
14.12 Game Theory Lecture Notes 

Theory of Choice 

(Lecture 2) 

1 The basic theory of choice 

We consider a set X of alternatives. Alternatives are mutually exclusive in the sense 

that one cannot choose two distinct alternatives at the same time. We also take the set 

of feasible alternatives exhaustive so that a player’s choices will always be defined. Note 

that this is a matter of modeling. For instance, if we have options Coffee and Tea, we 

define alternatives as C = Coffee but no Tea, T = Tea but no Coffee, CT = Coffee and 

Tea, and NT  = no Coffee and no Tea. 

Take a relation º on X. Note that a relation on X is a subset of X × X. A  relation 

º is said to be complete if and only if, given any x, y ∈ X, either x º y or y º x. A  

relation º is said to be transitive if and only if, given any x, y, z ∈ X, 

[x º y and y º z] ⇒ x º z. 

A relation is a preference relation if and only if it is complete and transitive. Given any 

preference relation º, we can define strict preference Â by 

x Â y ⇐⇒ [x º y and y 6º x], 

and the indifference ∼ by 

x ∼ y ⇐⇒ [x º y and y º x]. 

A preference relation can be represented by a utility function u : X → R in the 

following sense: 

x º y ⇐⇒ u(x) ≥ u(y) ∀x, y ∈ X. 
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The following theorem states further that a relation needs to be a preference relation in 

order to be represented by a utility function. 

Theorem 1 Let X be finite. A relation can be presented by a utility function if and only 

if it is complete and transitive. Moreover, if u : X → R represents º, and if f : R → R 

is a strictly increasing function, then f ◦ u also represents º. 

By the last statement, we call such utility functions ordinal. 

In order to use this ordinal theory of choice, we should know the agent’s preferences on 

the alternatives. As we have seen in the previous lecture, in game theory, a player chooses 

between his strategies; and his preferences on his strategies depend on the strategies 

played by the other players. In order to apply this theory to games directly, we might 

need to restrict ourselves to the cases where each player knows which strategies the other 

players play. This is clearly too restrictive, hence we need a theory of decision-making 

under uncertainty. 

2 Decision-making under uncertainty 

We consider a finite set Z of prizes, and the set P of all probability distributions p : Z → P 
[0, 1] on Z, where z∈Z p(z) = 1. We call these probability distributions lotteries. A 

lottery can be depicted by a tree. For example, in Figure 1, Lottery 1 depicts a situation 

in which if head the player gets $10, and if tail, he gets $0. 
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Figure 1: 

In game theory and more broadly when agents make their decision under uncertainty, 

we do not have the lotteries as in casinos where the probabilities are generated by 
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some machines and as we have defined above where the probabilities are given. It has 

been shown by Savage (1954) under certain conditions that a player’s beliefs can be 

represented by a (unique) probability distribution. Using these probabilities, we can 

represent our acts by lotteries. 

We would like to have a theory that constructs a player’s preferences on the lotteries 

from his preferences on the prizes. The most well-known such theory is the theory 

of expected utility maximization by Von Neumann and Morgenstern. A preference 

relation º on P is said to be represented by a von Neumann-Morgenstern utility function 

u : Z → R if and only if 

p º q ⇐⇒ U (p) ≡ 
X 

z∈Z 

u(z)p(z) ≥ 
X 

z∈Z 

u(z)q(z) ≡ U (q) (1) 

for each p, q ∈ P . Note that U : P → R represents º in ordinal sense. That is, the agent 

acts as if he wants to maximize the expected value of u. For instance, the expected 
1utility of Lottery 1 for our agent is E(u(Lottery 1)) = 
2 u(10) + 1 1 

2 u(0). 

The necessary and sufficient conditions for a representation as in (1) are as follows: 

Axiom 1 º is complete and transitive. 

This is necessary by Theorem 1, for U represents º in ordinal sense. The second 

condition is called independence axiom, stating that a player’s preference between two 

lotteries p and q does not change if we toss a coin and give him a fixed lottery r if “tail” 

comes up. 

Axiom 2 For any p, q, r ∈ P , and any a ∈ (0, 1], ap + (1 − a)r Â aq + (1 − a)r ⇐⇒ 

p Â q. 

