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Chapter 1

Theory of electronic structure

Introduction

A brief review is given of the problem of finding the ground state for a system
of interacting electrons immersed in an external potential. The fundamental
law of quantum mechanics—the Schrodinger equation [1]—is introduced, and
its equivalence to a variational principle is established. A modern and ex-
tremely successful reformulation of the problem—that goes under the name
of Density Functional Theory [2]—is presented, and its intrinsic nature as
a minimization problem is highlighted. The role of temperature [3] and the
introduction of statistical operators to describe mixed states i1s discussed.
Finally, the problem is recast via the Kohn-Sham [4] mapping onto a system

of non-interacting electrons in a self-consistent external potential.

13



14 CHAPTER 1. THEORY OF ELECTRONIC STRUCTURE

1.1 The Schrodinger equation

At the present state of human knowledge, quantum mechanics can

be regarded as the fundamental theory of atomic phenomena.

[L. I. Schiff, Quantum Mechanics, 1955]

This statement has been supported since the early days that followed the
introduction of quantum mechanics by an ever growing evidence for the ac-
curacy of its predictions when compared with experiments. Notwithstanding
the existence of many unresolved questions in the formal interpretation of the
theory [5], the range of its applications has extended from the description of
single isolated atoms to all areas of fundamental and applied physics and
chemistry. As a simple example of its extreme accuracy, the gyromagnetic
ratio for the electron can be determined in agreement with experiment with
a precision greater than one part in a billion. Other disciplines, ranging from
materials science to biology, are starting now to benefit from this predic-
tive power and from the development of very powerful electronic structure
methods, as described in Chapter 2, that allow for the first time to compute
fundamental properties of complex systems from first principles, using quan-
tum mechanics to determine the behaviour of their fundamental constituents,
electrons and ions.

In the following we are concerned with the ground-state electronic prop-
erties of a finite, isolated system of N interacting electrons in an external
potential. The external potential considered is that generated by a configu-
ration of atomic nuclei, assumed for the time being to be fixed point charges.

Some of these conditions will be relaxed or modified along the way, namely
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by introducing pseudopotentials [6][7] to describe the interactions between
the valence electrons and the rest of the system, by allowing for the ions
to move adiabatically [8] in the field of the electrons’ ground state, and by
introducing periodic boundary conditions to reduce or eliminate finite-size
EITorS.

The non-relativistic time-independent Schrodinger equation for the sys-

tem described is

A

HY(ry,....vry) = E¥(rq,...,ry), (1.1)

where the Hamiltonian operator’ H is

= Z (—%Vf + ’U(I‘i)> + %Z m%r + Wn—n (1.2)

with
1 ZoZg
2 ” Rop

Lo
'U(r) = — Z m and Wn_n = (13)

The terms in (1.2) are associated, respectively, with the kinetic energy T
of the electrons, the potential energy V,,_. of the electrons in the field of «
nuclei of charge Z,, the electrostatic energy U,_. between the electrons, and
the electrostatic energy W,,_,, between the nuclei.

Equation (1.1) is an eigenvalue equation for the N-electron many-body
wavefunction ¥(rq,...,ry) (r1...ry being the spatial coordinates for the
electrons), where His Hermitian; in order for the solutions to be acceptable
they must belong to the Hilbert space £*(R®) @ ... ® L*(R?) of square-
integrable functions. The spin coordinates will be ignored (but not the

spin=1/2 nature of the electrons), while some relativistic effects—relevant

LAtomic units are used: i = m, = e = 4meg = 1.
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for heavy atoms—can be taken into account a posteriori when constructing
the pseudopotential. The Fermi-Dirac statistics for the electrons enters the
problem as a restriction on the Hilbert space, requiring ¥ to be antisymmet-
ric under the exchange of the coordinates of two electrons. This, translating
into the Pauli principle, accounts ultimately for the stability of matter, with
the ground state energy bounded below by a constant times the first power
of the particle number [9][10].

The solutions to equation (1.1) form a complete set {¥,,} [11]; once nor-
malized, any two of them that correspond to different eigenvalues are or-
thogonal, and the set of eigenvectors {¥,,} is thus always considered fully or-
thonormal. According to the postulates of quantum mechanics [12], to each
observable A there corresponds a Hermitian operator A and consequently its
complete set of orthonormal eigenfunctions {¢,,} with eigenvalues {a,}; the
wavefunction of the system can then always be expressed in terms of these

eigenfunctions as
T=> cipu. (1.4)

If we have an ensemble of systems identically prepared, each measurement
will yield the eigenvalue a,, with probability |c,|?. The expectation value of

A can thus be expressed, using Dirac notation, as

(A) = (TAIT) = 3 ) chenldwlAlgn) = ) leal’an, (1.5)

where (U|A|¥) stands for f\II*A\If dry...dry.
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1.1.1 Variational formulation

Let us consider a time-independent Hamiltonian, as that described in (1.2);
for simplicity, we assume that the system is either enclosed in a box of finite
size, or that periodic boundary conditions? are applied. Under such con-
ditions, the (non-empty) spectrum of eigenvalues {£,} and eigenfunctions
{#n} is discrete® (see Chap. 3 of Ref. [13] for a discussion). For an arbitrary
function ¥ in the Hilbert space L2(R?*)®...® £*(R®) that has non-vanishing

norm, we define the functional E[¥] as

_ (U]H|T)
B = g (1.6)

The following theorem is easily proved:

Variational Principle The Schridinger equation HY = EV for the Hamil-

tonian H is equivalent to the variational principle § E[¥] = 0.

Proof:  Let us consider a generic unconstrained V¥; taking the variation

S(E[T] (T|T)) in (1.6) we have:

SE[U] (U|0) + E[¥] (§U|W) + E[¥] (¥|5) = (§U|H|T) + (U|H|5T).

