Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2002)

Tutorial 7

1. Paul is vacationing in Monte Carlo. The amount X (in dollars) he takes to the casino each evening is a random variable with the PDF shown in the figure. At the end of each night, the amount Y that he has on leaving the casino is uniformly distributed between zero and twice the amount he took in.

(a) Determine the joint $\operatorname{PDF} f_{X, Y}(x, y)$. Be sure to indicate what the sample space is.
(b) What is the probability that on any given night Paul makes a positive profit at the casino? Justify your reasoning.
(c) Find and sketch the probability density function of Paul's profit on any particular night, $Z=Y-X$. What is $\mathbf{E}[Z]$? Please label all axes on your sketch.
2. Suppose that

$$
M_{X}(s)=\frac{1}{3} \cdot \frac{1}{1-s}+\frac{2}{3} \cdot \frac{3}{3-s}
$$

What is the PDF of X ?
3. Practice Problem: Let X and Y be independent random variables which have only nonnegative integer experimental values. Each part of this question introduces a new random variable. For each part, determine the expectation and variance of the new random variable in terms of $\mathbf{E}[X], \mathbf{E}[Y], \operatorname{var}(X)$, and $\operatorname{var}(Y)$.

Notation: X_{1}, X_{2}, \ldots are independent random variables with the same distribution as random variable X. Provide lucid explanations for your answers.
(a) $W=X_{1}+X_{2}+X_{3}+X_{4}$
(b) $V=0.25\left(X_{1}+X_{2}+X_{3}+X_{4}\right)$
(c) $U=X_{1}+X_{2}+X_{3}+X_{4}+Y$
(d) $R=4 X-Y$
(e) $M_{Q}(s)=\left[M_{X}(s)\right]^{5}$
(f) $M_{H}(s)=\left[M_{X}(s)\right]^{2}\left[M_{Y}(s)\right]^{3}$
(g) $M_{G}(s)=e^{6 s} M_{X}(s)$
(h) $M_{D}(s)=M_{X}(7 s)$

