Lectures 10-11
 Repeated Games

14.12 Game Theory

Road Map

1. Forward Induction - Examples
2. Finitely Repeated Games with observable actions
3. Entry-Deterrence/Chain-store paradox
4. Repeated Prisoners' Dilemma
5. A general result
6. When there are multiple equilibria
7. Infinitely repeated games with observable actions
8. Discounting / Present value
9. Examples
10. The Folk Theorem
11. Repeated Prisoners' Dilemma, revisited -tit for tat
12. Repeated Cournot oligopoly
13. Infinitely repeated games with unobservable actions

Forward Induction

Strong belief in rationality: At any history

 of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if s is strictly dominated but s' is not, at this history no player j believes that i plays s.)

Repeated Games

Entry deterrence

Prisoners' Dilemma, repeated twice, many times

- Two dates $\mathrm{T}=\{0,1\}$;
- At each date the prisoners' dilemma is played:

	C	D
C	5,5	0,6
D	6,0	1,1

- At the beginning of 1 players observe the strategies at 0 .

Payoffs= sum of stage payoffs.

A general result

- $\mathrm{G}=$ "stage game" $=$ a finite game
- $\mathrm{T}=\{0,1, \ldots, \mathrm{n}\}$
- At each t in T, G is played, and players remember which actions taken before t ;
- Payoffs = Sum of payoffs in the stage game.
- Call this game G(T).

Theorem: If G has a unique subgame-perfect equilibrium $\mathrm{s}^{*}, \mathrm{G}(\mathrm{T})$ has a unique subgameperfect equilibrium, in which s^{*} is played at each stage.

With multiple equilibria

$\mathrm{T}=\{0,1\}$			
12	L	M2	R
T	1,1	5,0	0,0
M1	0,5	4,4	0,0
B	0,0	0,0	3,3

- At $\mathrm{t}=1$, play (B,R) if (M1,M2) at $\mathrm{t}=0$, play (T, L) otherwise.

Infinitely repeated Games with observable actions

- $\mathrm{T}=\{0,1,2, \ldots, \mathrm{t}, \ldots\}$
- $\mathrm{G}=$ "stage game" = a finite game
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Discounted sum of payoffs in the stage game.
- Call this game G(T).

Definitions

The Present Value of a given payoff stream $\pi=$ $\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t}, \ldots\right)$ is
$\operatorname{PV}(\pi ; \delta)=\sum^{\infty}{ }_{\mathrm{t}=1} \delta^{\mathrm{t}} \pi_{\mathrm{t}}=\pi_{0}+\delta \pi_{1}+\ldots+\delta^{\mathrm{t}} \pi_{\mathrm{t}}+\ldots$
The Average Value of a given payoff stream π is

$$
(1-\delta) \operatorname{PV}(\pi ; \delta)=(1-\delta) \Sigma_{\mathrm{t}=1}^{\infty} \delta^{\dagger} \pi_{\mathrm{t}}
$$

The Present Value of a given payoff stream π at t is

$$
\operatorname{PV}_{\mathrm{t}}(\pi ; \delta)=\sum_{\mathrm{s}=\mathrm{t}}^{\infty} \delta^{\mathrm{s}-\mathrm{t}} \pi_{\mathrm{s}}=\pi_{\mathrm{t}}+\delta \pi_{\mathrm{t}+1}+\ldots+\delta^{\mathrm{s}} \pi_{\mathrm{t}+\mathrm{s}}+\ldots
$$

Infinite-period entry deterrence

$(1,1)$
Strategy of Entrant: Enter iff
Accomodated before.
Strategy of Incumbent:
Accommodate iff accomodated before.