’In electronic structure calculations it is useful to adopt a looser form of periodic
boundary conditions that goes under the names of Born and von Karman: ¥(r + N;a;) =
U(r),1 = 1,2,3, where a; are the primitive vectors of the cell and N; are the independent
primitive cells in each direction. These conditions impose the existence of a discrete, finite
number of allowed values for the Bloch wave vector (a good quantum number in a periodic
solid) and its corresponding energy. The spacing between different wavevectors goes to
zero in the limit N; — oo, recovering thus the continuum limit for the spectrum of a truly

infinite periodic crystal.
3The discussion can be generalized to an Hamiltonian with an additional continuum

spectrum {e, } such that inf{e,} > min{E,}.
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The following equivalences are established, exploiting the hermiticity of H:
SE[¥] =0 < (89|H — E|¥) + (¥|H — E|60) =0 < (H — E[U])|T) =0
QED

The variational principle can be reformulated in order to include automat-
ically the wavefunction normalization, by introducing an undetermined La-

grange multiplier E: the constrained variational problem
S(RIHW)] =0 , (P]T)=1
is thus transformed in the unconstrained variational problem
S[(U|H|®) — E(¥|T)] = 0. (1.7)

The importance of the functional (1.6) is that it provides a variational bound
to the ground-state energy of the system; this can be seen by expanding ¥

in the energy eigenvectors {4, }:

5l (B — Bu)
Zn |a'n‘2

\I’—Zan¢néE[\I’]—%:|a7|2|2§n = E[¥] — E,

where we have indicated with Eq = min{FE,} the ground-state energy. It is
clear from this that a trial ¥ provides an upper bound to the real ground-
state energy, and that the value Ej is reached if and only if ¥ = aV¥gy, a € C.

The fundamental minimum principle thus follows:

The ground-state energy E implicitly defined by the minimization in (1.8)

depends only on and is completely identified by the choice of N and v in (1.2);
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in this sense, E is said to be a functional E[N,v] of the particle number N
and of the external potentials v.

This minimum principle has a key importance in practical applications:
as an example, it is the basis of the widely used Rayleigh-Ritz variational
method, where a trial function is constructed that depends on a number of
variational parameters, that are determined by the requirement of minimiz-
ing the expectation value for the energy. Obviously, the quality of the results
depends both on the choice of the trial function and on the dimensional-
ity of the parameter space that is spanned. In addition, if a trial function
can be constructed as to be orthogonal to the n — 1 lowest eigenfunctions,
the Rayleigh-Ritz method provides an upper bound for the n-th eigenvalue.
The well-known Hartree [14] and Hartree-Fock [15] methods correspond to
searching the solutions for (1.7) respectively in the subspace of the products
of single-particle orbitals and in the subspace of antisymmetrized products

of single-particle orbitals (the Slater determinants).

1.1.2 The Hellmann-Feynman theorem

There 1s an important consequence that can be drawn from equation (1.7):
if the Hamiltonian H depends parametrically on some A, such that dﬁ)\/d)\

1s well defined, the following theorem can be demonstrated:
Hellmann-Feynman theorem Given o Hamiltonian Hy, and a U(A) sat-
isfying the Schrodinger equation I;B\\If = E\V, the following relation holds:

dEx d , . - )
= = (UL = (E[dHL/AA|E)

Proof It follows from the orthonormality property for the solutions of the
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Schrodinger equation, or its equivalent variational formulation (1.7), that:

(T[T =1 = %m\m =0 = (dU/dA[T) + (U|dT/d)) = 0.

Using the hermiticity of I:I, it 1s readily shown that:

d N N N n
T ) = (@ /AN B 0) + (2|dHy [dAE) + (2| H]d/d) =

— E((dU /d\|®) + (U|dT /dN)) + (®|dHy/dN|T) = (|dH,/d)|T)
QED

The scope of the theorem is trivially extended to the expectation values of
any Hermitian operator Ay dependent on some external parameter A and for
a system prepared in a given eigenstate of A,.

The original work [16] was concerned with the definition and the calcula-
tion of the forces acting on molecular systems: in fact Hamiltonians H such
as that defined in (1.2) explicitly depend on the nuclear coordinates R,
and it is much more convenient to calculate directly the expectation value
of dH /dR,, than approximating this derivative with the energy differences?.
Feynman’s original application of the theorem to the Hamiltonian (1.2) leads
immediately to the electrostatic theorem: the force on a nucleus is given by a
completely classical expression, where the potential is obtained by the super-

position of the nuclear fields and by the electrostatical potential generated

by the electronic charge density n(r) = N [|¥(r;...ry)* dry ... dry:

F,=-VW,_, — Z / |U(ry...to)]° Vaou(r;) dry ... dry =

= -V W — /n(r) V,o(r) de.  (1.9)

%A similar problem for a time-dependent Schrédinger equation had already been ad-
dressed by Ehrenfest [17] in 1927; namely he demonstrated a quantum mechanical equiv-

alent md?(¥|r|¥)/dt? = (¥| — dV/dr|¥) for Newton’s second law of dynamics.
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1.2 Density Functional Theory

The solution to the electronic structure problem has been presented— ac-
cording to the prescriptions of the Schrédinger equation— as the problem of
obtaining the proper ground-state many-body wavefunction ¥,(r1,...,ry)
for a given external potential v. As such, the ground-state solution has an
intrinsically high complexity: while the problem is completely defined by the
total numbers of particles N and by the external potential v(r), its solution
uniquely determined by N and v(r), and thus a functional ¥ = ¥[N, v(r)]—
depends on 3N coordinates. This makes the direct search for either exact or
approximate solutions to the many-body problem a task of rapidly increasing
complexity.

