
Chapter � 

Methods of electronic structure 

Introduction 

A set of approximations and techniques are introduced that allow a n a f �

fordable and e�cient implementation of the concepts discussed in Chapter �� 

First and foremost� the Local Density Approximation ������� to the exchange�

correlation energy is described� This approximation� or one of its recent r e �

	nements ��
�� brings the conceptualization operated by Density F unctional 

Theory down to an explicit formulation� establishing a limit to its ultimate 

quantum�mechanical accuracy while making at the same time quantum me�

chanics practically applicable to an immense variety of systems� The pseu�

dopotential scheme ������ is then presented� with its goal of decoupling the 

small and computationally expensive length scales typical of the core elec�

trons� con	ned around each n ucleus� from those of the interacting gas of the 

valence electrons� which are responsible for the majority of structural and 

chemical properties of interest� 

�� 
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These two approximations result in an explicit and manageable form for 

the total energy of the valence electron gas in the �eld of the nuclei and their 

frozen cores� the problem then turns computational� and so a brief description 

of the most successful methods for the self�consistent minimization of the 

LDA total�energy functional �����	
� follows� Finally the di�erent problems 

that arise in dealing with systems that are either metallic or have a v anishing 

gap are discussed� together with the present state of research in this area� 

��� The Local Density Approximation 

The Kohn�Sham scheme provides an appealing decomposition of the total�

energy functional� via its rigorous treatment of the non�interacting kinetic 

energy term Ts� A local density approximation can then be introduced ���� 

at variance with the Thomas�Fermi choice of the kinetic energy itself� solely 

for the remaining unknown exchange�correlation functional Exc�nr��� Kohn 

and Sham proposed the approximation universally known as LDA� 

Z 

E 

LDA�nr�� � �xcnr��nr� dr� ����
xc 

where �xcn� � �xcnr�� is the exchange and correlation energy of the homo�

geneous electron gas of constant density n � nr�� This de�nes automatically 

the exchange�correlation potential appearing in the Kohn�Sham equations 

����� or in the total�energy functional ����� as� 

LDA �� xcn� 

v 

LDAr� � 

�E 

xc � �xcnr�� � nr�� ����
xc �n r� �n 
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The function �xc 

�n� can be decomposed in an exchange part� for which t h e 

Dirac ���� result gives 

� �
1�3 

�
	 	 

x 

�n� 
 � n 

1�3� 

� � 

and a remaining correlation term �c 

�n�� a function solely of n� that can be 

determined once for all by i n terpolating between quantum MonteCarlo calcu�

lations ���� and the appropriate asymptotic high�density limit ����	��� The 

rationale for this approximation is that in the limit of slowly varying density 

an exchange�correlation contribution �x 

�n�dn�r� can be attributed to each 

in�nitesimal element i n r� and the total exchange�correlation obtained by 

quadrature ������ The domain of applicability o f L D A has been found� un�

expectedly� t o g o m uch b e y ond the nearly free�electron gas� and accurate 

results can be obtained for very inhomogeneous systems �see Ref� ��	��� An 

explanation for this success ���� comes from the analysis of the properties of 

the exchange�correlation hole nxc 

�r� r
0 �� the exchange�correlation energy of 

the interacting system can be reformulated exactly as 

Z Z 

E
� 

xc 


 drn�r� dr0 

� 

nxc 

�r� r
0 � r�� ��	�

 jr � r
0 j 

0where nxc 

�r� r � is de�ned in terms of the pair�correlation function g�r� r
0 � � � 

for the system described by a density n�r� b u t in teracting via a reduced 

�Coulomb i n teraction � U e�e 

Z 

1 

0 nxc 

�r� r
0 � r� � n�r � �g�r� r

0� � � � �� d�� ���� 

0 

The exchange�correlation hole describes intuitively the concept of Pauli re�

pulsion� in that an electron at a position r reduces the probability of �nding 

one in a position r
0 � creating a charge depletion around r� The exchange�
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correlation energy can be regarded as the energy resulting from the inter�

action of an electron and its surrounding exchange�correlation hole� Since 

0g�r� r � � � tends to � for an increasing separation jr � r
0 j� the exchange�

correlation hole is essentially associated with the short�range quantum ef�

fects of the Coulomb i n teraction� Given that the latter is isotropic� it can 

be demonstrated ��	
 that the exchange correlation energy depends only on 

the spherical average of nxc 

�r� r
0 � for a given r� it has been shown in fact ���
 

that even if the exact and LDA exchange�correlation holes di�er signicantly� 

their spherical averages are similar even for very inhomogeneous systems� and 

this provides the key to understanding the reasons for the success of LDA i n 

a wide and general variety o f e n vironments for the electron gas� Finally� t h e 

LDA satises exactly the sum rule 

Z Z 

LDA 0 0 n
xc 

�r� r � r� � nxc�r� r � r�dr0 � ��� ����� 

which explains some of its accuracy� the necessity of enforcing this sum rule 

is at the origin of some of the di�culties encountered in improving the LDA 

by means of perturbative expansions �the most recent and successful devel�

opment being the generalized gradient a p p r o ximation �GGA� of Perdew and 

Wang �PW��� Ref� �	�
��� The LDA will be used in all the applications 

presented here� which deal with systems where the charge density v aries 

smoothly and which are within the domain of accuracy of the LDA� 
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��� The pseudopotential approximation 

The pseudopotential approximation1 provides a rational way to isolate the 

fundamental role played by t h e v alence electrons in the electronic�structure 

problem� In a mean��eld picture� the valence electrons can be thought o f a s 

the loosely bound orbitals which are most strongly modi�ed on formation 

of the chemical bonds in a molecule or the bands in a solid� The length�

scales of these orbitals �and energies� since the Schr�odinger equation mixes 

the two via the Laplacian� are those characteristic of inter�atomic separations 

and chemical bond energies� In contrast� inner electrons are tightly bound 

around each atomic nucleus and are largely unperturbed by the environment 

surrounding their atom� In a Hartree�Foc  k or Kohn�Sham mean��eld pic�

ture� the higher orbitals must have features on the inner core length�scales 

via the orthogonality constraint t o t h e l o wer orbitals� Nevertheless� it can be 

argued that the atomic problem can be projected for the valence electrons 

into an e	ective energy�dependent Hamiltonian� where the nuclear attraction 

is largely screened by a repulsive term that mimics the e	ects of the orthog�

onality constraint
 this is the rationale behind the cancellation theorem ��� 

The resulting potential is commonly referred to as a pseudopotential and it 

is much w eaker and smoother than the original Coulombic potential� This 

weak potential brings in a picture for the electron�ion interaction in solids 

of a inhomogeneous electron gas weakly perturbed by a n a r r a y of e	ective 

pseudopotentials ��� 

1 See Refs� ���� and ���� for some recent and comprehensive reviews� 
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����� Basis representation 

