Program Representation

• Control Flow Graph
 – Nodes N = statements of program
 – Edges E = flow of control
 • pred(n) = set of all predecessors of n
 • succ(n) = set of all successors of n
 – Start node n_0
 – Set of final nodes N_{final}

Program Points

• One program point before each node
• One program point after each node
• Join point – point with multiple predecessors
• Split point – point with multiple successors

Basic Idea

• Information about program represented using values from algebraic structure called lattice
• Analysis produces lattice value for each program point
• Two flavors of analysis
 – Forward dataflow analysis
 – Backward dataflow analysis

Forward Dataflow Analysis

• Analysis propagates values forward through control flow graph with flow of control
 – Each node has a transfer function f
 • Input = value at program point before node
 • Output = new value at program point after node
 – Values flow from program points after predecessor nodes to program points before successor nodes
 – At join points, values are combined using a merge function
• Canonical Example: Reaching Definitions

Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points
 – Which assignment statements produced value of variable at this point?
 – Which variables contain values that are no longer used after this program point?
 – What is the range of possible values of variable at this program point?
Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input: value at program point after node
 - Output: new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set P
- Partial order \leq such that $\forall x, y \in P$
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (symmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

Upper Bounds

- If $S \subseteq P$ then
 - $x \in P$ is an upper bound of S if $\forall y \in S, y \leq x$ (upper bound)
 - $x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \leq y$ for all upper bounds y of S
 - \lor - join, least upper bound, lub, supremum, sup
 - $\lor S$ is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x, y\}$

Lower Bounds

- If $S \subseteq P$ then
 - $x \in P$ is a lower bound of S if $\forall y \in S, x \leq y$ (lower bound)
 - $x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \leq x$ for all lower bounds y of S
 - \land - meet, greatest lower bound, glb, infimum, inf
 - $\land S$ is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x, y\}$

Covering

- $x < y$ if $x \leq y$ and $x \not\leq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y

Example

- $P = \{000, 001, 010, 011, 100, 101, 110, 111\}$ (standard boolean lattice, also called hypercube)
- $x \leq y$ if (x bitwise and y) = x

Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram
Lattices

- If \(x \land y \) and \(x \lor y \) exist for all \(x, y \in P \), then \(P \) is a lattice.
- If \(S \mathbin{\text{and}} \lor S \) exist for all \(S \subseteq P \), then \(P \) is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
 - Integers \(I \)
 - For any \(x, y \in I \), \(x \land y = \max(x, y) \), \(x \lor y = \min(x, y) \)
 - But \(0 \lor \infty \) and \(0 \land \infty \) do not exist
 - \(I \bigcup \{ \infty, -\infty \} \) is a complete lattice

Connection Between \(\leq \), \(\land \), and \(\lor \)

- The following 3 properties are equivalent:
 - \(x \leq y \)
 - \(x \lor y = y \)
 - \(x \land y = x \)
- Will prove:
 - \(x \leq y \) implies \(x \lor y = y \) and \(x \land y = x \)
 - \(x \lor y = y \) implies \(x \leq y \)
 - \(x \land y = x \) implies \(x \leq y \)
- Then by transitivity, can obtain
 - \(x \lor y = y \) implies \(x \land y = x \)
 - \(x \land y = x \) implies \(x \lor y = y \)

Connecting Lemma Proofs

- Proof of \(x \leq y \) implies \(x \lor y = y \)
 - \(x \leq y \) implies \(y \) is an upper bound of \(\{x, y\} \).
 - Any upper bound \(z \) of \(\{x, y\} \) must satisfy \(y \leq z \).
 - So \(y \) is least upper bound of \(\{x, y\} \) and \(x \lor y = y \)
- Proof of \(x \leq y \) implies \(x \land y = x \)
 - \(x \leq y \) implies \(x \) is a lower bound of \(\{x, y\} \).
 - Any lower bound \(z \) of \(\{x, y\} \) must satisfy \(z \leq x \).
 - So \(x \) is greatest lower bound of \(\{x, y\} \) and \(x \land y = x \)

Lattices as Algebraic Structures

- Have defined \(\lor \) and \(\land \) in terms of \(\leq \)
- Will now define \(\leq \) in terms of \(\lor \) and \(\land \)
 - Start with \(\lor \) and \(\land \) as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \(\leq \) using \(\lor \) and \(\land \)
 - Will show that \(\leq \) is a partial order
Algebraic Properties of Lattices
Assume arbitrary operations \lor and \land such that
\[
- (x \lor y) \lor z = x \lor (y \lor z) \quad \text{(associativity of \lor)}
- (x \land y) \land z = x \land (y \land z) \quad \text{(associativity of \land)}
- x \lor y = y \lor x \quad \text{(commutativity of \lor)}
- x \land y = y \land x \quad \text{(commutativity of \land)}
- x \lor (x \land y) = x \quad \text{(absorption of \lor over \land)}
- x \land (x \lor y) = x \quad \text{(absorption of \land over \lor)}
\]

