Your name is:

18.06

Please circle your recitation:

1) M22-132 M. Nevins 2 - 5883-4110 monica@math 2) M32-131 A. Voronov 2-224 3-3299 voronov@math 3) T10 2-132 A. Edelman 2-380 3-7770 edelman@math 2-132 A. Edelman T122 - 3803-7770 edelman@math 5) T12 2-131 Z. Spasojevic 2-101 3-4470 zoran@math T1 6) 2-131 Z. Spasojevic 2-101 3-4770 zoran@math 7) T22-132 Y. Ma 2-333 3-7826 vanyuan@math

Quiz 1

1. Suppose the complete solution to the equation

$$Ax = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \quad \text{is} \quad x = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

- (6) (a) What is the dimension of the row space of A?
- (12) (b) What is the matrix A?
 - (6) (c) Describe exactly all the vectors b for which Ax = b can be solved. (Don't just say that b must be in the column space.)

ANSWER BELOW AND ON THE NEXT PAGE

2. Suppose the matrix A is this product BC (not L times U!):

$$A = BC = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 6 & 6 \end{bmatrix}$$

- (16) (a) Find bases for the row space and the column space of A.
- (8) (b) Find a basis for the space of all solutions to Ax = 0.
- (8) (c) All these answers will be different if you correctly change one entry in the first factor B. Tell me the new matrix B.

3. (12) (a) Find the row-reduced echelon form R of A and also the inverse matrix E^{-1} that produces $A = E^{-1}R$.

$$A = \left[\begin{array}{cccc} 1 & 0 & 3 & 3 \\ 2 & 0 & 6 & 6 \\ 1 & 1 & 3 & 3 \end{array} \right]. \qquad \text{Find R and E^{-1}}.$$

(9) (b) Separate that multiplication $E^{-1}R$ into columns of E^{-1} times rows of R. This allows you to write A as the sum of two rank-one matrices. What are those two matrices?

4. (16) (a) Suppose A is an m by n matrix of rank r. Describe exactly the matrix Z (its shape and all its entries) that comes from transposing the row echelon form of R' (prime means transpose):

$$Z = \operatorname{rref}(\operatorname{rref}(A)')'$$
.

(7) (b) Compare Z in Problem 4a with the matrix ZZ that comes from starting with the transpose of A (and not transposing at the end):

$$ZZ = \operatorname{rref}(\operatorname{rref}(A')')$$
.

Explain in one sentence why ZZ is or is not equal to Z.