Soon after the introduction of the Schrédinger equation there have been
attempts to refocus the search on the ground-state charge density n(r), which
is the most natural and physical low-complexity quantity in the problem. The
first outcome of this effort was the Thomas-Fermi model [18][19]: a functional
of the charge density alone was constructed from the basic assumptions of
treating the electrons as independent particles, reducing the electron-electron
interaction to the Coulomb electrostatic energy, and using a local density

approzimation for the kinetic energy term:

where t[n(r)] is the kinetic energy density for a system of non-interacting

electrons with density n. The functional that is obtained from this hypothesis



22 CHAPTER 1. THEORY OF ELECTRONIC STRUCTURE

is®

ETF[n(r)]:%(37r2)%/ 3(r )dr—/ // |r1_r?| nlrnlrs) e,

and the Thomas-Fermi solution is defined as the charge density n(r) that
minimizes this functional Erp, with the constraints of being greater than
zero and normalized to the total number of electrons N. This approach has
been shown to fail in providing even qualitatively correct descriptions of
systems more complex than isolated atoms [20], its main limitation coming
from the approximate form for the kinetic energy contribution (it should be
noted that more sophisticated and accurate choices for the kinetic energy
term as a function of the electron density can be made [21]). On a more
fundamental basis, the model was introduced when there was no theoretical
ground to support the choice of the charge density, rather than the many-
body wavefunction, for the search, via the variational principle (1.8), of the

electronic ground state.

1.2.1 The Hohenberg-Kohn theorems

The essential role that is played by the charge density in the search for the
electronic ground state was pointed out for the first time by Hohenberg and
Kohn [2] in their exact reformulation of the problem that now goes under
the name of Density Functional Theory.

Let us consider a finite, isolated system of N interacting electrons in an
external potential v(r), as described in Sec. 1.1, with a Hamiltonian (1.2);
the only additional assumption is that the ground-state ¥ be unique, non-

degenerate. This latter assumption will be relaxed in 1.2.2. Again, ¥ and

®Neglecting for the rest of the chapter contributions from the term W,_,.
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n(r) = (¥|n|¥) are perfectly specified (albeit not explicitly) once N and
v(r) are formulated, and thus are functionals of [N,v(r)]. Let now Vy(R?)
be the class of all densities that are positive definite, normalized to an integer
number N, and such that there ezists an external potential v(r) for which
there is a non-degenerate ground state corresponding to that density; this
is the class of v-representable densities, and the following discussion® will
be restricted to densities that belong to this class. The first theorem of
Hohenberg and Kohn [2] establishes the legitimacy of the charge density as

the fundamental variable in the electronic problem.

1** Theorem: the Density as the Basic Variable V n(r) € Vy(R?) the
external potential v(r) is a functional v(r) = v(r)[n(r)] of the charge density

n(r), within an additive constant.

Proof. Let us assume, ad absurdum, that there exists a different potential v’
with a ground state ¥’ that gives rise to the same charge density n(r). Let E
and E’ be the respective ground-state energies; taking ¥’ as a trial solution

for the Hamiltonian I:I, we have the strict inequality
E < (W|H|¥') = (V|H'|9') + (¥'|H - H'|¥') = E' + /n(r)[v(r) —'(r)]dr

(if (O'|H|®') = E then ¥ would be the ground state for H, in virtue of
(1.8), but the two distinct differential equations for H and H' cannot have
the same ground state). Similarly, taking ¥ as a trial solution for A , We

have

E < (U|H'|®) = (V|H|T) + (9|H' — H|T) = E — /n(r)[v(r) — o/(r)]dr

8See 1.2.3 for the problem of v- and N-representability of charge densities and density

matrices.
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Adding together these two inequalities the absurdum is obtained:
E+E <E+E.
QED

It is thus demonstrated that the ground-state charge density determines, in
principle, the external potential of the Schrodinger equation of which it is
solution” and thus, implicitly, all the other electronic ground-state properties
of the system. It is then possible to introduce, in the class of v-representable

densities Vy(R?), the functional
F[n(r)] = <‘II|T8 + Ue—8|\11>§ (1'10)

this is unique and well defined, and, since it does not explicitly depend on
the external potential for the electrons, it is a universal functional of the
charge density. It should be pointed out that no explicit expressions for this
functional are known to date, obviously as a by-product of the complexity of
the many-body problem that lies at the core of the definition of F[n(r)] [22].

It 1s now possible to define, for an arbitrary external potential v(r) (as-
sumed here to be local), unrelated to the external potential implicitly defined
by a density in Vn(R?), the Hohenberg-Kohn Density Functional for the en-

ergy of the ground state:

E,[n(r)] = F['(r)] + / v(r)n!(r)dr. (1.11)

The second theorem of Hohenberg and Kohn [2] establishes the existence of
a variational principle for this functional of the charge density, thus rational-

izing the original intuition of Thomas and Fermi.

"Precisely, it is an expectation value of the solution, since n(r) determines v(r), which

in turn determines the ground state ¥, and the relation n(r) = (¥|7|¥) holds.
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24 Theorem: the Energy Variational Principle V n'(r) € Vn(R®),
E,[n/(r)] = F[n/(r)] + [v(r)n/(r)dr > Eo, where Eqy is the ground-state
enerqy for N electrons in the external potential v(r).

Proof. A given n'(r) determines uniquely, via the 1** theorem, its own exter-

nal potential and ground-state wavefunction W'. If this ¥’ is used as a trial

wavefunction for the expectation value of the Hamiltonian with the exter-

B0y =

nal potential v(r), the relation (¥'|H|¥") = (¥|T, + U,_|¥') + (¥’

Fln'(r)] + [v(r)n/(r)dr = E,[n/(r)] holds. Now, because of the minimum
principle 1.8, E,[n/(r)] = (¥'|H|¥') > E,. Since the ground state is non-
degenerate, the equality holds only if ¥’ is the ground state for the potential

v.
QED

These two theorems show that the problem of solving the Schrodinger equa-
tion for the ground state can be exactly recast into the variational problem of
minimizing the Hohenberg-Kohn functional (1.11) with respect to the charge
density; the complexity of the problem is reduced in principle from having
to deal with a function of 3N variables to one that depends only on the 3

spatial coordinates.