Connection Between \land and \lor
- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$
 \[
 x = x \land (x \lor y) \quad \text{(by absorption)}
 = x \land y \quad \text{(by assumption)}

 \]
- Proof of $x \land y = x$ implies $y = x \lor y$
 \[
 y = y \lor (y \land x) \quad \text{(by absorption)}
 = y \lor (x \lor y) \quad \text{(by commutativity)}
 = y \lor x \quad \text{(by assumption)}
 = x \lor y \quad \text{(by commutativity)}

 \]

Properties of \leq
- Define $x \leq y$ if $x \lor y = y$
- Proof of transitive property. Must show that $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$
 \[
 x \lor y = y \quad \text{and} \quad y \lor z = z \implies x \lor z = z
 = x \lor (y \lor z) \quad \text{(by assumption)}
 = (x \lor y) \lor z \quad \text{(by associativity)}
 = y \lor z \quad \text{(by assumption)}
 = z \quad \text{(by assumption)}

 \]

Properties of \leq
- Proof of asymmetry property. Must show that $x \lor y = y$ and $y \lor x = x$ implies $x = y$
 \[
 x = x \lor x \quad \text{(by assumption)}
 = x \lor y \quad \text{(by commutativity)}
 = y \quad \text{(by assumption)}

 \]
- Proof of reflexivity property. Must show that $x \lor x = x$
 \[
 x \lor x = x \quad \text{(by idempotence)}

 \]

Proof of $x \lor y = \sup \{x, y\}$
- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$
 \[
 u = x \lor u \quad \text{(by assumption)}
 = X \lor (y \lor u) \quad \text{(by assumption)}
 = (x \lor y) \lor u \quad \text{(by associativity)}

 \]
Proof of $x \land y = \inf \{x, y\}$
- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$
 \[
 l = x \land l \quad \text{(by assumption)} \hfill \\
 = x \land (y \land l) \quad \text{(by assumption)} \hfill \\
 = (x \land y) \land l \quad \text{(by associativity)}
 \]

Chains
- A set S is a chain if $\forall x, y \in S. \ y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$

Application to Dataflow Analysis
- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use \lor to combine values at control-flow join points

Transfer Functions
- Each dataflow analysis problem has a set F of transfer functions $f: P \to P$
 - Identity function $i \in F$
 - F must be closed under composition:
 $\forall f, g \in F.$ the function $h = \lambda x. f(g(x)) \in F$
 - Each $f \in F$ must be monotone:
 $x \leq y$ implies $f(x) \leq f(y)$
 - Sometimes all $f \in F$ are distributive:
 $f(x \lor y) = f(x) \lor f(y)$
 - Distributivity implies monotonicity

Distributivity Implies Monotonicity
- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$
 \[
 f(y) = f(x \lor y) \quad \text{(by assumption)} \hfill \\
 = f(x) \lor f(y) \quad \text{(by distributivity)}
 \]
Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with flow of control

Forward Dataflow Analysis

• Simulates execution of program forward with flow of control
• For each node n, have
 – in_n – value at program point before n
 – out_n – value at program point after n
 – f_n – transfer function for n (given in_n, computes out_n)
• Require that solution satisfy
 – \forall n. out_n = f_n(in_n)
 – \forall n \neq n_0. in_n = \lor \{ out_m. m \in \text{pred}(n) \}
 – in_{n_0} = \perp

Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations
 \begin{align*}
 \text{out}_n &:= f_n(\text{in}_n) \\
 \text{in}_n &:= \lor \{ \text{out}_m. m \in \text{pred}(n) \}
 \end{align*}
• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each n do
 out_n := f_n(\perp)
worklist := N
while worklist \neq \emptyset do
 remove a node n from worklist
 in_n := \lor \{ out_m. m \in \text{pred}(n) \}
 out_n := f_n(in_n)
 if out_n changed then
 worklist := worklist \cup \text{succ}(n)

Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node n, set out_n := f_n(in_n) Algorithm ensures that out_n = f_n(in_n)
• Whenever out_n changes, put succ(m) on worklist. Consider any node n \in \text{succ}(m). It will eventually come off worklist and algorithm will set
 \begin{align*}
 \text{in}_n &:= \lor \{ \text{out}_m. m \in \text{pred}(n) \}
 \end{align*}
to ensure that in_n = \lor \{ out_m. m \in \text{pred}(n) \}
• So final solution will satisfy dataflow equations

Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without ascending chain property, use widening operator
Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\lor = \cup$ (order is \subseteq)
- $\bot = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions
 - $f(x) = \text{GEN} \cup (x-\text{KILL})$

Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
 - Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$
 - Must show $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$
 $f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$
 $= a_1 \cup ((a_2 - b_2) \cup ((x-b_2) - b_1))$
 $= (a_1 \cup (a_2 - b_2)) \cup ((x-b_2) - b_1))$
 - Let $a = (a_1 \cup (a_2 - b_2))$ and $b = b_2 \cup b_1$
 - Then $f_1(f_2(x)) = a \cup (x - b)$

Does Reaching Definitions Framework Satisfy Properties?

- Identity
- Distributivity
- Composition

Available Expressions

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\lor = \land$ (order is \subseteq)
- $\bot = P$ (but $\text{in}_{\bot} = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis

General Result

All GEN/KILL transfer function frameworks satisfy
- Identity
- Distributivity
- Composition

Properties
Concept of Conservatism

- Reaching definitions use \(\cup \) as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \(\cap \) as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node \(n \), have
 - \(\text{in}_n \) – value at program point before \(n \)
 - \(\text{out}_n \) – value at program point after \(n \)
 - \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
- Require that solution satisfy
 - \(\forall n. \text{in}_n = f_n(\text{out}_n) \)
 - \(\forall n \not\in N_{\text{final}}. \text{out}_n = \cup \{ \text{in}_m. m \in \text{succ}(n) \} \)
 - \(\forall n \in N_{\text{final}}. \text{out}_n = \bot \)

Worklist Algorithm for Solving Backward Dataflow Equations

```plaintext
for each \( n \) do
  \( \text{in}_n := f_n(\bot) \)
  \( \text{worklist} := N \)
while \( \text{worklist} \neq \emptyset \) do
  remove a node \( n \) from \( \text{worklist} \)
  \( \text{out}_n := \cup \{ \text{in}_m. m \in \text{succ}(n) \} \)
  \( \text{in}_n := f_n(\text{out}_n) \)
if \( \text{in}_n \) changed then
  \( \text{worklist} := \text{worklist} \cup \text{pred}(n) \)
```

Live Variables

- \(P = \text{powerset of set of all variables in program} \)
 (all subsets of set of variables in program)
- \(\cup = \cup \) (order is \(\subseteq \))
- \(\bot = \emptyset \)
- \(F = \text{all functions } f \) of the form \(f(x) = a \cup (x-b) \)
 - \(b \) is set of variables that node kills
 - \(a \) is set of variables that node reads

Meaning of Dataflow Results

- Concept of program state \(s \) for control-flow graphs
 - Program point \(n \) where execution located
 (\(n \) is node that will execute next)
 - Values of variables in program
 - Each execution generates a trajectory of states:
 - \(s_0; s_1; \ldots; s_n \), where each \(s_j \in ST \)
 - \(s_{n+1} \) generated from \(s_n \) by executing basic block to
 - Update variable values
 - Obtain new program point \(n \)

Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function \(AF:ST \rightarrow P \)
- Correctness condition: require that for all states \(s \)
 \(AF(s) \leq \text{in}_n \)
 where \(n \) is the next statement to execute in state \(s \)
Sign Analysis Example

- Sign analysis - compute sign of each variable \(v \)
- Base Lattice: \(P = \) flat lattice on \([-,0,+]\)
 \[
 \begin{array}{c}
 \text{TOP} \\
 - \\
 0 \\
 + \\
 \text{BOT}
 \end{array}
 \]
- Actual lattice records a value for each variable
 - Example element: \([a\to+], b\to0, c\to-]\)

Interpretation of Lattice Values

- If value of \(v \) in lattice is:
 - BOT: no information about sign of \(v \)
 - \(- \): variable \(v \) is negative
 - \(0 \): variable \(v \) is 0
 - \(+ \): variable \(v \) is positive
 - TOP: \(v \) may be positive or negative

Operation \(\odot \) on Lattice

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>

Transfer Functions

- If \(n \) of the form \(v = c \)
 - \(f_c(x) = x[v\to+] \) if \(c \) is positive
 - \(f_c(x) = x[v\to0] \) if \(c \) is 0
 - \(f_c(x) = x[v\to-] \) if \(c \) is negative
- If \(n \) of the form \(v_1 = v_2 \star v_3 \)
 - \(f_n(x) = x[v_1\to x[v_1] \odot x[v_3]] \)

