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Part A: Complex Pipelining (20 points) 
Consider an out-of-order superscalar DLX processor that uses a register-renaming 
scheme with a single unified physical register file (Lecture 14). This machine has 128 
physical registers. The DLX ISA has 32 general-purpose registers and 32 floating-point 
registers. 

Question 1 (4 points) 
What is the maximum number of registers on the free list? Describe a situation in which 
the maximum number of registers is on the free list. 

Question 2 (4 points) 
What is the minimum number of registers on the free list? Describe a situation in which 
the minimum number of registers is on the free list. 

Question 3 (6 points) 
Which of the following conditions needs to be checked for an instruction before 
performing register renaming and placing the renamed instruction into the reorder buffer? 
Circle all that could affect whether an instruction is placed into the reorder buffer. 

A. if the functional unit needed by the instruction is busy 

B. if there are any physical registers on the free list 

C. if the instruction will cause an exception 

D. if the instruction causes a WAR hazard with any earlier instruction in the ROB 

E. if the instruction causes a WAW hazard with any earlier instruction in the ROB 

F. if there are more rename table snapshots available 
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Question 4 (6 points) 
Suppose we added the instruction MOVZ to the DLX ISA. 

The semantics of MOVZ are: 

MOVZ Rd,Rs1,Rs2 ; if (Rs2 == 0) then Rd <- Rs1 

If the value in Rs2 is equal to zero, then the contents of Rs1 are placed into Rd. MOVZ is 
an R-type instruction. 

What difficulties might arise in implementing MOVZ in the out-of-order superscalar 
described at the beginning of Part A? 
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Part B: Caches (16 points) 
Consider a physically-indexed, virtually-tagged, set-associative write-back cache. Bits 
from the translated physical address are used to index the cache but bits from the 
untranslated virtual address are used for the tag. 

The virtual page size is 2k bytes. The cache has 2L sets and 2w ways. Each cache line is 2b 

bytes. The amount of virtually addressable memory is 232 bytes and the amount of 
physically addressable memory is also 232 bytes. 

Question 5 (6 points) 
Can an aliasing problem occur? Explain. 

Question 6 (6 points) 
Write an expression for the number of bits needed for the tag of a cache line in terms of 
k, L, b, and w. 

Question 7 (4 points) 
What is the primary reason why it does not make sense to use a physically-indexed, 
virtually-tagged cache? 
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Part C: Branch Prediction (24 points) 
Inspired by the lectures on deep pipelining, Ben Bitdiddle decides to build an in-order, 
single-issue, deeply-pipelined DLX with no delay slots. His design has the following 
pipeline: 

IF1 ID1 ID2 EX1 EX2 MA1 MA2 WB IF2 

The original instruction fetch (IF), instruction decode (ID), execute (EX), and memory 
(MA) stages have each been divided into two stages. Instruction fetch uses a simple, 
predict-not-taken strategy, and fetches instructions sequentially from the instruction 
memory unless redirected by a resolved taken branch. The register file is now read at the 
beginning of the first execute stage (EX1). 

Question 8 (3 points) 
What is the minimum penalty, in cycles, for a taken conditional branch (BEQZ or BNEZ) 
in this pipeline? Clearly state in which stage the branch is resolved. 

Question 9 (8 points) 
To improve the performance of his processor, Ben decides to add dynamic branch 
prediction. He adds a BHT to the first decode stage (ID1). Instructions are fetched 
sequentially from the instruction memory unless redirected by a predicted or resolved 
branch. 

In the following table, enter the minimum conditional branch penalty, in cycles, for each 
case. Clearly state any assumptions on which your answer depends. 

Actual Branch Direction 
Predicted Branch Direction 

Taken Taken 

Taken 

Not Taken 

Not 
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Question 10 (3 points) 
What is the minimum penalty, in cycles, for an indirect jump (JR) using this scheme? 
Clearly state any assumptions on which your answer depends. 

Question 11 (4 points) 
Louis Reasoner thinks that Ben can decrease the branch penalty by moving the BHT into 
the first fetch stage (IF1). What’s wrong with this idea? 
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Question 12 (6 points) 
To evaluate the benefits of adding a BHT to the ID1 stage, Ben uses the following 
benchmark program (from PS4). The input to the program is an array of alternating 0’s 
and 1’s (“0101010…”). 

; The initial contents of R3 is a pointer to

; the beginning of an array of 32-bit integers.

; The initial contents of R1 is the length of

; the array, which is > 0.

; The initial contents of R2 is 0.

