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Abstract

An actuator using a piezoelectric bender to deect a trailing edge servo-ap for use

on a helicopter rotor blade was designed, built, and tested. This actuator is an

improvement over one developed previously at MIT. The design utilizes a new exure

mechanism to connect the piezoelectric bender to the control surface. The e�ciency

of the bender was improved by tapering its thickness properties with length. Also,

implementation of a nonlinear circuit allowing the application of a greater range of

actuator voltages increased the resultant strain levels.

Experiments were carried out on the bench top to determine the frequency re-

sponse of the actuator, as well as hinge moment and displacement capabilities. Flap

deections of 11.5 deg were demonstrated while operating under no load conditions

at 10 Hz. Excessive creep at low frequencies precluded the measurement of achievable

hinge moments, but extrapolation from deection and voltage characteristics indicate

that if properly scaled, the present actuator will produce ap deections greater than

5 deg at the 90% span location on an operational helicopter. In addition, the �rst

mode of the actuator was at seven times the rotational frequency (7/rev) of the tar-

get model scale rotor. Proper inertial scaling of this actuator could raise this modal

frequency to 10/rev on an operational helicopter, which is adequate for most rotor

control purposes.

A linear state space model of the actuator was derived. Comparisons of this

model with the experimental data highlighted a number of mild nonlinearities in

the actuator's response. However, the agreement seen between the experiment and

analysis indicate that the model is a valid tool for predicting actuator response.

Thesis Supervisor: Steven R. Hall, Sc.D.

Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The normal operation of a helicopter rotor can result in vibration, noise, and aero-

dynamic ine�ciencies. The source of these problems is the unsteady aerodynamic

environment associated with rotor operation. The goal of helicopter rotor control is

to reduce or eliminate these problems.

There are a number of sources of rotor vibration and noise. These include atmo-

spheric turbulence, retreating blade stall, blade vortex and blade fuselage interactions,

as well as blade and rotor instabilities (ground/air resonances) [21]. The majority of

previous rotor control e�orts involved blade root pitch actuation to eliminate vibra-

tions at the rotor hub, so that none are transmitted to the fuselage and passenger

compartment of the helicopter, i.e., disturbance rejection at the hub. While e�orts

into this method of control have been successful, disturbance rejection in any system

is most e�ective when the control is applied at the point where the disturbances enter

the system. For helicopters, this suggests the presence of an actuator in the rotating

frame.

Previous research at MIT by Spangler and Hall [45] demonstrated that actuation

of a servo-ap with the use of piezoelectric ceramic benders is a feasible method

of rotating frame actuation for helicopter rotor control. While they demonstrated

appreciable ap deections and force authority, they found that their design did not

work entirely as expected, due to hinge friction and backlash present in the linkage

connecting the bender and ap. This thesis describes the improvements made to this
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actuator concept, resulting in a design with the potential for integration into a blade

cross-section capable of producing adequate performance for rotor control.

In the following sections, a brief discussion of the methods used for rotor control

is presented, and a survey is presented on the di�erent approaches taken by previous

researchers to a�ect the aerodynamics of airfoils and rotor systems. The chapter

concludes by outlining the goals of this thesis and the speci�c organization of the

following four chapters.

1.1 Rotor Control Methodologies

Rotor control is performed using blade pitch command inputs to reduce vibration,

noise and/or aerodynamic ine�ciencies. Two common types of rotor control are

higher harmonic control (HHC) and individual blade control (IBC). The di�erence

between these two types of rotor control is in what each treats as the plant. Higher

harmonic control applies inputs to the rotor system, treating the group of N blades

as the plant. Individual blade control is di�erent, because it treats each blade as a

separate plant and wraps a feedback loop around each blade in the rotating frame

[26], [21].

Shaw et al. [43] applied higher harmonic control in a wind tunnel study of a 1/6

scale CH-47D demonstrating the possibilities of HHC. Using swashplate controlling

electro-hydraulic actuators with the ability to actuate up to the 4/rev frequency, they

were able to demonstrate a 90% decrease in vibratory shears at the hub (at the cost of

a 20% increase in hub moments) or performance improvements of 4% and 6% drops in

required power at advanced ratios of 0.37 and 0.31, respectively. Nguyen and Chopra

[39] performed an analytical study of the same rotor and con�rmed many of these

results.

Individual blade control may be considered an improvement over HHC. In addition

to attacking the problems addressed by HHC, using IBC the designer may address

additional problems such as gust alleviation, attitude stabilization, lag damping aug-

mentation, apping stability at high advance ratios and individual blade tracking. As
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shown by Ham [21], all of these tasks can be achieved to some degree using the conven-

tional swashplate. Obviously, since the swashplate only provides a maximum of three

degrees of freedom, however, for rotors with four or more blades, less improvement is

obtained by applying IBC with just the swashplate.

Placing one actuator on each rotor blade provides the necessary degrees of freedom

to take full advantage of IBC algorithms. Furthermore, in addition to the bene�ts

discussed above, Kretz et al. [26], [27] have suggested that putting actuators on

each blade could eliminate the need for the swashplate. This is desired because

the swashplate is a coupling path between blades that leads to monocyclic pitch

variations.

In the past, placing actuators in the rotating frame added either a substantial

amount of weight or complexity to the rotor system design. Nevertheless, because

there are so many bene�ts from placing an actuator in the rotating frame, the problem

has been the subject of a number of studies. The next section provides a brief review

of the subject.

1.2 Rotating Frame Actuation

The easiest location to place an actuator in the rotating frame is at the blade root,

because little or no modi�cation to the blades is required. However, such an actuator

would only be able to provide root pitch actuation. Placing actuators over the span

of the blade allows for spanwise varying pitch commands.

Advantages from applying a spanwise varying pitch schedule have been described

in the literature. An analysis performed over 20 year ago addressed the e�ect of the

built-in twist of a rotor blade on its aerodynamics [31]. The discussion in that study

recognized the fact that the vibratory loads of a helicopter are a strong function of

the blade twist. To minimize vibratory loads, a decreased negative twist is necessary

on the advancing side while a simultaneous increased negative twist should be present

on the retreating side. A torsionally exible blade along with moment control inputs

at the blade tip and root would accommodate such a twist schedule, signi�cantly
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improving the vibration reduction ability of a rotor system. More recently two studies

at MIT have also demonstrated the bene�ts of blade mounted actuation. Speci�cally,

Hall, Yang and Hall [20] determined that actual rotor systems operate with induced

power losses 14% greater than would exist given a maximum coe�cient of lift, CL =

1:5 and the ability to prescribe a speci�c lift pattern over the entire rotor area.

A spanwise varying pitch command could therefore improve the e�ciency of the

rotor. In addition, Garcia [18] performed a linear state space analysis of an H-34

helicopter rotor equipped with blade mounted servo-aps. The model included rigid

blade apping and elastic torsion. The results predicted control loads much less than

those necessary for root pitch control in hover and forward ight. Finally, a study

by Millott and Friedmann [37] also reported that the power requirements necessary

to twist a exible blade and perform rotor control are lower than those needed to

perform full blade feathering control at the root.

From the above discussion, it is clear that it would be useful to have an actuator

that can operate in the rotating frame, while providing acceptable amounts of con-

trol authority. The remainder of this survey will focus on methods that have been

proposed for the control of the aerodynamics of wing sections, with the emphasis on

actuators that are capable of introducing a spanwise varying pitch distribution on a

rotor blade. This survey is broken down into passive and active methods.

1.2.1 Passive Methods

Landgrebe and Davis performed analytical studies on an aeroelastically tuned tab

placed on the trailing edge of a helicopter blade [28]. The goal of the tab was to

introduce a harmonic airload forcing so that, if sized and phased correctly, could

reduce the harmonic vibration of the rotor blades. Results showed that while this

approach leads to small reductions of in-plane shears at the hub, the increase in

vertical shears there are too great for this method of control to succeed.

Following an idea used for �xed wing tips, Stroub et al. [46] designed and built a

rotor blade, consisting of a conventional blade design with its outer 10% connected

to the rest of the blade with a tension/torsion device. The centrifugal force pulls the
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tip section away against the tension/torsion strap, forcing the strap to torque the tip

section, rotating it nose up. The aerodynamic forces balance this motion and the

result is net positive aerodynamic lift located at the tip. Wind tunnel results show a

12% reduction in power at cruise speeds. Additional bene�ts include 40-70% smaller

blade bending moments along with reduced sensitivity to gusts. A stability analysis

of such a free-tip blade was performed by Chopra [9].

1.2.2 Active Methods

The �rst study in actively controlling a blade mounted helicopter actuator was per-

formed by Carpenter and Paulnock in 1950 [8]. This was an experiment run on the

Langley helicopter tower, and was designed only to check the stability of a rotor

controlled with blade mounted servo-aps. Vibration e�ects were not addressed. An

external airfoil of 15.5% span was mounted just behind the trailing edge and centered

at the 75% spanwise location. The actuation of this ap was achieved using a pitch

link system. Actuating ap deections up to 15 deg, 1500 lbs of thrust and �7 deg

of rotor tilt were demonstrated. However, due to the extra drag associated with the

external ap, there was a 6.5% increase in required power.

An experimental study performed in 1965 analyzed the propulsive force of a rotor

with the inner 50% span following a di�erent pitch schedule than the outer 50% [15].

The motivation behind this design came from the fact that a helicopter's maximum

advance ratio is limited by the retreating blade stall. Using this design, the e�ects of

this retreating blade stall were delayed enough to allow this rotor to reach substan-

tially higher advance ratios than those of conventional helicopter rotors. Future work

recommended in this study included determination if the design could be simpli�ed

by reducing the independent control surface into a large chord trailing edge ap.

One type of control used in a number of rotor studies for actuation in the rotating

frame is circulation control [48]. Circulation control essentially consists of blowing a

thin tangential jet of air out of the leading and trailing edges of an (usually ellipti-

cal) airfoil. This inux of air boosts the lift coe�cients of the blade section. This

technology has been applied in the X-wing project, a rotor system that can stop in
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mid-ight and operate as a �xed wing aircraft with blades swept forward and back at

45 degree angles. Circulation control provides the lift and control necessary to make

the transition from rotating to �xed wing operation and to operate as a �xed wing

aircraft.

Some researchers have suggested using active materials for macroscopic shape

control of an airfoil [3], [14], [29], [42]. Rossi et al. [42] used magnetostrictive struts

to perform shape control on a �xed wing airfoil. While the design is too big and heavy

for helicopter control, it does show excellent response upon activation of a closed loop

shape control system utilizing LVDT sensors.

Others have investigated bending and twisting of entire lifting surfaces with surface

bonded piezoelectric ceramics. Lazarus et al. [29] investigated inducing torsion in

lifting surfaces using bending-twist and extension-twist coupled plates. Separately,

Ehlers and Weishaar [14] have also investigated the same subject. These studies

showed that for typical �xed wing aircraft, bending or torsion strain actuation may

be as e�ective as trailing edge control surfaces [29]. However, because helicopter

blades have such large aspect ratios, such an actuation method is not feasible for

rotor control.

Research by Barrett [3] showed that by partially attaching piezoelectric ceramics,

the sti�ness of the attachment becomes larger in one particular direction. The force

transmitted by such a piezoelectric ceramic is thus concentrated along this direction.

By proper alignment, these Directionally Attached Piezos (DAP's) may induce twist-

ing in a wing. Although no wind tunnel tests were performed, analytical studies

predict that wings equipped with DAP's may induce a �CL of 0.65 for Mach number

up to 0.7, using reasonable electric �elds.

Loewy and Tseng [32] analyzed a system with an aileron/tab con�guration. By

making the aileron/tab con�guration unstable and using a simple feedback loop to

stabilize it, the system becomes very sensitive to control inputs. Therefore, small tab

deections get ampli�ed into larger aileron deections.

The results of studies by Lemnios et al. [31] led Kaman Corporation to the de-

velopment of their Controllable Twist Rotor (CTR). The CTR uses standard H-34

22



blades, with a servo-ap (essentially a small airfoil) appended behind the trailing edge,

centered at the 89% span location. A conventional swashplate was used for root con-

trol of the blades, while the servo-aps were connected to a second swashplate (below

the �rst) with a pitch link system. Wind tunnel tests performed by Lemnios et al.

[30] demonstrated blade loadings 20% greater than those seen in conventional H-34

rotors. This was attributed to stall alleviation of the system at high advance ratios.

McCloud and Weisbrich [35] performed an additional wind tunnel investigation of

this same rotor, applying multicyclic control inputs. The study showed the ability

to decrease blade bending moments, while simultaneously decreasing control loads.

The one problem discovered from these studies was that the external ap produced a

tremendous amount of extra drag, resulting in higher power requirements to operate

the rotor. The improvement suggested to overcome this problem was to fair the ap

inside the blade, creating a control surface which operated much like an aileron on

a �xed wing [30]. In the literature, this improved con�guration has been termed the

advanced controllable twist rotor [34].

As an attempt to design a ap deecting mechanism compatible with an advanced

CTR design, Fabunmi [16] has suggested a complex resonant ratchet mechanism for

producing blade servo-ap deections. By actuating a spring mass system at its

resonance with a piezoelectric stack, attached to the airfoil's main spar, the system

e�ectively cranks the ap up or down using a ratchet mechanism. This study was

analytical only, but a bench test model was proposed as future work.

Spangler and Hall [45] presented a method of deecting a faired ap within a rotor

blade. Their actuator used piezoelectric ceramics to deect a 10% trailing edge ap.

Piezoelectric ceramics are normally large force, small displacement devices. Their

usefulness in this application is produced by amplifying the piezoelectric ceramic de-

ections in two ways. The �rst ampli�cation comes from bonding two piezoelectric

plates together, and actuating them in bending. By doing this, the piezoelectric

ceramic becomes a moderate force, moderated displacement actuator. The second

ampli�cation comes from using a lever arm arrangement to actuate angular deec-

tions. By making the lever arm su�ciently short, the small tip deections from the
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bender translate into relatively large servo-ap deections. For such a lever arm

arrangement to work, however, in addition to the ap hinge degree of freedom, two

additional hinge degrees of freedom are necessary to avoid encountering any geometric

sti�ening e�ects in actuating the ap deections [45]. In their design, Spangler and

Hall used small model aircraft hinges to provide these degrees of freedom. Spangler

and Hall built and performed wind tunnel tests on a scaled rotor blade typical section.

In their experiments, they encountered substantial reductions in performance due to

large amounts of friction and backlash caused by these hinges. This thesis presents

improvements over this original design, as discussed below in Section 1.3.

Independent of the research presented in this thesis, Walz and Chopra [47] are

currently developing a ap deection mechanism based on this piezoelectric bender

idea of Spangler and Hall. The main di�erence implemented by Walz and Chopra

is in the connection between piezoelectric bender and ap. They abandoned the

three hinge mechanism for one involving a molded rod attached to the end of the

piezoelectric bender and a precision machined cusp, such that the rod is able to slide

and rotate as the piezoelectric bender deects. Using this rod-cusp con�guration,

they were able to achieve 10% ap authority in a bench test experiment of their

actuator. Incorporation of this model in an airfoil is currently underway and planned

for hover and forward ight tests at the University of Maryland.