1.2.2 The Levy approach

A simpler and more direct proof for the Hohenberg-Kohn theorems has been
introduced by Levy [23]; this has the advantage of removing the require-
ment of non-degeneracy for the ground state of the electronic problem, while

focusing directly on the minimization procedure in the definition of the func-
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tional itself. In addition, the ill-defined problem of the representability of
the charge density is greatly simplified (see 1.2.3).

Levy [23][24] introduced a new definition for functionals of the density,
based on the concept of constrained search. Given an operator A and a
density n(r), the functional A[n(r)] is defined as the minimum expectation
value of A for a constrained search along all the many-body antisymmetric

wavefunctions for which (¥|n|¥) = n(r):

Aln(r)] = min(¥|A|¥) (1.12)

[
This definition is meaningful (the set is non-empty) for those densities that
do admit a representation derived from a N-body wavefunction; it is the class
of N-representable densities, much simpler to characterize than the class of
v-representable densities (see 1.2.3). The set is also known to be bounded

from below [25]. The Levy proof develops as follows®:

Theorem: the Levy proof The ground-state electron density no(r) min-
imizes the functional E,[n(r)] = )+ [ v(r)n(r)dr, where Fn(r)] is a
universal functional of n(r); the minimum value is the ground-state electronic

enerqy Fg.

Proof Let the operator F' be T\ + U._,; F[n(r)] is defined uniquely (and
it is a universal functional of the charge density alone) via the constrained
search minq,_,n<\If|F|\Il>. For an arbitrary n(r), let ¥, be the N-electron
wavefunction that yields the charge density n(r) and minimizes (¥|F|®).
E,[n(r)] is Fn(r)]+ f r)dr, and so it follows from the definition of ¥,,
that E,[n(r)] = < "

n); but this is the Hamiltonian in the presence

8 As a matter of clarity, a subscript is introduced to denote all the quantities that refer

to the ground state (¥, ng, Ep).
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of the external potential v(r), and so we have, from the minimum principle

(1.8), that for every N-representable charge density
E,[n(r)] > Ey.

Now it remains to be demonstrated what is the value of E, evaluated on
the ground state charge density ng. Since the ground-state wavefunction ¥,
integrates to the ground-state charge density ng, it certainly takes part in
the constrained search that defines Flno(r)]. Thus, Fln(r)] < (¥,|F|®,),

and so, adding the external potential term on both sides, we have
Ey[no(r)] < Ey,
that, together with the previous relation, gives us E,[no(r)] = Eb.
QED

It should be mentioned that, although very powerful, this approach misses
one of the elegant results of Hohenberg and Kohn, namely that there are no
two different external potentials (a part from some additive constant) that

give rise to the same ground-state electronic charge density.

1.2.3 The representability problem

The original Hohenberg-Kohn proof takes place in the space of charge densi-
ties that are v-representable; again, this means that they are positive definite,
normalized to an integer number, and such that there exists an external po-
tential v(r) for which there is a non-degenerate ground state corresponding
to that density. In this framework, the Hohenberg-Kohn 1% theorem estab-

lishes a one-to-one mapping between a v-representable charge density and
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the external potential for which this density is the the expectation value of
the ground state, and in this space Vy(R?) the universal functional F' and the
variational principle of the 2" theorem are formulated. The characterization
of the class Vi (R?) is still lacking; v-representability has been demonstrated,
in a lattice version of the Schrédinger equation, for all the particle-conserving
charge densities that are in the neighbour of a v-representable density [26].
This, together with the more serious necessity to adopt approximations for
the universal functional F', has lead to a generalized application of the varia-
tional principle for all of its practical implementations. It should be pointed
out that simple counter-examples of densities that do not belong to Vy(R?)
have been presented [24][27]; e.g. if a Hamiltonian has a ground state with
degeneracy greater than 2, the density obtained from a linear average of each
ground state is in general not v-representable [24].

The Levy proof overcomes this problem, by requiring the density just to
be obtainable from some antisymmetric wavefunction (in addition to being
positive definite and normalized to an integer number), in order to allow for a
meaningful constrained search. This i1s the condition of N-representability, a
much weaker requirement that is satisfied by any well-behaved charge density.
In fact, it has been demonstrated by Gilbert [28] that the only condition

required is proper differentiability,

/|vn%(r)|2dr eR,

to ensure that the kinetic energy of the auxiliary orbitals used in the con-

struction of an antisymmetric wavefunction from a given n(r) remains finite.
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1.2.4 Density operators

Up to now, a quantum state has been described in terms of its N-body
wavefunction ¥(ry, ..., ry), with the expectation value for a given observable
A (Hermitian operator) given by (A) = (¥|A|¥). A more general description
can be obtained with the introduction of the density operator yx = |¥)(¥|,

whose representation in the coordinate space is the density matriz
U (ry,...,v)¥(re,. ... rN).

