Language Definition Problem

- Need to precisely define language
- Layered structure of language definition
 - Start with a set of letters in language
 - Lexical structure - identifies “words” in language (each word is a sequence of letters)
 - Syntactic structure - identifies “sentences” in language (each sentence is a sequence of words)
 - Semantics - meaning of program (specifies what result should be for each input)
- Today’s topic: lexical and syntactic structures

Specifying Formal Languages

- Huge Triumph of Computer Science
 - Beautiful Theoretical Results
 - Practical Techniques and Applications
- Two Dual Notions
 - Generative approach (grammar or regular expression)
 - Recognition approach (automaton)
- Lots of theorems about converting one approach automatically to another

Concept of Regular Expression

Generating a String
Rewrite regular expression until have only a sequence of letters (string) left

<table>
<thead>
<tr>
<th>General Rules</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) (r_1</td>
<td>r_2 \rightarrow r_1)</td>
</tr>
<tr>
<td>2) (r_1</td>
<td>r_2 \rightarrow r_2)</td>
</tr>
<tr>
<td>3) (r^* \rightarrow r^* r)</td>
<td>(1(0</td>
</tr>
<tr>
<td>4) (r^* \rightarrow \varepsilon)</td>
<td>(1.0)</td>
</tr>
</tbody>
</table>
Concept of Language Generated by Regular Expressions

- Set of all strings generated by a regular expression is language of regular expression
- In general, language may be (countably) infinite
- String in language is often called a token

Examples of Languages and Regular Expressions

- $\Sigma = \{0, 1, \ldots\}$
 - $(0 | 1)^* (0 | 1)^*$ - Binary floating point numbers
 - $(00)^*$ - even-length all-zero strings
 - $(1^*01^*01^*)^*$ - strings with even number of zeros
- $\Sigma = \{a, b, c, 0, 1, 2\}$
 - $(a | b | c)(a | b | c | 0 | 1 | 2)^*$ - alphanumeric identifiers
 - $(0 | 1 | 2)^*$ - trinary numbers

Alternate Abstraction
Finite-State Automata

- Alphabet Σ
- Set of states with initial and accept states
- Transitions between states, labeled with letters $\{0, 1\}^* (0 | 1)^*$

Automaton Accepting String

Conceptually, run string through automaton

- Have current state and current letter in string
- Start with start state and first letter in string
- At each step, match current letter against a transition whose label is same as letter
- Continue until reach end of string or match fails
- If end in accept state, automaton accepts string
- Language of automaton is set of strings it accepts

Example

Current state

11.0

Current letter

Example

Current state

11.0

Current letter
Generative Versus Recognition

- Regular expressions give you a way to generate all strings in language
- Automata give you a way to recognize if a specific string is in language
 - Philosophically very different
 - Theoretically equivalent (for regexps and automata)
- Standard approach
 - Use regular expressions when define language
 - Translated automatically into automata for implementation

From Regular Expressions to Automata

- Construction by structural induction
- Given an arbitrary regular expression r,
- Assume we can convert r to an automaton with
 - One start state
 - One accept state
- Show how to convert all constructors to deliver an automaton with
 - One start state
 - One accept state
Basic Constructs
- Start state
- Accept state
- \(\varepsilon\) (empty string)
- \(a \in \Sigma\) (an alphabet symbol)

Sequence
- Old start state
- Start state
- Old accept state
- Accept state
- \(r_1r_2\)
- \(\varepsilon\)

Choice
- Old start state
- Start state
- Old accept state
- Accept state
- \(r_1|r_2\)
- \(\varepsilon\)

Kleene Star
- Old start state
- Start state
- Old accept state
- Accept state
- \(r^*\)
- \(\varepsilon\)

NFA vs. DFA
- DFA
 - No \(\varepsilon\) transitions
 - At most one transition from each state for each letter
 - OK: \(a\) and \(b\)
 - NOT OK: \(a\) and \(a\)
- NFA – neither restriction

Conversions
- Our regular expression to automata conversion produces an NFA
- Would like to have a DFA to make recognition algorithm simpler
- Can convert from NFA to DFA (but DFA may be exponentially larger than NFA)
NFA to DFA Construction

• DFA has a state for each subset of states in NFA
 – DFA start state corresponds to set of states reachable by following ε transitions from NFA start state
 – DFA state is an accept state if an NFA accept state is in its set of NFA states
• To compute the transition for a given DFA state D and letter a
 – Set S to empty set
 – Find the set N of D’s NFA states
 • For all NFA states n in N
 – Compute set of states N’ that the NFA may be in after matching a
 – Set S to S union N’
 – If S is nonempty, there is a transition for a from D to the DFA state that has the set S of NFA states
 – Otherwise, there is no transition for a from D

NFA to DFA Example for \((0 | 1)^*.(0|1)^*\)

Lexical Structure in Languages

Each language typically has several categories of words. In a typical programming language:
 – Keywords (if, while)
 – Arithmetic Operations (+, -, *, /)
 – Integer numbers (1, 2, 45, 67)
 – Floating point numbers (1.0, .2, 3.337)
 – Identifiers (abc, i, j, ab345)
• Typically have a lexical category for each keyword and/or each category
• Each lexical category defined by regexp

