Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2002)

Recitation 14

1. We have a coin for which the probability of a head is $p=0.1$. Consider a sequence of 15 independent flips of this coin.
(a) Determine the exact probability of obtaining exactly 2 heads.
(b) Determine the Poisson approximation of the probability of obtaining exactly 2 heads.
(c) Determine the central limit theorem approximation of the probability of obtaining exactly 2 heads.
2. Consider a Poisson process, with mean arrival rate $\lambda=1$, and let X_{n} be the number of arrivals between time zero and n. Give a brief explanation for your answers to the following.
(a) Does $\frac{X_{n}}{n}$ converge in probability?
(b) Does $\frac{X_{n}}{n}$ converge with probability 1 ?
3. Practice Problem: Consider a factory that produces $X_{n} \geq 0$ gadgets on day n. The X_{n} 's are independent and identically distributed discrete random variables and it is known that

$$
\mathbf{E}\left[X_{n}\right]=5, \quad \mathbf{E}\left[X_{n}^{2}\right]=34, \quad \mathbf{E}\left[X_{n}^{3}\right]=412, \quad \mathbf{E}\left[X_{n}^{4}\right]<\infty \quad \text { and } \quad \mathbf{P}\left(X_{n}=0\right)>0 .
$$

(a) Find an approximation to the probability that the total number of gadgets produced in 100 days is less than 440.
(b) Find (approximately) the largest value of n such that

$$
\mathbf{P}\left(X_{1}+\cdots+X_{n} \geq 200+5 n\right) \leq 0.05
$$

(c) Let N be the first day on which the total number of gadgets produced exceeds 1000 . Calculate an approximation to the probability that $N \geq 220$.
(d) For each definition of Z_{n} given below, state whether the sequence Z_{n} converges with probability 1 .
i. $Z_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$
ii. $Z_{n}=\left(X_{1}+\cdots+X_{n}-5 n\right) / \sqrt{n}$
iii. $Z_{n}=\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) / n$
iv. $Z_{n}=X_{1} X_{2} \cdots X_{n}$
v. $Z_{n}=\left(X_{1} X_{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}\right) / n$

