# 14.12 Game Theory

Lecture 2: Decision Theory

# Road Map

- 1. Basic Concepts (Alternatives, preferences,...)
- 2. Ordinal representation of preferences
- 3. Cardinal representation Expected utility theory
- 4. Applications: Risk sharing and Insurance
- 5. Quiz

# Basic Concepts: Alternatives

- Agent chooses between the alternatives
- X = The set of all alternatives
- Alternatives are
  - Mutually exclusive, and
  - Exhaustive
- **Example:** Options = {Tea, Coffee}
  - $X = \{T, C, TC, NT\}$  where
  - T = Tea, C = Coffee, TC = Tea and Coffee,
  - NT = Neither Tea nor Coffee

#### **Basic Concepts: Preferences**

- A relation  $\succeq$  (on X) is any subset of X×X,
  - e.g.,  $\geq^* = \{(T,C), (T,CT), (T,NT), (C,CT), (C,NT), (NT,CT)\}$ - T  $\succeq$  C ≡ (T,C)  $\in \succeq$ .
- $\succeq$  is complete iff  $\forall x, y \in X, x \succeq y \text{ or } y \succeq x$ ,
- $\succeq$  is transitive iff,  $\forall x,y,z \in X$ ,

 $[x \succeq y \text{ and } y \succeq z] \Longrightarrow x \succeq z.$ 

**Definition:** A relation is a preference relation iff it is complete and transitive.









### Theorem (Ordinal representation)

Let X be finite. A relation  $\succeq$  can be represented by a utility function U in the sense of (OR) iff  $\succeq$  is a preference relation. If U : X  $\rightarrow$  R represents  $\succeq$ , and if f : R  $\rightarrow$  R is strictly increasing, then f  $\circ$  U also represents  $\succeq$ .







# Axioms

 $\begin{array}{l} \textbf{A1} \succeq \text{ is complete and transitive.} \\ \textbf{A2} (\textbf{Independence}) \ \text{For any } p,q,r \in P, \ \text{and any} \\ a \in (0,1], \\ ap+(1-a)r \succ aq+(1-a)r \iff p \succ q. \\ \textbf{A3} (\textbf{Continuity}) \ \text{For any } p,q,r \in P, \ \text{if } p \succ q \succ r, \\ \text{then there exist } a,b \in (0,1) \ \text{such that} \\ ap+(1-a)r \succ q \succ bp+(1-r)r. \end{array}$ 



# Exercise • Consider an agent with VNM utility function *u* with $u(x) = x^2$ . Can his preferences be represented by VNM utility function $u^*(x) = \sqrt{x}$ ? What about $u^{**}(x) = 1/x$ ?









- An agent is risk-averse iff his utility function is concave.
- An agent is risk-seeking iff his utility function is convex.

#### **Risk Sharing**

- Two agents, each having a utility function uwith  $u(x) = \sqrt{x}$  and an "asset:" .5 \$100
- For each agent, the value of the asset is  $5^{50}$
- Assume that the value of assets are independently distributed.



