Problem Set 6

- 1. Note that parts (a) and (b) of this problem involve the same random variables defined in problems 3 and 4, respectively, of Problem Set 5.
	- (a) The random variable X is exponentially distributed with parameter $\lambda = 1$. Derive the PDF $f_Z(z)$, where $Z = e^{3X}$.
	- (b) Random variables X and Y have the joint PDF

$$
f_{X,Y}(x,y) = \begin{cases} c, & \text{if } 0 \le y < x \le 2 \\ 0, & \text{otherwise} \end{cases} .
$$

Derive the PDF $f_Z(z)$, where $Z = \frac{Y}{X}$.

(c) Random variables X and Y are independent and have the following PDFs,

$$
f_X(x) = \begin{cases} \frac{1}{2} , & 1 \leq x \leq 3 \\ 0 , & \text{otherwise} \end{cases} , \qquad f_Y(y) = \begin{cases} \lambda e^{-\lambda y} , & y \geq 0 \\ 0 , & \text{otherwise} \end{cases}
$$

where λ is some arbitrary positive constant. Derive the PDF $f_Z(z)$, where $Z = X + Y$.

- 2. An ambulance travels back and forth, at a constant specific speed v , along a road of length ℓ . In other words, at any moment in time, consider the location of the ambulance to be uniformly distributed over the interval $(0, \ell)$. Also at any moment in time, an accident (not involving the ambulance itself) occurs at a point uniformly distributed on the road; that is, the accident's distance from one of the fixed ends of the road is also uniformly distributed over the interval $(0, \ell)$. Assume the location of the accident and the location of the ambulance are independent.
	- (a) Supposing the ambulance is capable of *immediate* U-turns, compute the CDF and PDF of the ambulance's travel time T to the location of the accident.
	- (b) Repeat part (a) but now suppose U-turns are only possible at either fixed end of the road.
- 3. Let continuous random variables X, Y and Z be independent and identically distributed according to the uniform distribution in the unit interval [0, 1].
	- (a) Consider two new random variables defined by $V = XY$ and $W = Z²$. Derive the joint PDF $f_{V,W}(v, w)$.
	- (b) Show that $P(XY < Z^2) = \frac{5}{9}$.
- 4. Consider random variable Z with transform:

$$
M_Z(s) = \frac{a - 3s}{s^2 - 6s + 8}
$$

- (a) Find the numerical value for parameter a.
- (b) Find $P(Z \geq 0.5)$.
- (c) Find $E[Z]$ by using the probability distribution of Z.
- (d) Find $E[Z]$ by using the transform of Z and without explicity using the probability distribution of Z.
- (e) Find var (Z) by using the probability distribution of Z.
- (f) Find var(Z) by using the tranform of Z and without explicity using the probability distribution of Z.
- 5. Let X and Y be two IID Gaussian random variables with zero-mean and variance σ^2 .
	- (a) Find the PDF of $R = \sqrt{X^2 + Y^2}$ (R is said to have a Rayleigh distribution.)
	- (b) Find the transform of R.
- G1[†]. Let X_1, X_2, \ldots, X_n , where $n \geq 2$, be independent and identically-distributed continuous random variables with CDF $F(x)$ (and PDF $f(x)$). Define $Y = \max(X_1, \ldots, X_n)$, $Z =$ $min(X_1, \ldots, X_n)$ and $D = Y - Z$. Show that

(a)

$$
F_{Y,Z}(y,z) = \mathbf{P}(Y \le y, Z \le z) = \begin{cases} F(y)^n - [F(y) - F(z)]^n, & y > z \\ F(y)^n, & y \le z \end{cases}
$$

(b)

$$
F_D(d) = \begin{cases} n \int_{-\infty}^{\infty} [F(y) - F(y - d)]^{n-1} f(y) dy, & d \ge 0 \\ 0, & d < 0 \end{cases}
$$

HINT: One possible approach is to find first the joint PDF of Y and Z.

 $G2^{\dagger}$. For a given continuous random variable X, define the random variable Y in the following manner:

$$
Y = aX^2 + b.
$$

- (a) Find the PDF of Y in terms of the PDF of X, a and b.
- (b) Let X be a Normal random variable: $X \sim \mathcal{N}(0, \sigma^2)$. Find the PDF of $Y = X^2$, and its moment generating function (Y is said to have a *central chi-square distribution*.)
- (c) Now assume that $X \sim \mathcal{N}(\mu, \sigma^2)$. Find the PDF of $Y = X^2$ and its moment generating function (Y is now said the have a *non-central chi-square distribution*.)