The pseudopotential approach a l l o ws for a representation of the quantities 

of interest �the charge density and its decomposition into the Kohn�Sham 

orbitals�that is as general and as economical as possible� since the electronic 

structure problem can then be solved on a discrete grid in real space where 

the accuracy on the spacing needs to be only that necessary to follow the os�

cillations of the pseudo�orbitals and the motion of the pseudo�ions� Methods 

that operate exclusively in real�space are being introduced nowadays� based 

either on regular grids ����� or on the variable metrics provided by a d a p t i v e 

coordinates ��	�� or based on multi�grid techniques �
��� 

In what follows we will adopt what is presently the method of choice for 

the description of periodic solids� introducing periodic�boundary conditions 

�
�� that eliminate or reduce the nite size errors in the description of perfect 

bulk crystals or systems with some degree of periodicity2 � The induced pe�

riodicity in the external potential makes the Hamiltonian operator commute 

with the set of translation operators identied by the periodic boundary con�

ditions �
��� the set of common eigenstates for these operators is �Floquet�s� 

or Bloch�s theorem�� 

H 

�r� � �nk 

�r� � e 

ik�r unk 

�r�� ���
�� ^ 

where k is the quasi�momentum and unk 

�r� has the periodicity of the unit 

cell� The innite wavefunctions of an extended system become represented� 

with these periodic boundary conditions� by a nite numbe  r o f w avefunctions 

for each quasi�momentum k� spanning the innite set of points k inside the 

2 E�g� surfaces� that can be described by periodically repeated thick slabs in the direc�

tion perpendicular to the surface� while keeping the perfect periodicity parallel to it� 
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Brillouin Zone� The periodicity o f u
nk�r� is exploited when representing the 

wavefunction with the discrete basis of plane waves �that are an orthogonal 

and complete set�� 

� hrjk 
 Gi � 
p
V
e 

i(k+G)�r� 

where V is the volume of the unit cell� additionally� a metric for the complete	

ness can be naturally introduced by selecting the �nite set of plane waves for 

which jk 
 Gj2 � Ecutof f 

� The expectation value for the kinetic energy of a 

wavefunction represented on a basis of plane waves is calculated e�ciently 

in reciprocal space� 

X X 

2�nk 

�r� � cnk�G 

e 

i(k+G)�r � h �nk 

�r�j � r 

2j�nk 

�r�i � jk 
 Gj2�c nk�G 

G G 

while the action of the �local� pseudopotential is expressed in real space� 

in other words the kinetic	energy operator is diagonal in reciprocal space� 

and the external potential is diagonal in real space� It is computationally 

more convenient to calculate these expectation values in the representation 

for which they are diagonal� switching back and forth from one representa	

tion �the Fourier coe�cients cnk�G 

� to the other �the wavefunction �nk�r� on 

a grid in real space�� since e�cient algorithms are available �the so	called 

Fast Fourier Transforms� see Chapter � of Ref� ����� whose cost is roughly 

proportional to the numbe  r N of elements in the mesh to be transformed 

�more precisely it is O �N ln N ��� 

����� Smoothness and transferability 

Simple and fairly accurate models of pseudopotentials were developed ini	

tially by c hoosing some simple analytical form �either in real space� like i n 
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the �empty�core� potential ����� or for its Fourier component s � a s i n t h e � E m �

pirical Pseudopotential Method� ����	� and then adjusting the parameters in 

order to 
t the atomic energy levels or the band structures� Whilst providing 

considerable insight for the theory of the electronic structure of solids� these 

pseudopotentials do not provide the fundamental requirement o f transfer�

ability� in that their ad�hoc 
tting procedure does not guarantee a faithful 

representation outside the con
guration space in which the 
tting has been 

performed� and so little success is expected when using these pseudopotential 

in widely di�erent c hemical environments� This generally precludes the abil�

ity to perform truly 
rst�principles calculations� that require to determine 

material properties without the need of any experimental input� and in par�

ticular without the need of adopting procedures that are tuned in advance 

to the speci
c problem addressed� To i m p r o ve this accuracy� and given the 

angular symmetry of the atomic orbitals and the independent orthogonality 

constraints that they generate� it is natural to develop a scattering approach 

�� in which the pseudopotential acts di�erently on each angular�momentum 

component of the scattering wavefunction� the pseudopotentials is thus de�

composed onto a sum of projections over di�erent angular momenta� and 

becomes a non�local �or semi�local� more accurately in this case	 operator 

X 

0 V 

non�locVps 

�r� r 	 � V 

loc �r	 ��r � r 

0 	 � �r	 ��r � r 

0 	 Pl 

�� �0	�r� rl 

l 

In addition to this� the modern theory of pseudopotentials builds around the 

key issue of transferability� constructing a pseudopotential that scatters the 

incoming wavefunction as closely as possible to the original potential over a 

wide range of energies� A systematic and successful procedure for the devel�

opment of accurate and transferable pseudopotentials has been developed ���� 
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����� where the added constraint o f norm�conservation is introduced in order 

to preserve transferability� In summary� the requirements in constructing the 

pseudopotential are� 

� the lowest eigenvalues for T � V must equal the valence all	electron ps 

eigenvalues� 

� the pseudo	wavefunctions �l 

should be nodeless� and they and their 


rst derivatives must be di�erentiable� 

� the pseudo	wavefunctions �l 

must be identical with the all	electron 

wavefunctions beyond a chosen core radius� 

or equivalently �norm�conservation� 

� the total integrated pseudo	charge density f r o m a g i v en �l 

and the 

corresponding all	electron charge density are identical inside the core 

radius� 

�

The norm	conservation requirement ensures that the logarithmic derivative o f 

l 

�related to the phase shifts in the scattering has the same behaviour�up 

to the 
rst order in changes in energy�as in the all	electron case� Thus the 

pseudopotential is constructed from the beginning with an intrinsic degree of 

transferability� An example of a non	local norm	conserving pseudopotential� 

together with its pseudo	wavefunctions� is given in Fig� ���� 

The original choice ���� for the pseudopotentials� core radii along the pe	

riodic table was conservatively small� thus aiding transferability at the cost 

of smoothness and computational e�ort� Several groups have p r o p o s e d m o d i 	