Abstraction Function

- \(\text{AF}(s)[v] = \text{sign of } v \)
 - \(\text{AF}(s)[a\to-5, b\to0, c\to2)] = [a\to+, b\to0, c\to+] \)
- Establishes meaning of the analysis results
 - Always has that sign in actual execution
- Correctness condition:
 - \(\forall v. \text{AF}(s)[v] \leq n[v] \) (\(n \) is node for \(s \))
- Two sources of imprecision
 - Abstraction Imprecision - concrete values (integers) abstracted as lattice values (-0, and +)
 - Control Flow Imprecision - one lattice value for all different possible flow of control possibilities

Imprecision Example

Abstraction Imprecision:
\([a\to-1] \) abstracted as \([a\to+]\)
\[
\begin{array}{c}
[a\to+] \\
b = -1 \\
[a\to+, b\to+] \\
[a\to+, b\to-] \\
c = a^b
\end{array}
\]
Control Flow Imprecision:
\([b\to \text{TOP}] \) summarizes results of all executions. In any execution state \(s \), \(\text{AF}(s)[b] = \text{TOP} \)
General Sources of Imprecision

• Abstraction Imprecision
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \vee moves up in lattice to combine values from different execution paths
 – Typically if $x \leq y$, then x is more precise than y

Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution
 – Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states
 – Abstracted by computing joins of different paths

Augmented Execution States

• Abstraction functions for some analyses require augmented execution states
 – Reaching definitions: states are augmented with definition that created each value
 – Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?
• Consider a path $p = n_0, n_1, \ldots, n_k$ to a node n (note that for all i, $n_i \in \text{pred}(n_{i+1})$)
• The solution must take this path into account: $f_p(\bot) = (f_{n_k}(f_{n_{k-1}}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n$
• So the solution must have the property that $\vee\{f_p(\bot) : p \text{ is a path to } n\} \leq \text{in}_n$
 and ideally $\vee\{f_p(\bot) : p \text{ is a path to } n\} = \text{in}_n$

Soundness Proof of Analysis Algorithm

• Property to prove:
 For all paths p to n, $f_p(\bot) \leq \text{in}_n$
• Proof is by induction on length of p
 – Uses monotonicity of transfer functions
 – Uses following lemma
• Lemma:
 Worklist algorithm produces a solution such that $f_p(\text{in}_n) = \text{out}_n$
 if $n \in \text{pred}(m)$ then $\text{out}_n \leq \text{in}_m$

Proof

• Base case: p is of length 1
 – Then $p = n_0$ and $f_p(\bot) = \bot = \text{in}_{n_0}$$n_0$
• Induction step:
 – Assume theorem for all paths of length k
 – Show for an arbitrary path p of length $k+1$
Induction Step Proof

- \(p = n_0, \ldots, n_k, n \)
- Must show \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\ldots)) \ldots)) \leq \text{in}_n \)
 - By induction, \(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\ldots)) \ldots) \leq \text{in}_{n_k} \)
 - Apply \(f_k \) to both sides, by monotonicity we get \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\ldots)) \ldots)) \leq f_k(\text{in}_{n_k}) \)
 - By lemma, \(f_k(\text{in}_{n_k}) = \text{out}_{n_k} \)
 - By lemma, \(\text{out}_{n_k} \leq \text{in}_n \)
 - By transitivity, \(f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\ldots)) \ldots)) \leq \text{in}_n \)

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all \(n \):
 \[\vee \{ f_p(\bot) \mid p \text{ is a path to } n \} = \text{in}_n \]

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

- Actual lattice records a value for each variable
 - Example element: \([a \downarrow 3, b \downarrow 2, c \downarrow 5]\)

Lack of Distributivity Anomaly

- Transfer Functions
 - If \(n \) of the form \(v = c \)
 - \(f_n(x) = x[v \downarrow c] \)
 - If \(n \) of the form \(v_1 = v_2 + v_3 \)
 - \(f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]] \)
 - Lack of distributivity
 - Consider transfer function \(f \) for \(c = a + b \)
 - \(f([a \rightarrow 3, b \rightarrow 2]) \vee f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \)
 - \(f([a \rightarrow 3, b \rightarrow 2] \cdot [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] \)

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function \(AF: S \rightarrow P \)
 - For any state \(s \) and program point \(n \), \(AF(s) \leq \text{in}_n \)
 - Meet over paths solutions, distributivity