The
subelements were shown to successfully represent the global fields in an average
sense while also providing for local refinement of the displacement fields.

