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Normal form games 

A normal form game is a triple (N,S,u) 
� N={1,…,N} is the (non-empty) set of players 
� S=S1×…×SN is the set of strategy profiles 
� A mixed strategy for n is a probability distribution πn on Sn, 

that is, πn∈∆ (Sn). 

� u:SÆRN is the payoff vector. 
� Define u(π)=∑…∑u(s1,…,sN)π1(s1)…πN(sN). 

The payoff of player n is un(π). 
Strategies may be correlated: u(π)= ∑su(s)π(s) 
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Mixed Strategies? 

Interpretations of mixed equilibria 
� Bluffing? 
� An informal consensus now sees “bluffing” as 

pooling equilibria in incomplete information 
games. 

� Uncertainty in other minds 
� Population proportions 
� Harsanyi: Behavioral approximation to pure 

strategy equilibrium in games with random 
payoff perturbations 
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Reasons for Correlation 

People’s play can be correlated objectively for 
reasons outside the game: 
� They can observe a common variable, such as the weather. 
� They can have a common culture which inclines them to 

common inclinations, unknown to the outside observer, 
which appear as correlations in behavior. 

Play can also be subjectively correlated. 
� The observer may be learning some unknown aspect of 

human behavior. 
� The observer may know that each tribe has one chief 

without knowing who it is. Then, “chief” behavior by one 
player makes others less likely to exhibit “chief” behavior. 
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Noncooperative Solutions 

Dominance & Rationalizability 
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Bayesian Rationality 

A rational (Bayesian) player 
� has beliefs about the likely play of others 
� optimizes according to those beliefs 
Theorem. A strategy for player n is a 
best reply to some probability 
distribution of the play of others if and 
only if it is not strictly dominated by any 
pure or mixed strategy of player n. 
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Proof 

If sn is strictly dominated by sn’, then sn’ is a better reply to any 
probability distribution over the strategies of others. 
Suppose sn is not strictly dominated. Let K be the number of 
profiles in S-n. Then the following two convex subsets of RK are 
disjoint 
� A=Convex Hull{(un(sn’,s-n);s-n∈S -n)|sn ’∈S n} 
� B={z∈R K|z>un(sn,.)} 

By the separating hyperplane theorem, there exists a non-zero 
vector p such that p.y≥p.z for all z∈A, y ∈B.  By inspection, p is non-
negative and can be normalized to the required probability vector. 
Since y* =un(sn,.) is on the boundary of B, p.y *≥p.z for all z∈A. 
QED 
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Dominant strategy equilibrium 

Assume for each n there is a strategy sn 
* that 

strictly dominates all other strategies of n. 
Theorem: If all players are rational, then s* will 

be played. 
Assume for each n there is a strategy sn 

** that 
weakly dominates all other strategies of n. 
Theorem: If all players are rational and 

cautious, then s** will be played. 

10 

Rationalizability Defined 

Definition. A strategy sj for player j is 
rationalizable if there is a collection of sets 
{Zn} such that sj∈ Zj and for all players n, 
� Zn ⊆ Sn 

� For all sn∈ Zn, sn is a best reply to some belief pn 
whose support is a subset of Z-n. 

Note that 
� all the elements of each such Zn are rationalizable. 
� The union of all such Zn is the set of rationalizable 

strategies for player n. 
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Iterating to Rationalizability 

First step 
� Every player is (Bayesian) “rational.” Therefore, every player 

plays only strategies that are not strictly dominated. 
� Create a new strategic form by eliminating dominated 

strategies from the original game. 
Iteration n+1 
� Every player knows that others will play only strategies 

remaining from iteration n. Rational players choose a best 
reply, that is, a strategy that is not strictly dominated in the 
new game. 

� Create strategic form n+1 by eliminating dominated 
strategies from strategic form n. 

If the original game is finite, eventually no changes 
are made. 
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Iterated strict dominance & 
Rationalizability 

Theorem. When the iterative procedure 
terminates, the remaining strategies for each 
player n are precisely n’s rationalizable 
strategies. 
Proof sketch. 
� Each stage eliminates only strategies that are not 

rationalizable. 
� Remaining strategies are necessarily 

rationalizable. 
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CK of Rationality & 
Rationalizability 

Theorem (Bernheim, Pearce): Assume 
that the payoffs and the rationality are 
common knowledge. Then, each player 
must play a rationalizable strategy. 
Moreover, given any rationalizable 
strategy profile s, there exists a 
hierarchy of beliefs at which s is played. 
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Nash Eq. & Rationalizability 

Every Nash equilibrium is rationalizable. 
Theorem (Milgrom and Roberts): Assume a 
supermodular game on a complete lattice. 
Then, there exist the smallest and the largest 
Nash equilibria, x and y, respectively.  If z is 
rationalizable, then x  z  y. 
Corollary: If a supermodular game has a 
unique Nash equilibrium, then it has a unique 
rationalizable strategy. 
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Rationalizability in Linear 
Cournot duopoly 

P = 1 – q1 – q2; 

c1 = c2 = c 

q1 

q2 

2 
1 c− 

1-c
2 
1 c− 

1-c 
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Example (Robustness) 
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Noncooperative Solutions 

Nash Equilibrium & Its Existence 
Theorems 
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Nash Equilibrium 

A normal form game is a triple (N,S,u) 
� N={1,…,N} is the (non-empty) set of players 
� S=S1×…×SN is the set of strategy profiles 
� A mixed strategy for n is a probability distribution πn on 

Sn, that is, πn∈∆ (Sn). 