; (R2 holds the result of the program.)

loop: 


LW R4,0(R3)
ADDI R3,R3,#4
SUBI R1,R1,#1

b1: 
BEQZ R4,b2
ADDI R2,R2,#1

b2: 
BNEZ R1,loop 

He is using the same 2-bit predictor as in PS4 (L13-11), where states 0X predict taken, 
and states 1X predict not taken: 

taken 
00 10 

01 

11 
taken taken 

taken 

taken
taken 

taken taken 

Unlike the BHT in PS4, however, Ben's BHT has only one entry, which is updated when 
a branch is resolved. What is the average steady-state prediction accuracy of the BHT for 
the above benchmark, given that the BHT entry has initial value “00”? Explain. 
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Part D: Vector Computers (24 points) 
Each of the following loops is to be translated to run on a vector machine with vector 
registers. In each case, give the maximum vector length that can be used when 
vectorizing the code and briefly explain what features of the code limit vector length. 

Assume the vector machine has infinite length vector registers and that arrays with 
different names are stored in non-overlapping regions of memory. All operands are 
integers. 

Question 13 (3 points) 
for (i=0; i<N; i++)

C[i] = A[i] + B[i]; 

Question 14 (3 points) 
for (i=0; i<N; i++)

A[i] = A[i] + A[i+1]; 

Question 15 (3 points) 
for (i=1; i<N+1; i++)

A[i] = A[i] + A[i-1]; 

Question 16 (3 points) 
for (i=13; i<N+13; i++)

A[i] = A[i] + A[i-13]; 
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Question 17 (3 points) 
for (i=0; i<N; i++)

A[i] = A[i] + B[C[i]]; 

Question 18 (3 points) 
for (i=0; i<N; i++)

A[i] = A[C[i]] + B[i]; 

Question 19 (3 points) 
for (i=0; i<N; i++)

A = A + B[i]; // A is a scalar variable 

Question 20 (3 points) 
for (j=0; j<N; j++)

for (i=0; i<M; i++)
A[i][j] = A[i][j] + B[i][j]; 
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Part E: Cache Coherence Update Protocols (31 points) 
In PS6-3, we examined a cache-coherent distributed shared memory system. Ben wants 
to convert the directory-based invalidate cache coherence protocol from the problem set 
into an update protocol. He proposes the following scheme. 

Caches are write-through, no write allocate. When a processor wants to write to a 
memory location, it sends a store-request to the home site, along with the data word that 
it wants written. The home site updates memory, and sends an update-request with the 
new data to each of the sites caching the block, unless that site is the processor 
performing the store, in which case it sends a store-reply containing the new data. 

If the processor performing the store is caching the block being written, it must wait for 
the reply from the home site to arrive before storing the new value into its cache. If the 
processor performing the store is not caching the block being written, it can proceed after 
issuing the store-request. 

Note that store-request now has a meaning and usage different from the protocol in 
PS6. Also note that store-requests and update-requests contain data at the word-
granularity, and not at the block-granularity. 

In the proposed scheme, memory will always have the most up-to-date data, and the 
states C-modified, H-modified, and H-transient are no longer used. 

As in PS6, the interconnection network guarantees that message-passing is reliable, and 
free from deadlock, livelock, and starvation. Also as in PS6, message-passing is FIFO. 

Each home site keeps a FIFO queue of incoming requests, and processes these in the 
order received. 

Question 21 (5 points) 
Alyssa claims that Ben’s protocol does not preserve sequential consistency because it 
allows two processors to observe stores in different orders. Describe a scenario in which 
this problem can occur. 
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Question 22 (16 points) 
Noting that many commercial systems do not guarantee sequential consistency, Ben 
decides to implement his protocol anyway. Fill in the following state transition tables for 
the proposed scheme. We use k to represent the site that issued the received message. 

No. Current State Event Received Next State Action 

1 C-invalid Load C-transient load-request Æ home 

2 C-invalid Store 

3 C-invalid update-request 

4 C-shared Load C-shared processor reads cache 

5 C-shared Store 

6 C-shared Replace C-invalid nothing 

7 C-shared update-request 

8 C-transient load-reply C-shared data Æ cache, processor reads cache 

9 C-transient store-reply 

10 C-transient update-request 

Table 1: Cache State Transitions 

No. Current State Message Received Next State Action 

1 H-uncached load-request H-shared[{k}] load-reply Æ k 

2 H-uncached store-request 

3 H-shared[S] load-request H-shared[S ∪  {k}] load-reply Æ k 

4 H-shared[S] store-request 

Table 2: Home Directory State Transitions 
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Question 23 (5 points) 
After running a system with this protocol for a long time, Ben finds that the network is 
flooded with update-requests. Alyssa says this is a bug in his protocol. What is the 
problem and how can you fix it? 

