# 14.12 Game Theory Lecture Notes Lectures 15-18 

## 1 Cournot with Incomplete Information

- Demand:

$$
P(Q)=a-Q
$$

where $Q=q_{1}+q_{2}$.

- The marginal cost of Firm $1=c_{1}$; common knowledge.
- Firm 2's marginal cost:
$c_{H}$ with probaility $\theta$,
$c_{L}$ with probaility $1-\theta$,
its private information.
- Each firm maximizes its expected profit.

How to find the Bayesian Nash Equilibrium?
Firm 2 has two possible types; and different actions will be chosen for the two different types.
$\left\{q_{2}\left(c_{L}\right), q_{2}\left(c_{H}\right)\right\}$
Suppose firm 2 is type high. Then, given the quantity $q_{1}^{*}$ chosen by player, its problem is

$$
\max _{q_{2}}\left(P-c_{H}\right) q_{2}=\left[a-q_{1}-q_{2}-c_{H}\right] q_{2} .
$$

Hence,

$$
\begin{equation*}
q_{2}^{*}\left(c_{H}\right)=\frac{a-q_{1}^{*}-c_{H}}{2} \tag{}
\end{equation*}
$$

Similarly, suppose firm 2 is low type:

$$
\max _{q_{2}}\left[a-q_{1}^{*}-q_{2}-c_{H}\right] q_{2}
$$

hence

$$
\begin{equation*}
q_{2}^{*}\left(c_{L}\right)=\frac{a-q_{1}^{*}-c_{H}}{2} \tag{**}
\end{equation*}
$$

Important Remark: The same level of $q_{1}$ in both cases. Why??
Firm 1's problem:

$$
\begin{gather*}
\max _{q_{1}} \theta\left[a-q_{1}-q_{2}^{*}\left(c_{H}\right)-c\right] q_{1}+(1-\theta)\left[a-q_{1}-q_{2}^{*}\left(c_{L}\right)-c\right] q_{1} \\
q_{1}^{*}=\frac{\theta\left[a-q_{2}^{*}\left(c_{H}\right)-c\right]+(1-\theta)\left[a-q_{2}^{*}\left(c_{L}\right)-c\right]}{2} \tag{***}
\end{gather*}
$$

Solve ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$ for $q_{1}^{*}, q_{2}^{*}\left(c_{L}\right), q_{2}^{*}\left(c_{H}\right)$.

$$
\begin{gathered}
q_{2}^{*}\left(c_{H}\right)=\frac{a-2 c_{H}+c}{3}+\frac{(1-\theta)\left(c_{H}-c_{L}\right)}{6} \\
q_{2}^{*}\left(c_{L}\right)=\frac{a-2 c_{L}+c}{3}+\frac{\theta\left(c_{H}-c_{L}\right)}{6} \\
q_{1}^{*}=\frac{a-2 c+\theta c_{H}+(1-\theta) c_{L}}{3}
\end{gathered}
$$

Auctions Two bidders for a unique good.
$v_{i}$ : valuation of bidder i.
Let us assume that $v_{i}$ 's are drawn independently from a uniform distribution over $[0,1]$. $v_{i}$ is player i's private information. The game takes the form of both bidders submitting a bid, then the highest bidder wins and pays her bid.

Let $b_{i}$ be player i's bid.

$$
\begin{array}{r}
v_{i}\left(b_{1}, b_{2}, v_{1}, v_{2}\right)=v_{i}-b_{i} \text { if } b_{i}>b_{j} \\
\frac{v_{i}-b_{i}}{2} \text { if } b_{i}=b_{j} \\
0 \text { if } b_{i}<b_{j}
\end{array}
$$

$\max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{Prob}\left\{b_{i}>b_{j}\left(v_{j}\right) \mid\right.$ given beliefs of player i $)+\frac{1}{2}\left(v_{i}-b_{i}\right) \operatorname{Prob}\left\{b_{i}=b_{j}\left(v_{j}\right) \mid \ldots\right)$
Let us first conjecture the form of the equilibrium: Conjecture: Symmetric and linear equilibrium

$$
b=a+c v .
$$

Then, $\frac{1}{2}\left(v_{i}-b_{i}\right) \operatorname{Prob}\left\{b_{i}=b_{j}\left(v_{j}\right) \mid \ldots\right)=0$. Hence,

$$
\begin{aligned}
& \max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{Prob}\left\{b_{i} \geq a+c v_{j}\right\}= \\
& \quad\left(v_{i}-b_{i}\right) \operatorname{Prob}\left\{v_{j} \leq \frac{b_{i}-a}{c}\right\}=\left(v_{i}-b_{i}\right) \cdot \frac{\left(b_{i}-a\right)}{c}
\end{aligned}
$$

FOC:

$$
\begin{align*}
b_{i} & =\frac{v_{i}+a}{2} \quad & & \text { if } \quad v_{i} \geq a \\
& =a \quad & \text { if } & v_{i}<a \tag{1}
\end{align*}
$$

The best response $b_{i}$ can be a linear strategy only if $a=0$. Thus,

$$
b_{i}=\frac{1}{2} v_{i} .
$$

Double Auction Simultaneously, Seller names $P_{s}$ and Buyer names $P_{b}$. If $P_{b}<P_{s}$, then no trade; if $P_{b} \geq P_{s} \quad$ trade at price $p=\frac{P_{b}+P_{s}}{2}$.

