
 Computer System Architecture

6.823 Final Examination

Spring 2002

Name:___________________

This is an open book, open notes exam.

180 Minutes

22 Pages

Notes:
•	 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
•	 Please write your name on every page in the final (you get 6 points for doing

this).
• For partial credit, be sure to show your work.

Name: ________ 6 Points
Part A: (Question 1 - Question 4) ________ 20 Points
Part B: (Question 5 - Question 7) ________ 16 Points
Part C: (Question 8 - Question 12) ________ 24 Points
Part D: (Question 13 - Question 20) ________ 24 Points
Part E: (Question 21 - Question 24) ________ 31 Points
Part F: (Question 25 - Question 27) ________ 16 Points
Part G: (Question 28 - Question 30) ________ 12 Points
Part H: (Question 31 - Question 37) ________ 31 Points

Total: ________180 Points

Name__________________________________

Part A: Complex Pipelining (20 points)
Consider an out-of-order superscalar DLX processor that uses a register-renaming
scheme with a single unified physical register file (Lecture 14). This machine has 128
physical registers. The DLX ISA has 32 general-purpose registers and 32 floating-point
registers.

Question 1 (4 points)
What is the maximum number of registers on the free list? Describe a situation in which
the maximum number of registers is on the free list.

Question 2 (4 points)
What is the minimum number of registers on the free list? Describe a situation in which
the minimum number of registers is on the free list.

Question 3 (6 points)
Which of the following conditions needs to be checked for an instruction before
performing register renaming and placing the renamed instruction into the reorder buffer?
Circle all that could affect whether an instruction is placed into the reorder buffer.

A. if the functional unit needed by the instruction is busy

B. if there are any physical registers on the free list

C. if the instruction will cause an exception

D. if the instruction causes a WAR hazard with any earlier instruction in the ROB

E. if the instruction causes a WAW hazard with any earlier instruction in the ROB

F. if there are more rename table snapshots available

Page 2 of 22

Name__________________________________

Question 4 (6 points)
Suppose we added the instruction MOVZ to the DLX ISA.

The semantics of MOVZ are:

MOVZ Rd,Rs1,Rs2 ; if (Rs2 == 0) then Rd <- Rs1

If the value in Rs2 is equal to zero, then the contents of Rs1 are placed into Rd. MOVZ is
an R-type instruction.

What difficulties might arise in implementing MOVZ in the out-of-order superscalar
described at the beginning of Part A?

Page 3 of 22

Name__________________________________

Part B: Caches (16 points)
Consider a physically-indexed, virtually-tagged, set-associative write-back cache. Bits
from the translated physical address are used to index the cache but bits from the
untranslated virtual address are used for the tag.

The virtual page size is 2k bytes. The cache has 2L sets and 2w ways. Each cache line is 2b

bytes. The amount of virtually addressable memory is 232 bytes and the amount of
physically addressable memory is also 232 bytes.

Question 5 (6 points)
Can an aliasing problem occur? Explain.

Question 6 (6 points)
Write an expression for the number of bits needed for the tag of a cache line in terms of
k, L, b, and w.

Question 7 (4 points)
What is the primary reason why it does not make sense to use a physically-indexed,
virtually-tagged cache?

Page 4 of 22

Name__________________________________

Part C: Branch Prediction (24 points)
Inspired by the lectures on deep pipelining, Ben Bitdiddle decides to build an in-order,
single-issue, deeply-pipelined DLX with no delay slots. His design has the following
pipeline:

IF1 ID1 ID2 EX1 EX2 MA1 MA2 WB IF2

The original instruction fetch (IF), instruction decode (ID), execute (EX), and memory
(MA) stages have each been divided into two stages. Instruction fetch uses a simple,
predict-not-taken strategy, and fetches instructions sequentially from the instruction
memory unless redirected by a resolved taken branch. The register file is now read at the
beginning of the first execute stage (EX1).