ed schemes for generating pseudopotentials aimed at reducing the numbe  r o f 
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Figure ���� s�� p� and d� components of a non�local norm�conserving pseu�

dopotential �In	� with the all�electron and pseudo�wavefunctions r�  �r	 �solid 

and dashed� clockwise from top left	� 
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plane waves required to describe properly the electron�ion interaction� either 

focusing on producing improved smoother wave�functions in the pseudizing 

process ���� ���� ��	� ��
� or smoother potentials ����� In particular� a for�

mulation has been proposed the ultrasoft pseudopotential formulation ����� 

that partially releases the constraint of norm�conservation while it imposes at 

the same time the matching of the scattering properties on a broader range 

of energies� This allows for improved transferability and much increased 

smoothness� at the price of introducing a mechanism of charge augmenta�

tions to restore norm�conservation and hence the proper balance of valence 

charge density in the core region� In all the applications presented here an 

optimized pseudopotential for Al courtesy of M�H� Lee� Ref� ��
�� has been 

used� which w as generated along the lines of Refs� ���� ��	� ��
�� with the aim 

of reducing the residual kinetic�energy of the pseudo�wavefunction beyond a 

given cuto� in reciprocal space in order to improve smoothness� 

X 

2 2�Ekin  

� G j�l 

Gi 

�j �i 

i�Gi 

�qc 

����� The Kleinman�Bylander representation 

The introduction of non�local or semi�local pseudopotentials makes the plane�

wave representation of the Hamiltonian much more expensive to calculate� 

�The kinetic�energy operator hGi 

jTejGj 

i is diagonal in reciprocal space� and 

thus requires a number of operations proportional to the numbe  r o f p l a n e 

waves� the local potential� diagonal in real space� is expressed in reciprocal 

space via a Fast Fourier Transform� and it depends on Gi 

and Gj 

only as 

Gi 

� Gj 

� this also makes the cuto� for the representation of the local 

pseudopotential twice as large as that necessary for the wavefunctions�� The 
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non�local pseudopotential� on the other hand� is a non�trivial dense matrix 

in Gi 

and Gj 

� and computing this expectation value requires a numbe  r o f 

operations which is proportional to the square of the number of plane waves� 

A shortcut around this problem is o�ered by rewriting the pseudopotential 

in the Kleinman�Bylander representation ���	� making it fully non�local but 

at the same time separable in Gi 

and Gj 

� and thus making the workload 

just proportional to the number of plane waves� If �lm
r� � �l
r�Ylm 


r� is 

an eigenfunction of the atomic pseudo�Hamiltonian� the Kleinman�Bylander 

representation is de�ned by� 

jV 

non�loc�lmih�lm 

V 

non�loc 

l l 

X j
VKB 


r� r 

0 � � V 

loc 
r� �
r � r 

0 � � 

h�lm 

jV 

non�loc 

�KB 

j�lmi 

lm 

l 

This representation of the potential is di�erent from the original semi�local 

one� but it can be seen that it acts identically on the reference states j�lmi� 

and thus it is conceptually equally well�justi�ed and it is expected to maintain 

the same degree of smoothness and transferability of the original represen�

tation� The fully non�local formulation allows for a completely separable 

representation in reciprocal space� where the non�local component i s g i v en 

by� 

X 

�V 

non�loc 
G� G 

0 � � Fl
G�Fl 


G 

0�KB 

l 

and can be computed with a cost that is directly proportional to the numbe  r 

of plane waves� A further improvement t o wards a more economical represen�

tation of the non�local e�ects of the pseudopotential is obtained by t a k i n g 

advantage of the localization of V 

non�loc in real�space ���	� signi�cantly re�l 

ducing the cost in the limit of very large systems� thanks to the improved 

scalability� 
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���	 Minimizations and dynamics for electrons 

and ions 

The approximations previously described provide an explicit functional form 

for the exchange�correlation functional of the Kohn�Sham formulation� and 

an accurate and a�ordable�at some computational price�form for the in�

teraction between electrons and ions� that acts as external potential for the 

electron gas� This external potential is fully determined once the nature and 

coordinates of the pseudo�ions fRI 

g are speci�ed� the ground state is then 

obtained by minimizing the total energy functional 	
���� to self�consistency 

with respect to the set of orbitals f�ig� W e can consider the total energy of 

the ground�state as a parametric function of the ionic coordinates fRI 

g� or 

in other words as the adiabatic Potential Energy Surface 	PES� 

V 	R1� � � � � RN 

�  min E �f�ig� fRI 

g�� 

f�i 

g 

In addition to determining the electronic ground�state properties for a given 

ionic con�guration� it might be important to be able to perform structural 

relaxations� t h us determining the local or the global minimum of V 	fRI 

g� 

as a function of fRI 

g� or to perform molecular dynamics simulations� where 

the ions move according to the Newton�s equation of motion in the potential 

�eld 	the PES� determined by the instantaneous electronic ground�state ����� 

The total energy depends non�linearly on the orbitals f�ig� themselves 

constrained to be orthonormal and bound by the self�consistency requirement 

to reproduce at the ground state the charge�density dependent Hamiltonian 

for which they are solutions� In addition� the orbitals have to be represented 

in a basis of plane waves� and this involves a number of coe�cients of the 
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order of few tens to several hundreds for every atom contained in the unit cell 

�per �atomic volume�� more appropriately�� These requirements result in a 

problem that is computationally very intensive� and a long and focused e	ort 

of the scienti
c community has been geared to the development of e�cient 

algorithms and techniques tuned to the available resources� 

A brief description is given here of the more recent and successful ap�

proaches� and on how they can be applied to perform electronic�structure 

calculations and 
rst�principles structural relaxations or molecular dynam�

ics� 

����� Car�Parrinello molecular dynamics 

Car and Parrinello3 ��� proposed to apply the idea of an extended L agrangian 

formulation ��� ��� to the domain of quantum mechanics� the classical 

Lagrangian for a system of ions in the potential V �fRI 

g�� 

X 

2� �L � MI 

RI 

�V �fRI 

g�� 

� 

I 

is substituted with an e	ective Lagrangian in which the electronic degrees of 

freedom have been introduced in the form of classical dynamical variables� 

characterized by an appropriate 
ctitious mass and kinetic energy� and where 

the potential energy surface is de
ned in all generality a s E � Ef�ig� fRI 

g�� 

Following these assumptions the Car�Parrinello Lagrangian takes the form� 

ZX � 

L � � j�i 

�r�j2 dr �
� 

X 

MI 

RI 

2 

� Ef�i 

g� fRI 

g�� �����
� � 

i I 

3 See Refs� ���� and ���� for comprehensive reviews of the molecular dynamics method� 

and Ref� ���� for a discussion of the computational e�ciency in systems with a gap� 
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with the orbitals subject to the holonomic constraints of orthonormality� 