1.3 Thesis Objectives and Overview

1.3.1 Goals

As discussed in the previous sections, there are many bene�ts that may be obtained in

helicopter rotor control by implementing an actuator in the rotating frame. The main

goal of this thesis, therefore, was to improve on the design of Spangler and Hall [45], in

order to develop an actuator capable of meeting the force and deection requirements

needed for a trailing edge servo-ap to exert useful control on the aerodynamics of
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a rotor. Furthermore, bench tests of the re-designed actuator were recognized as a

necessary measure of the degree to which this proposed goal was met.

1.3.2 Thesis Organization

This thesis is involved only with the re-design of Spangler and Hall's original actu-

ator, which is de�ned, in this thesis, as the piezoelectric bender, servo-ap and the

linkage connecting the two. The conceptual view of the proposed actuator located

inside the cross-section of a target rotor blade is shown in Figure 1-1. This �gure is

a scale drawing of how the actuator presented in this thesis will �t within an airfoil.

As shown, the bender is attached directly to the main airfoil spar, and its length

is consistent with an airfoil possessing a 20% trailing edge ap. Two of the major

improvements to the design that are discussed in this thesis are easily seen in the

�gure. The �rst and most important improvement is the use of the exure mecha-

nism to couple the bender and ap deections. As shown, with this mechanism, the

three hinges of Spangler and Hall's design have been replaced with three exures.

In addition, the aerodynamic surface has been included as an integrated member of

the exure mechanism part. As will be shown in this thesis, the use of the exure

mechanism results in the complete elimination of the friction and backlash problems

encountered by Spangler and Hall. The second improvement shown is the use of a

bender with tapered thickness properties. Using a taper increases the e�ciency of

the bender, while providing additional inertial and size bene�ts.

Each of the elements of the actuator along with its predicted and observed response

are discussed in this thesis. The subjects contained speci�cally in each chapter are as

follows. Chapter 2 describes the fundamental mechanisms that cause the piezoelec-

tric e�ect, and a derivation of a state space model of the actuator, based on Classical

Laminated Plate Theory, is given. The derivation presented there is made general

enough to allow the incorporation of benders of other active materials, such as elec-

trostrictive ceramics, into the design of the actuator. This model will be used for

comparison purposes when the experimental data of the actuator is analyzed. The

25



chapter concludes with a comparison of the results predicted when the actuator is

modeled as a plate as opposed to a beam.

Chapter 3 presents the original design equations of Spangler and Hall [45] and then

treats the e�ect of the bender's geometry on its e�ciency. Speci�cally, a discussion

is presented on how tapering the properties of the bender can signi�cantly increase

its e�ciency. Furthermore, the force requirements for such an actuator to operate

e�ectively are estimated, and the scaling laws necessary for proper model tests of

the proposed actuator are derived. The design of a nonlinear circuit which increases

the maximum applied electric �eld and the associated circuit diagram (Appendix B)

are presented. The chapter concludes by describing the design and fabrication of the

exure mechanism.

Chapter 4 discusses the construction and results of the bench test experiments

of the designed actuator. Finally, Chapter 5 concludes the thesis by outlining the

accomplishments and improvements of the present design and suggests a course for

future research into this actuation mechanism.
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Chapter 2

Modeling of the Actuator

This chapter presents the derivation of the state space equation of motion of the

actuator, where, as discussed in Section 1.3, the actuator is de�ned as the bender

connected to a trailing edge servo ap using the exure mechanism. While the bender

used in the present study is a piezoelectric multi-morph, the derivation is made general

enough to include benders of di�erent types of active materials such as electrostrictive

ceramics. However, because the material used in this study is piezoelectric ceramic,

before the equation of motion is derived, the fundamental mechanisms behind the

operation of piezoelectric ceramics are presented as a motivation for the governing

equations used to describe their electro-mechanical behavior.

2.1 Piezoelectric Fundamentals

2.1.1 The Piezoelectric E�ect

In Greek, the word piezein means to press. Thus, materials which generate an electric

charge when mechanically deformed (and, reciprocally, those that mechanically de-

form when given an electric charge) are described as piezoelectric. Many materials in

nature exhibit a certain amount of piezoelectricity. Examples include natural quartz

crystal, and even human bone [41]. While the e�ect does exist, natural manifestations

of piezoelectricity are rarely pronounced. However, specially manufactured ceramics
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exhibit the property of piezoelectricity to such a degree that they �nd engineering

applications.

To understand the mechanism that causes a material to possess piezoelectric

properties, it is necessary to consider its behavior at the molecular level. A phe-

nomenon called spontaneous polarization causes the piezoelectric e�ect [41]. In this

phenomenon, the electron clouds in the atoms of the piezoelectric material displace

to one side of their positively charged nucleus. In addition, positive ions in the crys-

tal structures of the material also displace relative to their negative ions. Both of

these e�ects create tiny electric dipoles out of the atoms and crystals. In a piece of

untreated piezoelectric ceramic, all of these dipoles are oriented in a random fashion,

making it impossible for any real piezoelectric e�ect to manifest itself. Figure 2-1(a)

presents a conceptual view of this situation where a small cross-section of the material

is shown with these randomly oriented dipoles. A macroscopic piezoelectric e�ect in

the ceramic is obtained by poling it. A poled ceramic is one where the dipoles are

aligned in the poling direction, as shown in Figure 2-1(b).

Poling is induced by placing a large electric �eld, referred to as the poling �eld,

over the ceramic for an extended period of time. In Figure 2-1, this is represented by

applying the poling voltage, VP, over the thickness of the ceramic, where the poling

voltage is simply the poling �eld times the ceramic thickness. The poling voltage in

Figure 2-1(b) is positive. Because of this, the negatively charged sides of the dipoles

are attracted to it and the positively charged sides are repelled from it, causing them

to rotate and align with the electric �eld. Furthermore, because of these electrical

forces, in addition to the rotation, the dipoles also stretch as shown in Figure 2-1(b).

This dipole motion causes the ceramic to expand in the poling direction and, from

Poisson e�ects, contract in the transverse directions. Upon removal of the poling

�eld, the ceramic returns to its un-poled dimensions, but the dipoles remain aligned

in the poling direction, which is what gives the ceramic its piezoelectric properties.

It must be acknowledged that this dipole model is a simpli�cation of the true

piezoelectric mechanism in two ways. The �rst simpli�cation is that in the actual

case, electric dipoles with similar orientation group themselves into tiny domains and
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Figure 2-1: The change in dipole alignment upon poling a piezoelectric ce-

ramic. (a) Randomly oriented dipoles do not allow piezoelectric

e�ect to manifest itself. (b) Poling of ceramic aligns dipoles,

leading to a macroscopic piezoelectric e�ect.

it is these domains which get aligned with the electric �eld upon polarization. The

second simpli�cation is that not all of these domains are able to completely align with

the electric �eld due to micro-mechanical e�ects. However, enough do align to deliver

the desired piezoelectric e�ect [41].

The environment necessary to pole a piezoelectric ceramic is not �xed. It is a

function of the electric �eld level used, the length of time the electric �eld is applied

and the temperature the ceramic is at during the process. For example, the piezoelec-

tric ceramics used in the experiment discussed in Chapter 4 were poled by applying a

40 V/mil electric �eld over the ceramics at room temperature for 20 minutes. Larger

electric �elds may be used over shorter periods of time and vice-versa. Furthermore,

if the temperature of the ceramic is raised, for example by immersing it in an oil

bath, smaller electric �elds and shorter periods of time are required to complete the
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poling process. The maximum electric �eld that may be applied to a piezoelectric

ceramic in the poling direction is limited only by the electrical breakdown level of the

piezoelectric ceramic. This occurs at electric �elds between 80 to 100 V/mil [41].

Obviously, an important characteristic of the poling �eld is its orientation. The

poling vector is used to de�ne this property. By convention, the poling vector points

from the positive to negative poling electrodes and, furthermore, this direction is

always de�ned as the 3 axis of the ceramic [41]. These conventional de�nitions of the

poling vector and axis system of piezoelectric ceramics are shown in Figure 2-1.

Poling a piece of piezoelectric ceramic has a fundamental e�ect on both its elec-

trical and mechanical properties. Because of the dipole alignment that occurs, the

characteristics of the material in the poling direction, i.e., along the 3 axis, become

quite di�erent from those in the plane de�ned by the 1 and 2 axes. Furthermore,

within this plane, the properties become isotropic, meaning that the material ex-

hibits the same characteristics, whether electrical or mechanical, in all directions.

In elasticity, materials such as this, that exhibit isotropic behavior within one of its

planes of symmetry, are sometimes referred to as transversely isotropic [25]. In the fol-

lowing discussion, this will be the term used to describe this property in piezoelectric

ceramics.

It is possible to depole a piezoelectric ceramic by applying the coercive �eld across

it. The coercive �eld is an electric �eld oriented in an opposite sense to the poling

�eld. As with the poling �eld, the de�nition of the coercive �eld is not �xed. It

is a function of the �eld level, time of application and temperature. For example,

the coercive �eld is 30 V/mil while actuating the piezoelectric ceramic at 60 Hz but

15 V/mil for operation at DC. The line di�erentiating AC and DC operation, however,

is not clearly de�ned and because exceeding the coercive �eld adversely a�ects the

poled properties of the ceramic, it is important to set a coercive �eld limit appropriate

to the actuation frequencies at which the ceramic operates.
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2.1.2 Piezoelectric Constitutive Laws

In mechanics, Hooke's law relates the vectors of stress, ~T , and strain, ~S, in a material

according to

~S = S~T (2.1)

where S is the compliance matrix of the material. In general, to describe the elastic

state of a di�erential element of material, there are six components in the stress and

strain vectors, denoted in engineering notation using subscripts from 1 to 6. The

components of these vectors with subscripts of 1, 2 or 3 represent normal stress or

strain in directions corresponding to the 1, 2 or 3 axis, respectively. Furthermore, the

components with subscripts of 4, 5 or 6 represent shear stress or strain around the 1, 2

or 3 axis, respectively. To relate the stress and strain vectors, the compliance matrix,

S, must be a 6� 6 matrix. The compliance matrix is symmetric [6]. Because of this,

for a completely anisotropic material, it contains 21 independent constants. For ma-

terials such as piezoelectric ceramics, which exhibit transversely isotropic properties,

however, the number of independent constants in the compliance matrix reduces to

�ve and its form is [25]

S =

2666666666664

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 2(s11 � s12)

3777777777775
(2.2)

In electricity and magnetism, Gauss's law for electricity relates the vectors of

electric �eld, ~E, and charge density, ~D, according to

~D = " ~E (2.3)

where " is the matrix of dielectric constants. The electric �eld and charge density vec-

tors have only 3 components. Each component represents either the electric �eld or
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charge density directed in one of the main axial directions at a point in a body. In or-

der to relate these two vectors, " must be a 3� 3 matrix. Because most piezoelectric

ceramics have no cross-dielectric terms, the dielectric matrix is diagonal. Further-

more, because of the transversely isotropic property of piezoelectric ceramics, their

dielectric constants in the 1 and 2 directions are equal.

For most linear materials, Hooke's Law and Gauss's Law can be applied indepen-

dently of each other. However, because piezoelectric ceramics transduce mechanical

and electrical energy, there is also a coupling term in the constitutive relations of

piezoelectric ceramics that relates the electrical and mechanic properties. There are

four equivalent forms of the coupling matrices, implying that there are four equiv-

alent forms of the constitutive relations of these materials, depending on the choice

of dependent and independent mechanical and electrical variables. These coupling

matrices d, e, g and h are termed the piezoelectric strain, stress, voltage, and sti�-

ness matrices according to the IRE Standards of Piezoelectric Crystals [23],[24]. Each

of these coupling matrices have three rows and six columns. The four forms of the

constitutive relations are [4]

8<: ~T
~D

9=; =

24 CE �e0

e "S

358<: ~S
~E

9=; (2.4)

8<: ~S
~D

9=; =

24 SE d0

d "T

358<: ~T
~E

9=; (2.5)

8<: ~S
~E

9=; =

24 SD g0

�g �T

358<: ~T
~D

9=; (2.6)

8<: ~T

~E

9=; =

24 CD �h0

�h �S

358<: ~S
~D

9=; (2.7)

where the prime (0) symbol in these equations denotes the matrix transpose operation.
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These four equations are equivalent representations of the electro-mechanical state

of the material they describe. The relationship of the terms in each are easily found

by performing some simple matrix algebra on these equations [4]. For example, to

transform Equation (2.5) into a form where the stress and charge density are the

independent variables, as in Equation (2.6), the relation for the charge density in

Equation (2.5) is rearranged to give

~E = �
h
"T
i�1

d~T +
h
"T
i�1

~D (2.8)

Substituting Equation (2.8) into the relation for the strain in Equation (2.5) gives

~S =

�
SE � d0

h
"T
i�1

d

�
~T + d0

h
"T
i�1 ~D (2.9)

Comparing Equations (2.8) and (2.9) with Equation (2.6), it can be seen that

SD = SE � d0
h
"T
i�1

d (2.10)

g =
h
"T
i�1

d (2.11)

�T =
h
"T
i�1

(2.12)

Using a similar process, the relationship of all the parameters in these constitutive

equations may be obtained.

Because the piezoelectric ceramics couple electrical and mechanical properties,

the parameters used to describe them must also specify what boundary conditions

existed on the material upon measurement of its properties. The superscripts in

Equations (2.4), (2.5), (2.6) and (2.7) denote these conditions. The superscripts T

and S refer to dielectric measurements taken at constant stress (free) and constant

strain (blocked) boundary conditions, respectively, while the superscripts E and D

refer to elasticity measurements made at constant �eld (short circuited) and constant

charge density (open circuited) boundary conditions, respectively.

The coupling coe�cient matrices for piezoelectric ceramics are not full. For exam-

ple, the piezoelectric strain constant matrix for many commercially available piezo-
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Figure 2-2: Schematic of d15 e�ect in piezoelectric ceramics. (a) Poled piezo-
electric ceramic with no electric �eld applied. (b) Application of

positive electric �eld in the negative 1 direction causes shearing

around the 2 axis.

electric ceramics has the form

d =

2664
0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

3775 (2.13)

In each of the constituents of Equation (2.13), the �rst subscript denotes the direction

of the applied electric �eld and the second subscript indicates the resultant motion

that the coe�cient governs. The transversely isotropic nature of the piezoelectric

ceramics make the coe�cients relating to the 1 and 2 directions the same. Using the

dipole model developed in Section 2.1.1, one can gain a physical understanding of

each of these strain coe�cients.

The e�ect of the d15 strain coe�cient depends on the electric �eld present in the 1

(or 2) direction. An electric �eld applied in the 1 (or 2) direction causes a shearing of

the piezoelectric ceramic around the 2 (or 1) axis, as shown in Figure 2-2. Assuming

a positive electric �eld, E1, the dipoles rotate, aligning their negative ends with the

positive terminal (and vice-versa), shearing the material around the 2 axis, as shown.
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Figure 2-3: Schematic of d33 and d31 e�ect in piezoelectric ceramics. (a)

Poled piezoelectric ceramic with no electric �eld applied. (b)

Application of positive electric �eld in the negative 3 direction

causes extension and the 3 direction and contraction in the 1

(and 2) direction.