Question 8 (3 points)
What is the minimum penalty, in cycles, for a taken conditional branch (BEQZ or BNEZ)
in this pipeline? Clearly state in which stage the branch is resolved.

Question 9 (8 points)
To improve the performance of his processor, Ben decides to add dynamic branch
prediction. He adds a BHT to the first decode stage (ID1). Instructions are fetched
sequentially from the instruction memory unless redirected by a predicted or resolved
branch.

In the following table, enter the minimum conditional branch penalty, in cycles, for each
case. Clearly state any assumptions on which your answer depends.

Actual Branch Direction
Predicted Branch Direction

Taken Taken

Taken

Not Taken

Not

Page 5 of 22

Name__________________________________

Question 10 (3 points)
What is the minimum penalty, in cycles, for an indirect jump (JR) using this scheme?
Clearly state any assumptions on which your answer depends.

Question 11 (4 points)
Louis Reasoner thinks that Ben can decrease the branch penalty by moving the BHT into
the first fetch stage (IF1). What’s wrong with this idea?

Page 6 of 22

Name__________________________________

Question 12 (6 points)
To evaluate the benefits of adding a BHT to the ID1 stage, Ben uses the following
benchmark program (from PS4). The input to the program is an array of alternating 0’s
and 1’s (“0101010…”).

; The initial contents of R3 is a pointer to

; the beginning of an array of 32-bit integers.

; The initial contents of R1 is the length of

; the array, which is > 0.

; The initial contents of R2 is 0.

; (R2 holds the result of the program.)

loop:

LW R4,0(R3)
ADDI R3,R3,#4
SUBI R1,R1,#1

b1:
BEQZ R4,b2
ADDI R2,R2,#1

b2:
BNEZ R1,loop

He is using the same 2-bit predictor as in PS4 (L13-11), where states 0X predict taken,
and states 1X predict not taken:

taken
00 10

01

11
taken taken

taken

taken
taken

taken taken

Unlike the BHT in PS4, however, Ben's BHT has only one entry, which is updated when
a branch is resolved. What is the average steady-state prediction accuracy of the BHT for
the above benchmark, given that the BHT entry has initial value “00”? Explain.

Page 7 of 22

Name__________________________________

Part D: Vector Computers (24 points)
Each of the following loops is to be translated to run on a vector machine with vector
registers. In each case, give the maximum vector length that can be used when
vectorizing the code and briefly explain what features of the code limit vector length.

Assume the vector machine has infinite length vector registers and that arrays with
different names are stored in non-overlapping regions of memory. All operands are
integers.

Question 13 (3 points)
for (i=0; i<N; i++)

C[i] = A[i] + B[i];

Question 14 (3 points)
for (i=0; i<N; i++)

A[i] = A[i] + A[i+1];

Question 15 (3 points)
for (i=1; i<N+1; i++)

A[i] = A[i] + A[i-1];

Question 16 (3 points)
for (i=13; i<N+13; i++)

A[i] = A[i] + A[i-13];

Page 8 of 22

Name__________________________________

Question 17 (3 points)
for (i=0; i<N; i++)

A[i] = A[i] + B[C[i]];

Question 18 (3 points)
for (i=0; i<N; i++)

A[i] = A[C[i]] + B[i];

Question 19 (3 points)
for (i=0; i<N; i++)

A = A + B[i]; // A is a scalar variable

Question 20 (3 points)
for (j=0; j<N; j++)

for (i=0; i<M; i++)
A[i][j] = A[i][j] + B[i][j];

Page 9 of 22

Name__________________________________

Part E: Cache Coherence Update Protocols (31 points)
In PS6-3, we examined a cache-coherent distributed shared memory system. Ben wants
to convert the directory-based invalidate cache coherence protocol from the problem set
into an update protocol. He proposes the following scheme.