Z 

�
i 

��r� t ��j 

�r� t � dr � �ij 

� 

The �rst term in ���	� is the �ctitious kinetic energy associated with the 

classical motion of the orbitals �more precisely
 of the coe�cients of their 

plane�wave representation�
 that are given a �ctitious mass � whose role is 

to tune the dynamics of these orbitals with respect to the dynamics of the 

ionic masses MI 

�� can also vary from orbital to orbital for the case of 

�xed ions it can be simply renormalized into the integration time�step�� The 

Euler�Lagrange equations of motion determined by the e�ective Lagrangian 

���	� are� 

�E 

X 

��� 

i 

� � � �ij 

�j 

�����
�� i

� 

j 

� 

�E 

MI 

RI 

� � 

�RI 

� ����� 

where the Lagrangian multipliers �ij 

have b e e n i n troduced explicitly to im�

pose the holonomic constraint of orthonormality to the orbitals� It should 

� �be underlined that the functional derivative 

�E  is H �i h H isw ere
KS KS�
i

��  

the single�particle Kohn�Sham operator de�ned in ������� Neither Eq� ����� 

nor
 in particular
 Eq� �����
 are immediately associated with some real tra�

jectories of the physical system� The role of the present f o r m ulation is
 at 

�rst
 to introduce the idea of simulated annealing ���� as a practical method 

to determine the ground state� A procedure can be devised by which some 

kinetic energy is initially given to the system �either to the electronic de�

grees of freedom or also to the ions� and then the dynamical evolution in 

the con�guration space is followed according to the Lagrangian dynamics
 

while the temperature gets slowly decreased towards zero� In the absence 
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of metastable states that can trap the system4 the equilibrium will be ��

nally reached when the temperature has dropped to zero� so that also the 

�ctitious classical kinetic energy of the orbitals and the ions are zero� and 

� �the relations �i 

� � and RI 

� � hold� It is readily seen from Eqs� 	��
� 

and 	���� that the �rst condition implies that the orbitals at this point sat�

isfy the self�consistent Kohn�Sham equations 	���� 	a part from a unitary 

transformation that leaves the Hamiltonian invariant� and consequently the 

derivatives 

�E � 

�V are the true Hellmann�Feynman forces� the second 

�RI 

�RI 

condition implies that the system has reached either a local or possibly a 

global minimum of the potential energy surface V 	fRI 

g�� 

One of the signi�cant improvements that such a formalism brings in �
�� 

is that it does not require to ever store the full Hamiltonian matrix� which 

is very large in a plane�wave based formulation� since it can take full advan�

tage of the existence of 	di�erent� diagonal representations for the kinetic 

energy and the pseudopotential� switching back and forth from real to re�

ciprocal space with Fast Fourier Transforms� For this reason and since only 

the lowest eigenstates are needed� the evolution towards the ground state 

�	requiring the repeated application of the operator HKS 

to all the wavefunc�

tions� has an associated cost that is much l o wer than an iterative sequence 

of full diagonalizations of the Hamiltonian� 

This same Car�Parrinello Lagrangian can be subtly exploited to perform 

some realistic molecular dynamics� if the mass associated with the electronic 

4 This is not a problem for the annealing at �xed ions� although if the ions are simul�

taneously allowed to relax it can be very easy to get trapped into a local ionic minimum� 

The procedure itself is meant t o r e a c h e v entually the global minimum� but it requires an 

asymptotically slow decrease of the temperature that is not practically a�ordable� 
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motion is chosen to be much smaller than that of the ions� for appropriate 

initial conditions the system will be characterized by a metastable separa�

tion between a subsystem of fast oscillators �the orbitals� that have only a 

tiny fraction of the total �ionic and electronic� kinetic energy associated with 

them� and a subsystem of slow and massive ions that act adiabatically on the 

electrons as a driving potential� The equations of motion ����� favour those 

natural oscillations of the orbitals that are coherent with the instantaneous 

ionic motion	 the higher frequencies and smaller 
ctitious mass�es� of the 

electronic variables assure that� in an average sense� the orbitals will keep 

redistributing in order to be always close to the real ground�state� paramet�

rically evolving as a function of the ionic coordinates� and with a tolerance 

in the thickness of their Born�Oppenheimer con
nement that is essentially 

determined by the 
ctitious electronic kinetic energy� The trade�o� in the 

simulations is between having smaller electronic masses� thus keeping the sys�

tem closer to the Born�Oppenheimer minimum and characterized by more 

responsive electronic degrees of freedom� and the necessity o f k eeping the 

time�step for the expensive i n tegration of the equations of motion as large 

as possible� in order to simulate the dynamics for a time adequate to the 

atomic scales �typically from a fraction of a picosecond up to several pi�

coseconds�� Although the forces that drive the ionic dynamics are never the 

exact Hellmann�Feynman forces� the adiabatic separation assures that� in 

an average sense� their trajectory will be close to the exact one� the more 

so the smaller the electronic mass �and the time step� associated with the 

quasi�equilibrium electron dynamics� 

It should be pointed out ��� that the eigen�frequencies of the oscillations 
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for the electronic degrees of freedom are� at �xed ions� 