Figure 2-3 shows the motions governed by the d33 and d31 coe�cients upon appli-

cation of an electric �eld in the 3 direction. In terms of the dipole model discussed

earlier, when an electric �eld, E3, is applied in the poling direction, the dipoles and

ceramic move as they did during polarization. The negative ends of the dipoles move

closer to the positive terminal while the positive half of the dipoles undergo the re-

verse motion. The material therefore extends in the 3 direction. The amount of

strain produced in this direction for a given applied electric �eld is expressed by the

d33 coe�cient. In addition, due to Poisson e�ects and additional alignment of the

dipoles, the ceramic also contracts in the 1 and 2 directions. The amount of strain

produced in these transverse directions for a given applied �eld is expressed by the

d31 coe�cient. If E3 becomes negative, both ends of the dipoles get repulsed towards

the center of the cross-section, contracting the piezoelectric ceramic in the 3 direction

and necessarily extending it in the other two directions.
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Figure 2-4: Operation of piezoelectric bender.

In the operation of a bender, it is the strain in the transverse direction, governed

by the d31 coe�cient, that actually bends the structure. This is done by bonding

two piezoelectric plates together, as shown in Figure 2-4. If one of the plates has an

electric �eld placed over it in the poling direction, like that shown in Figure 2-3, it will

try to contract in its transverse directions. However, if the other plate has an electric

�eld placed over it, oriented in the coercive �eld direction, i.e., directly opposite to

that shown in Figure 2-3, it will try to expand in its transverse directions. Because

these plates are rigidly bonded together, each will constrain the other's motion. The

result will be a bending deection of the aggregate structure in a direction towards

the plate in compression, i.e., toward the plate with the electric �eld oriented in the

poling direction, as shown in Figure 2-4.

2.2 Actuator Equation of Motion

2.2.1 Assumptions

Because assumptions will be made below about the stress and electric �eld present

in the bender, Equation (2.5) is used as a starting point in the derivation. The full
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9� 9 constitutive law is given by

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

S1

S2

S3

S4

S5

S6

D1

D2

D3

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

=

2666666666666666666666664

sE11 sE12 sE13 0 0 0 0 0 d31

sE12 sE11 sE13 0 0 0 0 0 d31

sE13 sE13 sE33 0 0 0 0 0 d33

0 0 0 sE44 0 0 0 d15 0

0 0 0 0 sE44 0 d15 0 0

0 0 0 0 0 sE66 0 0 0

0 0 0 0 d15 0 "11 0 0

0 0 0 d15 0 0 0 "11 0

d31 d31 d33 0 0 0 0 0 "33

3777777777777777777777775

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

T1

T2

T3

T4

T5

T6

E1

E2

E3

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

(2.14)

where

sE66 = 2(sE11 � sE12)

In general, solving these nine coupled equations for the resultant response of the

piezoelectric material is unnecessary because, in most cases, reasonable simplifying

assumptions may be made to reduce these equations. This is also the case in the

present situation, and the assumptions made are motivated by considering the oper-

ation of the actuator.

In analyzing the bender, the �rst fact to realize is that it is a plate. This is evident

from the fact that for the bender used in the present study, its free length to width

ratio is 1.33. In addition, the thickness of this bender is less than 5% of its length

at all points. For these reasons, it is valid to reduce the three dimensional elasticity

relations in Equation (2.14) to two dimensions by making a plane stress assumption

[6]. Speci�cally, a plane stress assumption speci�es that all components of stress in

the 3 direction are zero. This implies that

T3 = T4 = T5 = 0

The second assumption is generated from the fact that the electric �eld is applied

only in the 3 direction. Therefore, the component of the electric �eld in the 1 and 2

directions are set to zero.
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Using these two assumptions on the electric �eld and stress, Equation (2.14) re-

duces to 8<: ~S

D3

9=; =

24 SE bd
~d0 "3

358<: ~T

�

9=; (2.15)

where

SE =

2664
sE11 sE12 0

sE12 sE11 0

0 0 sE66

3775

bd =

2664
1

1

0

3775

~d =

2664
d31

d31

0

3775

"3 =
"33

d31

and sE66 has the same de�nition as in Equation (2.14). Note that the applied electric

�eld term, E3, has been replaced by a general actuation strain term, �, according to

the discussion of Crawley and Anderson [10]. For the piezoelectric benders used in

the present study, � = d31E3. However, this form of the actuation term allows the

substitution of benders of other active materials, such as electrostrictive ceramics,

into this derivation by calculating and including an appropriate value for � at this

point in the derivation.

The ultimate goal of this study was to demonstrate the actuator's performance

characteristics in a bench top model only. Because of this, no aerodynamic terms will

be included in this derivation.

2.2.2 Rayleigh Ritz Analysis

While an exact solution of the partial di�erential equation of motion of this actuator

would be useful, the e�ort involved in obtaining such a solution is not warranted
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because only an estimate of the low frequency dynamics, i.e., those frequencies less

than the second modal frequency of the system, is desired for this study. Therefore, an

approximate solution method is utilized here to predict the response of the actuator.

The Rayleigh-Ritz energy method is used to obtain the equation of motion [36].

In this method, one expresses the potential energy, kinetic energy and work terms of

the structure being analyzed. The potential energy is the sum of the strain energy in

the bender and the potential energy from the sti�ness of the exures in the exure

mechanism. The strain energy in a plate undergoing pure bending is [10]

Vse =
1

2

Z
V
z2 ~K0CE ~K dV ; (2.16)

where CE is the sti�ness matrix of the piezoelectric ceramic and ~K is the vector of

curvatures. The sti�ness matrix is related to the compliance matrix of Equation (2.15)

as

CE =
h
SE
i�1

(2.17)

and the curvature vector is de�ned as

~K = �

8>>>>>>>>>><>>>>>>>>>>:

@2w
@x2

@2w
@y2

2 @2w
@x@y

9>>>>>>>>>>=>>>>>>>>>>;
(2.18)

In this derivation, w(x; y) represents the transverse deection of the bender. The

transverse deections act in the z direction, which corresponds to the piezoelectric

ceramic 3 axis, consistent with the coordinate de�nition of Figure 2-4. The transverse

deections are a function of two variables, x and y. The lengthwise x axis corresponds

to the piezoelectric ceramics' 1 axis, also shown in Figure 2-4. Furthermore, by the

right hand rule, the spanwise y axis, corresponding to the piezoelectric ceramics' 2

axis, is therefore oriented into the page in Figure 2-4. In this analysis, the coordinate

origin is located at the bender support with z = 0 and y = 0 corresponding to the
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center of the bender's cross-section there.

Using Classical Laminated Plate Theory [25], a bending inertia matrixD is de�ned

as

D =
Z
z
z2CE dz (2.19)

Combining this de�nition with Equation (2.16) gives the plate strain energy as

Vse =
1

2

Z
x

Z
y

~K0D~K dy dx (2.20)

In Figure 1-1, the relationship of the bender to the exure mechanism was shown.

Because of the sti�ness contributed by the exures and the inertia of the ap, the

e�ects of the exure mechanism must be taken into account in this model. The

sti�ness of the exure mechanism is modeled as a linear spring located at the tip

of the bender, x = l. Its spring constant, kM, represents a sti�ness per unit span.

Therefore, a spanwise integration must be performed to �nd the potential energy

stored by this spring. This potential energy is

VM =
1

2
kM

Z
y
w2(l; y) dy; (2.21)

Summing Equations (2.20) and (2.21) gives the total potential energy in the system

by

VTotal =
1

2

�Z
x

Z
y

~K0D~K dy dx+ kM

Z
y
w2(l; y) dy

�
(2.22)

The kinetic energy is also a sum of the kinetic energy of the bender and that due

to the rotational inertia of the ap. The inertia of the ap will have a large e�ect on

the dynamics of the actuators. The lever arm distance between the ap hinge and

the point where the vertical forces from the bender are applied is represented by the

symbol s. From the small angles formula, the ap deections, �, are then related to

the bender's tip deections as

� =

R
w(l; y)dy

sb
(2.23)

where b is the width of the bender. Using this expression, the kinetic energy from
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the ap is found and added to that of the bender, giving the total actuator kinetic

energy as eTTotal = 1

2

�Z
x

Z
y
m _w2(x; y)dy dx+

IF

s2

Z
y
_w2(l; y)dy

�
; (2.24)

where _( ) is the derivative with respect to time, m is the mass per unit area of the

bender and IF is the mass moment of inertia per unit span of the ap about the ap

hinge.

The work done on the system by actuating the bender is [10]

WTotal =
Z
x

Z
y

~K0 ~M� dy dx; (2.25)

where the moment created by the piezoelectric ceramics is given by

~M� =
Z
z
zCE~�(z) dz (2.26)

In the Rayleigh-Ritz analysis, assumed mode shapes are chosen, describing the

bender's transverse deections. The actual mode shapes chosen must satisfy the

geometric boundary conditions of the actuator [36]. These mode shapes consist of

a non-dimensional spatial shape multiplied by a dimensional (with units of length)

temporal modal amplitude, so that

w(x; y; t) =
nX
i=1

qi(t)�i

�
x

l

�
�i

�
y

bh

�
; (2.27)

where n is the number of mode shapes used. Note that the non-dimensional spatial

mode shapes consist of uncoupled lengthwise, �i, and spanwise, �i, components.

Substituting this expression for w into Equations (2.22), (2.24) and (2.25) yield a

sti�ness and mass matrix along with a forcing vector [36]. The entry at the ith row

and jth column of the sti�ness matrix is

Kij =
Z
x

Z
y

�
�ixx�jxxD11�i�j + �ixx�jD12�i�jyy + �i�jxxD21�iyy�j+

�i�jD22�iyy�jyy + 4�ix�jxD66�iy�jy
�
dy dx+
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Table 2.1: Assumed transverse mode shapes.

Mode Lengthwise Spanwise
Number Component Component

i �i(
x

L
) �i(

y

b
h

)

1�5 cosh(�i
x
L
)� cos(�i

x
L
)� �i

�
sinh(�i

x
L
)� sin(�i

x
L
)
�

1

6�10 cosh(�j
x
L
)� cos(�j

x
L
)� �j

�
sinh(�j

x
L
)� sin(�j

x
L
)
�

( y

bh
)2

kM�i(1)�j(1)
Z
y
�i�j dy (2.28)

Likewise, the i,jth term in the mass matrix is

Mij =
Z
x

Z
y
m�i�j�i�j dy dx+

IF

s2
�i(1)�j(1)

Z bh

�b
h

�i�j dy (2.29)

Finally, the entry in the ith row of the forcing vector is

Qi =
Z
x

Z
y
�
�
�ixx�iM�1 + �i�iyyM�2

�
dy dx; (2.30)

where the subscripts 1 and 2 on theM� terms refer to the �rst and second component

of the vector in Equation (2.26).

The mode shapes chosen in the present study were motivated by the analysis of

Anderson [2]. Ten mode shapes were used. They are shown in Table 2.1. Note that

j = i� 5 for the lengthwise components of the last �ve mode shapes in this table. In

addition, the values of �i and �i for each mode appear in Appendix A. The ten mode

shapes may be grouped into two sets of �ve. The lengthwise components in each

set correspond to the �rst �ve exact modes of a cantilever beam [7]. The spanwise

components of the �rst set are constant, reecting the fact that the �rst �ve mode

shapes represent pure cantilever bending. The spanwise components of the second

set of �ve mode shapes allow for some parabolic bending to occur across the width

of the bender. Spanwise bending such as this is often referred to as anticlastic.
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Because the lengthwise and spanwise components of the mode shapes are uncou-

pled, the integrations in the sti�ness, mass and forcing expressions of Equations (2.28),

(2.29) and (2.30) can be performed independently in each direction. The spanwise

components of these expressions integrate easily. The mode shapes in the x direction,

however, involve more complicated functions. For a uniform plate or beam, these

integrals are easily found in a good reference book such as Blevins [7]. However, for

the present study, the bender used possessed a speci�c layered geometry as discussed

in Section 4.1. For this reason, these integrations were calculated numerically. A

Simpson's rule integration easily provides results with acceptable accuracy. However,

to maximize the accuracy for this analysis, a more lengthy numerical integration rou-

tine, an adaptive recursive Newton Cotes 8 panel rule, implemented in Matlab using

the QUAD8 command [33] was used. The integrations took a great deal of time to

run, even considering that, from symmetry arguments, just over 1

8
of all the entries in

Equation (2.28) required computation. After completion, a number of the calculated

values were checked using a simple Simpson's rule program and it was determined that

using Simpson's rule provided equivalent answers up to the third or fourth signi�cant

�gure. Considering the time involved, Simpson's rule integration is su�cient.

Once computed, the results of the integrations are stored in a look-up matrix

for use with a Matlab script �le in order to assemble the mass, sti�ness and forcing

matrices. The resultant equation of motion is

M�~q +K~q = ~Q (2.31)

Equation (2.31) includes no damping term. However, piezoelectric ceramics are

inherently lossy materials. This means that if a piezoelectric ceramic is driven at a

certain frequency, in each period of oscillation a �nite amount of energy is dissipated as

heat in the ceramic. While the amount of damping in the ceramic is not overwhelming,

in order to accurately predict the response of the bender, its e�ect should be accounted

for.

Two common types of damping found in structures are modal damping and hys-
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teretic damping. The response of the actuator presented in Sections 4.2.2 and 4.2.3,

suggests that hysteretic damping is the predominant damping mechanism in the oper-

ation of piezoelectric ceramics. Unfortunately, hysteresis is a nonlinear phenomenon,

independent of frequency. For this reason, it would be very di�cult to include its

e�ect in the equation of motion. Modal damping, on the other hand, which is a func-

tion of frequency, can easily be accounted for in the equation of motion by including

a viscous damping term so that Equation (2.31) becomes

M�~q +C _~q +K~q = ~Q (2.32)

The amount of damping in a structure, whether it is modal or hysteretic, is propor-

tional to the square of the amplitude of motion [36]. Therefore, for lightly damped

structures such as piezoelectric benders, the e�ects of damping are only predominant

at the resonances of the structure. So even if hysteretic damping is predominant, its

e�ect can be adequately approximated by using the viscous damping model of Equa-

tion (2.32), with a damping level equivalent to the experimentally measured levels

present at the �rst modal frequency of the actuator.

Modal damping is a useful model to account for the damping because it implies

that the damping matrix, if transformed into modal coordinates, is proportional to

the modal mass and sti�ness matrices. Therefore, using the eigenvector matrix, V, of

the homogeneous form of Equation (2.31), the modal damping matrix is given by [36]

V0CV = c =

26664
. . . 0

2�mi!i

0
. . .

