## Lectures 9

## Single deviation-principle \&

 Forward Induction14.12 Game Theory

## Road Map

1. Single-deviation principle - Infinitehorizon bargaining
2. Quiz
3. Forward Induction - Examples
4. Finitely Repeated Games

## Single-Deviation principle

Definition: An extensive-form game is continuous at infinity iff, given any $\varepsilon>0$, there exists some $t$ such that, for any two path whose first $t$ acts are the same, the payoff difference of each player is less than $\varepsilon$.
Theorem: Let $G$ be a game that is continuous at infinity. A strategy profile $\mathrm{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ is a subgame-perfect equilibrium of G iff, at any information set, where a player i moves, given the other players strategies and given i's moves at the other information sets, player i cannot increase his conditional payoff at the information set by deviating from his strategy at the information set.

## Sequential Bargaining



1

- $\mathrm{N}=\{1,2\}$
- $\mathrm{D}=$ feasible expected-utility pairs $(x, y \in D)$
- $\mathrm{U}_{\mathrm{i}}(\mathrm{x}, \mathrm{t})=\delta_{\mathrm{i}}{ }^{\mathrm{t}} \mathrm{x}_{\mathrm{i}}$
- $\mathrm{d}=(0,0) \in \mathrm{D}$ disagreement payoffs


## Timeline $-\infty$ period

$$
T=\{1,2, \ldots, n-1, n, \ldots\}
$$

If t is odd,

- Player 1 offers some ( $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}$ ),
- Player 2 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding $\delta^{t}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)$,
- Otherwise, we proceed to date $\mathrm{t}+1$.

If $t$ is even

- Player 2 offers some ( $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}$ ),
- Player 1 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding payoff $\delta^{t}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)$,
- Otherwise, we proceed to date $\mathrm{t}+1$.


## SPE of $\infty$-period bargaining

Theorem: At any $t$, proposer offers the other player $\delta /(1+\delta)$, keeping himself $1 /(1+\delta)$, while the other player accept an offer iff he gets $\delta /(1+\delta)$.
"Proof:"

## Nash equilibria of bidding game

- 3 equilibria: $s^{1}=$ everybody plays $1 ; s^{2}=$ everybody plays $2 ; \mathrm{s}^{3}=$ everybody plays 3 .
- Assume each player trembles with probability $\varepsilon<1 / 2$, and plays each unintended strategy w.p. $\varepsilon / 2$, e.g., w.p. $\varepsilon / 2$, he thinks that such other equilibrium is to be played.
$-s^{3}$ is an equilibrium iff
$-s^{2}$ is an equilibrium iff
$-s^{1}$ is an equilibrium iff


## Forward Induction

Strong belief in rationality: At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if $s$ is strictly dominated but $s$ ' is not, at this history no player j believes that i plays s .)

## Bidding game with entry fee

Each player is first to decide whether to play the bidding game (E or X); if he plays, he is to pay a fee $\mathrm{p}>60$.

| $\min$ |  |  |  |
| ---: | :---: | :---: | :---: |
| Bid | 1 | 2 | 3 |
| 1 | 60 | - | - |
| 2 | 40 | 80 | - |
| 3 | 20 | 60 | 100 |

For each $\mathrm{m}=1,2,3, \exists$ SPE: $(\mathrm{m}, \mathrm{m}, \mathrm{m})$ is played in the bidding game, and players play the game iff $20(2+\mathrm{m}) \geq \mathrm{p}$.
Forward induction: when $20(2+\mathrm{m})<\mathrm{p}$, (Em) is strictly dominated by (Xk). After E, no player will assign positive probability to $\min$ bid $\leq \mathrm{m}$. FI-Equilibria: (Em,Em,Em) where $20(2+\mathrm{m}) \geq \mathrm{p}$. What if an auction before the bidding game?

## Burning Money



BB BS SB SS


## Repeated Games

Entry deterrence


## Entry deterrence, repeated twice



## Prisoners' Dilemma, repeated twice, many times

- Two dates $\mathrm{T}=\{0,1\}$;
- At each date the prisoners' dilemma is played:

|  | C | D |
| :--- | :---: | :---: |
| C | 5,5 | 0,6 |
| D | 6,0 | 1,1 |
|  |  |  |

- At the beginning of 1 players observe the strategies at 0 . Payoffs= sum of stage payoffs.



## A general result

- $\mathrm{G}=$ "stage game" $=$ a finite game
- $\mathrm{T}=\{0,1, \ldots, \mathrm{n}\}$
- At each t in $\mathrm{T}, \mathrm{G}$ is played, and players remember which actions taken before t ;
- Payoffs = Sum of payoffs in the stage game.
- Call this game G(T).

Theorem: If $G$ has a unique subgame-perfect equilibrium $\mathrm{s}^{*}, \mathrm{G}(\mathrm{T})$ has a unique subgameperfect equilibrium, in which $s^{*}$ is played at each stage.