1 

2 

� � 

� � �j 

� �i�
�ij 

� � 

� 

where �j 

is a Kohn	Sham eigenvalue for a higher unoccupied state and �i 

is 

an eigenvalue for an occupied state
 Thus� the lowest frequency that can 

appear in the electronic motion is of the order of �min 

� �� Egap  

���1�2 � for 

a semiconductor or insulator� with a suitable choice of � this critical fre	

quency can be higher that the typical frequencies of the ionic motion� and 

thus the condition of adiabatic separation can be satis�ed for all the duration 

of a typical simulation �this technical detail depends on the size of the gap� 

and on the condition that the gap is not reduced following disordering or 

reconstruction�
 For very long simulation times� the electrons can be period	

ically quenched back to the Born	Oppenheimer ground	state ���� although 

this procedure destroys the proper evolution of the holonomic constraints 

���� that requires a coherent e v olution in the subspace of occupied orbitals 

�the total energy is invariant with respect to a unitary transformation in this 

subspace� but the �ctitious kinetic energy is not� unless the unitary trans	

formation is time	independent�
 In the case of a metal� the gap tends to 

zero in the limit of the periodic unit cell going to in�nity �or the sampling of 

the Brillouin	zone becoming increasingly �ne�� and the metastability of the 

adiabatic separation breaks down immediately
 

����� Conjugate�gradient minimization 

A straightforward and very e�cient approach can be taken by reconsider	

ing the original problem of the functional minimization for the total energy 
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functional 
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2�i�r� dr 	 EH 

�n�r�� 	 
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	Exc�n�r�� 	 vext�r� R1 

� � � � � RN 

� n�r� dr�
���� 

and treating it as a complex problem of nonlinear constrained optimization� 

either in the electronic variables alone� or together with the ionic degrees 

of freedom� The electronic problem will be discussed �rst� i�e� the prob

lem of minimizing the total energy as a function of the coe�cients of the 

plane waves on which the orbitals are represented� For this case� the total 

energy functional possesses a single� wellde�ned minimu m � b u t i t h a s a v ery 

large number of degrees of freedom and a fairly complex set of nonlinear 

constraints� 

There are two w ellestablished analytical methods that exploit optimally 

the knowledge of the function to be minimized and of its �rst derivatives to 

map out improved directions towards the multidimensional minimum� these 

are respectively the conjugate�gradient methods �CG� either in the Fletcher

Reeves or PolakRibiere formulation� and the variable�metric methods �often 

found in the BFGS formulation of BroydenFletcherGoldfarbShanno� ����� 

Both use the knowledge of the multidimensional function and�if available� 

of its �rst derivatives to iteratively produce more e�cient m ultidimensional 

search directions� they share the concept that it is the information on the 

secondderivatives� in the neighbo  r  h  ood  o  f  a  m  ultidimensional minimum� the 

obvious fundamental quantity that locates the position of the minimum with 

respect to the points that have already been sampled� The BFGS minimiza

tion operates by explicitly accumulating an estimate of the inverse Hessian 

matrix� while the CG method takes the indirect approach of reducing the di
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mensionality of the search space at every iteration� The conjugate�gradient 

algorithm needs only a storage proportional to the numb e r o f d i m e n s i o n s i n 

the full search space �i�e� the number of plane waves�� while variable�metrics 

methods require a storage proportional to the square of the number of dimen�

sions� and for this very reason have to be ruled out from the beginning in the 

context of plane�wave electronic structure calculations� In addition� there is 

no clear computational advantage for either method that can be generally 

foreseen in advance� both relying for their e�ciency on the information that 

is� directly or indirectly� gained on the curvature of the function that is being 

minimized� 

The ideas beneath the conjugate�gradient algorithm can be exempli�ed5 

considering the problem of minimizing in the N dimensions a symmetric 

positive�de�nite function F � 

1 x � G � x� where G is the gradient operator 

2 

such that the gradient a t x is g � �Gx� Starting from a generic point x1 � 

the best initial direction is the steepest�descent direction d1 � g1 � �Gx1	 

a minimization along this multidimensional line yields x2 � x1 
 b1 d1 � where 

b
1� being the minimum of F along d1 � is su ch that 

dF 

� � x 

1 
 b
1d1 � � G � d1 � � � 

db1 

The straightforward application of the steepest�descent method would call 

now for a subsequent minimization from x2 along the direction of steepest�

3descent d2 � g2 � �Gx2 � T h is w ould lead to a new point a lo n g d2 � x � 

2x 
 b2 d2 � s u c h that� as above� 

dF 

1� � x 
 b
1d1 
 b

2 d2 � � G � d2 � � � 

db2 

5 For this� and for an in�depth review of the total�energy pseudopotential method and 

its implementation as a direct minimization problem� see Ref� ����� 
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At this point� the problem can be reexamined� in fact� given both the optimal 

search directions d1 and d2� the minimization problem can be regarded as a 

global two�dimensional problem in the space of d1 and d2 � The optimal b1 

and b2 are those that satisfy the two coupled equations� 

� 

�dF 

� � � x 

1 	 b1d1 	 b2d2 
 � G � d1 � � 

�db1 

x
3

� 

�dF 

� � � x 

1 	 b1d1 	 b2 d2
 � G � d2 � � � 

�db2 

x
3

These equations are clearly valid if the directions d1 and d2 are conjugate to 

� �each other� that is if d1 G � d2 � d2 G � d1 � �� 

This requirement can be iteratively extended ���� and it de�nes a se�

quence of search directions� starting from the initial steepest�descent one� 

that do identify analytically the minimum of a N �dimensional quadratic func�

tion in exactly N iterations� the search directions are given by� 

	 �i di�1di � g 

i � �����
 

where the mixing factor between the current gradient and the previous search 

direction� outcome of all the previous history of the minimization� is 

di di 

� 

�i � 

di�1 

� �1 � � � �����

di�1 

� 

The method operates by mapping out from the minimization process all the 

explored degrees of freedom� e�ectively reducing the dimensionality o f t h e 

search space at every iteration� A clear example comes from visualizing a 

��dimensional paraboloid whose principal axes have v ery di�erent eigenval�

ues� a steepest�descent strategy� starting from a generic point� would pro�

ceed via an in�nite series of damped searches approaching asymptotically 
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the minimum �each steepest�descent direction is bound to be orthogonal to 

the previous one�� while the conjugate�gradient algorithm reaches the mini�

mum in two iterations� by c hoosing the optimal steps and directions in the 

combined subspace� Finally� it should be noted that� if the principal axes of 

the quadratic form are all equal �i�e� the eigenvalues are all identical�� the 

descent direction is always directed towards the minimum� and one iteration 

is all what is needed� independently from the dimensionality� to conclude the 

minimization process� This illustrates the key idea of preconditioning� that 

consists of adapting the metrics of the space in which the search directions 

are chosen in order to make a l l t h e e i g e n values be as similar as possible �or� 

