Lectures 9 Single deviation-principle & Forward Induction

14.12 Game Theory

Road Map

- 1. Single-deviation principle Infinitehorizon bargaining
- 2. Quiz
- 3. Forward Induction Examples
- 4. Finitely Repeated Games

Single-Deviation principle

Definition: An extensive-form game is *continuous at infinity* iff, given any $\varepsilon > 0$, there exists some t such that, for any two path whose first t acts are the same, the payoff difference of each player is less than ε .

Theorem: Let G be a game that is continuous at infinity. A strategy profile $s = (s_1, s_2, ..., s_n)$ is a subgame-perfect equilibrium of G iff, at any information set, where a player i moves, given the other players strategies and given i's moves at the other information sets, player i cannot increase his conditional payoff at the information set by deviating from his strategy at the information set.

Timeline $-\infty$ period

 $T = \{1, 2, ..., n-1, n, ...\}$

If t is odd,

- Player 1 offers some (x_t, y_t) ,
- Player 2 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding $\delta^{t}(x_{t},y_{t})$,
- Otherwise, we proceed to date t+1.

If t is even

- Player 2 offers some (x_t, y_t) ,
- Player 1 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding payoff $\delta^t(x_t, y_t)$,
- Otherwise, we proceed to date t+1.

SPE of ∞-period bargaining

Theorem: At any t, proposer offers the other player $\delta/(1+\delta)$, keeping himself $1/(1+\delta)$, while the other player accept an offer iff he gets $\delta/(1+\delta)$.

"Proof:"

Nash equilibria of bidding game

- 3 equilibria: s¹ = everybody plays 1; s² = everybody plays 2; s³ = everybody plays 3.
- Assume each player trembles with probability ε < 1/2, and plays each unintended strategy w.p. ε/2, e.g., w.p. ε/2, he thinks that such other equilibrium is to be played.
 s³ is an equilibrium iff

 $-s^2$ is an equilibrium iff

 $-s^1$ is an equilibrium iff

Forward Induction

Strong belief in rationality: At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if s is strictly dominated but s' is not, at this history no player j believes that i plays s.)

Prisoners' Dilemma, repeated twice, many times

- Two dates $T = \{0,1\};$
- At each date the prisoners' dilemma is played:

	С	D
С	5,5	0,6
D	6,0	1,1

• At the beginning of 1 players observe the strategies at 0. Payoffs= sum of stage payoffs.