Caches are write-through, no write allocate. When a processor wants to write to a
memory location, it sends a store-request to the home site, along with the data word that
it wants written. The home site updates memory, and sends an update-request with the
new data to each of the sites caching the block, unless that site is the processor
performing the store, in which case it sends a store-reply containing the new data.

If the processor performing the store is caching the block being written, it must wait for
the reply from the home site to arrive before storing the new value into its cache. If the
processor performing the store is not caching the block being written, it can proceed after
issuing the store-request.

Note that store-request now has a meaning and usage different from the protocol in
PS6. Also note that store-requests and update-requests contain data at the word-
granularity, and not at the block-granularity.

In the proposed scheme, memory will always have the most up-to-date data, and the
states C-modified, H-modified, and H-transient are no longer used.

As in PS6, the interconnection network guarantees that message-passing is reliable, and
free from deadlock, livelock, and starvation. Also as in PS6, message-passing is FIFO.

Each home site keeps a FIFO queue of incoming requests, and processes these in the
order received.

Question 21 (5 points)
Alyssa claims that Ben’s protocol does not preserve sequential consistency because it
allows two processors to observe stores in different orders. Describe a scenario in which
this problem can occur.

Page 10 of 22

Name__________________________________

Question 22 (16 points)
Noting that many commercial systems do not guarantee sequential consistency, Ben
decides to implement his protocol anyway. Fill in the following state transition tables for
the proposed scheme. We use k to represent the site that issued the received message.

No. Current State Event Received Next State Action

1 C-invalid Load C-transient load-request Æ home

2 C-invalid Store

3 C-invalid update-request

4 C-shared Load C-shared processor reads cache

5 C-shared Store

6 C-shared Replace C-invalid nothing

7 C-shared update-request

8 C-transient load-reply C-shared data Æ cache, processor reads cache

9 C-transient store-reply

10 C-transient update-request

Table 1: Cache State Transitions

No. Current State Message Received Next State Action

1 H-uncached load-request H-shared[{k}] load-reply Æ k

2 H-uncached store-request

3 H-shared[S] load-request H-shared[S ∪ {k}] load-reply Æ k

4 H-shared[S] store-request

Table 2: Home Directory State Transitions

Page 11 of 22

Name__________________________________

Question 23 (5 points)
After running a system with this protocol for a long time, Ben finds that the network is
flooded with update-requests. Alyssa says this is a bug in his protocol. What is the
problem and how can you fix it?

Question 24 (5 points)
As in PS6, FIFO message passing is a necessary assumption for the correctness of the
protocol. If the network were non-FIFO, it becomes possible for a processor to never see
the result of another processor’s store. Describe a scenario in which this problem can
occur.

Page 12 of 22

Name__________________________________

Part F: Synchronization I (16 points)
In this part, we consider Dekker’s protocol for mutual exclusion discussed in L17-18.
The protocol is based on three shared variables c1, c2, and turn. Initially, both c1 and
c2 are 0. The following pseudo-code implements the protocol. The critical section reads
the next data item to be processed and updates the pointer.

Processor 1

c1 = 1;

turn = 1;

while (c2 == 1 && turn == 1) {}

/* start of critical section */

data = *ptr;

ptr = ptr + 1;

/* end of critical section */

c1 = 0;

Processor 2

c2 = 1;

turn = 2;

while (c1 == 1 && turn == 2) {}

/* start of critical section */

data = *ptr;

ptr = ptr + 1;

/* end of critical section */

c2 = 0;

The protocol for Processor 1 is implemented in DLX below. Assume DLX has no delay
slots.