in other words� to make the quadratic form look as spherical as possible�� 

The conjugate�gradient�steepest descent method has been introduced in 

the context of the electronic structure of solids both as an indirect minimiza�

tion technique ��	
 and as a direct one ���
 ���
� The former implementation 

considers the minimization problem� similarly to the molecular dynamics ap�

proach� as a propagation in �imaginary� time� where an initial arbitrary trial 

state gets projected more and more accurately to the ground state by a r e �

�peated application of the operator HKS 

� In this� it suers inevitably from an 

intrinsic instability with the growth of the system size� originating from the 

small wavenumber terms that appear in the denominator of the Hartree en�

ergy� and that can be controlled only by reducing a priori the time step of the 

�ctitious evolution� The latter approach operates dierently� i n i n troducing 

the concept of direct minimization by t a k i n g i n to account t h e response of the 

system when a line search is performed� and choosing a variable step that 

minimizes the actual value of the total energy along the search direction� This 
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has the net e�ect of making the process strictly variational and very stable� 

in addition to greatly improving the e�ciency of the minimization� This ap�

proach has been extensively developed ��	
 ���
 ��	
 and successfully applied 

t o a w i d e v ariety of semiconducting and insulating systems ���
 ��
 ���
 ���
 

���
 ���
 ���
� In its original formulation ���
 ��	
 the optimization strategy 

was broken down into a band�by�band updating strategy� in order to minimize 

the memory requirements for the working arrays containing the gradients� the 

conjugate directions� and the current w avefunctions� The strategy adopted 

here and in the following will be an all�bands approach ���
� that o�ers a much 

improved performance� especially in the case of metallic systems �since the 

cross�terms between the bands are considered in the response�� together with 

a simpler theoretical formulation� albeit at the cost of a signi�cant increase in 

the dynamic memory requirements� Given that it is currently possible to �t 

on a common w orkstation systems whose size is of the order of one hundred 

atoms� provided they do not need hard pseudopotentials� and given the trend 

of large�scale electronic structure computations towards distributed memory 

machines� the overhead costs associated with an all�bands scheme can be 

considered to be paid o� by its increased performance �by at least a factor of 

 or �� although it can be much more than that for �di�cult� systems� like 

the very elongated cells discussed below�� As an aside it should be noted that 

a single conjugate�gradient iteration on all the orbitals� in a band�by�band 

scheme� requires a much larger computational e�ort than one iteration in 

an all�bands scheme �due to the requirements of orthogonality and precon�

ditioning along every band�by�band search�� and so iteration counts are not 

immediately meaningful for a performance comparison� The technical details 
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of the implementation� speci�cally in a metallic system� will be sketched in 

the following Section and in Chapter �� where the ionic relaxations are also 

discussed� As a conclusion to the points presented here� the more relevant 

features of conjugate�gradient methods are outlined in the following� focus�

ing the perspective on applying the technique to large�scale or traditionally 

di�cult cases �metallic systems being paradigmatically di�cult	� or to dy�

namical simulation� especially where the nature of the system changes during 

the simulation� 

Conjugate�gradient direct minimization� an outline 

� it is an iterative procedure driven by the functional derivatives �gra�


dients	 of the total energy 

�E  � HKS 

�i� and so it shares with the 

�� 	

� 

i 

Car�Parrinello method the advantages in evaluating and storing the 

Kohn�Sham Hamiltonian 

� in the limit of a proper preconditioning formulation� it is heuristically 

known to converge very fast even with respect to the theoretical asymp�

totic behaviour ��� 

� it is robust and stable� ultimately based on the directions of �steep�

est� conjugate	 descent� and it is naturally implemented in a strictly 

variational fashion 

�	 it allows the direct minimization of the self�consistent functional� in�

variably with just a single interpolation along the line of descent� and 

thus it employs the optimal �imaginary time	 step at every iteration 
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����� Metallic systems 

Severe technical di�culties arise in the treatment of metallic systems� both 

in static self�consistent calculations and in molecular dynamics simulations� 

To begin with� static calculations show a dramatic decrease of the sampling 

accuracy in the Brillouin Zone� 

Brillouin�Zone sampling In periodic boundary conditions the transla�

tional symmetry of the external potential leads to a representation for the 

wavefunctions in the form of Bloch states ����	
 the sum on all the in�nite 

states of the system �or quasi�in�nite� with the Born�von Karman conditions 

for the wavefunctions	 thus becomes an integral over the �rst Brillouin Zone 

�or a sum� done on the discrete �ne mesh of wavevectors allowed by the Born�

von Karman conditions	� where for each w avevector there corresponds only 

a �nite and small number of states �for a spin�degenerate calculation in an 

insulator� there are 

Ne states occupied at each w avevector� with Ne 

the num�
2 

ber of electrons in the unit cell	� The kinetic energy� the band energy term 

and the charge density in �����	� ����	 are all de�ned via a full integration 

on the �rst Brillouin Zone
 e�g� the charge density i s �Z X �
� 2 

n�r	 � f ��ik 

	 j�ik 

�r	j dk� �����	
V BZ 

i 

where f ��ik 

	 � � �if the system is spin degenerate	 for the lowest 

Ne states
2 

at each k� � otherwise� 

It was �rst recognized by Baldereschi ���� that the integrations over the 

Brillouin Zone could be performed to a very high accuracy by using just a 

single special k�point� carefully chosen according to the point group symme�

try of the unit cell lattice� This analysis has been subsequently generalized 
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to identify a set of prescriptions for choosing relatively coarse meshes that 