Lexical Categories Example

• IfKeyword = if
• WhileKeyword = while
• Operator = +|-|*|/
• Integer = [0-9] [0-9]*
• Float = [0-9]*. [0-9]*
• Identifier = [a-z]([a-z] | [0-9])*
• Note that [0-9] = (0|1|2|3|4|5|6|7|8|9)
 [a-z] = (a|b|c|…|y|z)
• Will use lexical categories in next level

Programming Language Syntax

• Regular languages suboptimal for specifying programming language syntax
• Why? Constructs with nested syntax
 – \((a+b-c)^*(d-(x-(y-z))) \)
 – if \((x < y) \text{ if } (y < z) \ a = 5 \text{ else } a = 6 \text{ else } a = 7 \)
• Regular languages lack state required to model nesting
• Canonical example: nested expressions
• No regular expression for language of parenthesized expressions

Solution – Context-Free Grammar

• Set of terminals
 – \{ Op, Int, Open, Close \}
 – Op = +| - | * | /
 – Int = [0-9] [0-9]*
 – Each terminal defined by regular expression
 – Open = <
 – Close = >
• Set of nonterminals
 – \{ Start, Expr \}
• Set of productions
 – Single nonterminal on LHS
 – Sequence of terminals and nonterminals on RHS
 – \(Start \rightarrow Expr \)
 – \(Expr \rightarrow Expr Op Expr \)
 – \(Expr \rightarrow Int \)
 – \(Expr \rightarrow Open Expr Close \)
Production Game

have a current string
start with Start nonterminal
loop until no more nonterminals
choose a nonterminal in current string
choose a production with nonterminal in LHS
replace nonterminal with RHS of production
substitute regular expressions with corresponding strings
generated string is in language

Note: different choices produce different strings

Sample Derivation

Op = +|\-|*|/
Int = [0-9] [0-9]*
Open = <
Close = >
1) Start → Expr
2) Expr → Expr Op Expr
3) Expr → Int
4) Expr → Open Expr Close

Parse Tree

• Internal Nodes: Nonterminals
• Leaves: Terminals
• Edges:
 – From Nonterminal of LHS of production
 – To Nodes from RHS of production
• Captures derivation of string

Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations (therefore multiple parse trees) for a single string

Derivation and parse tree usually reflect semantics of the program

Ambiguity in grammar often reflects ambiguity in semantics of language
(which is considered undesirable)
Eliminating Ambiguity
Solution: hack the grammar

Original Grammar Hacked Grammar
Start → Expr Start → Expr
Expr → Expr Op Expr Expr → Expr Op Int
Expr → Int Expr → Int
Expr → Open Expr Close Expr → Open Expr Close

Conceptually, makes all operators associate to left

Parse Trees for Hacked Grammar
Only one parse tree for 2-1+1!
Valid parse tree No longer valid parse tree

Precedence Violations
• All operators associate to left
• Violates precedence of * over +
 – 2-3*4 associates like <2-3>*4

Hacking Around Precedence
Original Grammar Hacked Grammar
Op = +|-|*|/ AddOp = +|-|
Int = [0-9] [0-9]* MulOp = *|/
Open = < Int = [0-9] [0-9]*
Close = > Open = <
Close = > Close = >
Start → Expr Start → Expr
Expr → Expr Op Int Expr → Expr AddOp Term
Expr → Int Expr → Term
Expr → Open Expr Close Expr → Open Expr Close
Term → Term MulOp Int Term → Int

Parse Tree Changes
Old parse tree for 2-3*4
Start
Expr
Expr Op Int
Expr Op Int
Expr Op Int
Expr Op Int
New parse tree for 2-3*4
Start
Expr
Expr AddOp Term
Expr AddOp Term
Expr AddOp Term
Expr AddOp Term

General Idea
• Group Operators into Precedence Levels
 – * and / are at top level, bind strongest
 – + and - are at next level, bind next strongest
• Nonterminal for each Precedence Level
 – Term is nonterminal for * and /
 – Expr is nonterminal for + and -
• Can make operators left or right associative within each level
• Generalizes for arbitrary levels of precedence
Handling If Then Else

Start → Stat
 Stat → if Expr then Stat else Stat
 Stat → if Expr then Stat
 Stat → ...