Valuations are private information:
$V_{b}$ uniform over $(0,1)$
$V_{s}$ uniform over $(0,1)$ and independent from $V_{b}$
Strategies $P_{b}\left(V_{b}\right)$ and $P_{s}\left(V_{s}\right)$.

The buyer's problem is

$$
\begin{aligned}
\max _{P_{b}} E\left[V_{b}-\frac{P_{b}+P_{s}\left(V_{s}\right)}{2}: P_{b} \geq P_{s}\left(V_{s}\right)\right] & = \\
\max _{P_{b}}\left[V_{b}-\frac{P_{b}+E\left[P_{s}\left(V_{s}\right) \mid P_{b} \geq P_{s}\left(V_{s}\right)\right]}{2}\right] \times \operatorname{Prob}\left\{P_{b}\right. & \left.\geq P_{s}\left(V_{s}\right)\right\}
\end{aligned}
$$

where $E\left[P_{s}\left(V_{s}\right) \mid P_{b} \geq P_{s}\left(V_{s}\right)\right]$ is the expected seller bid conditional on $P_{b}$ being greater than $P_{s}\left(V_{s}\right)$.

Similarly, the seller's problem is

$$
\begin{aligned}
\left.\max _{P_{s}} E\left[\frac{P_{s}+P_{b}\left(V_{b}\right)}{2}-V_{s}: P_{b}\left(V_{b}\right) \geq P_{s}\right]\right] & = \\
\left.\max _{P_{s}}\left[\frac{P_{s}+E\left[P_{b}\left(V_{b}\right) \mid P_{b}\left(V_{b}\right) \geq P_{s}\right.}{2}\right]-V_{s}\right] \times \operatorname{Prob}\left\{P_{b}\left(V_{b}\right)\right. & \left.\geq P_{s}\right\}
\end{aligned}
$$

Equilibrium is where $P_{s}\left(V_{j}\right)$ is a best response to $P_{b}\left(V_{b}\right)$ while $P_{b}\left(V_{b}\right)$ is a best response to $P_{s}\left(V_{s}\right)$.

There are many Bayesian Nash Equilibria. Here is one.
$\begin{array}{lll}P_{s}=X & \text { if } & V_{s} \leq X \\ P_{b}=X & \text { if } & V_{b} \geq X .\end{array}$
An equilibrium with "fixed" price.
Why is this an equilibrium? Because given $P_{s}=X$ if $V_{s} \leq X$, the buyer does not want to trade with $V_{b}<X$ and with $V_{b}>X, P_{b}=X$ is optimal.


Now construct an equilibrium with linear strategies:

$$
\begin{aligned}
p_{b} & =a_{b}+c_{b} v_{b} \\
p_{s} & =a_{s}+c_{s} v_{s}
\end{aligned}
$$

where $a_{b}, a_{s}, c_{b}$, and $c_{s}$ are to be determined. Note that $p_{b} \geq p_{s}\left(v_{s}\right)=a_{s}+c_{s} v_{s}$ iff