For a normalized ¥, tr (4n) = [ ¥*(r1,...,rn)¥(r1,...,Tn) dry ... dry = 1;
An is clearly idempotent, and thus it is a projection operator. The expecta-
tion values can now be expressed as a trace on this operator; in the coordinate

representation and for a normalized ¥ we have

A~ N

(A) = tr (4w A) = tr (Ajw) = (T|A]D). (1.13)

The description of a system at a finite temperature requires the introduction
of an ensemble density operator, since then the system is part of a much larger
closed system (a heat bath with quasi-infinite thermal capacity) for which a
complete Hamiltonian description is unattainable. In this case, the system is
said to be in a mized state, where it cannot be characterized by a wavefunc-
tion (as opposed to the pure states of all the preceding discussion), but only
as a mixture over all pure states. The ensemble density operator I'y is thus
defined as T'y = > w; |V, (|, where the sum is taken over all the available
pure states. The w; are often described as the probabilities of finding the
system in the relative pure state, although this is conceptually misleading
[29], and the w; are just a statistical distribution outcome of both the prob-

abilistic interpretation of the wavefunction and of the statistical description
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coming for our imperfect knowledge of the full system. This becomes appar-
ent in the statistical generalization of (1.13) for the expectation value of an

observable for a mixed state, which is given by

A ~

(A) = tr (TyA) = tr (ATy) =) wi(T|A|¥,), (1.14)

where the cross terms that would arise if the mixed state was actually a
superposition of pure states are not included. In contrast to the density
operator, the ensemble density operator is no longer idempotent; they are
both Hermitian and uniquely defined (as opposed to the wavefunction, that
has an arbitrary phase attached). An important relation follows from the

definitions and from the time-dependent Schrodinger equation ih|¥) = H|¥):
9, 0 0 A q
o= (o)) (ol oy o1} = Fiwce] - e

from which the Liouville equations for the density operator and, by the linear-

ity of I'y = > w;i|¥) (|, for the ensemble density operator, are obtained:

L 0. N 9. o
Zha’YN = [Ha’)’N]a 1haI‘N = [HVI‘N]‘ (1.15)

The Hamiltonian and the ensemble density operator commute in the case of
a stationary state:

[H,Ty] =0, (1.16)
and a complete system of eigenvectors for both of them can be found. This
is a fundamental relation that will be fully exploited in the development of
a practical algorithm (albeit for the slightly different case of non-interacting
electrons in a self-consistent potential).

It is possible and useful to define a reduced density matriz of pt* order,

which in the coordinate representation has the following form:

N! N
fyp(r’l...r;; ry..Irp) = m//ﬁ[’ (r)..th)¥(rs...vy) drppg...dry.
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Since the Hamiltonian H in (1.2) is a function of one-particle and two-particle
terms only, it can be demonstrated that its expectation value can be written
as an explicit functional of the density matrices of order 1 and 2 [30] (Sec. 2.3),

or, since 7y, descends from 7., just of the density matrix of order 2:

E = tr(Hyn) = E[n, 7] = Elyp] = (1.17)

1 1
- / [(—§V2—|—v(r)] 71 (r, 1) dr—l—// 7|r o Y2(r1,r2; 11, T3) drodrs.
1— Iy

It is possible to construct a density-matrix functional theory and demon-
strate a variational principle for the functional in (1.17) [31], with the eigen-
vectors of 1 (the natural orbitals) and v, (the natural geminals) as the
search variables, and reducing again the complexity of the problem from
a 3N-dimensional search to a 6-dimensional search. The great obstacle is
that ; and 7, must be N-representable, thus descending from an appropri-
ate antisymmetric ¥, and this characterization (especially for ,) is still ®
unsolved [32]). It is nevertheless interesting to contrast this problem of min-
imizing an explicit functional in a class of N-representable density matrices
that escapes characterization, with the density-functional problem of mini-
mizing a functional that is defined only implicitly in the well-defined simple

class of N-representable densities.

9Note that v» depends on 4 independent variables, but, because of density-functional
theory, is completely characterized by n(r). This means that the set of N-representable

density matrices of order 2 has zero Lebesgue measure.
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1.2.5 Canonical-ensemble formulation

From the fundamentals of classical statistical mechanics we have that the

entropy is

S(E,V)=kgln Q(E), (1.18)

where Q(E) is the volume in the phase space occupied by the microcanonical
ensemble at energy E. The same definition holds for quantum mechanics,

with Q(E) computed properly via a sum over all the states of the system:

QE) = 3 Wi, (1.19)

{w:}
where W[{w;}] is the number of states available for a given set of occupations
w; of the accessible quantum states, and the sum is done on all the possible
sets that are compatible with the thermodynamical ensemble. In the statis-
tical description via the ensemble density operator I'y = > wi | (W], the
distribution is over a set of pure states |¥,;), with the w; following the rules of
a distribution (w; > 0 and ). w; = 1). The entropy can thus be equivalently

written as
S(E,V) = —kB Zwiln w; = —kBtI’ (f‘N In f‘N), (120)

where the second equality exploits the independence of the value of the trace
of an operator from the representation in which it is expressed.

The choice of the ensemble (canonical, in this case) determines the equi-
librium ensemble density operator, by requiring that it maximizes the entropy
while keeping the constraints on the statistical distribution ) . w; = 1 and

on the expectation value for the energy tr(I‘NI:I) = E. These conditions lead
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to the equilibrium canonical ensemble density operator f‘?v [30] (Sec. 2.7):

e_ﬁf{

Following (1.20) the Helmholtz free energy A = E — TS for a given ensemble

S0
].-‘N_

density operator can be introduced:
N 1 A A
A[I‘N] =trI'y (EIDI‘N—I_H) . (121)

Now a variational principle can be demonstrated, that is the exact equiv-
alent of the Rayleigh-Ritz variational principle (1.8) for the case of finite

temperature, namely that for every positive definite I'y with unit trace:
A[l'n] > A[TS]. (1.22)

where ') is the ground-state ensemble density operator. The proof relies
on Gibbs’ inequality (>, w;(lnw; — Inwf) > 0) and on Jensen’s inequality
((exp(A)) > exp((A))) and can be found in Ref. [33] (Sec. 2.11).