Incumbent:

- $\mathrm{V}($ Acc. $)=\mathrm{V}_{\mathrm{A}}=1 /(1-\delta)$;
- $\mathrm{V}($ Fight $)=\mathrm{V}_{\mathrm{F}}=2 /(1-\delta)$;
- Case 1: Accommodated before.
- Fight $=>-1+\delta V_{A}$
- Acc. $\Rightarrow 1+\delta \mathrm{V}_{\mathrm{A}}$.
- Case 2: Not Accommodated
- Fight $=>-1+\delta V_{F}$
- Acc. $\Rightarrow 1+\delta \mathrm{V}_{\mathrm{A}}$
- Fight $\Leftrightarrow-1+\delta \mathrm{V}_{\mathrm{F}} \geq 1+\delta \mathrm{V}_{\mathrm{A}}$
$\Leftrightarrow \mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{A}}=1 /(1-\delta) \geq 2 / \delta$
$\Leftrightarrow \delta \geq 2 / 3$.

Entrant:

- Accommodated
- Enter $=>1+\mathrm{V}_{\mathrm{AE}}$
$-\mathrm{X}=>0+\mathrm{V}_{\mathrm{AE}}$
- Not Acc.
- Enter $=>-1+V_{\mathrm{FE}}$
$-\mathrm{X}=>0+\mathrm{V}_{\mathrm{FE}}$

Infinitely-repeated PD

	C	D
C	5,5	0,6
	6,0	1,1

A Grimm Strategy:
Defect iff someone defected before.

- $\mathrm{V}_{\mathrm{D}}=1 /(1-\delta)$;
- $\mathrm{V}_{\mathrm{C}}=5 /(1-\delta)=5 \mathrm{~V}_{\mathrm{D}}$;
- Defected before (easy)
- Not defected
$-\mathrm{D}=>$
$-\mathrm{C}=>$
$-\mathrm{C} \Leftrightarrow$

Tit for Tat

- Start with C; thereafter, play what the other player played in the previous round.
- Is (Tit-for-tat,Tit-for-tat) a SPE?
- Modified: There are two modes:

1. Cooperation, when play C, and
2. Punishment, when play D.

Start in Cooperation; if any player plays D in Cooperation mode, then switch to Punishment mode for one period and switch back to the Cooperation period next.

Folk Theorem

Definition: A payoff vector $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$ is feasible iff v is a convex combination of some pure-strategy payoff-vectors, i.e.,

$$
\mathrm{v}=\mathrm{p}_{1} \mathrm{u}\left(\mathrm{a}^{1}\right)+\mathrm{p}_{2} \mathrm{u}\left(\mathrm{a}^{2}\right)+\ldots+\mathrm{p}_{\mathrm{k}} \mathrm{u}\left(\mathrm{a}^{\mathrm{k}}\right)
$$

where $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}=1$, and $\mathrm{u}\left(\mathrm{a}^{\mathrm{j}}\right)$ is the payoff vector at strategy profile a^{j} of the stage game.
Theorem: Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be s feasible payoff vector, and $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a payoff vector at some equilibrium of the stage game such that $x_{i}>e_{i}$ for each i. Then, there exist $\underline{\delta}<1$ and a strategy profile s such that s yields x as the expected average-payoff vector and is a SPE whenever $\delta>\underline{\delta}$.

Folk Theorem in PD

	C	D
C	5,5	0,6
D	6,0	1,1

- A SPE with PV
(1.1,1.1)?
- With PV $(1.1,5)$?
- With PV $(6,0)$?
- With PV $(5.9,0.1)$?

Infinitely-repeated
 Cournot oligopoly

- N firms, $\mathrm{MC}=0 ; \mathrm{P}=\max \{1-\mathrm{Q}, 0\}$;
- Strategy: Each is to produce $\mathrm{q}=1 /(2 \mathrm{n})$; if any firm defects produce $\mathrm{q}=1 /(1+\mathrm{n})$ forever.
- $\mathrm{V}_{\mathrm{C}}=$
- $\mathrm{V}_{\mathrm{D}}=$
- $\mathrm{V}(\mathrm{D} \mid \mathrm{C})=$
- Equilibrium \Leftrightarrow