Parse Trees

• Consider Statement if e₁ then if e₂ then s₁ else s₂

Two Parse Trees

Alternative Readings

• Parse Tree Number 1
 if e₁
 if e₂ then s₁ else s₂
 Grammar is ambiguous

• Parse Tree Number 2
 if e₁
 if e₂ s₁ else s₂

Hacked Grammar

Goal → Stat
 Stat → WithElse
 Stat → LastElse
 WithElse → if Expr then WithElse else WithElse
 WithElse → ...
 LastElse → if Expr then Stat
 LastElse → if Expr then WithElse else LastElse

Hacked Grammar

• Basic Idea: control carefully where an if without an else can occur
 – Either at top level of statement
 – Or as very last in a sequence of if then else if then ...
 statements
Parser
- Converts program into a parse tree
- Can be written by hand
- Or produced automatically by parser generator
 - Accepts a grammar as input
 - Produces a parse tree as output
- Practical problem
 - Parse tree for hacked grammar is complicated
 - Would like to start with more intuitive parse tree

Solution
- Abstract versus Concrete Syntax
 - Abstract syntax corresponds to “intuitive” way of thinking of structure of program
 - Omits details like superfluous keywords that are there to make the language unambiguous
 - Abstract syntax may be ambiguous
 - Concrete Syntax corresponds to full grammar used to parse the language
- Parsers are often written to produce abstract syntax trees.

Abstract Syntax Trees
- Start with intuitive but ambiguous grammar
- Hack grammar to make it unambiguous
 - Concrete parse trees
 - Less intuitive
- Convert concrete parse trees to abstract syntax trees
 - Correspond to intuitive grammar for language
 - Simpler for program to manipulate

Example

Hacked Unambiguous Grammar
- **AddOp** = \(+|\)-
- **MulOp** = \(*|/\)
- **Int** = \([0-9]\ [0-9]*\)
- **Open** = `<`
- **Close** = `>`
- **Op** = `*|/|+|-

Intuitive but Ambiguous Grammar
- **Start** → **Expr**
- **Expr** → **Expr** **AddOp** **Term**
- **Expr** → **Term**
- **Term** → **Open** **Expr** **Close**
- **Term** → **Term** **MulOp** **Int**
- **Term** → **Int**

Concrete parse tree for `<2-3>*4`

Abstract syntax tree for `<2-3>*4`

- Uses intuitive grammar
- Eliminates superfluous terminals
 - Open
 - Close

Further simplified abstract syntax tree for `<2-3>*4`
Summary

• Lexical and Syntactic Levels of Structure
 – Lexical – regular expressions and automata
 – Syntactic – grammars
• Grammar ambiguities
 – Hacked grammars
 – Abstract syntax trees
• Generation versus Recognition Approaches
 – Generation more convenient for specification
 – Recognition required in implementation

Grammar Vocabulary

• Leftmost derivation
 – Always expands leftmost remaining nonterminal
 – Similarly for rightmost derivation
• Sentential form
 – Partially or fully derived string from a step in valid derivation
 – $0 + Expr Op Expr$
 – $0 + Expr - 2$

Defining a Language

• Grammar
 – Generative approach
 – All strings that grammar generates (How many are there for grammar in previous example?)
• Automaton
 – Recognition approach
 – All strings that automaton accepts
• Different flavors of grammars and automata
• In general, grammars and automata correspond

Regular Languages

• Automaton Characterization
 – (S, A, F, s_0, s_F)
 – Finite set of states S
 – Finite Alphabet A
 – Transition function $F : S \times A \rightarrow S$
 – Start state s_0
 – Final states s_F
• Language is set of strings accepted by Automaton

Regular Languages

• Regular Grammar Characterization
 – (T, NT, S, P)
 – Finite set of Terminals T
 – Finite set of Nonterminals NT
 – Start Nonterminal S (goal symbol, start symbol)
 – Finite set of Productions $P : NT \rightarrow T U NT U T NT$
• Language is set of strings generated by grammar

Grammar and Automata Correspondence

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Grammar</td>
<td>Finite-State Automaton</td>
</tr>
<tr>
<td>Context-Free Grammar</td>
<td>Push-Down Automaton</td>
</tr>
<tr>
<td>Context-Sensitive Grammar</td>
<td>Turing Machine</td>
</tr>
</tbody>
</table>
Context-Free Grammars

- Grammar Characterization
 - \((T,NT,S,P)\)
 - Finite set of Terminals \(T\)
 - Finite set of Nonterminals \(NT\)
 - Start Nonterminal \(S\) (goal symbol, start symbol)
 - Finite set of Productions \(P: NT \rightarrow (T \mid NT)^*\)
- RHS of production can have any sequence of terminals or nonterminals

Push-Down Automata

- DFA Plus a Stack
 - \((S,A,V,F,s_0,s_F)\)
 - Finite set of states \(S\)
 - Finite Input Alphabet \(A\), Stack Alphabet \(V\)
 - Transition relation \(F: S \times (A \cup \{\varepsilon\}) \times V \rightarrow S \times V^*\)
 - Start state \(s_0\)
 - Final states \(s_F\)
- Each configuration consists of a state, a stack, and remaining input string

CFG Versus PDA

- CFGs and PDAs are of equivalent power
- Grammar Implementation Mechanism:
 - Translate CFG to PDA, then use PDA to parse input string
 - Foundation for bottom-up parser generators

Context-Sensitive Grammars and Turing Machines

- Context-Sensitive Grammars Allow Productions to Use Context
 - \(P: (T,NT)^+ \rightarrow (T,NT)^*\)
- Turing Machines Have
 - Finite State Control
 - Two-Way Tape Instead of A Stack