Once the variational principle is formulated, the demonstration of the
existence of a finite-temperature, canonical density functional theory follows
the steps of Sec. 1.2, either along the original Hohenberg-Kohn proof [3], or
in a constrained search formulation. In brief, following the Levy approach, a
(canonical ensemble) universal functional of the charge density n(r) can be

uniquely defined, via the constrained search on all the density operators that

integrate to n(r):

A A A 1 A
Fgln(r)] = fmin tr [I‘N (Te + Ue—e + Bln I‘N)] (1.23)

With this universal functional at hand, the canonical Mermin density func-

tional is written as:

Aufa(e)) = Falae))+ [ o(x)ax) v
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Now, for a given n(r), a 'y that minimizes (1.23) is defined, and a variational

principle for the Mermin functional holds (from Eq. 1.22):
A,[n(r)] = A[lN] > ALY (1.24)

The Mermin functional evaluated on the ground-state charge density ng(r)
involves a search on all the ensemble density operators that integrate to no(r),
and thus includes the ground state I'}; it follows that A,[ne(r)] < A[TY],
that, combined with the variational principle for the Mermin functional, gives

Ay[no(r)] = A[l'y].

1.3 The Kohn-Sham mapping

Density Functional Theory provides the theoretical ground for reformulating
the ground-state many-body problem as a variational problem on the charge
density: the constrained minimization on the Hohenberg-Kohn density func-
tional for N electrons can be rewritten, introducing the indeterminate mul-

tiplier p, as the variational problem:

§ {F[n(r)] + /v(r)n(r) dr — p (/ n(r) dr — N)] = 0. (1.25)

Formally (1.25) leads to the Euler-Lagrange equation for the charge density!'”

SFln(r)]
() +o(r) = p. (1.26)

10The derivatives with respect to the charge density are always defined a part an additive
constant, since [ Kén(r) dr = 0; this can be absorbed into the chemical potential p.
Otherwise, see Sec. 1.3.1, and Refs. [27] and [34] for the characterization of the domain

for the variations of the charge density.
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The two approaches of minimizing directly the Hohenberg-Kohn density func-
tional (1.11) or solving for the associated differential equation (1.26) are
equivalent!!, although they might differ in the computational effort associ-
ated with their implementation.

With these results in mind, the Thomas-Fermi method can be reinter-
preted as a tentative approximation for the unknown universal functional
F|n(r)], taken to be the sum of the classical part of the electron-electron
interaction plus the kinetic energy of the non-interacting electron gas in the
local density approximation. This approach and its subsequent refinements,
although very economical, have shown only moderate quantitative agreement
with experimental data (see Ref. [37] for a review, and Ref. [21] for recent,
more accurate, developments).

A much improved strategy has been developed by Kohn and Sham [4],
that successfully readdressed the problem of finding a better approximation
to the kinetic energy, albeit at the expense of having to deal with an addi-
tional set of auxiliary, orthonormal, orbitals. The kinetic energy is a one-body
operator, and as such the expectation value (see Eq. 1.17) can be written in

terms of the reduced density matrix of order 1:

1 ) 15N 2
T = _5/ V(e e) g = 5 D sl V)

where the last equality comes from expressing the density matrix in the
representation of its natural orbitals ¢;. In general, the natural orbitals are
infinite in number. However, if N non-interacting electrons are considered,

their ground state antisymmetric wavefunction can be expressed as the Slater

Note that (1.26) identifies the minimum only if there are no other extremal points; see

Ret. [35] for a discussion and [36] for a proof that the ezact F is indeed a convex functional.
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determinant of only N orbitals, which are the lowest eigenstates of the non-
interacting Hamiltonian.

The fundamental assumption of Kohn and Sham is to introduce a refer-
ence system of non-interacting electrons in an external potential vig(r) such
that the ground state charge density for this problem is the n(r) that enters
the Hohenberg-Kohn functional. This definition is meaningful (at least in its
original formulation) if the charge density is non-interacting v-representable,
so that there can be a unique definition for the total energy Kohn-Sham
functional Ty[n(r)] + [vks(r)n(r) dr, where T, is now the kinetic energy
associated with the new reference system. This technical problem can be
overcome, again, by defining the kinetic energy part of the Kohn-Sham func-
tional via a constrained search over all the Slater determinants of order N

that integrate to a given charge density n(r):

Vo—on

T,[n(r)] = min (Us|T.|¥s) = m1n [Z——/qp )V 24hi(x) ] :

The T,[n(r)] can then be generalized by extending the search to all the an-
tisymmetric wavefunctions that yield a charge density n(r) (whether it is
non-interacting v-representable or not) and it can be demonstrated [25] that
this generalized T, coincides with the original definition for all the densi-
ties that are non-interacting v-representable. With this definition at hand,
a further decomposition of the universal functional F' can take place via the

introduction of the classical electrostatic energy term Eg[n(r)]:

Fln(r)] = Ty[n(r)] + Egln(r)] + Eue[n(r)],

/ / dr1 dI'z
|1’1 - 1'2|
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This decomposition, where F', T\, and the electrostatic energy are well-defined
quantities, acts as an implicit definition for the exchange-correlation energy
E.., that collects the contributions from the non-classic electrostatic inter-
action and from the difference between the true kinetic energy 7' and the
non-interacting one T,. The real success of the Kohn-Sham reformulation
lies ultimately in the fact that E.., which is the term where all the in-
escapable complexity of the many-body problem has been finally pushed, is
a small fraction of the total energy and, more importantly, that it can be
approzimated surprisingly well. These approximations, discussed in Chap. 2,
are at present the strength of Density Functional Theory—in itself a very
efficient reformulation for the quantum-mechanical problem—and its limit,
in the very good but not exact approximation they provide.