$\operatorname{IRCD}(\mathrm{n}=2)$

- Strategy: Each firm is to produce q^{*}; if any one deviates, each produce $1 /(\mathrm{n}+1)$ thereafter.
- $\mathrm{V}_{\mathrm{C}}=\mathrm{q}^{*}\left(1-2 \mathrm{q}^{*}\right) /(1-\delta)$;
- $\mathrm{V}_{\mathrm{D}}=1 /(9(1-\delta))$;
- $\mathrm{V}_{\mathrm{D} \mid \mathrm{C}}=\max \mathrm{q}\left(1-\mathrm{q}^{*}-\mathrm{q}\right)+\delta \mathrm{V}_{\mathrm{D}}=\left(1-q^{*}\right)^{2} / 4+\frac{\delta}{9(1-\delta)}$
- Equilibrium iff

$$
q^{*}\left(1-2 q^{*}\right) \geq(1-\delta)\left(1-q^{*}\right)^{2} / 4+\delta / 9
$$

- \Leftrightarrow

$$
q^{*} \geq \frac{9-5 \delta}{3(9-\delta)}
$$

Carrot and Stick

Produce $1 / 4$ at the beginning; at ant $t>0$, produce $1 / 4$ if both produced $1 / 4$ or both produced x at $\mathrm{t}-1$; otherwise, produce x .
Two Phase: Cartel \& Punishment
$\mathrm{V}_{\mathrm{C}}=1 / 8(1-\delta) . \mathrm{V}_{\mathrm{x}}=\mathrm{x}(1-2 \mathrm{x})+\delta \mathrm{V}_{\mathrm{C}}$.
$\mathrm{V}_{\mathrm{DIC}}=\max \mathrm{q}(1-1 / 4-\mathrm{q})+\delta \mathrm{V}_{\mathrm{X}}=(3 / 8)^{2}+\delta \mathrm{V}_{\mathrm{X}}$
$\mathrm{V}_{\mathrm{D} \mid \mathrm{x}}=\max \mathrm{q}(1-\mathrm{x}-\mathrm{q})+\delta \mathrm{V}_{\mathrm{X}}=(1-\mathrm{x})^{2} / 4+\delta \mathrm{V}_{\mathrm{X}}$
$\mathrm{V}_{\mathrm{C}} \geq \mathrm{V}_{\mathrm{DIC}} \Leftrightarrow \mathrm{V}_{\mathrm{C}} \geq(3 / 8)^{2}+\delta^{2} \mathrm{~V}_{\mathrm{C}}+\delta \mathrm{x}(1-2 \mathrm{x})$
$\Leftrightarrow\left(1-\delta^{2}\right) \mathrm{V}_{\mathrm{C}}-(3 / 8)^{2} \geq \delta \mathrm{x}(1-2 \mathrm{x}) \Leftrightarrow(1+\delta) / 8-(3 / 8)^{2} \geq \delta \mathrm{x}(1-2 \mathrm{x})$
$\mathrm{V}_{\mathrm{x}} \geq \mathrm{V}_{\mathrm{DIC}} \Leftrightarrow(1-\delta) \mathrm{V}_{\mathrm{x}} \geq(1-\mathrm{x})^{2} / 4 \Leftrightarrow(1-\delta)(\mathrm{x}(1-2 \mathrm{x})+\delta / 8(1-\delta)) \geq(1-\mathrm{x})^{2} / 4$
$\Leftrightarrow(1-\delta) x(1-2 x)+\delta / 8 \geq(1-x)^{2} / 4$

$$
2 x^{2}-x+1 / 8-9 / 64 \delta \geq 0
$$

$(9 / 4-2 \delta) x^{2}-(3-2 \delta) x+\delta / 8(1-\delta) \leq 0$

Incomplete information

Incomplete information

We have incomplete (or asymmetric) information if one player knows something (relevant) that some other player does not know.

The same example

Bayes' Rule

$\operatorname{Prob}(\mathrm{A}$ and B$)$

- $\operatorname{Prob}(\mathrm{A} \mid \mathrm{B})=$

$$
\operatorname{Prob}(B)
$$

- $\operatorname{Prob}(A$ and $B)=\operatorname{Prob}(A \mid B) \operatorname{Prob}(B)=\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)$

$$
\operatorname{Prob}(\mathrm{B} \mid \mathrm{A}) \operatorname{Prob}(\mathrm{A})
$$

- $\operatorname{Prob}(\mathrm{A} \mid \mathrm{B})=$

$$
\operatorname{Prob}(B)
$$

Example