� u:SÆRN is the payoff vector. 
� Define u(π)=∑…∑u(s1,…,sN)π1(s1)…πN(sN). 

Equilibrium: A mixed strategy profile π∈Π is a 
Nash equilibrium if 

π π π π− ′ ′∀ ∈  ∀ ∈ ∆ ≥( )( ( )) ( ) ( , )n n n n n nn S u uN 
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Epistemic conditions for NE 

Theorem (Aumann & Brandenburger): In a 2-
person game, assume that payoff functions, 
the rationality of players, and their 
conjectures are all mutually known. Then, the 
conjectures constitute a Nash equilibrium. 

For n>2 players, we need common prior 
assumption and common knowledge of 
conjectures. 
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Nash’s Existence Equilibrium 

Theorem (Nash). Suppose the number of players and 
the strategy sets are finite. Then, there exists a Nash 
equilibrium. 
Proof. Let ∆ be the set of mixed strategy profiles and 
consider the map f:∆Æ∆ given as follows. fn(π) is the 
probability distribution on Sn that assigns to any 
strategy sn the probability: 

( ) 
( ) 
π π π 

π π π 
− 

−′ ∈ 
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Proof, continued 

Since this function is continuous and ∆ is convex and 
compact, f has a fixed point. 
By inspection, the fixed point has the properties that 
� Every one of n’s strategies that is played with zero 

probability has an expected profit no higher than un(π). 
� Every one of n’s pure strategies that is played with positive 

probability has the same expected profit. 

Therefore, the fixed point is a Nash equilibrium. QED 
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Concave Payoff Functions 

Theorem. Let S1,…,SN be convex, compact subsets of 
a Euclidean space. Suppose that for all n, un:SÆR is 
continuous and that for all s-n, U(sn)=un(sn,s-n) is 
concave. Then, there exists a Nash equilibrium 
strategy profile s∈ S. 
Notes: 
� On its face, this is a “pure strategy” Nash equilibrium 

existence theorem. 
� Given any finite game, the corresponding game in “mixed 

strategies” is linear in the strategies and hence satisfies the 
stated hypotheses. 
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Proof 

Consider the “best reply” correspondence f:SÆS, 
given by: 

Observe (next slide) that f has a “closed graph” and 
is convex valued. 
The Kakutani fixed point theorem applies (as do 
several others). By construction, a fixed point is a 
Nash equilibrium. QED 

{ } 
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Details 

Kakutani’s Fixed Point Theorem. 
� Let ∆ be a convex, compact subset of RN and let f:∆Æ∆ be a 

multifunction (“correspondence”) such that for all x∈∆ , f(x) is 
convex and such that the graph of f is closed. Then, there 
exists x∈∆ such that x∈f( x). 

Proving closed graph 
� Let {sk} be a sequence of strategy profiles converging to s*; 

let rk∈f(s k); and let r* be an accumulation point of {rk}. We 
limit attention to a convergent subsequence of {rk}. By 
continuity of u, 
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Other Existence Proofs 

The various “general” existence proofs 
of Nash equilibria are based on fixed 
point theorems. 
� Some are topological theorems 
� Later in the term, we will encounter a 

lattice-based fixed point theorem. 
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Noncooperative Solutions 

Correlated Equilibrium 
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Motivation 

People’s play can be correlated objectively for 
reasons outside the game: 
� They can observe a common variable, such as the weather. 
� They can have a common culture which inclines them to 

common inclinations, unknown to the outside observer, 
which appear as correlations in behavior. 

Play can also be subjectively correlated. 
� The observer may be learning some unknown aspect of 

human behavior. 
� The observer may know that each tribe has one chief 

without knowing who it is. Then, “chief” behavior by one 
player makes others less likely to exhibit “chief” behavior. 
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Definition 

Given a finite strategic form game (N,S,u), a 
correlated strategy profile consists of these elements: 
� A finite probability space (Ω,π) 
� For each player n, an information partition Pn of Ω. 
� For each player n, a strategy σn:ΩÆSn measurable with 

respect to Pn. 