Question 24 (5 points) 
As in PS6, FIFO message passing is a necessary assumption for the correctness of the 
protocol. If the network were non-FIFO, it becomes possible for a processor to never see 
the result of another processor’s store. Describe a scenario in which this problem can 
occur. 
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Part F: Synchronization I (16 points) 
In this part, we consider Dekker’s protocol for mutual exclusion discussed in L17-18. 
The protocol is based on three shared variables c1, c2, and turn. Initially, both c1 and 
c2 are 0. The following pseudo-code implements the protocol. The critical section reads 
the next data item to be processed and updates the pointer. 

Processor 1 

c1 = 1;

turn = 1;

while (c2 == 1 && turn == 1) {} 


/* start of critical section */ 


data = *ptr;

ptr = ptr + 1; 


/* end of critical section */ 


c1 = 0;


Processor 2 

c2 = 1;

turn = 2;

while (c1 == 1 && turn == 2) {} 


/* start of critical section */ 


data = *ptr;

ptr = ptr + 1; 


/* end of critical section */ 


c2 = 0;


The protocol for Processor 1 is implemented in DLX below. Assume DLX has no delay 
slots. 

; R1, R2: pointer to ‘c1’ and ‘c2’ respectively

; R3: pointer to ‘turn’

; R4: pointer to ‘ptr’

; R5: data 
;
ADDI 
SW 
SW 

Loop: 	 LW 
LW 
SEQI
SEQI
AND 
BNEZ 

LW 
LW 
ADDI 
SW 

SW 

R6, R0, #1
0(R1), R6
0(R3), R6
R6, 0(R2)
R7, 0(R3)
R6, R6, #1
R7, R7, #1
R6, R6, R7
R6, Loop 

R6, 0(R4)
R5, 0(R6)
R6, R6, #4
0(R4), R6 

0(R1), R0 

; c1 = 1

; turn = 1

; load ‘c2’

; load ‘turn’

; set R6 if c2 == 1

; set R7 if turn == 1 


; while (c2==1 && turn==1) 


; load ‘ptr’

; data = *ptr

; ptr = ptr + 1

; store ‘ptr’ 


; c1 = 0;
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Question 25 (2 points) 
Dekker’s protocol assumes the system is sequentially consistent. Unfortunately, many 
modern computer systems have relaxed memory models. Consider a system that provides 
partial store ordering (PSO), where a read or a write may complete before an earlier write 
if they are to different addresses. What problems occur if Dekker’s protocol is run on a 
system with two processors using PSO? Circle all possible problems from the following 
list. 

A. None 

B. Both processors can enter the critical section at the same time 

C. No processor can enter the critical section (deadlock or livelock) 

D. One of the processors cannot enter the critical section (starvation) 

Question 26 (8 points) 
Briefly explain how the above problem(s) can occur. 
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Question 27 (6 points) 
Our PSO system has MEMBAR instructions to enforce proper memory access ordering 
when necessary. The MEMBAR instruction ensures that all memory operations preceding 
the MEMBAR in program order are globally visible before any memory operations 
following the MEMBAR. Insert the minimum number of MEMBAR instructions in the 
following listing to make Dekker’s protocol work properly on the PSO system: 

ADDI 

SW 

SW 

Loop: 	 LW 

LW 

SEQI 

SEQI 

AND 

BNEZ 

LW 

LW 

ADDI 

SW 

SW 

R6, R0, #1 

0(R1), R6 

0(R3), R6 

R6, 0(R2) 

R7, 0(R3) 

R6, R6, #1 

R7, R7, #1 

R6, R6, R7 

R6, Loop 

R6, 0(R4) 

R5, 0(R6) 

R6, R6, #4 

0(R4), R6 

0(R1), R0 

; c1 = 1 


; turn = 1 


; load ‘c2’ 


; load ‘turn’ 


; set R6 if c2 == 1 


; set R7 if turn == 1 


; while (c2==1 && turn==1) 


; load ‘ptr’ 


; data = *ptr 


; ptr = ptr + 1 


; store ‘ptr’ 


; c1 = 0;
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Part G: Synchronization II (12 points) 
Below is Lamport’s Bakery algorithm for mutual exclusion for N processes (L17-18). 

// initially num[j] = 0, for all j

// i is the current process

choosing[i] = 1;

num[i] = max(num[0],..,num[N-1]) + 1;

choosing[i] = 0;

for (j = 0; j < N; j++) {


while(choosing[j]) {}
while(num[j] &&

((num[j] < num[i]) ||
((num[j] == num[i]) && (j < i)))) {}

}
<critical section> 
num[i] = 0; 

Question 28 (4 points) 
If multiple processes are simultaneously trying to enter the critical section, which process 
gets to enter the critical section first? Assume a sequentially consistent memory model. 
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Question 29 (2 points) 

Below is Lamport’s Bakery algorithm with the choosing variable omitted. 