37775 ; (2.33)

where !i and mi are the natural frequency and modal mass of the ith mode, respec-

tively, and � is the viscous damping factor. For reasons discussed above, the size

of the viscous damping factor is found from experimental measurements of the ac-

tuator's �rst mode. The method used to do this is described in Section 4.2.2. This

experimentally determined value of the viscous damping factor is substituted into
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Equation (2.33) and the damping matrix used in Equation (2.32) is obtained by

C = (V0)�1c(V)�1 (2.34)

Using the state vector

~x =

8<: ~q
_~q

9=;
Equation (2.32) transforms to a state space model of the form

_~x = Ass~x + ~Bssu (2.35)

Where Ass and ~Bss are

Ass =

24 0 I

�M�1K �M�1C

35 ~Bss = M�1 ~Q

The input to the model, u, is an electric �eld level while the output, y0, is the trailing

edge ap deection, given by y0 = ~C 0
ss~x where ~C 0

ss is

~C 0
ss =

1

s

h
�1(1) �2(1) � � � �10(1) 0 0 � � � 0

i

Using this model, the frequency response of the system is obtained for comparison

with the experimental data presented in Chapter 4.

2.3 Plate and Beam Model Comparisons

In the above derivation, the bender was modeled as a plate. In the previous study of

this actuation mechanism, however, Spangler and Hall [45] modeled the bender as a

beam. In their experiment, they noted that there was a visible amount of anticlastic

bending present. While visible amounts of anticlastic bending are not expected from

the present actuator because it is 72 times as sti� as that used by Spangler and

Hall, it will still be of interest to see how the predictions of the model change when
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allowing plate as opposed to beam degrees of freedom. Such a comparison is shown in

Figures 2-5 and 2-6. Each of these plots are the result of the analytical model derived

above. The plate solution was found by running the model using all ten mode shapes

in Table 2.1 while the beam solution was found by running the model with only the

�rst �ve mode shapes in Table 2.1. The fact that the beam solution has half as

many modes is not a large source of error, because �ve modes were determined to be

su�cient enough to guarantee numerical convergence of the model.

The magnitude plot in each �gure gives the ap deection in degrees for a given

electric �eld applied to the bender. The absolute magnitudes of these plots are not

the important point in this particular discussion, however. The characteristic that

these �gures attempt to highlight is the di�erence between the predictions of the

model in using beam as opposed to plate mode shapes.

Figure 2-5 shows the frequency response comparison from 1 to 1000 Hz. Although

the proposed actuator will never operate at such high frequencies, if feedback control

is implemented with these actuators, it will be useful to know the location of high

frequency dynamics. The fact illuminated by this �gure is that by using the beam

model, the presence of a pole and zero at approximately 800 Hz is not predicted.

A more important di�erence, however, is uncovered by examining the low fre-

quency characteristics of the predicted actuator responses. In order to do this, a

close up of their magnitudes at low frequency is presented in Figure 2-6. The beam

model over-predicts the location of the �rst modal frequency by 2 Hz. However, this

represents only a 1.7% error, and is not overwhelmingly signi�cant. The more impor-

tant di�erence between the two model predictions is that the beam model predicts

a magnitude response 13% greater than the plate for frequencies below that of the

�rst mode, indicating that it is important to account for the mechanism of anticlastic

bending in predicting the response of the actuator at these low frequencies.

Overall, the beam and plate models follow the same general trends. Indeed, for

general calculations, use of the beam model does provide acceptable results. However,

if the detailed behavior of the actuator response is desired, a plate model becomes

necessary.

48



10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

Frequency (Hz)

M
ag

ni
tu

de
 (

de
g/

(V
/m

il)
)

Beam Model 
Plate Model

10
0

10
1

10
2

10
3

0

-90

-180

-270

Frequency (Hz)

Ph
as

e 
(d

eg
)

Figure 2-5: Comparison of high frequency predictions of plate and beam an-

alytic models.
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beam analytic models.
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Chapter 3

Actuator Design and Construction

Issues

This chapter is concerned with the design and construction of an actuator consisting

of a piezoelectric bender that is used to deect a trailing edge servo ap on a helicopter

blade. In order for such a design to be successful, e�cient and dependable methods

must be found to transform the bender energy into the servo-ap deections. Spangler

and Hall [45] designed and built the original prototype of this actuation mechanism.

They used commercially available piezoelectric benders that were connected to a

trailing edge ap using small hinges. The present study improves on this design

in a number of ways. The most signi�cant improvement is the use of exures as

opposed to hinges in the bender to ap attachment. A second improvement is in

the use of a bender with tapered thickness properties. Tapering the bender increases

its e�ciency in actuating a vertical tip force while providing other bene�cial inertial

and size e�ects. A third major improvement is the implementation of a nonlinear

ampli�er to increase the maximum electric �eld applied to the bender by 50%. Each

of these improvements is discussed in detail in this chapter.
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3.1 Sizing the Actuator

While the volume of piezoelectric ceramic present determines the amount of energy

available, the e�ciency with which this energy is used depends on the geometry of

the bender and the size of the lever arm chosen between the tip of the bender and

the ap hinge. This section presents the design equations of the actuator using an

impedance matching argument, and discusses the bene�ts provided by a bender with

tapered properties. Furthermore, because the design of the actuator is fundamentally

dependent on the necessary aerodynamic hinge moments, this section concludes by

presenting an estimate of the required hinge moments to operate a servo-ap on

a typical model rotor and the scaling laws used to relate the model and full-scale

parameters.

The analytical derivation in Chapter 2 made the valid argument that the actuator

is best modeled as a plate and not a beam. Unfortunately, closed form analytical

solutions for plates with complicated boundary conditions are not easily obtained.

Using the analytical model, a comparison between the approximate solution of the

equation of motion for the case of plate and beam degrees of freedom was discussed

in Section 2.3. While the e�ects of the anticlastic bending reduce the predicted

magnitude response of the bender by approximately 13%, the solutions found with

both sets of degrees of freedom follow the same trends. For this reason, a beam model

is su�cient for use as a static design tool. Therefore, the derivation of the actuator

design equations originally presented by Spangler and Hall [45] is utilized here to

produce a preliminary design of the actuator.

3.1.1 The Impedance Matching Condition

The fundamental issue in designing the actuator rests in �nding the con�guration

that maximizes the transfer of energy from the bender to the ap. The conversion

of bender energy into ap deection energy may be broken down into two main

parts. One part is the transfer of piezoelectric ceramic strain energy into bender tip

deection energy, and the other part is the transfer of that tip deection energy into
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energy expended by deecting the ap in the airstream. The former is discussed

below in Section 3.1.2 on designing an e�cient bender, and the latter is discussed in

this section.

The hinge moment needed to deect a ap increases with ap deection, �. This

resistance to ap deections can be modeled as a torsional spring, with spring con-

stant, M�. The ap hinge moment is then

MH =M�� (3.1)

Two-dimensional airfoil theory is used to relate this spring constant to the aerody-

namics of the airfoil as

M� =
1

2
�U2c2fCH�

(3.2)

where � and U are the density and free stream velocity of the uid, cf is the ap chord

length, and CH�
is an aerodynamic coe�cient reecting the change in hinge moment

per ap deection. The value of CH�
for a servo ap located on a typical helicopter

rotor blade is estimated in Section 3.1.3.

For the impedance matching argument presented in this section, it is useful to

model the contribution of this ap spring force as a linear spring, k�, located at the

tip of the bender, as shown in Figure 3-1. Also shown in Figure 3-1 is the speci�c

cross-sectional geometry of most commercially available uniform benders. This cross-

section consists of two piezoelectric wafers, sandwiching a middle shim. The thickness

of each wafer is tp, and the distance between their centers is h. A thickness parameter

used to describe such uniform benders is de�ned as n = h=tp and can never be less

than unity.

The relation between the two spring constants, k� and M�, comes from realizing

that the energy stored in each for a given ap deection must be equal. This ap

deection energy is

V� =
1

2
M��

2 =
1

2
k�w

2
A (3.3)

where wA is the tip deection of the bender. Assuming small angle ap deections,
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Figure 3-1: Schematic of uniform piezoelectric bender with tip ap spring.

the relationship between bender tip deections and ap deections is

� =
wA

s
(3.4)

where s is the lever arm distance, originally shown in Figure 1-1. Therefore, using

Equations (3.2), (3.3) and (3.4),

k� =
M�

s2
=

1

2
�U2c2fCH�

s2
(3.5)

Obviously, the spring sti�ness, k�, is dependent on the air speed, U . When the

airspeed goes to zero, the value of k� also goes to zero, and the structural model of

the bender reduces to a cantilevered beam. For easy reference, when operating with

zero airspeed, the bender will be referred to as \free". Conversely, when operating at

a non-zero airspeed, the bender will be referred to as \constrained".

To relate the transfer of energy from the bender to the ap, it is necessary to

express the constrained bender tip deections, wA, to those of the free bender, wF.

A constant vertical force, F , applied to the tip of the bender results in two di�erent

tip deections for the constrained and free cases. They are

wA =
F

k� + kB
(3.6)
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wF =
F

kB
(3.7)

where kB is the tip sti�ness of the free bender. Since the force is the same for both

cases, the relationship between the free and constrained tip deection is

wA =
1

1 + k�
kB

wF (3.8)

Substituting Equation (3.8) into Equation (3.3) gives the ap deection energy as

V� =
1

2
kBw

2
F

k�
kB�

1 + k�
kB

�2 (3.9)

Because the tip deection energy of the free bender is

VF =
1

2
kBw

2
F (3.10)

the ap deection energy is identi�ed as the product of the bender tip deection

energy and an impedance matching e�ciency, �q,

V� = VF�q (3.11)

This e�ciency factor takes on a maximum value of 0.25 when kB = k�. This is

the impedance matching condition originally described by Spangler and Hall [45].

By ensuring k� = kB, the maximum amount of the bender's tip deection energy is

converted into ap deections.

The parameter used to enforce the impedance matching condition is the lever arm

distance, s. The necessary value of this impedance matching lever arm is

sopt =

s
M�

kB
=

s
�U2

Dc
2
fCH�

2kB
(3.12)

where UD is the design point airspeed.

Once the actuator is designed and built, all the design parameters are set. It

55



is therefore instructive to see how the ap deections of the actuator change with

airspeed. Dividing both sides of Equation (3.8) by the lever arm length gives the

relation of ap deections for the constrained and free case as

�A =
1

1 + k�
kB

�F (3.13)

If the proper impedance match was made to the design point airspeed, the tip sti�ness

is

kB =
1

2
�U2

Dc
2
fCH�

s2opt
(3.14)

and the ratio of the bender and ap sti�ness becomes

k�

kB
=

�
U

UD

�2
(3.15)

Substituting Equation (3.15) into Equation (3.13) gives

�A =
1

1 +
�

U

UD

�2 �F (3.16)

At the design point, U = UD, the constrained ap deection, �AD, equals one half the

free ap deection. Normalizing Equation (3.16) by this design point ap deection

gives
�A

�AD
=

2

1 +
�

U

UD

�2 (3.17)

which expresses the variation of the ap deection from the design point as the

airspeed changes.

3.1.2 Designing an E�cient Bender

As discussed in the previous section, choosing a properly impedance matched lever

arm distance maximizes the conversion of energy from the bender to the ap. There-

fore, the only additional way to increase the amount of energy converted into ap

deections is to increase the e�ciency with which the bender converts its strain en-
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ergy into useful tip deection energy. It is therefore logical to de�ne a bender e�ciency

as

�B =
1

2
kBw

2
F

VB
(3.18)

where the numerator is the amount of energy transferred into tip deections and VB

is the strain energy of the bender. VB is given by

VB =
1

2

Z
V
E�2 dV (3.19)

where E is the Young's Modulus and � is the actuation strain discussed in the last

chapter. The volume integral of Equation (3.19) is taken only over the volume of

piezoelectric ceramic present in the bender. This e�ciency is a function of the geom-

etry of the bender.

E�ciency of a Uniform Bender

For a commercially available bender, possessing uniform properties over its length,

such as the one shown in Figure 3-1, the strain energy is

VB = E�2ltp (3.20)

The tip sti�ness for this bender is

kB =
3EI

l3
(3.21)

If the bending inertia of the middle shim is neglected, the moment of inertia is

I =
t3p
6

�
1 + 3n2

�
(3.22)

If the bond between the two sides of a bender is perfect, allowing no shear lag, the

induced strain of the piezoelectric ceramics may be modeled as a moment acting at

the tip of the bender [11]. Therefore, the bending moment at each point in the beam
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is

M = E�t2pn (3.23)

From elementary beam theory, the resultant tip deection of the free bender is then

wF =
Ml2

2EI
(3.24)

Using Equations (3.20), (3.21), (3.22), (3.23) and (3.24), the uniform bender e�ciency

reduces to

�B =

�
3

4

� 
3n2

1 + 3n2

!
= �t�c (3.25)

The �rst e�ciency, �t, equals 3/4 and represents the fraction of energy a beam in

bending converts into vertical tip deections. For a uniform beam, it is a constant.

However, as discussed in the next section, by tapering the properties of the bender,

the value of �t can be increased.

The second e�ciency in Equation (3.25), �c, represents the local e�ciency of the

bender in actuating a moment. It is not a function of the geometry or the boundary

conditions of the bender. In actuating a force or displacement, 100% e�ciency from

an in�nitesimal element of a piezoelectric ceramic is attained when it is allowed to

strain without constraint. However, actuating a piezoelectric plate in bending forces

the stress (and strain) distribution to vary linearly through the thickness, with one

half in tension and one half in compression. Because of this, the work done by the

material becomes more ine�cient the farther it is from the surface of the bender. This

loss in e�ciency from the interior piezoelectric material is the cause of the e�ciency

factor, �c. This factor increases from a value of 0.75 when n = 1 to a value of 1 when

n =1. It reects the fact that as the two piezoelectric plates of the uniform bender

move farther apart, the induced strain over the thickness of the plate becomes less

constrained and the e�ciency of the bender increases.

When no shim is present between the two halves of the bender, n = 1 and �c =

0:75. For a uniform bender, this makes the overall bender e�ciency �B = 0:5625. By

increasing the thickness of the middle shim, both of these e�ciencies increase. As a
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Figure 3-2: Schematic of piezoelectric bender with optimum thickness taper.

note, in the theoretical limit where n =1, �c = 1 and the bender e�ciency increases

to 75%. However, this overestimates the true e�ciency that would result because

the bending inertia of the shim was assumed to be negligible in Equation (3.22).

Therefore if the bending inertia of the shim becomes large enough to invalidate this

assumption, the expression given by Equation (3.22) should be modi�ed to include

the e�ects from the shim.

E�ciency of a Tapered Bender

In the expression for the uniform bender e�ciency, Equation (3.25), �t was described

as the e�ciency of the bender in converting its strain energy into vertical tip de-

ections. For a bender with constant lengthwise thickness properties, this e�ciency

is a constant 3/4. However, tapering the properties yields values of �t greater than

3/4 and, in the theoretical limit, makes �t = 1. Tapering the bender properties also

creates more room for bender tip deections and a center of gravity located closer to

the leading edge of the airfoil. All of these issues are discussed in this section.

Theoretically, there exists an exact thickness distribution that raises �t from 3/4

to 1. It will be instructive to �nd this distribution. The bender analyzed here is

shown schematically in Figure 3-2. This theoretical bender is modeled as two tapered
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piezoelectric plates bonded directly to one another. For simplicity, no middle shim

was included in the make-up of this bender.

