Recitation 14

- 1. We have a coin for which the probability of a head is p = 0.1. Consider a sequence of 15 independent flips of this coin.
 - (a) Determine the exact probability of obtaining exactly 2 heads.
 - (b) Determine the Poisson approximation of the probability of obtaining exactly 2 heads.
 - (c) Determine the central limit theorem approximation of the probability of obtaining exactly 2 heads.
- 2. Consider a Poisson process, with mean arrival rate $\lambda = 1$, and let X_n be the number of arrivals between time zero and n. Give a brief explanation for your answers to the following.
 - (a) Does $\frac{X_n}{n}$ converge in probability?
 - (b) Does $\frac{X_n}{n}$ converge with probability 1?
- 3. **Practice Problem:** Consider a factory that produces $X_n \ge 0$ gadgets on day n. The X_n 's are independent and identically distributed *discrete* random variables and it is known that

 $\mathbf{E}[X_n] = 5$, $\mathbf{E}[X_n^2] = 34$, $\mathbf{E}[X_n^3] = 412$, $\mathbf{E}[X_n^4] < \infty$ and $\mathbf{P}(X_n = 0) > 0$

- (a) Find an approximation to the probability that the total number of gadgets produced in 100 days is less than 440.
- (b) Find (approximately) the largest value of n such that

$$\mathbf{P}(X_1 + \dots + X_n \ge 200 + 5n) \le 0.05$$

- (c) Let N be the first day on which the total number of gadgets produced exceeds 1000. Calculate an approximation to the probability that $N \ge 220$.
- (d) For each definition of Z_n given below, state whether the sequence Z_n converges with probability 1.
 - i. $Z_n = (X_1 + \dots + X_n)/n$ ii. $Z_n = (X_1 + \dots + X_n - 5n)/\sqrt{n}$ iii. $Z_n = (X_1^2 + \dots + X_n^2)/n$ iv. $Z_n = X_1 X_2 \cdots X_n$ v. $Z_n = (X_1 X_2 + X_2 X_3 + \dots + X_{n-1} X_n)/n$