The Euler-Lagrange equation (1.26) is rewritten with the new terminology

8T [n(r)]

7571(1_) +vks(r) = p, (1.27)

where the effective potential is

n

ows(e) = ote) + [ P e ey vt = )

and, again, 1t 1s such that the set of non-interacting electrons with kinetic
energy T in its field have the same ground-state charge density as the inter-
acting electrons in the external potential v. The effective potential is now a
function of the charge density itself: the problem has become self-consistent,
and the solution for the reference system of non-interacting N-electrons

1

¥s = NG

det[tq, ..., ¢Pn] (1.28)
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1s now bound to produce a charge density that consistently outputs the orig-
inal input effective potential.

Ts[n(r)] as such is still an unknown functional of the density n(r), but now
it can be easily (but more expensively) written in terms of the N orbitals ),
for the non-interacting electrons, that act as auxiliary variables and properly
span the domain of all the N-representable densities (provided that they are
continuous and square integrable). The exact kinetic energy for the Kohn-
Sham reference system is, straightforwardly:

N

T[n(r)] = —% > (Wil V). (1.29)

i=1
It should be noted that the ¢; have to be orthonormal (solutions for the
non-interacting fermion problem) in order for the kinetic-energy expression
(1.29) to be valid.

The variational problem on n(r) is thus finally reformulated in terms of
a constrained search on the N 1;, where N? Lagrange multipliers );; are
introduced to provide for the orthonormality of the orbitals (and thus for the

charge conservation):

]

T,[n(r)] + /UKS(T)"(T) dr — (Z Aij (5lehi) — ]I)] =0 (1.30)

,5=1

From this a single-particle Schrodinger-like equation 1s derived:
1 N
=3V sl = YN (131)

Aij 18 a Hermitian matrix which can be diagonalized via a unitary transforma-
tion of the orbitals that leaves the non-interacting N-electron wavefunction

(1.28) invariant, and consequently the density and the effective Hamiltonian
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—%Vz + vis. From this, the “canonical” Kohn-Sham equations follow*?:
1 R
_§V2 + 'UH(I') + vmc(r) + vemt(r):| ¢l(r) = HKS ¢l(r) =€ sz(r) (132)

S [ L OB
vt )_/|r—r’| i el®) =

N
n(r) =3 [i(r)[*
i=1
These equations should be iterated to self-consistency, until the minimum
for the Kohn-Sham functional is reached; Kohn and Sham proposed taking
the lowest N-orbitals to form the determinantal many-body wavefunction,
and this choice works consistently for all the charge densities that are non-
interacting v-representable (that is, for which T, can be written in terms of
single-particle orbitals).
The Kohn-Sham equations are the Euler-Lagrange equations for the con-
strained minimization of the Kohn-Sham functional. It should be noted that

the search for the ground state can also proceed via the direct minimization

of the full functional
Moo
BUH = Y. —5 [ 91()70s(x) dv + Balae)] +

+E,c[n(r)] + /vemt(r)n(r) dr (1.33)

with respect to the N auxiliary orbitals ;. with the proper constraints of
orthonormality (1;|¢;) = é;; and charge density conservation. An alternative
expression for the total energy can be derived by extracting the band-energy
term Y . € = tr <T3 + ﬁKg) :

N

E[{y:}] = & — Euln(r)] + Epe[n(r)] - / Vge(r)n(r) dr. (1.34)

=1

12A subscript is added for clarity to the external potential v = vegs.
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1.3.1 Fractional occupancies, Janak’s theorem

An extension of the previous formalism that includes the case of fractional
occupancies has been proposed by Janak [38]. Janak defines a generalized
functional of M(> N) orbitals {¢;} and of their occupation numbers {f;};

in the language of the constrained search formulation the functional is

Ty[n(r)] = zﬁﬁiﬁw [; fi / *(x ( 2>¢i(r) dr], (1.35)

where the search is performed over all orthonormal orbitals and occupa-
tion numbers that yield the density n(r) (hence Y, fi = N). The condi-
tion 0 < f; < 1Vi assures that the density matrix of order 1 is ensem-
ble N-representable [32], and so it derives from an appropriate I'y; conse-
quently Eq. (1.22) provides the variational principle to develop a density-
functional implementation in strict analogy with the Kohn-Sham discussion.

The Janak’s functional is formulated:

BUAL]= 0 6 [ 4itr) (=397) o) dr + Bl +

+Ejzc[n(r)] + /vemt(r)n(r) dr, (1.36)

where Ej,. is redefined to take into account the new definition for the non-
interacting kinetic energy, and where now the minimization is performed with
respect to the {¢;} and the {f;}, instead of the determinantal wave function

(1.28) of the Kohn-Sham case. For a fixed set of {f;} the orbitals {¢;} must

satisty the corresponding Euler-Lagrange equation:

5 , _
5@5; { {ff} {¢l Z )‘ ¢1|¢1 o 1)} L.c.

[—%flv f’UJKS:| ’¢ = /\ ’lp“ (137)



1.3. THE KOHN-SHAM MAPPING 41

where now the Lagrange multipliers are diagonal, and the orthogonality
comes from the previous differential equation (1.37) (this is due to the choice
of the T functional as a diagonal sum). These are again Kohn-Sham-like
equations, and obviously for f; # 0 ¢ = A,/ f;.