The goal is to determine the e�ect a certain thickness distribution has on the

bender's ability to actuate a tip deection. However, due to the non-uniform thickness

properties of this bender, presenting a closed form analytical solution for this problem

would overshadow, with mathematical complexity, the governing motivation behind

why a tapered bender is useful. A straightforward way to understand the problem

recognizes that by Maxwell's Law of Reciprocal Deections [6], predicting the tip

deections caused by a piezoelectric actuation strain is equivalent to predicting the

strain caused by an applied tip force. The strain at any point from a tip force is

S =
Mz

EI(x)
=
F (l � x) z

EI(x)
(3.26)

which expresses that the strain at any cross-section of a beam in bending varies

linearly with z. This is illustrated in Figure 3-3 for a uniform cantilevered beam

with an applied tip force. Also shown in Figure 3-3 is the strain distribution at �ve

di�erent cross-sectional locations. As shown, the amount of strain over a cross-section

decreases upon moving toward the tip. By the Law of Reciprocal Deections, this

implies that the piezoelectric material at the tip of a uniform bender contributes very
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little in actuating a tip displacement.

Because the amount of strain at any cross-section is proportional to the strain at

the beam surface, the change of the surface strain with x is a valid way to measure

how the overall cross-sectional strain changes with length. The moment of inertia of

the tapered beam of Figure 3-2 is

I(x) =
2t3o(x)

3
(3.27)

Substituting to in for z in Equation (3.26) and using Equation (3.27), the surface

strain is expressed as

Ss =
3F (l � x)

2Et2o(x)
(3.28)

By keeping the surface strain constant over the length of the beam, the amount of

induced strain from the tip force is maximized, and, reciprocally, the amount of tip

deection from a given piezoelectrically actuated strain is also maximized. A constant

surface strain is attained by prescribing the thickness distribution as

to(x) = tw

r
1�

x

l
(3.29)

The de�nition of the bender e�ciency, Equation (3.18), and strain energy, Equa-

tion (3.19), still hold for this tapered bender. The strain energy is

VBs = E�2tw

Z l

0

q
1� x

l
dx =

2E�2twl

3
(3.30)

and the tip sti�ness and free bender deection, found using elementary beam theory,

are

kBs =
Et3w
l3

(3.31)

wFs =
�l2

tw
(3.32)

Substituting Equations (3.30), (3.31) and (3.32) into Equation (3.18) shows that the
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e�ciency of this square root tapered bender is 75%. However, this 75% e�ciency is

accounted for by considering that the value of �c, which is a local e�ciency, inde-

pendent of geometry, is 75% when there is no middle shim in the bender. Therefore,

by introducing the square root taper, the e�ciency, �t, has increased by 33% to its

maximum possible value of one.

Another bene�t of the bender with the square root taper is that its center of

gravity is closer to the leading edge of the airfoil. Since having weight near the

trailing edge of an airfoil leads to undesired e�ects such as utter instabilities [5], any

modi�cation that shifts the center of gravity of these actuators toward the leading

edge is very useful.

The �nal bene�t from using a tapered bender is one related to the size constraint

on the design. The thickness of the airfoil at the chord location corresponding to the

tip of the bender governs how thick the actuator may be. The actuator is constrained

to be small enough to �t within this thickness while also allowing enough room for

the necessary bender tip deections. Tapering the properties of the bender decreases

its thickness at the tip, greatly relieving this thickness constraint in the design.

Benders with square root tapers are not feasible, because it is almost impossible to

apply a voltage over such a bender that will create a uniform electric �eld throughout.

However, by constructing a bender with uniform piezoelectric plates, separated by a

linearly tapered shim, a great deal of the improved e�ciency is realized. This tapered

bender design is shown in Figure 1-1. The equation for the curvature of the bender

at any cross-section is

w00(x) =
M(x)

EI(x)
=

6�

�
1 +

ts(x)
tp

�
�
tp +

1

2
ts(x)

� 
1 + 3

�
1 +

ts(x)
tp

�2! (3.33)

where the shim thickness, ts, is now a linear function of x. By integrating this func-

tion numerically, the tip deections and sti�ness may be calculated. Performing an

iterative search of di�erent shim thicknesses yields a design maximizing the e�ciency

of the bender. For example, by using an aluminum shim with a wall thickness of
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Figure 3-4: Concept of the layered piezoelectric bender.

0.068 in that tapers to a point at the bender tip, along with two piezoelectric ceramic

plates, each 0.030 in thick, an e�ciency of 74.8% was calculated. Of course, by using a

middle shim to achieve the tapered geometry, in addition to the increase in e�ciency

from tapering the bender, this calculated e�ciency also reects the extra e�ciency

gained from having a non-zero shim thickness over the length of the bender.

The construction of a workable bender with a tapered shim was not possible, due

to time constraints. Therefore, a second, simpler method was used to create a bender

with a tapered cross-section. This consisted of a layered geometry with eight thin

piezoelectric wafers possessing di�erent lengths, as shown in Figure 3-4. Integrating

numerically and iterating to �nd the optimum set of lengths which maximized the

e�ciency led to the actuator used in the experiments presented in Chapter 4. The

dimensions of this actuator are presented in Section 4.1. No middle shim was used in

its construction.

In actuality, obtaining e�ciencies from this layered bender on the order of 70 {

75% becomes impossible when the extra sti�ness from the electrodes present on each

of the individual wafers is taken into account. However, if the the extra sti�ness from

any electrodes present on the piezoelectric wafers is neglected, a 70.6% e�ciency is

calculated for this bender. This is a 26% improvement over the e�ciency of a uniform

bender with no middle shim.

Although manufacturing benders with tapered thickness properties is more di�-
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cult than producing uniform benders, considering all of the bene�ts they provide in

the particular application of deecting a trailing edge ap on a helicopter blade, it

makes sense to include them in all future designs of this actuation method.

Basic Actuator Design Procedure

From the above discussion, a basic actuator design procedure can be formulated. The

thickness of the airfoil at the bender tip, Ttip, presents a major thickness constraint

on the design of the actuator because the tip thickness of the bender, tbt, must be

small enough to �t within this gap while also providing enough room for its necessary

displacements. This thickness constraint is expressed as

tbt + 2wA < Ttip (3.34)

Another constraint on the design is the allowable bender length. This constraint is a

structural one. The bender is clamped directly to the main airfoil spar, as shown in

Figure 1-1. The length of the bender must be small enough to ensure that the loss

of main spar material at the clamp location does not seriously a�ect the structural

integrity of the blade.

The design process begins by choosing a desired ap deection size. By Equa-

tion (3.4), this is translated into an equivalent bender tip deection using an initial

guess of the lever arm size. Using Equation (3.34), the allowable bender thickness is

found. Following the e�ciency discussion above, reasonable piezoelectric wafer and

shim thicknesses are then chosen. The last bender parameter speci�ed is its length.

It is chosen long enough such that the desired bender tip deections may be achieved

without seriously a�ecting the structural integrity of the airfoil, as discussed above.

In a separate calculation, a design point airspeed is identi�ed and the ap spring sti�-

ness, M�, is estimated according to the discussion of Section 3.1.3. The impedance

matching condition, Equation (3.12), is then enforced to �nd the necessary lever arm

length, s. Using this updated lever arm length, the resultant ap deections are

checked to ensure that they are large enough. If they are not, the dimensional prop-
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Table 3.1: Target model rotor parameters

Model Parameter Value

Rotor Blade Radius, R 4.5 ft

Rotational Speed, 
 780 RPM

Blade Cross-Sectional Shape RC 410

Blade Chord, c 4.454 in

Blade Thickness 10%

erties of the bender are adjusted and the process repeated. By iterating with this

procedure, the necessary actuator dimensions may be set so that it yields the maxi-

mum amount of useful control authority over the aerodynamics in which it operates,

while not substantially a�ecting the structural characteristic of the rotor blade.

3.1.3 Actuator Force Requirements and Scaling

The design of an actuator capable of operating at a design point location on a target

helicopter blade depends, from the impedance matching arguments of Section 3.1.1,

on �nding an accurate estimate of the expected ap hinge sti�ness,M�, at that point.

The target rotor for this study was a model scale rotor used for operation in Freon.

Its parameters are speci�ed in Table 3.1. In this section, the hinge moments expected

along the blade span of this rotor are estimated in order to determine the necessary

design point ap sti�ness. Furthermore, since the fundamental concern in the model

scale studies of this actuator is to determine useful information about its full-scale

applications, the scaling laws relating model and full-scale actuator parameters are

also presented.

Servo-Flap Hinge Moment Estimates

In the discussion of Section 3.1.1, the hinge moment was expressed as a function of

only the ap deection angle, �. However, a more accurate representation of the hinge
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moment is

MH =
1

2
�U2c2f fCH�

� + CH�
�g (3.35)

where � is the airfoil angle of attack and CH�
is an aerodynamic coe�cient expressing

the sensitivity of the hinge moments to changes in angle of attack. This equation

expresses the fact that while the hinge moments increase with ap deection, the

angle of attack of the airfoil also a�ects the hinge moment magnitudes. Because the

aerodynamics of a helicopter rotor are so complex, the values for the angle of attack

and the hinge moment coe�cients, CH�
and CH�

, are not constant. The value of CH�

used in Equation (3.2) must therefore be an average aerodynamic coe�cient relating

the sensitivity of the hinge moment at a certain design speed to changes in the ap

deection angle. Furthermore, because of the dependence of the hinge moments on

angle of attack, the choice of this average value must also take into account the e�ects

from non-zero angles of attack.

Glauert [19] determined an analytical expression for the expected hinge moments

using thin airfoil theory. De�ning the ap chord length as cf = Efc, the aerodynamic

coe�cients are

CH�
=
�CL�

�Ef
2

��
3

2
� Ef

�q
Ef(1� Ef)�

�
3

2
� 2Ef

��
�

2
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q
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��
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2 (a2CH�
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�
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�
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q
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q
Ef (1� Ef)
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For airfoils with very large aspect ratios (> 20), such as rotor blades, the lift curve

slope is approximated as CL� = 2�.

Abbott and Von Doenho� [1] present a simple formula for the hinge moment

coe�cient as

MH =
1

2
�U2c2f

(
@CH

@CL

CL +
@CH

@�
�

)
(3.36)

The value of CL is plotted in [1] as aerodynamic data as a function of collective angle
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XFOIL with Mach and Viscous Effects (Alpha = 0)    
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Figure 3-5: Calculated hinge moment sti�ness with blade span for a rotor in

hover, using several computation methods.

of attack, �, and ap deection, � and values for @CH
@CL

and @CH
@�

are found with thin

airfoil theory. For an airfoil with a 20% ap to chord ratio, @CH
@CL

and @CH
@�

are �0:09

and �0:65, respectively. Abbott and Von Doenho� remark, however, that while thin

airfoil theory can be used to get values for hinge moments, the accuracy of these

numbers is sometimes poor due to viscous e�ects at the trailing edge.

An additional source used to verify hinge moment magnitudes was XFOIL [12],

a 2-D panel method accounting for compressibility and viscous forces. The hinge

moment sti�ness magnitudes,M�, calculated using the above three sources are plotted

in Figure 3-5 as a function of span location on a blade of the target rotor operating

in hover.

Considering the 0 deg angle of attack data �rst, the agreement between the cal-

culations of Glauert and Abbott and Von Doenho� is good. This is expected, since
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both are based on thin airfoil theory. However, they serve as a check on one another,

validating the hinge moment magnitudes predicted. The numbers found with XFOIL

for 0 deg angle of attack are smaller than the predictions found with thin airfoil the-

ory. The viscous forces on an airfoil tend to increase the boundary layer thickness,

which lowers the necessary hinge moments.

The hinge moments for a 5 deg collective angle of attack were also calculated using

the methods of Abbott and Von Doenho� and XFOIL. As shown, at the tip, XFOIL

no longer underestimates the hinge moment magnitudes found with thin airfoil theory.

This increase can be attributed to compressibility e�ects that are largest at the tip

of the rotor.

In this study, the goal is to demonstrate that a piezoelectrically actuated servo-

ap can operate e�ectively at the highest dynamic pressure present on a typical rotor

system. This would usually imply impedance matching to the aerodynamics at the

rotor tip. However, because of the tip loss associated with a helicopter rotor, the

actuator in the present study was designed to operate at the 90% span location of the

target rotor blade. From Figure 3-5, to operate at the 90% span location, a reasonable

estimate of the ap hinge sti�ness, M�, is 1.8 in-lb/in/rad.

Usually this value for M� can immediately be applied to the actuator design

process described in Section 3.1.2. However, as discussed below in Section 3.3.1,

extra sti�ness is added from the exure mechanism, which couples the bender and

ap deections. Because of this fact, the value ofM� used in the design of the actuator

for this study is slightly larger than 1.8, as discussed in Section 3.3.1.

Model Scaling Laws

Before an aerodynamic device is implemented into a full-scale prototype, a model of

it and the aerodynamic structure it is a part of is typically built and tested. The

purpose of building a model is to obtain data that can predict how the device will

operate in the full scale prototype. However, in order to insure that tests of a model

accurately characterize the full-scale prototype, the designer must ensure that the

aerodynamic conditions for the model and full-scale tests are dynamically similar.
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Two aerodynamic ows are dynamically similar when identical types of forces are

parallel and related by a constant scale factor [17]. This is done by setting equal

appropriate non-dimensional groups of the model and full scale ows.

The appropriate groups to use are found by non-dimensionalizing the governing

equations of motion of the phenomenon under study. In the present case, by treat-

ing the hinge moment applied by the bender as an externally applied moment, the

dynamic equation of motion of the ap is

IF
@2�

@t2
+
1

2
�U2c2fCH�

� = Cp

E�t2ps

l
(3.37)

where Cp is a constant factor, depending on the geometry of the bender (tapered or

uniform). According to the Buckingham � Theorem [17], to non-dimensionalize this

equation, three dimensional parameters must be chosen such that by combining them

into certain ratios yields factors with dimensions equal to the equation's primary

dimensions. The primary dimensions in the above equation are length, mass and

time. For this reason, the density, rotor blade radius, R, and free stream velocity are

chosen as the dimensional parameters used to non-dimensionalize Equation (3.37).

The lengths in Equation (3.37) are easily non-dimensionalized by normalizing

them by the rotor blade radius, so that �cf = cf=R, �tp = tp=R, �s = s=R and �l = l=R.

The non-dimensional ap mass moment of inertia and the time variable are

�IF =
IF

1

2
�R4

(3.38)

�t =
tU

R
(3.39)

Substituting these non-dimensional parameters into Equation (3.37) gives

�IF
@2�

@�t2
+ �c2fCH�

� =
E

1

2
�U2

Cp��t
2
p�s

�l
(3.40)

This equation shows that in order to perform meaningful tests of a geometrically

scaled model of this actuator, the non-dimensional mass moment of inertia and the
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modulus to dynamic pressure ratio,

E
1

2
�U2

(3.41)

must be equal in the model and full-scale tests. Because Young's modulus, E, for

piezoelectric ceramics does not change between the model and full-scale, this implies

that the dynamic pressure for the model and full-scale ows must be equal.

In addition to the above requirements on the scaling between model and full scale,

because compressibility forces play a major role in the aerodynamics of a rotor system,

the Mach number represents the last non-dimensional parameter that should be equal

between model and full-scale in order to ensure dynamic similarity.