; R1, R2: pointer to ‘c1’ and ‘c2’ respectively

; R3: pointer to ‘turn’

; R4: pointer to ‘ptr’

; R5: data
;
ADDI
SW
SW

Loop: 	 LW
LW
SEQI
SEQI
AND
BNEZ

LW
LW
ADDI
SW

SW

R6, R0, #1
0(R1), R6
0(R3), R6
R6, 0(R2)
R7, 0(R3)
R6, R6, #1
R7, R7, #1
R6, R6, R7
R6, Loop

R6, 0(R4)
R5, 0(R6)
R6, R6, #4
0(R4), R6

0(R1), R0

; c1 = 1

; turn = 1

; load ‘c2’

; load ‘turn’

; set R6 if c2 == 1

; set R7 if turn == 1

; while (c2==1 && turn==1)

; load ‘ptr’

; data = *ptr

; ptr = ptr + 1

; store ‘ptr’

; c1 = 0;

Page 13 of 22

Name__________________________________

Question 25 (2 points)
Dekker’s protocol assumes the system is sequentially consistent. Unfortunately, many
modern computer systems have relaxed memory models. Consider a system that provides
partial store ordering (PSO), where a read or a write may complete before an earlier write
if they are to different addresses. What problems occur if Dekker’s protocol is run on a
system with two processors using PSO? Circle all possible problems from the following
list.

A. None

B. Both processors can enter the critical section at the same time

C. No processor can enter the critical section (deadlock or livelock)

D. One of the processors cannot enter the critical section (starvation)

Question 26 (8 points)
Briefly explain how the above problem(s) can occur.

Page 14 of 22

Name__________________________________

Question 27 (6 points)
Our PSO system has MEMBAR instructions to enforce proper memory access ordering
when necessary. The MEMBAR instruction ensures that all memory operations preceding
the MEMBAR in program order are globally visible before any memory operations
following the MEMBAR. Insert the minimum number of MEMBAR instructions in the
following listing to make Dekker’s protocol work properly on the PSO system:

ADDI

SW

SW

Loop: 	 LW

LW

SEQI

SEQI

AND

BNEZ

LW

LW

ADDI

SW

SW

R6, R0, #1

0(R1), R6

0(R3), R6

R6, 0(R2)

R7, 0(R3)

R6, R6, #1

R7, R7, #1

R6, R6, R7

R6, Loop

R6, 0(R4)

R5, 0(R6)

R6, R6, #4

0(R4), R6

0(R1), R0

; c1 = 1

; turn = 1

; load ‘c2’

; load ‘turn’

; set R6 if c2 == 1

; set R7 if turn == 1

; while (c2==1 && turn==1)

; load ‘ptr’

; data = *ptr

; ptr = ptr + 1

; store ‘ptr’

; c1 = 0;

Page 15 of 22

Name__________________________________

Part G: Synchronization II (12 points)
Below is Lamport’s Bakery algorithm for mutual exclusion for N processes (L17-18).

// initially num[j] = 0, for all j

// i is the current process

choosing[i] = 1;

num[i] = max(num[0],..,num[N-1]) + 1;

choosing[i] = 0;

for (j = 0; j < N; j++) {

while(choosing[j]) {}
while(num[j] &&

((num[j] < num[i]) ||
((num[j] == num[i]) && (j < i)))) {}

}
<critical section>
num[i] = 0;

Question 28 (4 points)
If multiple processes are simultaneously trying to enter the critical section, which process
gets to enter the critical section first? Assume a sequentially consistent memory model.

Page 16 of 22

Name__________________________________

Question 29 (2 points)

Below is Lamport’s Bakery algorithm with the choosing variable omitted.

1: num[i] = max(num[0],..,num[N-1]) + 1;
2: for (j = 0; j < N; j++) {
3: while(num[j] &&
4: ((num[j] < num[i]) ||
5: ((num[j] == num[i]) && (j < i)))) {}
5: }
6: <critical section>
7: num[i] = 0;

What problem(s) can occur if the choosing variable is omitted?

A. Deadlock

B. Livelock

C. One process cannot enter the critical section (starvation)

D. More than one process can enter the critical section

Question 30 (6 points)
Describe a scenario where a problem occurs. (An example scenario: If process1 executes
line1 and then process2 executes line1, deadlock occurs.)

