# Massachusetts Institute of Technology <br> Department of Electrical Engineering \& Computer Science <br> 6.041/6.431: Probabilistic Systems Analysis 

(Fall 2002)

## Recitation 11 Answers

1. (a) The class $\{1,2\}$ is recurrent and aperiodic (i.e. the class has period 1 ). The class $\{4,5,6\}$ is recurrent with period 3 . The state $\{3\}$ is transient.
(b) $r_{33}(n)=(0.2)^{n}$
(c) Let $T_{33}$ be the number of trials up to and including the first trial on which the process leaves state 3, given that it starts in state 3. Then $\mathbf{E}\left[T_{33}\right]=\frac{5}{4}$.
(d) Let $X_{n}$ denote the state after $n$ trials. Then $\mathbf{P}\left(X_{n} \neq 1\right.$ for all $\left.n \mid X_{0}=3\right)=\frac{3}{8}$.
(e) $r_{34}(10)=(0.3)+(0.2)^{3}(0.3)+(0.2)^{6}(0.3)+(0.2)^{9}(0.3) \approx 0.3024$
(f) $\mathbf{P}\left(X_{1}=4 \mid X_{10}=4, X_{0}=3\right)=\frac{0.3}{r_{34}(10)}=0.992$
2. The states of the Markov chain must capture all of the "pertinent" information in order that the process has the Markov property, i.e. in order to insure that:

$$
\mathbf{P}\left(X_{n}=j \mid X_{n-1}=i, \ldots, X_{1}=k\right)=\mathbf{P}\left(X_{n}=j \mid X_{n-1}=i\right) .
$$

Thus our Markov chain must have 3 states, where the state is the difficulty of the most recent exam:

$$
\left\{S_{1}=H, S_{2}=M, S_{3}=E\right\} .
$$

We are given the transition probabilities:

$$
[P]=\left(\begin{array}{ccc}
P_{H H} & P_{H M} & P_{H E} \\
P_{M H} & P_{M M} & P_{M E} \\
P_{E H} & P_{E M} & P_{E E}
\end{array}\right)=\left(\begin{array}{ccc}
0 & .5 & .5 \\
.25 & .5 & .25 \\
.25 & .25 & .5
\end{array}\right)
$$

It is easy to see that our Markov chain has a single, aperiodic recurrent class, and is therefore ergodic. Thus we can use the fundamental theorem which tells us that if we can find $\left\{\pi_{i}\right\}$ that satisfy $\pi_{j}=\sum_{i} \pi_{i} p_{i j}$ and $\sum_{i} \pi_{i}=1$ then the $\left\{\pi_{i}\right\}$ are in fact the steady state probabilities. Therefore we have:

$$
\begin{aligned}
\pi_{j}=\sum_{i} \pi_{i} p_{i j} \Rightarrow & \frac{1}{4}\left(\pi_{2}+\pi_{3}\right)=\pi_{1} \\
& \frac{1}{2}\left(\pi_{1}+\pi_{2}\right)+\frac{1}{4} \pi_{3}=\pi_{2} \\
& \frac{1}{2}\left(\pi_{1}+\pi_{3}\right)+\frac{1}{4} \pi_{2}=\pi_{3}
\end{aligned}
$$

and solving these with the constraint: $\sum_{i} \pi_{i}=1$ gives:

$$
\pi_{1}=\frac{1}{5}, \pi_{2}=\pi_{3}=\frac{2}{5}
$$

## 3. Practice Problem:

(a) (proof)
(b) For $0 \leq i, j \leq k$, we have the following:

$$
p_{i j}=\mathbf{P}(i-j \text { green fish are caught })=\left\{\begin{array}{cc}
\frac{n-i}{n} & j=i \\
\frac{i}{n} & j=i-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(c) The class $\left\{G_{0}\right\}$ is recurrent (since $G_{0}$ is an absorbing state), and all of the other states are transient.