Setting equal the model and full-scale values of the non-dimensional parameters

speci�ed above will yield the necessary scaling laws. Geometric similarity requires

that all dimensions scale according to

RS =
Rf

Rm

(3.42)

where, in the following, the subscripts \m" and \f" denote model and full-scale pa-

rameters and the subscript \S" denotes a constant factor representing the full-scale

to model ratio. Furthermore, enforcing the Mach number requirement forces the

velocities to scale as

US =
Uf

Um

=
af

am
(3.43)

where a is the speed of sound of each aerodynamic medium. And, �nally, in order to

have equal dynamic pressures, the model and full-scale uid densities must be related

as
�m

�f
=

U2
f

U2
m

= U2
S (3.44)

The inertial scaling between model and full-scale requires only that the non-

dimensionalized mass moment of inertia, de�ned in Equation (3.38), be the same

for both cases. Because of this, the inertial scaling for these tests may be satis�ed

independently of the other scaling laws derived above.
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In the present study, the frequency behavior, ap deections and achievable hinge

moments will be important parameters to relate between the model and a full-scale

helicopter. The ap deections are the ratio of the lever arm length to bender tip

deections. Because the model is geometrically scaled, this ratio and therefore the

ap deections will be equal between model and full-scale.

The frequency scaling law is found by using the de�nition of the velocity at any

point on the rotor as

US =
Uf

Um

=
Rf
f

Rm
m

(3.45)


f


m

=
US

RS

(3.46)

In helicopter control, it is typical to normalize the frequencies associated with a rotor

in terms of its rotational speed, 
, thereby expressing frequencies as a number of

cycles per revolution of a rotor blade. For example, the bandwidth of the actuator

of the present study can be speci�ed as the frequency of the �rst structural mode.

The value of the �rst modal frequency will change between model and full-scale tests

according to Equation (3.46). However, its normalized value, i.e., the modal frequency

divided by the rotational frequency of the rotor, will be the same in the model and

full scale tests. This is discussed further in Section 4.2.2.

The hinge moment scaling law is found by considering the full-scale to model ratio

of any of the terms in Equation (3.37). For example, taking the ratio of the static

hinge moment term gives
MHf

MHm

=
(cf)

2
f (CH�

)f

(cf)2m(CH�
)m

(3.47)

where the subscripts outside the parenthesis stand for full or model scale. The hinge

moment coe�cient, CH�
, is dependent only on the ap chord ratio [19]. Therefore, if

the same ap chord ratio is used in model and full-scale (which is necessary due to

geometric scaling), the hinge moments scaling law becomes

MHf

MHm

= R2
S (3.48)

All of the above scaling laws are summarized in Table 3.2. Each scaling relation-
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Quantity Ratio of Full-Scale to Model

Geometry RS

Velocity US

Density 1

U2

S

Frequency US
RS

Hinge Moment R2
S

Table 3.2: Scaling laws from model to full-scale.

ship in the second column of this table represents the ratio of the full scale to model

scale value. The relationships expressed in Table 3.2 are the correct scaling laws to

ensure dynamic similarity for rotating model scale tests of the piezoelectric actuator.

The actuator in the present study was designed for incorporation into the model

rotor speci�ed in Table 3.1. This is a Mach-scaled rotor, but the dynamic pressures

associated with it are approximately 35% smaller than those of a full-scale helicopter.

This will not a�ect the measurements performed in the present study, because it

consists only of bench top experiments, independent of any speci�ed aerodynamic

environment but it will be an important fact to take into account when the full-scale

capabilities of the present actuator are determined. In the above discussion on the

estimated hinge moments, the designed actuator location was speci�ed as the 90%

span point on the target model rotor in Freon. If the actuator in the bench top

experiment is properly impedance matched to this span location, by Equation (3.13),

the deections measured on the bench will be twice those expected at the 90% span

location on the target model rotor in Freon. If the dynamic pressures were equal

between model and full-scale, the bench top measurements would also be twice as

large as the expected ap deections from a full-scale actuator located at the 90%

span point on an operational helicopter. However, because the full-scale dynamic

pressures are larger than the model scale, Equation (3.13) must be used with an

appropriate value chosen for k� to relate the model and full-scale ap deections.
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This will be discussed further in Section 4.2.3.

3.2 The Nonlinear Circuit

The poling and coercive �eld limits for a piezoelectric ceramic di�er by at least a

factor of two. It is possible to take advantage of this fact by using a nonlinear circuit

to drive the piezoelectric bender. The motivation behind this circuit and its design

is presented in this section.

From the discussion of Section 2.1.1, determining an exact value for the poling and

coercive �elds is not possible, because the de�nition of each is not �xed. It is possible

to apply electric �elds in the poling direction that are very large indeed. The �eld level

in the poling direction is limited only by the electrical breakdown of the piezoelectric

material, which occurs between 80 and 100 V/mil [41]. For this reason, it is not

unusual to apply poling �elds as high as 60 V/mil over a piezoelectric ceramic. The

coercive �eld, on the other hand, is extremely dependent on the actuation frequency.

For example, its value at DC is speci�ed as 15 V/mil, while for AC operation at 60

Hz, it is given as 30 V/mil [41]. In most cases, the operation of the actuators for

helicopter control will not occur at frequencies near DC. For this reason, a coercive

�eld limit of 30 V/mil is allowable in the operation of the piezoelectric bender for

helicopter control.

If a pure sinusoidal voltage is applied to a piezoelectric ceramic, to avoid depoling

it, its amplitude is constrained to ensure the resultant applied electric �eld remains

less than the coercive �eld limit. The relationship of such an applied voltage signal

to the poling and coercive voltages, VP and VC, is shown in Figure 3-6(a). Obviously,

using such an input driving signal would not take advantage of the capacity of piezo-

electric ceramics to withstand high electric �elds oriented in the poling direction.

A common method of making use of the di�erence in poling and coercive �eld

limits in the operation of piezoelectric stacks, which provide only extension and com-

pression, is to add a DC bias, V0, in the poling direction and actuate with a sinusoid

of appropriate amplitude, such that both the poling and coercive voltage limits are
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Figure 3-6: Piezoelectric ceramic input voltage driving signals.

reached, as shown in Figure 3-6(b). However, if such an input is used to actuate a

bender, the maximum DC bias that can be applied is also limited by the coercive

�eld. Therefore, if the ratio of the poling to coercive �eld limits is set greater than

three, this limit on the DC bias will also place a limit on the amplitude of the applied

AC signal so that the resultant electric �eld remains below the coercive limit over its

entire period of oscillation. When the ratio of the poling to coercive �eld limits is

signi�cantly greater than three, these limits will constrain the applied electric �eld to

levels far below the maximum allowable poling �eld constraint. For this reason, this

is also not an optimum way to drive a piezoelectric bender.

A better way to take advantage of the antisymmetric voltage limits of the piezo-

electric bender is to construct a nonlinear circuit such that an input sinusoid, Vin,

produces the trace shown in Figure 3-6(c). Such a trace is obtained by constructing
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Figure 3-7: Input to output characteristic of nonlinear ampli�er.

the nonlinear ampli�er so that it has the input to output voltage characteristic shown

in Figure 3-7.

As discussed in Section 3.1.2, the stress and strain vary linearly through the thick-

ness of a structure in bending, with one half in tension and the other in compression.

In light of the fact that the electric �elds in the poling and coercive directions actuate

compression and tension in the transverse direction, respectively, it is clear that at

any given time in the operation of the bender, one half will have an electric �eld

oriented in the poling direction, and the other half will have an electric �eld oriented

in the coercive direction. Therefore, in order to implement the above described non-

linear circuit in the operation of a bender, two nonlinear ampli�ers with input to

output voltage characteristics similar to Figure 3-7 are needed, one for each half of

the bender.

In order to create the necessary input to output voltage characteristic of each

nonlinear ampli�er, diodes were used in the make-up of the circuit. When forward

biased, a diode may be modeled as an in�nitely conductive short circuit, while a

reverse biased diode behaves like an open circuit. Ideally, the break between the

short and open circuit regimes of a diode would occur when the voltage di�erence
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Figure 3-8: Block diagram of nonlinear circuit with feedback linearization.

across the diode changed signs. In actuality, however, when the diode is forward

biased, it cannot be assumed to be in�nitely conductive until the voltage di�erence

across it exceeds approximately 0.6 V. The input to output voltage characteristic

of Figure 3-7 shows the change in slopes of the input to output characteristic to

occur at the origin. However, the presence of the non-zero 0.6 V activation voltage

of the diodes moves the point where the slopes change away from the origin, which

distorts the desired input signal trace of Figure 3-6(c). This distortion was eliminated

using feedback linearization. By summing the output of the two nonlinear ampli�ers,

feeding a fraction of that signal back to the input, and introducing a large linearizing

gain, the distortion was virtually eliminated. This feedback loop is shown in Figure 3-

8 and the actual circuit used in this study is presented in Appendix B.

The circuit in Appendix B is set up for operation between poling and coercive �eld

limits that di�er by a factor of two. As discussed at the beginning of this section, it is
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possible to operate the bender using the �eld limits of 60 and 30 V/mil. However, for

conservative reasons, in the present study the applied poling and coercive electric �eld

limits were limited to 40 and 20 V/mil, respectively. In the experiments presented

in the next chapter, these limits were never exceeded. It is important to realize

this when predicting the achievable performance of the actuator from the bench top

measurements, as discussed in Section 4.2.3.

If the nonlinear circuit discussed in this section were not implemented, to avoid

depoling the ceramic, an applied bender input voltage signal similar to that shown

in Figure 3-6(a) would be necessary. However, if the poling and coercive �eld limits

di�er by a factor of two, use of the nonlinear circuit increases the average applied

electric �eld by 50%, which will signi�cantly increase the actuated response of the

bender.

3.3 Design and Fabrication of the Flexure

Mechanism

The most critical part to succeeding in actuating a trailing edge ap with a bender

is to �nd a way to e�ectively connect the bender to the ap, while providing three

separate degrees of freedom for proper operation.

Spangler and Hall used hinges in their design [45]. Not only are hinges a source

of some mechanical backlash in the system, they were not feasible for the present

design, due to its small scale. A better way to provide for the degrees of freedom

is to use exures. This was done by creating a part consisting of the three separate

exures in a very speci�c arrangement. The cross-section of the �rst generation

exure mechanism is shown in Figure 3-9. As shown, the exure mechanism includes

the aerodynamic control surface, three exures, as well as two surfaces used to bond

the exure mechanism to the bender and to the airfoil's top surface. Besides the

obvious advantage of using exures as opposed to hinges, another distinct advantage

of this design is that the lever arm distance, s, is now set precisely upon fabrication

of the part.
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Figure 3-9: Geometry of �rst generation exure mechanism.

The exure mechanism is manufactured by hot pressing a piece of Delrin, using

precision machined dies. Delrin is an acetal resin, made by Dupont, with exceptional

fatigue properties. It has a sharp melting point at 347 F, a modulus of elasticity of

450,000 psi, a tensile strength of 10,000 psi, and a speci�c gravity of 1.42 [13]. As

discussed in the next chapter, some problems existed with Delrin's bond integrity to

the bender. For this reason, other materials might be investigated for better bonding

properties, while retaining the strength and fatigue properties of Delrin.

3.3.1 Geometric Sti�ening

Obviously, the use of exures adds additional sti�ness to the system. To insure that

this extra sti�ness did not seriously detract from the operation of the actuator, the

summed contribution of the sti�nesses from the three exures was speci�ed to remain

less than 10% of the hinge moment sti�ness, M�.

Each exure was modeled as a torsional spring with a sti�ness of

ki =
EdIi

li
; (3.49)

where i is the exure number, identi�ed in Figure 3-10, li is the exure length, the

moment of inertia is

Ii =
t3i
12

(3.50)
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Figure 3-10: E�ect of exure mechanism geometry on its sti�ness.

and ti is the exure thickness. To determine the overall exure mechanism sti�ness,

the sti�nesses of the three exures cannot simply be added because there are geometric

constraints relating the deection undergone by each exure. Figure 3-10 shows the

important geometric relation between each of the exures. Assuming the bender

tip moves in a purely vertical direction, the relative kinematics were analyzed and

expressions for the strain energy in each of the exures was obtained. The linearized

form of these expressions is

V1 =
1

2
k1�

2 (3.51)

V2 =
1

2
k2

��
1 +

L1

L2

sin�r

�
�

�2
(3.52)

V3 =
1

2
k3

�
L1

L2

sin �r

�2
�2 (3.53)

where L1, L2 and the rigid angle, �r, are de�ned in Figure 3-10, � is the ap deection

and k1, k2 and k3 are given by Equation (3.49). For the �rst generation exure

mechanism, L1 = 0:124 in, L2 = 0:058 in, and �r = 36 deg. What this analysis shows

is that because of such a large non-zero rigid angle, �r, the rotations undergone by

exure #2 are 2.2 times greater than those of exure #1, making the energy lost

in that middle exure �ve times as great. This is enough to seriously reduce the

e�ectiveness of the exure mechanism. For this reason, the �nal design of the exure

mechanism possessed the cross-section shown in Figure 3-11, where �r = 0. Using this

con�guration, Equations (3.49) { (3.53) predict a total exure mechanism sti�ness of
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�r = 0

Figure 3-11: Final design of exure mechanism.

0.16 in-lb/in/rad with exures 0.004 in thick and 0.030 in long.

In Section 3.1.3, the design point ap hinge sti�ness was speci�ed as 1.8 in-

lb/in/rad. The exure mechanism adds 0.16 in-lb/in/rad of sti�ness to this value.

Therefore, rounding the sum of these two sti�nesses, the ap deection sti�ness, M�

used in the design of the actuator for this study was speci�ed as 2.0 in-lb/in/rad.

3.3.2 Fabrication

The exure mechanism dies were machined out of 2024 Aluminum. Because of the

special geometry of the exure mechanism, three separate dies were needed to press

the part. The lines detailing the cross-section of the exure mechanism in Figure 3-11

also represent the relative cross-sectional geometries and alignment of the three dies

used at the �nal stage of the hot press procedure. Cross-sectional views of the exure

mechanism dies are shown in Figures 3-12 and 3-13.

A hydraulic press with plates that can be heated to a desired temperature is used

for the hot press. The bottom and side dies are placed on the bottom plate of the

press. A 0.030 in thick rectangular piece of Delrin is place between the two dies as

shown in Figure 3-12. The bottom plate and the two dies are heated up to 347 F.

Using bolts, the side die is pressed against the bottom die to form exures #2 and 3

as well as the bender attachment surface. A triangular cross-section wedge of Delrin

is then placed onto the bottom die as shown in Figure 3-13. The top plate of the

press is heated to 347 F, and the top die is placed on dowel line-up pins and pressed

down upon the other two dies forming the desired exure mechanism part. The dies

are then cooled and separated, yielding the �nished exure mechanism.
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� Delrin

Figure 3-12: Initial press: Side and bottom exure mechanism dies.

� � Delrin

Figure 3-13: Final press: Top, bottom and side exure mechanism dies.

For the hot pressing operation to work, the dies have to come together with less

than 0.001 in of error. This requires machining the exure dies to absolutely no

more than approximately 0.005 in of error and, once the machining is complete, using

steel shims on the order of 0.001 in to adjust the �nal relative position of the dies.

