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Problem Set 9 

1.	 Consider the manufacture of Grandmother’s Fudge Nut Butter Cookies. Grandmother has noted that 
the number of nuts in a cookie is a random variable with a Poisson mass function and that the average 
number of nuts per cookie is 2.5. 

(a) What is the probability of having at least two nuts in a randomly selected cookie? 

(b) Determine the variance of the number of nuts per cookie. 

(c)	 Determine the probability that a box of exactly q cookies contains exactly the expected value of 
the number of nuts for a box of p cookies. (q = 1, 2, 3, . . . ; p = 1, 2, 3, . . . ) 

(d)	 What is the probability that a nut selected at random goes into a cookie containing exactly k 
nuts? 

(e)	 Grandmother instructs her inspectors to discard each cookie which contains less than two nuts. 
Determine the mean and variance of the number of nuts per cookie for the remaining cookies. 

2. A discrete-time Markov chain with seven states has the following transition probabilities: 
 

0.5 , (i, j) = (3, 2), (3, 4), (5, 6) and (5, 7)
 

pij = 1 , (i, j) = (1, 3), (2, 1), (4, 5), (6, 7) and (7, 5) . 
 

0 , otherwise 

In the questions below, we let Xk be the state of the Markov process at time k. 

(a) For what values of n is the probability r14(n) = P(Xn = 4 | X0 = 1) > 0? 

(b) What are the set of states A(i) that are accessible from state i, for each i = 1, 2, . . . , 7? 

(c)	 Identify which states are transient and which states are recurrent. For each recurrent class, state 
whether it is periodic (and give the period) or aperiodic. 

(d)	 What is the minimum number of transitions with nonzero probability that must be added so that 
all seven states form a single recurrent class? 

3.	 A digital mobile phone transmits one packet in every time slot over a wireless connection. With prob­
ability p, a packet is received in error, independent of any other packet. To avoid wasting transmitter 
power when the link quality is poor, the transmitter enters a timeout state whenever five consecutive 
packets are received in error. During such a timeout, the mobile terminal performs an independent 
Bernoulli trial with success probability q in every slot. When a success occurs, the mobile terminal 
starts transmitting in the next slot as though no packets had been in error. 

(a) Construct a discrete-time Markov chain for this system, which includes 

i. defining an appropriate state space and 
ii. drawing the transition probability graph. 

(b) Solve for the steady-state probabilities in terms of parameters p and q. 

4.	 Oscar goes for a run each morning. When he leaves his house for his run, he is equally-likely to go out 
either the front or the back door; and similarly, when he returns, he is equally likely to go to either the 
front or back door. Oscar owns only five pairs of running shoes which he takes off immediately after 
the run at whichever door he happens to be. If there are no shoes at the door from which he leaves 
to go running, he runs barefooted. We are interested in determining the long-run proportion of time 
that he runs barefooted. 

(a) Set the scenario up as a Markov chain, specifying the states and transition probabilities. 

(b) Determine the long-run proportion of time Oscar runs barefooted. 
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5.	 Partially-Observable Markov Processes: In applications where a decision at any time k depends 
on the true state Xk of a Markov process, it may sometimes be too difficult or too costly to observe 
the state directly. Thus, the decision-maker must act based on a prediction of the otherwise unknown 
state. For Markov process models with a finite number m of states, an intuitive representation of such 
a prediction is called the probabilistic state, defined for any k by a PMF over the original state space: 
pXk (i) = P(Xk = i) for i = 1, 2, . . . m. 

(a) Consider the two-state Markov process model with transition probabilities 

p11 = 1 − θ, p12 = θ, p21 = φ, and p22 = 1 − φ . 

Find the probabilistic state at time k = 1000 (justified approximations are acceptable). 

In a partially-observable Markov process, a measurement device is available that generates “noisy” 
observations of the otherwise unknown state. The dependence of each such observation Z on the 
true state Xk is defined by a sensor model, typically specified as a conditional distribution of Z given 
Xk. The conditional PMF P(Xk = i|Z) for i = 1, 2, . . . m can be viewed as an estimator g(Z) of 
the probabilistic state based on observation Z; then, for any observed value z of Z, the probabilistic 
state estimate pXk |Z (i|z) = P(Xk = i|Z = z) summarizes the available state information in a manner 
consistent with the realized observation as well as all process model and sensor model parameters. 

(b)	 Suppose that just after the process defined in part (a) enters state X1000, a single observation 
Z = z is realized according to the following sensor model 

fZ|X1000 
(z|i) = N (µi, σi 

2) = 
1 √ exp

2πσi 
− 

(z − µi)
2 

2σ2 
i 

, −∞ < z < ∞ for i = 1, 2 . 

i. Find the probabilistic state estimate at time k = 1000. Hint: Use Bayes’ rule. 

ii.	 What conditions on parameters (µ1, σ1, µ2, σ2) of the given sensor model make observation Z 
uninformative, meaning pX1000 |Z (i|z) = pX1000 (i) for all i and all z? 

iii.	 Assume sensor model parameters (µ1, σ1, µ2, σ2) = (−1, 1, 1, 1) and two different instances 
of the process model parameters: (θ, φ) = (0.5, 0.5) and (θ, φ) = (0.1, 0.9). Use a computer 
to plot and clearly label the probability P(X1000 = 1|Z = z) over the domain [−4, 4] for z, 
plotting the distinct curve associated with either instance of the process model on the same 
axes for ease of comparison. 

iv. Repeat part (iii) but assuming sensor model parameters (µ1, σ1, µ2, σ2) = (0, 1, 0, 2). 

G1† . The first order interarrival times for a renewal process are either 1.0 or 1.5 hours with probabilities 
1/3 and 2/3, respectively. Let T denote the time from an instant of random incidence until the 3rd 

following arrival. Find E[T ] and var(T ). 

G2† .	 Given an irreducible and aperiodic Markov chain {Xn} with steady state probabilities πi and transition 
probabilities pij , consider a second Markov chain whose state at time n is {Xn−1, Xn}. 

(a) Show that the steady-probabilities are ηij = πipij . 

(b) Generalize part (a) to the case of the Markov chain {Xn−k , Xn−k+1, . . . , Xn}. 
(c)	 Consider an infinite sequence of independent coin tosses, where the probability of a head is p. 

Each time the coin comes up heads twice in a row you get $1 (so the sequence THHHHT gets 
you $3). What is the (approximate) expected amount of money that you will get per coin toss, 
averaged over a large number of coin tosses? 
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