The dependence of the functional E on the occupation numbers can be
seen by calculating the unconstrained variation of the energy with respect to

one f;, OE/Jf;, while allowing the orbitals to relax:

@E__l VT2 (1) dr O(vE + Ve + Vewt) On(r) .
8fi_ 2/¢1( )V,l)bl()d +/ 671,([‘) 6fl d =

= —% /1/)f(r)vz¢i(r) dr + /vJ,KSd)i*(rWi(r) dr = ¢ (1.38)

The expression above is referred to as Janak’s theorem. The constrained
variation of the energy functional with respect to f;, that is the unconstrained
minimization of E — uN, gives [39]:
1B — N = 3 (e — 1) (1.39)
which provides a rationale to the choice of f; = 0 or 1 for ¢; greater or smaller
than g (so that §[E — pN] > 0). It is apparent from Eq. (1.39) that Janak’s
functional is not variational with respect to the occupation numbers (to a
variation in the occupation numbers, precisely), as noted in [39][40].
Finally, it should be mentioned that there are some conceptual problems
in the foundations of Eq. 1.38, as noted in Ref. [41], Sec. 9, and more re-
cently in Ref. [34]. The objections arise in considering occupation numbers
different from either 0 or 1 in zero-temperature density-functional theory,
and in fact there are indications [27][34] that the domain of definition for the

functional derivatives with respect to the charge density might not include
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charge densities written in terms of fractional occupation numbers. Either
on these methodological grounds, or following Janak’s analysis, the conclu-
sion is that occupation numbers (with an exception made for orbitals which
will eventually be degenerate at the Fermi level) are bound to assume at
self-consistency a value that is either 0 or 1. Fractional occupation numbers
should thus be properly considered only in a statistical sense, as the output

of a finite-temperature formulation.
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1.3.2 Finite-temperature extension

The extension of density functional theory to the canonical ensemble has
been discussed in Sec. 1.2.5, where the variational principle for the canonical
Mermin functional A,[n(r)] has been demonstrated, following from Eq. 1.22.
A Kohn-Sham mapping onto single-particle orbitals in a self-consistent po-
tential will be discussed here, first for the case of non-interacting electrons
and then for interacting ones.

If the electrons are non-interacting, the allowed states are the solutions

of the single-particle equations
1, .
—§V + Vet 1/11 = 61:’1/)i. (140)

The occupation of each state is determined by the statistics (that is, ulti-
mately, a prescription for counting the states) and by the temperature; the
requirement that the entropy kpln Q(E) = >, W[{f;}] is maximized, to-
gether with the Fermi-Dirac statistics, brings in the familiar Fermi-Dirac

distribution [42]:

€ — [t 1
. = = —: 1.41
=t ( 1 ) 1+ exp(*7") 40

for this distribution the entropy S = kpln Q(E) is

S=—kp Y [filnfi+ (1— fi)In(1 - f;)] (1.42)

2

and the expectation value of the kinetic energy operator is:

n=Y [t (59 ity e - > s [rtomie) dr. .49

These expressions can be derived more formally with the help of second-

quantization operators (see Ref. [33], Chap. 6).
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The Kohn-Sham formulation for a system of interacting electrons (see
Refs. [43][41][44]) follows the lines of the zero-temperature case: a refer-
ence system of non-interacting electrons is introduced, for which the ground
state has the charge density n(r) that enters in the canonical Mermin func-
tional A,[n(r)] = Fs[n(r)] + [ vest(r)n(r) dr. An exchange-correlation po-
tential Eg ,.[n(r)] is then implicitly defined by isolating in Fjg[n(r)] the non-
interacting kinetic energy T' and entropy S of the non-interacting system
defined in (1.43) and (1.42). The minimization of the Mermin functional,
with the constraint of charge normalization, leads to the canonical Mermin-

Kohn-Sham equations:
1
|:_§V2 + ’UH(I') + vﬁ,mc(r) + vemt(r):| ¢l(r) =€ ¢z(r) (]-4:4)

! OF zc
vH(r):/ n(r') dr’' V8 zc(T) i

r—v "’ ~ bn(r)

S (SFE) =N an = S sr

These equations are formally similar to the zero-temperature case, although

now there is a Lagrange multiplier g to constrain the sum of the occupa-
tions to the total number of electrons N, since the number of states that
the finite-temperature brings in jumps from N to oo (although for all pu-
poses one can neglect all the states higher than a threshold for which the
occupancies are practically zero). Alternatively, one can minimize directly
the canonical Mermin functional as a function of the {f;} and {v;}, with the

explicit constraints of charge normalization and orthonormality:

AT b 4] = 30 [ 560) (=597 ) o) e B+ B oo+

+/vm(r)n(r) dv +T (kBZ [filnfi—k(l—fi)ln(l—fi)]). (1.45)
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An alternative expression can be obtained introducing the band-energy term:

AT {4}, A f:}] = Z fiei — Eg[n(r)] + Ep zc[n(r)]+

2

— /vﬁ@c(r)n(r) dr + T (kB Z [fz In fz + (]_ — f,)ln(]_ — fz)]) (]_4:6)

A different and very interesting approach has been proposed [45] (see also
[46]), in which the kinetic-energy is not determined via a Kohn-Sham based
orbital representation, but it is propagated a-la Feynman from high temper-
atures. Starting from the grand-canonical potential for the non-interacting
electrons ) = —% In det []I + exp(—ﬂ(ﬁ — /L)] , where H is the single-particle

A

T. 4 Vezt, a Kohn-Sham decomposition is performed. The minimization of

Aln(r); T] = —%m det [11 +exp(—B(H — u))] +

~Baln(e))+ Bpaln(r)] — [ vps)as) do (1.47)
is then reached by iterating to self-consistency with the constraint of charge

density normalization; the density matrix is evaluated as a path integral
5 W \P
oPH _ (e—ﬁH/P> :

employing the Trotter decomposition, and with the choice of a real-space
propagator for both the external potential and the kinetic energy operator.
With this real-space formulation, this approach does not suffer from errors
in the Brillouin Zone sampling of the kinetic-energy or of the charge density,
although it does require a finer representation in real-space. In the present
case, the minimization is reached iteratively, and not in a strictly variational
fashion. In order to gauge the relative advantages and drawbacks a set of

applications to a wider class of systems is needed; the relevant issues are
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the relative costs of an orbital-based formulation in comparison to a charge-
density one, the cutoff requirements for the chosen representation (e.g. plane
waves vs. a real space grid), and the added computational stability that a

strictly variational formulation does provide.