While the machining of exure mechanism dies requires a great amount of precision,

once made, the fabrication of a large number of exure mechanisms can easily be

accomplished.
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As a �nal note, because the exure mechanism speci�ed above has a ap made

of solid Delrin, a relatively dense substance, it will have a signi�cant e�ect on the

dynamics of the actuator. Speci�cally, as will be shown in the experimental data

presented in the next chapter, the inertia due to the Delrin ap will substantially

reduce the �rst modal frequency of the actuator. For this reason, in future designs,

additional steps should be added to the above fabrication process that modify the

cross-section of the ap, perhaps by removing a large portion of the interior Delrin

and replacing it with a honeycomb sti�ener. The e�ects of the large ap inertia will

be discussed further in Section 4.2.2.
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Chapter 4

Bench Test Experimental Results

and Discussion

Before the proposed actuator can be implemented into an operational helicopter, its

force and deection characteristics must be demonstrated. The goal of this research,

therefore, was to demonstrate the capabilities of the actuator on the bench top. This

chapter presents the experimental set-up and results of such a bench top experiment.

4.1 Experimental Set-Up

The integration of an actuator inside a helicopter blade has associated with it a

fundamental size constraint. For this reason, the dimensions of the bench test article

were constrained to those of the target airfoil speci�ed in Section 3.1.3. A cross-

section of the bench test section is shown in Figure 4-1. The base of the bench test

article consisted of plexiglass, with surfaces machined for clamping the piezoelectric

bender and a�xing the exure mechanism at an angle corresponding to the airfoil's

trailing edge top surface. The exure mechanism was pressed out of Delrin using

the method described in Section 3.3.2 and attached to the base with a cyanoacrylate

adhesive. The exure mechanism's spanwise dimension measured 1.736 in. Terminal

strips a�xed at the front of the article were used to anchor down the bender's leads.

Note that the exure mechanism and bender in the bench test article are oriented
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upside-down from the conventional airfoil reference frame. This was done only for

convenience in bonding the exure mechanism to the base.

A layered construction such as that described in Section 3.1.2 was implemented to

maximize the e�ciency of the bender. The actual cross-sectional dimensions of this

actuator are presented in Figure 4-2. Shown in this �gure are the eight individual

piezoelectric wafers and the glue layers separating each. The front (i.e., closest to the

leading edge of the airfoil) 0.5 in of the piezoelectric bender is reserved for clamping.

The �lled arrows on the left side of the bender represent the poling vectors of the

individual piezoelectric wafers. The leads drawn on the left side show the wiring used

to actuate the multi-morph in bending. The voltages Vtop and Vbot are the voltage

signals applied to the top and bottom halves of the piezoelectric bender. Using the

nonlinear circuit described in Section 3.2, these two signals oscillate between the

poling and coercive limits of 300 and 150 volts during operation at the maximum

applied voltage. To operate in bending and avoid de-poling, it is necessary for these

voltage signals to be out of phase, so that, for example, as Vtop reaches the poling

limit of +300 volts, Vbot must reach the coercive limit of +150 volts. Note that the

layered bender shown demonstrates the extra bene�t gained from gaining access to

the electrodes between each wafer in that smaller voltages are needed for operation

than if the electric �eld was generated by just making electrical contact to the outer

surfaces of the bender.

The piezoelectric wafers are Type 850, obtained from American Piezo Ceram-

ics, Inc. Comparison of the properties of Type 850 piezoelectric ceramic with more

common PZT-type ceramics reveals that it has properties closely resembling those

of PZT-5A. The cross-section of each wafer consisted of 0.0075 in of piezoelectric

ceramic, sandwiched by two 0.001 in nickel electrodes. The width of each wafer mea-

sured 1.5 in and the length dimensions were chosen to maximize e�ciency according

to the discussion of Section 3.1.2, while providing a tip sti�ness of 200 lb/in/in. The

electrodes were modeled as pure nickel, rigidly bonded to each wafer for the analytical

calculations of the bender tip sti�ness. Electrodes of this thickness were used only

because of their availability. Because the electrodes take up space and add unneces-
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Figure 4-2: Schematic of piezoelectric actuator used in experiment.
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sary bending inertia to the multi-morph, in future designs, it is worthwhile to use the

thinnest electrode layer that is feasible.

EPO-TEX Epoxy 907 served as the adhesive between the piezoelectric wafers.

The bond layer using this adhesive measured 0.001 in. To provide electrical contact

between each layer of the bender, small oval shaped copper electrodes were inserted

between each layer, at the front end of the bender. These electrodes are 0.0015 in

thick, approximately 1 in long and 0.25 in wide. Wire leads were soldered to each

electrode. After completing the lay-up, these wires and copper electrodes were potted

in a silicone rubber adhesive sealant, RTV 118. All other free edges of the actuator

were insulated with M-Coat-A polyurethane coating. These measures were taken to

guard against arcing.

Air arcs at an electric �eld of approximately 80 V/mil. During the operation

and poling of this actuator, an electric �eld of 40 V/mil was never exceeded. How-

ever, grease and dust particles are sometimes present on the sides of a piezoelectric

ceramic, promoting the chances of arcing. When an arc does occur, a deposit is oc-

casionally left behind that possesses some conductivity. If this deposit connects the

two sides of a piezoelectric ceramic, it becomes unable to sustain a charge. Apply-

ing proper insulating materials, such as silicone and polyurethane, helps avoid these

arcing problems.

The leads at the front of the piezoelectric bender were originally potted in epoxy

mixed with cotton powder. This led to a severe arcing of the individual piezoelectric

wafers, making the actuator virtually unusable. The arcing was hypothesized to have

occurred in the epoxy potting material. By dissolving away the epoxy, cleaning up the

electrodes at the front and repotting in silicone, six of the eight piezoelectric wafers

were brought back into service. Only the two innermost wafers were not in service for

these experiments. As discussed in Section 3.1.2, the e�ciency of a piezoelectric wafer

in actuating a moment increases with its distance from the neutral axis. Because of

this, the reduction incurred from turning o� the inner two wafers was minimal. As a

check, the analytical model of Chapter 2 was run to compare the change in frequency

response by turning o� these two wafers. These computations predicted only an 8%
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loss in ap deection magnitudes by operating with only the outer six as opposed

to all eight piezoelectric wafers. This eight percent factor will be accounted for in

Section 4.2.3 when the operating capability of the actuator is summarized.

As discussed in Section 3.1.3, the actuator used was designed to operate at the

90% span location of a properly scaled model rotor in Freon. In addition, from

Section 3.3.1, for an actuator to operate e�ectively at this location, it should be

designed such that the bender is impedance matched to a combined exure mechanism

and aerodynamic ap hinge sti�ness of 2.0 in-lb/in/rad. The tip sti�ness of the bender

speci�ed above was calculated as kB = 200 lb/in/in. Using the impedance matching

condition, Equation (3.12), these sti�ness magnitudes force the lever arm length, sopt,

to be 0.1 in.

The nonlinear circuit discussed in Section 3.2 was used to drive the bender. It was

built on a Global Specialties Proto-Board, Model 203A. The nature of the nonlinear

driving signal necessitated two ampli�ers to operate the top and bottom sides of the

bender. KEPCO Bipolar Operational Power Supply/Ampli�ers, Model BOP 1000M,

were used as these high voltage ampli�ers.

The input and output devices changed depending on the measurement being made.

For hinge moment measurements and general operation, a Philips PM 5191 Pro-

grammable Function Generator provided the input to the nonlinear ampli�er while a

Nicolet Digital Oscilloscope Model 2090 displayed and stored the signal traces. For

frequency response identi�cation, a Tektronix 2630 Fourier Analyzer calculated the

transfer functions while driving the system with a random, frequency banded input

signal. The signal analyzer takes an FFT of the input and output of the system being

identi�ed and ratios their autospectra to �nd the transfer function.

A Keyence LB-11/70 Laser Displacement Sensor measured the ap deections.

The laser was positioned vertically above the ap, measuring the displacements of the

ap tip. The ap deections were calculated using the small angles formula, dividing

this laser measurement by the radius from the ap hinge to the laser spot location.

During the experiments, the beam from the laser was not exactly perpendicular to

the radius. However, a geometric analysis done on the accuracy of the ap deections
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Figure 4-3: Block diagram of actuation and measurement system.

measured with this set-up indicated that the laser position used added little error to

the measurements. The instrumentation block diagram for the experiment is shown

in Figure 4-3.

4.2 Data Presentation and Discussion

The ap deections and forces created by the actuator are the characteristics of inter-

est in this study because their product represents the energy created in operating the

ap. In addition, since rotor control involves actuation at high frequencies, knowledge

of the behavior of these characteristics as a function of frequency is also important.

For these reasons, a frequency response of the system showing the dynamics of the

�rst two modes and data addressing the achievable hinge moments of the actuator

constituted the measurements taken in this bench top experiment.

4.2.1 Unmodeled Actuator Response

The modeling process depends, fundamentally, on making correct assumptions about

the system of study. Piezoelectric ceramics exhibit a number of well-known nonlin-

earities in their operation. Because the linear model derived in Chapter 2 will not
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account for these e�ects, they will cause variations between the experimental and

predicted actuator response. Furthermore, in preliminary tests of the actuator, two

additional sources of unexpected behavior were observed. The �rst involved extra

compliance identi�ed in the exure mechanism and its bond to the bender. The sec-

ond was a realization that the actual tip sti�ness of the bender was almost a factor

of two smaller than expected from the design calculations. This section will provide

a preliminary discussion of these e�ects while Sections 4.2.2 and 4.2.3 will treat the

speci�c implications that they have on the measured data.

The equations of motion derived in Chapter 2 govern the behavior of a linear,

small-signal, layered piezoelectric multi-morph. However, the nonlinearities, such as

hysteresis, creep and nonlinear strain behavior all a�ect the operation of the bender

used in these experiments [10, 38, 40]. The presence of hysteresis was discussed in

Section 2.2.2 on damping. However, the additional e�ects of creep and nonlinear

strain behavior require some preliminary explanation.

Creep is a time dependent change in the observed strain of a material [22]. There

was a non-trivial amount of creep observed during the tests of the actuator and, unfor-

tunately, the e�ects from this seriously handicapped the collection of hinge moment

data. The implications of this are discussed in Section 4.2.3

It is expected that the e�ects of creep are important only for frequencies less than

1 Hz. Because of this, creep should not pose many problems in helicopter N/rev

control. However, it remains a question as to how it impacts the e�ectiveness of

collective rotor control. Because creep is a strain dependent mechanism, the amount

of time dependent deection seen when actuating against a constraint, i.e., a blocked

condition, is small. Therefore, it may be true that actuation in an airstream will

minimize the e�ect of low frequency creep, making collective rotor control achievable

using these actuators.

The resultant strain in a piezoelectric bender for a given applied electric �eld

is governed by the value of the d31 coe�cient. Calling this parameter a coe�cient,

however, is a bit of a misnomer because its value is not truly constant. It is a function

of the electric �eld and temperature of the ceramic.
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Figure 4-4: Microstrain vs electric �eld (From Crawley and Anderson [10]).

The value of the d31 coe�cient increases with electric �eld. This trend is shown

in Figure 4-4, taken from Crawley and Anderson [10]. This �gure shows the strain

measured at di�erent electric �eld levels for actuation of a piezoelectric ceramic at

0.1 Hz. The slope of this strain to �eld curve at any point corresponds to the d31

coe�cient at that �eld level. The d31 coe�cient speci�ed in most piezoelectric ceramic

catalogs corresponds to the slope of the curve at low �eld levels, i.e., less than 1 V/mil.

Included in this �gure is this small signal linear d31 relationship. As is clearly shown,

at 0.1 Hz, the amount of strain for large electric �elds is two to three times that of

the linear model.

The explanation for this e�ect is related to the discussion on dipoles of Sec-

tion 2.1.1. In that discussion, it was explained that upon poling a piezoelectric

ceramic, the dipoles rotate to align themselves with the poling �eld. That expla-
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nation implied that upon removal of the poling �eld, the dipoles remained set in the

material. However, not all dipoles completely align nor stay aligned with the poling

�eld direction upon completion of the poling process. Therefore, when large electric

�elds are applied during the operation of a ceramic, additional dipole rotation and

motion occurs, yielding larger strain values than predicted with a linear model.

The strain generated by additional rotation of the dipoles takes longer to occur

than that caused by the motion of those dipoles permanently aligned in the poling

�eld direction. Therefore, as the frequency of actuation increases, this additional

strain mechanism contributes less to the overall resultant strain of the material. For

high enough frequencies, the linear small signal strain to �eld relationship is recovered.

Indeed, this is how the strain to electric �eld relationship for the small signal model

is actually measured.

The use of the nonlinear circuit described in Section 3.2 will allow the application

of electric �elds up to 40 V/mil in the operation of the bender, increasing the con-

tribution of the above strain mechanism. However, it is expected that this e�ect will

become less prevalent as the actuation frequency increases.

A second factor that may have a small impact on the size of the strain levels

in the ceramic is the temperature. Data from [38] shows that for PZT-5A, the d31

coe�cient can change by as much as 4% for a temperature change from 15 to 25 C.

There are two sources from which heat can enter an oscillating piezoelectric ceramic.

One source is the hysteresis of the material. As discussed in Chapter 2, the amount

of hysteresis in the material is a measure of the energy lost in one cycle of operation.

The second source is electrical energy lost in the dissipation of current oscillating

through the ceramic. The energy lost from both of these e�ects must be converted

into heat. A 4% change in strain is not a large di�erence but, as will be discussed

in the next section, in identifying a system with a number of nonlinear mechanisms,

the response measured becomes extremely sensitive to the system parameters at the

time the data is acquired. Therefore, even small temperature changes could have a

noticeable e�ect on the identi�ed response.

The exure mechanism was modeled as rigid, apart from the designed compliance
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Figure 4-5: Location of extra compliance in the exure mechanism.

of the exures. However, during testing, extra bending in the exure mechanism was

observed between the tip of the bender and the vertical portion of the exure mecha-

nism, identi�ed as member AB in Figure 4-5. During testing the gap between points

A and B measured approximately 0.1 in. The design allowed for this gap to insure

that no glue seeped onto the bottom exure when attaching the exure mechanism

to the bender. However, due to the extra compliance that this gap introduces, future

designs should minimize this distance.

In addition to the compliance identi�ed between point A and B in Figure 4-5,

another source of unmodeled exibility in the system comes from the bond between

the bender and the exure mechanism. A cyanoacrylate adhesive was used to attach

the exure mechanism to the bender. The exure mechanism, however, was inten-

tionally separated from and re-attached to the bender a number of times throughout

the course of the experiments, creating a rough bonding surface. Because of this,

it was suspected that the bond may not have been intact over the entire bonding

surface.