The correlated strategy profile is a correlated 
equilibrium if for each n and each strategy τn 
measurable with respect to Pn, 

( ) ( )ω ω
π τ σ ω π ω−∈Ω ∈Ω

≥∑ ∑( )  ( )  ( ), ( ) ( )n n n nu u 
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Characterization Result 

Theorem. Every probability distribution π of strategy 
profiles in a correlated equilibrium can be achieved 
by setting the probability space to (S,π), the partition 
Pn be sets of the form {s∈ S|sn=a}, and the strategy 
profile σ so that σn(s)=sn. 
� We henceforth abbreviate by saying “π is a correlated 

equilibrium” to mean that ((S,π),P,σ) as defined in the 
theorem is a correlated equilibrium. 
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Example 

Conditions: 

� 2p1 ≥ p2 

� p4 ≥ 2p3 

� 2p4 ≥ p2 

� p1 ≥ 2p3 
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Additional Results 

Theorem. If π is a probability distribution of strategy profiles at a 
Nash equilibrium, then π is a correlated equilibrium. 
Theorem. The set of correlated equilibria π is a closed, convex set. 
Proof. π is a correlated equilibrium if and only if it satisfies the 
following set of linear inequalities, for all players n functions 
fn:SnÆSn. 

Theorem. Any strategy played with positive probability 
at a correlated equilibrium is rationalizable. 

( )π π −∈ ∈
≥∑ ∑( )  ( )  ( )  ( ),n n ns S  s S

s u  s s u f s s 
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Noncooperative Solutions 

Extensive Forms and Sequential 
Rationality 
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Extensive Forms 

An extensive form consists of: 
� The set of players, N. 
� The set of histories (sequences) H, which includes the empty 

sequence and has the property that if (a1,…,aK)∈H an d L<K, 
then (a1,…,aL)∈H. 
� A history (a1,…,aL) is complete (or terminal) if there is no K>L such 

that (a1,…,aK)∈ H. All infinite histories (a1,…,al,…) are complete. 
� For any non-terminal history write A(h) = {a|(h,a) ∈H} 

� A payoff function mapping complete histories into payoffs for 
each player. 

� A function P that assigns to each non-terminal history h∈H a 
player n or chance c (the player who “moves” at h); if P(h)=c, 
assign also a probability distribution on A(h). 

� A partition (Ik) of non-terminal h with P(h)∈N such that, if h,h’ 
∈I k, then A(h) = A(h’) and P(h) = P(h’). 
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Definitions 

A game game is said to have perfect 
recall iff no player forgets what he 
knew and what he has done. We will 
always assume perfect recall. 
A perfect information game is a game 
in which all information sets are 
singleton. 
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Sequential Rationality 

Given any information set In, where player n 
moves, player n has 
� a probability distribution µ(.|In) on In 

� and a probability distribution on the others’ play in 
the “continuation game” (which may not be a 
“subgame”), 

representing his beliefs conditional on the even that 
In is reached. 

A player n is sequentially rational iff, at any 
information set In he moves, he maximizes 
his expected payoff conditional on that In is 
reached and according to his beliefs at In. 
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Conditional Dominance 

A strategy is conditionally dominated at 
In iff its restriction to the “continuation 
game” at In is strictly dominated at that 
game for every probability distribution 
on In. 
A sequentially rational player never 
plays a conditionally dominated 
strategy. 
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Iterated conditional 
dominance 

First step 
� Every player is sequentially rational. Therefore, every player 

plays only strategies that are not conditionally dominated. 
� Create a new game by eliminating conditionally dominated 

strategies from the original game. 
Iteration n+1 
� Every player knows that others will play only strategies 

remaining from iteration n. Sequentially rational players 
choose a best reply at any information set, that is, a strategy 
that is not conditionally dominated in the new game. 

� Create strategic form n+1 by eliminating conditionally 
dominated strategies from strategic form n. 

If the original game is finite, eventually no changes are 
made. 
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“Theorem” 

If the game and the players’ sequential 
rationality are common knowledge, 
then they will play a strategy profile 
that survives iterated conditional 
dominance. 
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Centipede game 

1,1 0,2 2,1 1,3 

1 2 1 2 
3,2 
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Backwards Induction 

Iterated conditional dominance in a 
perfect-information game with finite 
histories is called backwards induction. 
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Sequential Equilibrium 
An assessment is a pair (s,µ(.|.)) of a strategy 
profile s and a function µ(.|.) that gives a 
conditional probability distribution µ(.|In) at 
every information set In. 
An assessment (s,µ(.|.)) is sequentially rational 
iff each sn is a best response to s-n at each 
information set In of n according to µ(.|In). 
An assessment (s,µ(.|.)) is consistent iff there 
is a sequence ((sk,µk(.|.)))k of assessments s.t. 
� (sk,µk(.|.)) → (s,µ(.|.)) in Euclidean metric; 
� each sk is completely mixed, and 
� µk(.|.) is derived from sk using Bayes’ rule. 
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Sequential Equilibrium 

Definition (Kreps, Wilson): A sequential 
equilibrium is an assessment that is 
both sequentially rational and 
consistent. 
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Example 
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