Let p and q be the lotteries depicted in Figure A. Then, the lotteries ap + (1 − a)r 

and aq + (1 − a)r can be depicted as in Figure B, where we toss a coin between a fixed 

lottery r and our lotteries p and q. Axiom 2 stipulates that the agent would not change 

his mind after the coin toss. Therefore, our axiom can be taken as an axiom of “dynamic 

consistancy” in this sense. 

The third condition is purely technical, and called continuity axiom. It states that 

there are no “infinitely good” or “infinitely bad” prizes. R
1If Z were a continuum, like R, we would compute the expected utility of p by u(z)p(z)dz. 
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Axiom 3 For any p, q, r ∈ P , if p Â r, then there exist a, b ∈ (0, 1) such that ap + (1 − 

a)r Â q Â bp + (1 − r)r. 

Axioms 2 and 3 imply that, given any p, q, r ∈ P and any a ∈ [0, 1], 

if p ∼ q, then ap + (1 − a) r ∼ aq + (1 − a)r. (2) 

This has two implications: 

1. The indifference curves on the lotteries are straight lines. 

2. The indifference curves, which are straight lines, are parallel to each other. 

To illustrate these facts, consider three prizes z0, z1, and z2, where z2 Â z1 Â z0. 

A lottery p can be depicted on a plane by taking p (z1) as the first coordinate (on 

the horizontal axis), and p (z2) as the second coordinate (on the vertical axis). p (z0) 

is 1 − p (z1) − p (z2). [See Figure C for the illustration.] Given any two lotteries p 

and q, the convex combinations ap + (1 − a) q with a ∈ [0, 1] form the line segment 

connecting p to q. Now, taking r = q, we can deduce from (2) that, if p ∼ q, then 

ap + (1 − a) q ∼ aq + (1 − a)q = q for each a ∈ [0, 1]. That this, the line segment 

connecting p to q is an indifference curve. Moreover, if the lines l and l0 are parallel, 

then α/β = |q0| / |q|, where |q| and |q0| are the distances of q and q0 to the origin, 

respectively. Hence, taking a = α/β, we compute that p0 = ap + (1 − a) δz0 and q0 = 

aq + (1 − a) δz0 , where δz0 is the lottery at the origin, and gives z0 with probability 1. 

Therefore, by (2), if l is an indifference curve, l0 is also an indifference curve, showing 

that the indifference curves are parallel. 

Line l can be defined by equation u1p (z1)+  u2p (z2) =  c for some u1, u2, c  ∈ R. Since 
l0 is parallel to l, l0 can also be defined by equation u1p (z1) +  u2p (z2) =  c0 for some c0 . 

Since the indifference curves are defined by equality u1p (z1) +  u2p (z2) =  c for various 

values of c, the preferences are represented by 

U (p) =  0 + u1p (z1) +  u2p (z2) 

≡ u(z0)p(z0) +  u(z1)p (z1) +  u(z2)p(z2), 
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where 

u (z0) = 0, 

u(z1) =  u1, 

u(z2) =  u2, 

giving the desired representation. 

This is true in general, as stated in the next theorem: 

Theorem 2 A relation º on P can be represented by a von Neumann-Morgenstern 

utility function u : Z → R as in (1) if and only if º satisfies Axioms 1-3. Moreover, u 

˜ ˜and u represent the same preference relation if and only if u = au + b for some a >  0 

and b ∈ R. 

By the last statement in our theorem, this representation is “unique up to affine 

transformations”. That is, an agent’s preferences do not change when we change his 

von Neumann-Morgenstern (VNM) utility function by multiplying it with a positive 

number, or adding a constant to it; but they do change when we transform it through a 

non-linear transformation. In this sense, this representation is “cardinal”. Recall that, 

in ordinal representation, the preferences wouldn’t change even if the transformation √ 
were non-linear, so long as it was increasing. For instance, under certainty, v = u and 

u would represent the same preference relation, while (when there is uncertainty) the √ 
VNM utility function v = u represents a very different set of preferences on the lotteries 

than those are represented by u. Because, in cardinal representation, the curvature of 

the function also matters, measuring the agent’s attitudes towards risk. 

3 Attitudes Towards Risk 

Suppose individual A has utility function uA. How do we determine whether he dislikes 

risk or not, and whether he has a higher tolerence to risk than another individual B with 

utility function uB ? 

The answer lies in the cardinality of the function u. 