can provide excellent accuracy in estimating the exact integrals ����� ����� 

������ the existence of symmetry operators that commute with the Hamil�

tonian can be further exploited via the simple relations that are satis�ed 

by the common eigenstates at di	erent but symmetry related k�points
 and 

e	ectively reducing the problem to an integration over the irreducible wedge 

of the Brillouin Zone �e�g� the time�reversal symmetry brings the relation 

�k 

�r � �� 

�k 

�r
 straightforwardly halving the numbe  r o f k�points that are 

needed� The success of these integration techniques is analogous in nature to 

that of the well�known Gaussian quadrature
 in that they rely on integrating 

accurately the lowest harmonics of the representation of the integrand
 which 

in this case is naturally expanded as a series on the symmetrized lattice stars� 

This accuracy degenerates immediately if the function to be integrated 

is discontinuous� This is precisely what happens in a metal
 where only the 

states inside the Fermi surface contribute to the integrals
 and the occupa�

tions drop to zero when the Fermi surface is crossed� A partial solution to 

this problem has been obtained by i n troducing a smearing technique ����� 

������ the exact density of states n�� �not to be confused with the charge 

density n�r
 

X 

n�� � ��� � �ik 

� ����� 

ik 

is substituted with a smoother
 smeared density of states 

� �X � � � �ik 

n�� � �e � �����
� � 

ik 

where the �e function is some broadened approximation to the original Dirac�s 

delta �e�g� a Gaussian� The immediate e	ect of this broadening is to remove 



�� ���� MINIMIZATIONS AND DYNAMICS 

the sharp discontinuity around the Fermi energy� a n d t o greatly improve t h e 

sampling accuracy� This approach will be rationalized in the discussion of 

Chapter �� with a careful examination of the sampling errors that the ap�

proach can cure and the systematic errors that are eventually introduced� and 

how they can be corrected for� for the time being it should be stressed that it 

is absolutely equivalent t o i n troducing a �real or �ctitious	 temperature for 

the electronic degrees of freedom of the system� 

Finite temperature formulation A �nite temperature formulation in 

which the system is characterized by a total free energy functional� as in 

�
���	� �
���	� comes initially from this necessity o f i m p r o ving the sampling 

accuracy in the Brillouin Zone� the approach is actually very successful� be�

cause it oers at the same time a vastly improved sampling precision and it 

allows an a�posteriori rationalization of the smearing scheme that can help in 

correcting the systematic errors that arise from the introduction of a broad�

ened density of states �see Chapter � for a discussion	� Additionally� a �nite 

temperature formulation helps in controlling the discontinuities in the en�

ergy derivatives that would be introduced by l e v el�crossing events� i�e� by t h e 

sudden occupation or emptying of states whose energies cross the Fermi level 

during the iterative process towards self�consistency� Finally� a canonical 

formulation provides a natural way to include in the minimization process 

fractional occupancies and subspace rotations� in a metal� at variance with 

the case of a semiconductor� the charge density ���
�	 and consequently the 

self�consistent Hamiltonian are no longer invariant with respect to unitary 

transformations of the occupied orbitals� which t h us enter the problem and 

have to be considered as additional non�linear degrees of freedom� 
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Molecular dynamics The objective of performing stable molecular dy�

namics simulations in a metallic system raises additional di�culties� Unless 

the system size is tuned to be small enough to allow for the appearance 

of a pseudo�gap in the system ����	
 there is otherwise a signi�cant o verlap 

be  t  ween the typical ionic frequencies and the electronic excitations� This 

breaks the adiabatic separation that is needed to perform a Car�Parrinello 

simulation
 even more so if fractional occupancies and subspace rotations are 

introduced in the problem ����	� Ad�hoc procedures can be devised to work 

around this problem
 e�g� by repeatedly quenching the system to the ground 

state ����	 while coupling the ions with a Nose thermostat ����	 �provided 

that the system is quasi�semiconducting in character�
 or by forcibly cou�

pling a second Nose thermostat to the electronic system ����	 ����	
 at the 

price of introducing in the process velocity�dependent forces in the electronic 

equations of motion� In both cases the treatment of the electronic degrees of 

freedom remains somewhat unsatisfactory ���	 or restrictive� 

Additionally
 the treatment of the occupation numbers and subspace ro�

tations has to be considered as an essential part in the development o f a n 

optimal minimization strategy ���	 ����	 ����	 ����	
 since the non�linear con�

straints on these degrees of freedom
 together with their intrinsic non�local 

character6 
 makes the control of the convergence for the energy extremely 

demanding even in the limit of moderate cell�sizes ����	 ����	����	� This 

problem is even more severe in the convergence of the Hellmann�Feynman 

forces
 whose errors are �rst�order in the distance between the true ground 

state and the trial solution
 as opposed to the total �free� energy
 t h a t h a s 

6 A small modi�cation of an occupation� or a subspace rotation� amounts to a non�local 

displacement o f c harge density all over the unit cell 
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an error that is of second�order� 

Finally it should be noted that the Hellmann�Feynman theorem implies 

that the forces calculated in a simulation are the true derivatives of the total 

free energy �that is the smeared energy functional�� this explains the obser�

vation of an improved conservation of the constant of motion ���	
 when free 

energies and Hellmann�Feynman forces are considered� It should be noted 

from now on that� unless the temperature is introduced in order to prop�

erly consider a �nite�temperature Fermi�Dirac electron gas and its relative 

isothermal dynamics7 � a systematic error arises in adopting the free ener�

gies and forces as an approximation to the zero�temperature �zero�smearing� 

limit� The errors on the energies can be corrected very easily a�posteriori 

�
 ����
� this allows for the choice of larger smearing widths for a given 

tolerance in the systematic errors� in turn allowing for accurate sampling of 

the Brillouin Zone with coarser grids� or for an improved accuracy at a given 

smearing� In order to perform consistent dynamics� the systematic smearing 

errors on the forces should also be corrected �this problem will be discussed� 

together with the solution that is here introduced� in Chapter � some of the 

relevant concepts can be found in Refs� �
 ����
 ����
 ����
�� 

The sampling technique of special k�points� together with the smearing 

of the density of states� provides also the relevant a d v antage of producing 

consistent free energies and forces� in contrast to the improved tetrahedron 

methods ����
� and of requiring only one single special k�point in the limit of 

large unit cells �this will be the case for most of the results presented here�� 

7E�g� to characterize the electric conductivity of systems with small gaps� or to study 

processes in which the electron gas is at a much high temperature than the ionic lattice� 

like in laser irradiation� 
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Variational free energy minimization The goal of performing molec�

ular dynamics simulations requires the development of a minimization al�

gorithm that is both very e�cient � i n o r d e r t o c o n trol the convergence of 

the Hellmann�Feynman forces� in the presence of the additional degrees of 

freedom of the fractional occupancies and subspace rotations� and very ro�

bust and stable �to converge to the minimum against all the ill�conditioned 

features of the problem�� These requirements call for a minimization strat�

egy realized by a strictly variational conjugate�gradient method� that is an 

algorithm that can ideally provide both the e�ciency and� especially� the 

robustness that is necessary� 

Its formulation requires the identi�cation of the proper variational func�

tional that has to be minimized� and that is the electronic free e n e r gy 	either 

in a Fermi�Dirac or in a generalized entropy formulation �see Chapter 
�� the 

latter being equivalent to a smeared total energy formulation 	��� 	������ and 

the proper consideration of the dependence of the total free energy on the 

fractional occupancies and subspace rotations� The occupancies� in particu�

lar� can be considered either as independent v ariables� with all the instability 

coming from their non�local connection to the charge density in the unit cell� 

or as dependent v ariables� where they introduce in principle a very compli�

cated dependence of the free energy as a function of the wavefunctions �that 

�determine the expectation values h�i 

jH j�i 

i upon which the occupancies are 

calculated�� 

The total free energy at a �nite temperature T is given by ���
��� it is use�

ful to regroup the kinetic�energy term and the non�local pseudopotential in 

order to highlight the dependence of the various terms on the wavefunctions 
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or just on the charge density� 