1: num[i] = max(num[0],..,num[N-1]) + 1;
2: for (j = 0; j < N; j++) {
3: while(num[j] &&
4: ((num[j] < num[i]) ||
5: ((num[j] == num[i]) && (j < i)))) {}
5: }
6: <critical section> 
7: num[i] = 0; 

What problem(s) can occur if the choosing variable is omitted? 

A. Deadlock 

B. Livelock 

C. One process cannot enter the critical section (starvation) 

D. More than one process can enter the critical section 

Question 30 (6 points) 
Describe a scenario where a problem occurs. (An example scenario: If process1 executes 
line1 and then process2 executes line1, deadlock occurs.) 
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Part H: Multithreading (31 points) 
This part evaluates the effectiveness of multithreading using a simple database 
benchmark. The benchmark searches for an entry in a linked list built from the following 
structure, which contains a key, a pointer to the next node in the linked list, and a pointer 
to the data entry. 

struct node {
int key;
struct node *next;
struct data *ptr;

} 

The following DLX code shows the core of the benchmark, which traverses the linked 
list and finds an entry with a particular key. Assume DLX has no delay slots. 

;

; R1: a pointer to the linked list

; R2: the key to find

;


Loop: 	LW R3, 0(R1) ; load a key
LW R4, 4(R1) ; load the next pointer
SEQ R3, R3, R2 ; set R3 if R3 == R2

R3, EndBNEZ 
R1, R0, R4 

; found the entry

ADD 

BNEZ R1, Loop ; check the next node


End: 
; R1 contains a pointer to the matching entry or zero if
; not found 

We run this benchmark on a single-issue in-order processor. The processor can fetch and 
issue (dispatch) one instruction per cycle. If an instruction cannot be issued due to a data 
dependency, the processor stalls. Integer instructions take one cycle to execute and the 
result can be used in the next cycle. For example, if SEQ is executed in cycle 1, BNEZ 
can be executed in cycle 2. We also assume that the processor has a perfect branch 
predictor with no penalty for both taken and not-taken branches. 
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Question 31 (4 points) 
Assume that our system does not have a cache. Each memory operation directly accesses 
main memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-
blocking. After the processor issues a memory operation, it can continue executing 
instructions until it reaches an instruction that is dependent on an outstanding memory 
operation. How many cycles does it take to execute one iteration of the loop in steady 
state? 

Question 32 (4 points) 
Now we add zero-overhead multithreading to our pipeline. A processor executes multiple 
threads, each of which performs an independent search. Hardware mechanisms schedule 
a thread to execute each cycle. 

In our first implementation, the processor switches to a different thread every cycle using 
fixed round robin scheduling (similar to CDC 6600 PPUs, L23-7). Each of the N threads 
executes one instruction every N cycles. What is the minimum number of threads that 
we need to fully utilize the processor, i.e., execute one instruction per cycle? 
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Question 33 (4 points) 
How does multithreading affect throughput (number of keys the processor can find within 
a given time) and latency (time processor takes to find an entry with a specific key)? 
Assume the processor switches to a different thread every cycle and is fully utilized. 
Check the correct boxes. 

Throughput Latency 

Better 

Same 

Worse 

Question 34 (5 points) 
We change the processor to only switch to a different thread when an instruction cannot 
execute due to data dependency. What is the minimum number of threads to fully utilize 
the processor now? Note that the processor issues instructions in-order in each thread. 
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Question 35 (5 points) 
We now investigate how caches can be used to improve performance for long memory 
access times. We add one level of data cache to the original processor from Question 31. 
A memory access takes one cycle if it hits in the cache. Otherwise, a memory access 
takes 100 cycles (including checking the cache). 

The cache has 8-word blocks and the ’node’ structure is always aligned on 4 word 
boundaries. This ensures that the first and the second load instructions always access the 
same cache line due to spatial locality. 

What is the average number of cycles that the processor with a data cache takes to 
execute one iteration of the loop in steady state? Assume that the hit-rate of the first load 
instruction is 50%. Remember there is no multithreading in this version of the machine. 

Question 36 (4 points) 
How does caching affect the average throughput and average latency of our benchmark 
as compared to the original processor from Question 31? Check the correct boxes. 

Throughput Latency 

Better 

Same 

Worse 
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Question 37 (5 points) 
Now consider combining multithreading with the data cache. If the cache hit-rate of the 
first load is 50%, what is the minimum number of threads to guarantee full utilization of 
the processor? In this question, assume that the processor switches on a cache miss. 
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