Your name is _____

Please circle your recitation:

			•			
1)	M2	2 - 131	Darren Crowdy	${ m crowdy@math}$	2 - 335	3 - 7905
2)	M2	2 - 132	Yue Lei	yuelei@math	2 - 586	3-4102
3)	M3	2 - 131	Darren Crowdy	crowdy@math	2 - 335	3 - 7905
4)	T10	2 - 131	Sergiu Moroianu	${\tt bebe@math}$	2 - 491	3-4091
5)	T10	2 - 132	Gabrielle Stoy	${ m stoy}@{ m math}$	2 - 235	3 - 4984
6)	T11	2 - 131	Sergiu Moroianu	${\tt bebe@math}$	2 - 491	3 - 4091
7)	T11	2 - 132	Gabrielle Stoy	${ m stoy}@{ m math}$	2 - 235	3 - 4984
8)	T12	2 - 132	Anda Degeratu	${ m anda@math}$	2 - 229	3 - 1589
9)	T12	2 - 131	Edward Ğoldstein	$\operatorname{egold}@\operatorname{math}$	2 - 092	3-6228
10)	T1	2 - 131	Anda Degeratu	${ m anda@math}$	2 - 229	3 - 1589
11)	T2	2 - 132	Yue Lei	yuelei@math	2 - 586	3 - 4102

1. (35 pts) Find the row reduced echelon forms R of all the matrices below:

- (a.) The 3×4 matrix of all ones.
- **(b.)** A general $m \times n$ matrix of all ones.
- (c.) The 3×4 matrix with $a_{ij} = i + j 1$.

(d.)
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 2 & 4 & 6 \end{pmatrix}$$
.

2. (20 pts) Sketch the image of the square figure to the left below after applying the map $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$. You may use the "graph paper" to its right. Please label the axes clearly.

- 3. (30 pts) Please briefly but clearly explain your answers.
- (a.) Are the set of invertible 2×2 matrices in M a subspace?
- (b.) Are the set of singular 2×2 matrices in M a subspace?
- (c.) Consider the matrices in M whose nullspace contains $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Is this a subspace?

4. (15 pts) Find L and U for the nonsymmetric matrix $A = \begin{pmatrix} a & r & r & r \\ a & b & s & s \\ a & b & c & t \\ a & b & c & d \end{pmatrix}$. (Assume nothing is accidentally zero.)