$$
v_{s} \leq \frac{p_{b}-a_{s}}{c_{s}} .
$$

Likewise, $p_{s} \leq p_{b}\left(v_{b}\right)=a_{b}+c_{b} v_{b}$ iff

$$
v_{b} \geq \frac{p_{s}-a_{b}}{c_{b}} .
$$

Then, the buyer's problem is ${ }^{1}$

$$
\begin{aligned}
\max _{p_{b}} E\left[v_{b}-\frac{p_{b}+p_{s}\left(v_{s}\right)}{2}:\right. & \left.p_{b} \geq p_{s}\left(v_{s}\right)\right] \\
& =\max _{p_{b}} \int_{0}^{\frac{p_{b}-a_{s}}{c_{s}}}\left[v_{b}-\frac{p_{b}+p_{s}\left(v_{s}\right)}{2}\right] d v_{s} \\
& =\max _{p_{b}} \int_{0}^{\frac{p_{b}-a_{s}}{c_{s}}}\left[v_{b}-\frac{p_{b}+a_{s}+c_{s} v_{s}}{2}\right] d v_{s} \\
= & \max _{p_{b}} \frac{p_{b}-a_{s}}{c_{s}}\left(v_{b}-\frac{p_{b}+a_{s}}{2}\right)-\frac{c_{s}}{2} \int_{0}^{\frac{p_{b}-a_{s}}{c_{s}}} v_{s} d v_{s} \\
= & \max _{p_{b}} \frac{p_{b}-a_{s}}{c_{s}}\left(v_{b}-\frac{p_{b}+a_{s}}{2}\right)-\frac{c_{s}}{4}\left(\frac{p_{b}-a_{s}}{c_{s}}\right)^{2} \\
& =\max _{p_{b}} \frac{p_{b}-a_{s}}{c_{s}}\left(v_{b}-\frac{p_{b}+a_{s}}{2}-\frac{p_{b}-a_{s}}{4}\right) \\
& =\max _{p_{b}} \frac{p_{b}-a_{s}}{c_{s}}\left(v_{b}-\frac{3 p_{b}+a_{s}}{4}\right) .
\end{aligned}
$$

F.O.C.:

$$
\frac{1}{c_{s}}\left(v_{b}-\frac{3 p_{b}+a_{s}}{4}\right)-\frac{3\left(p_{b}-a_{s}\right)}{4 c_{s}}=0
$$

i.e.,

$$
\begin{equation*}
p_{b}=\frac{2}{3} v_{b}+\frac{1}{3} a_{s} . \tag{2}
\end{equation*}
$$

Similarly, the seller's problem is

[^0]\[

$$
\begin{aligned}
& \max _{p_{s}} E\left[\frac{p_{s}+p_{b}\left(v_{b}\right)}{2}\right.\left.-v_{s}: p_{b}\left(v_{b}\right) \geq p_{s}\right]=\max _{p_{s}} \int_{\frac{p_{s}-a_{b}}{c_{b}}}^{1}\left[\frac{p_{s}+a_{b}+c_{b} v_{b}}{2}-v_{s}\right] d v_{b} \\
&=\max _{p_{s}}\left(1-\frac{p_{s}-a_{b}}{c_{b}}\right)\left[\frac{p_{s}+a_{b}}{2}-v_{s}\right]+\frac{c_{b}}{2} \int_{\frac{p_{s}-a_{b}}{c_{b}}}^{1} v_{b} d v_{b} \\
&=\max _{p_{s}}\left(1-\frac{p_{s}-a_{b}}{c_{b}}\right)\left[\frac{p_{s}+a_{b}}{2}-v_{s}\right]+\frac{c_{b}}{4}\left(1-\left(\frac{p_{s}-a_{b}}{c_{b}}\right)^{2}\right) \\
&=\max _{p_{s}}\left(1-\frac{p_{s}-a_{b}}{c_{b}}\right)\left[\frac{p_{s}+a_{b}}{2}-v_{s}+\frac{c_{b}}{4}+\frac{p_{s}-a_{b}}{4}\right] \\
&=\max _{p_{s}}\left(1-\frac{p_{s}-a_{b}}{c_{b}}\right)\left[\frac{3 p_{s}+a_{b}}{4}-v_{s}+\frac{c_{b}}{4}\right]
\end{aligned}
$$
\]

F.O.C.

$$
-\frac{1}{c_{b}}\left[\frac{3 p_{s}+a_{b}}{4}-v_{s}+\frac{1}{4}\right]+\frac{3}{4}\left(1-\frac{p_{s}-a_{b}}{c_{b}}\right)=0
$$

i.e.,

$$
-\left[\frac{3 p_{s}+a_{b}}{4}-v_{s}+\frac{c_{b}}{4}\right]+\frac{3}{4}\left(c_{b}-\left(p_{s}-a_{b}\right)\right)=0
$$

i.e.,

$$
\frac{3 p_{s}}{2}=-\frac{a_{b}}{4}+v_{s}-\frac{c_{b}}{4}+\frac{3}{4}\left(c_{b}+a_{b}\right)=v_{s}+\frac{a_{b}+c_{b}}{2}
$$

i.e.,

$$
\begin{equation*}
p_{s}=\frac{2}{3} v_{s}+\frac{a_{b}+c_{b}}{3} . \tag{3}
\end{equation*}
$$

By (2), $a_{b}=a_{s} / 3$, and by (3), $a_{s}=\frac{a_{b}}{3}+\frac{2}{9}$. Hence, $9 a_{s}=a_{s}+2$, thus $a_{s}=1 / 4$. Therefore, $a_{b}=1 / 12$. The equilibrium is

$$
\begin{align*}
& p_{b}=\frac{2}{3} v_{b}+\frac{1}{12}  \tag{4}\\
& p_{s}=\frac{2}{3} v_{s}+\frac{1}{4} \tag{5}
\end{align*}
$$


[^0]:    ${ }^{1}$ There is somewhat simpler way in to get the same outcome; see Gibbons.