X 

� �A � T � f�i 

g� ffi 

g� � fi 

h�i 

jTe 

� Vnl 

j�i 

i � EHxc 

�n� � TS � ffi 

g � �	
�� 

i 

X 

�n�r � fi 

�
i 

�r�i 

�r 

i 

where S is either the Fermi�Dirac entropy or one of its generalizations� and 

where the constraints of normalization of the orbitals and charge conservation 

for the occupancies have also to be imposed �the latter introduces a chemical 

potential � in the problem
 These two constraints can be introduced via the 

respective Lagrange multipliers� as in ��
��� adding to �	
�� the terms 

X 

fi�i 

�h�ij�i 

i � � and 

X 

��N � fi 

� 

Assuming that both the wavefunctions and the occupations are independent 

constrained variables� the steepest descent directions that lead to the mini�

mization of the total free energy functional are given by� 

8 � ��A � � � � H 

� � i 

� �i�i � � � �� 

i� � � � � � � � � � 

�A 

� � h �ijH j�i 

i � � � T
� S �	
�� � �f i 

�f i� � � � � � � � � � : subspace rotations 

where the additional operation of subspace rotation has to be added sepa�

rately� since the search directions are projected out of the occupied subspace 

to conserve orthonormality �to �rst�order
 It should be noted that at self�

consistency� when all the �rst derivatives are zero� the �rst equation implies 
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that the orbitals satisfy the Mermin�Kohn�Sham equations ������� while the 

equilibrium distribution for the occupations is given by the second equa�

tion� and it is a Fermi�Dirac distribution ����	� if the canonical form for the 

single�particle entropy ����
� has been employed� 

The equations in �
���� de�ne a multi�dimensional search direction� and 

a v ariational minimization strategy can be practically implemented following 

the prescriptions of Ref� ��� �see also Ref� ��
��� In particular� the search 

on the wavefunctions is naturally decomposed into a search in the orthogonal 

and in the parallel subspaces �the latter being de�ned as the space spanned 

by the orbitals that have non�zero occupancies� and which are just a fraction 

of the total number of plane waves�� The search in the orthogonal subspace 

is performed via a conjugate�gradient algorithm� while the search in the par�

allel subspace takes place via a subspace rotation� The rotation matrix can 

be de�ned with the help of perturbation theory� and constructed in order 

to always satisfy the constraint o f l o wering the total free energy ���� if a 

transformation in the parallel subspace is de�ned by 

X 

�i 

� �i 

� Wij 

�j 

� 

j 

the requirement of preserving orthonormality up to linear order in the ro�

tation requires to Wij 

to be anti�hermitian� Perturbation theory provides 

an explicit expression for Wij 

�Wii 

� � from the requirement o f b e in g a n ti�

hermitian� 

� 

W
h�i 

jH j�j 

i 

ij 

�
� � 

� �
���� 

h�i 

jHj�i 

i � h �j 

jHj�j 

i 

and from this the actual rotation matrix is de�ned by �ij 

Wij 

� w here �ij 

acts 

as a cuto� if the elements in �
���� are too large �that is to say� if the mixing 

be  t  ween states is too big and perturbation theory does not apply�� and is set 
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to zero if a reverse ordering is found �i�e� if two states have occupations and 

expectation values in reverse order�� This latter condition forces the subspace 

rotation to be a proper minimization step� in the limit of small rotations� 

This formulation� properly implemented� allows for a very robust� if not 

optimal� minimization strategy� as an example� the convergence of the to�

tal free energy for two v ery long metallic slabs is shown in Fig� ���� The 

case presented here is a paradigmatically di	cult one� since the cells are 

very elongated� and the so�called sloshing instabilities can take o ver if the 

minimization procedure is not strictly variational� As it can be seen� the 

fundamental requirement of robustness� that comes from the variational for�

mulation� is fully satis
ed� It should be noted that an unrealistic �Gaussian� 

smearing of �:� eV has been adopted� to assure full sampling convergence 

with just one special point� but especially to underline the role played by a 

proper treatment of the temperature� 

This scheme� called here the standard scheme� is th us composed of a se�

quence of variational steps in the wavefunctions� in the occupancies and in 

the subspace rotations� The order of these operations� as well as performing 

some or all of them simultaneously� is a matter of choice� it should be noted 

that an all�bands conjugate�gradient s c heme is much more e	cient t h a n a 

band�by�band scheme� for di	cult metallic systems� due to the interdepen�

dence of the bands� For the same reason it can be useful to perform the 

updating in more than one subspace at the same time �usually updating the 

orthogonal subspace and the occupations together�� although sometimes a 

mixing factor between the dierent subspaces has to be empirically intro�

duced� Such f o r m ulation of the standard scheme can be applied successfully 
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Figure ���� Convergence of the total free energy in a semi�logarithmic scale 

�base ���� The systems considered are two �x� Al����� slabs	 containing re�

spectively �
 and �� atoms �� and ��� bands	 �
 eV of Gaussian smearing�	 

4 

�A long	 both sampled with the � 

1 1 1and �� �A and 
� 

� 

4 

� Baldereschi point 

4 

� 

����� The iteration count for the longer cell has been halved	 for a meaningful 

comparison� 

to molecular dynamics simulations	 especially if the systems considered are 

bulk or liquid metals	 or if they have a mixed metallic�covalent behaviour 

����� ����� ���� ���
�	 so that either the charge density is relatively constant 

over the unit cell �this is not the case for metallic surfaces	 represented as 

a slab in periodic boundary conditions� or it is more bound in the localized 
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covalent bonds� It should be pointed out that the formulation presented 

here su�ers from overall poor convergence of the Hellmann�Feynman forces� 

which s e v erely hampers the ability to perform e�cient s i m ulations in very 

large cells� additionally� the ionic forces used are the derivative of the free 

energy� a n d t h us are not corrected against the systematic errors that come 

from a �nite�temperature	smeared formulation� 
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