Page 17 of 22

Name__________________________________

Part H: Multithreading (31 points)
This part evaluates the effectiveness of multithreading using a simple database
benchmark. The benchmark searches for an entry in a linked list built from the following
structure, which contains a key, a pointer to the next node in the linked list, and a pointer
to the data entry.

struct node {
int key;
struct node *next;
struct data *ptr;

}

The following DLX code shows the core of the benchmark, which traverses the linked
list and finds an entry with a particular key. Assume DLX has no delay slots.

;

; R1: a pointer to the linked list

; R2: the key to find

;

Loop: 	LW R3, 0(R1) ; load a key
LW R4, 4(R1) ; load the next pointer
SEQ R3, R3, R2 ; set R3 if R3 == R2

R3, EndBNEZ
R1, R0, R4

; found the entry

ADD

BNEZ R1, Loop ; check the next node

End:
; R1 contains a pointer to the matching entry or zero if
; not found

We run this benchmark on a single-issue in-order processor. The processor can fetch and
issue (dispatch) one instruction per cycle. If an instruction cannot be issued due to a data
dependency, the processor stalls. Integer instructions take one cycle to execute and the
result can be used in the next cycle. For example, if SEQ is executed in cycle 1, BNEZ
can be executed in cycle 2. We also assume that the processor has a perfect branch
predictor with no penalty for both taken and not-taken branches.

Page 18 of 22

Name__________________________________

Question 31 (4 points)
Assume that our system does not have a cache. Each memory operation directly accesses
main memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-
blocking. After the processor issues a memory operation, it can continue executing
instructions until it reaches an instruction that is dependent on an outstanding memory
operation. How many cycles does it take to execute one iteration of the loop in steady
state?

Question 32 (4 points)
Now we add zero-overhead multithreading to our pipeline. A processor executes multiple
threads, each of which performs an independent search. Hardware mechanisms schedule
a thread to execute each cycle.

In our first implementation, the processor switches to a different thread every cycle using
fixed round robin scheduling (similar to CDC 6600 PPUs, L23-7). Each of the N threads
executes one instruction every N cycles. What is the minimum number of threads that
we need to fully utilize the processor, i.e., execute one instruction per cycle?

Page 19 of 22

Name__________________________________

Question 33 (4 points)
How does multithreading affect throughput (number of keys the processor can find within
a given time) and latency (time processor takes to find an entry with a specific key)?
Assume the processor switches to a different thread every cycle and is fully utilized.
Check the correct boxes.

Throughput Latency

Better

Same

Worse

Question 34 (5 points)
We change the processor to only switch to a different thread when an instruction cannot
execute due to data dependency. What is the minimum number of threads to fully utilize
the processor now? Note that the processor issues instructions in-order in each thread.

Page 20 of 22

Name__________________________________

Question 35 (5 points)
We now investigate how caches can be used to improve performance for long memory
access times. We add one level of data cache to the original processor from Question 31.
A memory access takes one cycle if it hits in the cache. Otherwise, a memory access
takes 100 cycles (including checking the cache).

The cache has 8-word blocks and the ’node’ structure is always aligned on 4 word
boundaries. This ensures that the first and the second load instructions always access the
same cache line due to spatial locality.

What is the average number of cycles that the processor with a data cache takes to
execute one iteration of the loop in steady state? Assume that the hit-rate of the first load
instruction is 50%. Remember there is no multithreading in this version of the machine.

Question 36 (4 points)
How does caching affect the average throughput and average latency of our benchmark
as compared to the original processor from Question 31? Check the correct boxes.

Throughput Latency

Better

Same

Worse

Page 21 of 22

Name__________________________________

Question 37 (5 points)
Now consider combining multithreading with the data cache. If the cache hit-rate of the
first load is 50%, what is the minimum number of threads to guarantee full utilization of
the processor? In this question, assume that the processor switches on a cache miss.

Page 22 of 22