Let us first define a fair gamble, as a lottery that has expected value equal to 0. For 

instance, lottery 2 
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is a fair gamble if and only if px + (1 − p)y = 0. 

We define an agent as Risk-Neutral if and only if he is indifferent between accepting 

and rejecting all fair gambles. Thus, an agent with utility function u is risk neutral if 

and only if 

E(u(lottery 2)) = pu(x) + (1 − p)u(y) =  u(0) 

for all p, x, and y. 

This can only be true for all p, x, and y, if and only if the agent is maximizing the 

expected value, that is, u(x) =  ax + b. Therefore, we need the utility function to be 

linear. 

Therefore, an agent is risk-neutral if and only if he has a linear Von-Neumann-

Morgenstern utility function. 

An agent is risk-averse if and only if he rejects all fair gambles: 

E(u(lottery 2)) < u(0) 

pu(x) + (1 − p)u(y) < u(px + (1 − p)y) ≡ u(0) 

Now, recall that a function g(·) is strictly concave if and only if we have 

g(λx + (1 − λ)y) > λg(x) + (1 − λ)g(y) 

for all λ ∈ (0, 1). Therefore, risk-aversion is equivalent to having a strictly concave 

utility function. 

Similarly, an agent is said to be risk seeking iff he has a strictly convex utility function. 

Consider Figure 2. The cord AB is the utility difference that this risk-averse agent 

would lose by taking the gamble that gives W1 with probablity p and W2 with probability 
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EU(Gamble) 

W1 pW1+(1-p) W2 
W2 

Figure 2: 

1 − p. BC is the maximum amount that she would pay in order to avoid to take the 

gamble. Suppose W2 is her wealth level and W2 − W1 is the value of her house and p 

is the probability that the house burns down. Thus in absense of fire insurance this 

individual will have utility given by EU (gamble), which is lower than the utility of the 

expected value of the gamble. 

3.1 Risk sharing 
√ 

Consider an agent with utility function u : x 7→ x. He has a (risky) asset that gives 

$100 with probability 1/2 and gives $0 with probability 1/2. The expected utility of our √ √ 
1agent from this asset is EU0 = 
2 0 +  1 100 = 5. Now consider another agent who is

2 

identical to our agent, in the sense that he has the same utility function and an identical 

asset, where two assets are statistically independent from each other. Imagine that our 

agents from a mutual fund by pooling their assets, each agent owning half of the mutual 

fund. This mutual fund gives $200 with probability 1/4 (when both assets yield high 

dividends), $100 with probability 1/2 (when only one on the assets gives high dividend), 
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and gives $0 with probability 1/4 (when both assets yield low dividends). Thus, each 

agent’s share in the mutual fund yields $100 with probability 1/4, $50 with probability 

1/2, and $0 with probability 1/4. Therefore, his expected utility from the share in this √ √ √ 
mutual fund is EUS = 1 

4 100 + 1 
2 50 + 1 

4 0 = 6.0355. This is clearly larger than his 

expected utility from his own asset, therefore our agents gain by sharing the risk in their 

assets. 

4 Measuring Risk-Aversion 

If UA is more ‘curved’ or more ‘concave’, then this will correspond to a more risk averse 

utility function or individual. 

UA UB 

Figure 3: 

How to formulize this? 

U 0 is related to how concave a function is but since positive linear transforamtions 

are allowed its numerical value is of no interest. What matters is U 00 relative to U 0 . 

This is the Arrow-Pratt measures of risk-aversion: 

Relative Degree of Risk-Aversion: − WU  00 (W ) 
U 0(W ) 

Absolute Degree of Risk-Aversion: − U 00(W ) 
U 0(W ) 

A higher degree of risk aversion corresponds to a more risk-averse agent. More 

generally, A is more risk averse than B if and only if 

• UA is a concave transformation of UB 
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• A’s degree of absolute and relative risk-aversion is always higher than B’s. 

The rationale behind the relative risk aversion (−WU  00(W )/U 0(W )) is that an agent 

may get more (or less) risk averse as he gets richer, which is called the wealth effect. An 

agent’s risk aversion does not change as his wealth change when his absolute risk-aversion 

(−U 00(W )/U 0(W )) is constant. In that case, the agent’s utility function is defined by 

−αx u(x) =  −e 

for some α > 0, which is absolute risk aversion. 
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