The combined e�ect on the system from these areas of extra compliance may be

modeled as a spring, kf, in series with the tip sti�ness of the bender, kB, and the

modeled sti�ness of the exures, kM, as shown in Figure 4-6, where MF represents

the equivalent mass contributed by the inertia of the ap. Although no good method

exists to estimate the sti�ness of this spring, kf , because it is extremely dependent
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Figure 4-6: Con�guration used to model extra compliance.

on the bond strength of the exure mechanism to the bender, a preliminary estimate

can be made by basing the sti�ness magnitude on the bending sti�ness of member

AB in Figure 4-5. Using such a model, the spring sti�ness is

kf = Cf

EdIf

l3f
(4.1)

where lf and If are the length and moment of inertia of member AB and the coe�cient,

Cf , is chosen so as to quantify the strength of the bond layer boundary condition. In

Section 4.2.2, the value chosen for Cf in order to relate experimental and analytical

results is discussed.

In Section 4.1, it was mentioned that the electrodes were modeled as pure nickel,

rigidly bonded to each piezoelectric wafer. Further checking into the makeup of these

electrodes revealed that while they are a nickel alloy, they are actually silkscreened

onto the piezoelectric wafers and not rigidly bonded. Because of this, the sti�ness

contributed by the electrodes to the bending inertia of the piezoelectric multi-morph

is negligible. Their only contribution to the sti�ness is in increasing the moment of

inertia of the individual piezoelectric wafers by moving them farther from the neutral

axis. Using this new model of the electrodes' sti�ness contribution, the computed

tip sti�ness of the piezoelectric bender was almost halved from a design value of
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Figure 4-7: Change in ap deection magnitudes as electrode sti�ness changes.

200 lb/in/in to 113 lb/in/in. Since the lever arm length was already set before this

error was detected, the actuator is no longer impedance matched for the design point

span location of 90%, as discussed in Section 3.1.3.

While the tip sti�ness is smaller than original predictions, because the same

amount of piezoelectric ceramic, and thus energy, is still present in the bender, the

expected ap deections must increase. This is shown in Figure 4-7, where results

from the analytical model are presented, comparing the predicted frequency response

of the actuator for the two cases when the nickel electrodes are modeled as rigidly

bonded and silkscreened onto the piezoelectric wafers. As expected, the ap deec-

tions do increase. Furthermore, because the bender with silkscreened electrodes is

more compliant, the �rst modal frequency drops from 165 Hz to 125 Hz, between the

rigidly bonded and silkscreened cases.
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Figure 4-8: Experimental frequency response for �rst two modes of actuator.

In all future comparisons made with the analytical model, besides adding space

in between piezoelectric wafer layers, the nickel electrodes are modeled as adding no

sti�ness to the bending inertia of the multi-morph.

4.2.2 Frequency Response Data

Actuator Response

Frequency response data was collected for the actuator in the con�guration shown

in Figure 4-1. Figure 4-8 shows the frequency response data for the entire band of

frequencies identi�ed in this experiment. Figure 4-9 is a close up of the low frequency

behavior from 1 to 200 Hz. Figure 4-9 is included to highlight some of the nonlinear

behavior of the actuator, discussed below. The frequency response data is presented

in the standard Bode plot format. The transfer function represented by the magnitude
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Figure 4-9: Experimental frequency response for �rst mode of actuator.

plot is the resultant ap deection, in degrees, for an electric �eld applied over the

bender. The applied electric �eld used is the sum of the electric �eld over the top

and bottom halves of the bender. For example, the magnitude of the response given

by the data at 1 Hz is 0.207 deg/(V/mil). Therefore, if the applied electric �elds over

the top and bottom half of the bender are 40 V/mil and 20 V/mil, the resultant ap

deection is

� = 12:42 deg

The coherence for the data of Figures 4-8 and 4-9 is presented in Figure 4-10. The

coherence is a measure of how accurately the acquired data characterizes the system.

Excessive noise or disturbances to the system, as well as nonlinearities present in the

system, can lead to poor coherence. The coherence can take on a value between zero

and unity, where a value of unity means that the data taken exactly characterizes the
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Figure 4-10: Coherence of the experimental frequency response data.

frequency response of the system. As shown in the �gure, the coherence of the data

for low frequencies is good. However, the coherence for data at frequencies greater

than approximately 200 Hz is poor.

The reason for the poor coherence stems from current constraint of the high voltage

ampli�ers, which have a built in maximum current limit of 40 mA. Piezoelectric

ceramics require more current as the actuation frequency increases, according to

i = V C! (4.2)

where ! is the actuation frequency in radians/sec, V is the applied voltage, and C

is the capacitance of one side of the bender, which, for this case, is 300 nF. If the

maximum input signal is applied to the bender, the voltage signal becomes as large as

300 V during each cycle of operation. For such an input, Equation (4.2) indicates that

the ampli�ers will current limit at actuation frequencies greater than 70 Hz. During

identi�cation, however, it is not necessary to drive the system with the maximum

voltages. In particular, due to the large response around the �rst mode, the data

from 50 to 120 Hz was attained while driving the system with a relatively small

input signal. However, even with the lower input magnitudes, once the actuation

frequency reaches a certain level, the ampli�ers do current limit, thus requiring the

applied voltage to be reduced further. For frequencies greater than about 200 Hz, the
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applied voltages had to be reduced to such a degree that the noise present constituted

a signi�cant portion of the measured signal, leading to a poor level of coherence. It

is the additional response magni�cation of the second mode, however, that allowed

its location and phase to be identi�ed. Use of high voltage ampli�ers which allow

larger current levels are needed to accurately identify these high frequency dynamics.

Unfortunately, none were available for these tests.

From Figures 4-8 and 4-9, the easiest characteristics of the system to identify are

the frequency of the �rst and second modes, which are 90.1 Hz and 617 Hz, respec-

tively. The target rotor for this study has a rotational speed of 780 RPM. Therefore,

a natural frequency of 90.1 Hz corresponds to the 7/rev normalized frequency of that

rotor. As discussed in Section 3.1.3, for a properly scaled rotor, if a modal frequency

corresponds to the N/rev frequency of a model rotor, that modal frequency in the

full-scale prototype will also occur at the N/rev frequency of the prototype. There-

fore, a full-scale version of the present actuator will also have a resonant peak at the

full-scale rotor's 7/rev frequency.

Also, as discussed in Section 3.3.2, the modal frequency found in this experiment

is lower than it would be had the ap been properly inertially scaled. As it is, the ap

has too much mass and, therefore, unnecessarily lowers the �rst modal frequency. For

example, if the mass of the servo-ap drops by 50%, while retaining the same radius of

gyration about the ap hinge, the analytical model predicts a 37% larger �rst modal

frequency. This implies that if such a ap were used for the present experiment, a �rst

modal frequency would occur close to the 10/rev frequency of the target model rotor.

Of course, this projection depends, to a small degree, on the accuracy of the analytical

model, but this example is included to emphasize that the modal frequencies present

in this data underestimate what they could be if the inertial properties of the ap

were set properly.

There are many additional issues regarding the behavior of the bender and exure

mechanism actuator highlighted by this data and the associated analytical model.

The discussion of each are treated in the following subsections.
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Analytical Predictions

Two additional frequency response traces are shown in Figures 4-8 and 4-9. These

were both calculated using the analytical model derived in Chapter 2, and the dimen-

sions of the layered piezoelectric multi-morph described in Section 4.1. The electrodes

silkscreened onto each piezoelectric wafer were assumed to add no additional sti�ness,

as discussed above in Section 4.2.1.

In Section 2.2.2, the method used to add damping to the analytical model was

described. The value of the viscous damping factor, �, is easily estimated from the

magnitude of the experimental frequency response plots in Figures 4-8 and 4-9. If

the maximum response at the frequency of the �rst structural resonance is denoted

as Q, the half power points of this mode are those frequencies, f1 and f2, where the

magnitude of the response drops to Qp
2
. Once these points are identi�ed, the viscous

damping factor may be approximated as [36]

� =
f2 � f1

2fn
(4.3)

where fn is the frequency of the �rst mode. The half power frequencies estimated

from the data in Figure 4-9 are approximately 88.2 and 92.3 Hz. Therefore, using

Equation (4.3), the estimated damping factor, � = 0:0225. This is the amount of

damping included in the calculations yielding the two analytical frequency response

plots in Figures 4-8 and 4-9.

As a note, even when testing at zero airspeed, Spangler and Hall observed levels

of damping on the order of � = 0:2 in their actuator [44]. This is almost a factor

of 10 greater than that observed here. Their explanation for this damping was that

it probably resulted from unmodeled friction e�ects present in the hinges. The large

di�erence between the values of damping observed here as compared to Spangler and

Hall's measurements, indicates that this assumption was probably correct, and it

highlights the fact that the exure mechanism has completely eliminated the friction

problems encountered by Spangler and Hall [45], [44].

As shown in the frequency response plots, the pure analytical model predicts a
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�rst structural resonance at 125 Hz, which is 39% greater than the actual value. A

possible explanation for this large di�erence is the extra compliance in the exure

mechanism and in its bond to the bender, as discussed in Section 4.2.1. In that

section, a method suggested to account for this extra motion was to model it as

a spring, kf , in series with springs representing the tip sti�ness of the bender and

the designed sti�ness of the three exures in the exure mechanism. An expression

for the sti�ness of this extra spring was given in Equation (4.1). It is well known,

from elementary beam theory, that if member AB is rigidly clamped to the tip of the

bender, then Cf = 3. However, if this model is to account for the di�erence in the �rst

modal frequency, then it is necessary for Cf = 0:135. The second analytical curve

shown in Figures 4-8 and 4-9 uses this value of Cf to incorporate this compliance

mechanism into the analytical model. As shown, this modi�ed transfer function does

yield a �rst modal frequency matching that of the data.

A value of Cf = 0:135 implies that the extra motion due to the imperfect bond

between the bender and exure mechanism makes member AB's boundary condition

at the bender softer than a rigid clamp by a factor of approximately 22. While it is

conceivable that the integrity of the bond is poor enough to account for this di�erence

in modal frequencies, without measurements of the bond strength, it is not possible

to be absolutely certain. Nevertheless, it is clear that the bond strength at the bender

can have a major e�ect on the response of the actuator.

Presence of Piezoelectric Ceramic Nonlinearities

In interpreting the data presented in Figures 4-8 and 4-9, the �rst fact to realize is that

the method used in identifying a system by Fourier analysis rests, fundamentally, on

the assumption of linearity in the material. For a purely linear system, it is warranted

to expect the frequency response to be very similar to that found with the linear

analytical methods. However, nonlinearities in the system will lead to di�erences in

the measured and predicted responses. For a strongly nonlinear system, the measured

response can appear completely unrelated to the linear analytical predictions. The

fact that the data in Figures 4-8 and 4-9 has a strong resemblance to the analytically
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predicted curves indicates that the nonlinearities present in the piezoelectric ceramic

do not overwhelm its response. However, because the nonlinearities do exist, the

data in these �gures must be interpreted with some care. The following section will

present an explanation of how the di�erent nonlinear mechanisms associated with

piezoelectric ceramics may explain the observed behavior.

Using a linear analysis tool to identify the response of a system with nonlinearities

will not capture certain details of the system's behavior. Furthermore, identifying

the same system while driving it with slightly di�erent input signals can result in

slight variations in the measured response. For example, in the identi�cation of the

data in Figures 4-8 and 4-9, to maximize the coherence, separate frequency response

identi�cation tests were run to obtain the data for the frequency ranges of 0 { 10 Hz,

10 { 50 Hz, 50 { 120 Hz, 120 { 220 Hz and in 40 Hz increments from 220 { 580 Hz

with the �nal two sets of data covering the frequency ranges from 580 { 610 Hz and

610 { 650 Hz. There is no guarantee that the input conditions during each of these

tests was identical. Besides the obvious fact that the input signal for each of these

tests was centered around a di�erent frequency, other nonlinear e�ects such as the

strain to temperature and strain to electric �eld behavior of piezoelectric ceramics,

discussed in Section 4.2.1, could also lead to slight changes in the conditions of the

system and how it reacts to the input during each of these tests. Because of this,

there is no guarantee that the measured response at the boundaries between these

tests will exactly line up. This is why the apparent discontinuities appear in the

magnitude response, as highlighted in Figure 4-9 at 10, 50 and 120 Hz.

At frequencies less than approximately 20 Hz, the magnitude of the data is larger

than analytical predictions. It is postulated that higher strain levels than predicted

from the linear model account for this di�erence in magnitudes. As discussed in

Section 4.2.1, higher than predicted strain levels may be attributed to temperature,

creep and nonlinear strain to electric �eld e�ects. The e�ects of temperature are not

substantial enough to explain the magnitude behavior observed. Furthermore, while

the creep mechanism of the piezoelectric ceramic is a possible explanation of higher

than normal deection amplitudes, because it is an e�ect predominantly important

101



at frequencies less than 1 Hz, it is believed that its contribution is also minimal.

Therefore, it is suspected that the nonlinear strain to electric �eld e�ect is the pre-

dominant cause of the magnitude di�erences between the data and the analytical

model frequency response plots in Figures 4-8 and 4-9.

In Section 4.2.1, the mechanism behind the nonlinear strain to electric �eld rela-

tionship of the piezoelectric ceramic was identi�ed as additional poling motion occur-

ring due to high applied electric �elds. As mentioned there, this e�ect decreases with

frequency. This is clearly shown in Figures 4-8 and 4-9 by the reduction in the mag-

nitude response from 1 Hz up to approximately 30 Hz, where the �rst mode begins

to contribute. Another fact discussed in Section 4.2.1 was that for high frequencies,

this nonlinear strain mechanism diminishes to the point where the linear strain to

�eld relationship speci�ed in most piezoelectric catalogs is recovered. The indication

of such behavior in the measured data is evident from the fact that the magnitude

of the measured response approaches that of the linear model for frequencies greater

than 20 Hz.

Another nonlinear mechanism easily identi�ed in the frequency response data

is hysteresis. A de�nite manifestation of the hysteresis in the bender is its larger

than predicted phase lag. As discussed in Section 2.2.2, the amount of hysteresis

increases with amplitude. This is reected in the phase plots of the data by the large

reduction in phase for frequencies near the �rst and second modes. Extra phase lag

due to hysteresis will present some limits on the performance when actual feedback

control is implemented with the actuators. It may be possible to implement a simple

feedback of the piezoelectric ceramic charge to eliminate the e�ects of hysteresis [44]

when closed loop control is implemented with these actuators.

While piezoelectric ceramics do exhibit a number of nonlinearities, they are mild

enough not to exclude the possibility of using these materials for the desired purpose

of helicopter control. Even so, the presence of the nonlinearities does add some

complications to the response and should be seriously considered in the use of such

actuators.
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Figure 4-11: Conceptual picture of anticlastic bending.

Zero Location

The analytical model predicts a near pole-zero cancellation of the second mode. The

presence of the second mode in the data, however, demonstrates that this cancella-

tion does not actually occur. Furthermore, analyzing the phase at the second mode

also indicates that the zero does not occur at a lower frequency than this mode but

actually at a frequency much higher than the second modal frequency. The process

of predicting the location of the zeros is subject to the greatest amount of modeling

errors. For this reason, due to the simplicity of the analytical model, it is not com-

pletely realistic to expect an accurate answer about zero locations. However, using

the analytical model and some physical insight, a possible explanation of the behavior

of the �rst zero may be explained by considering the spanwise or anticlastic bending

at the tip of the multi-morph.

The second mode of the analytical model represents anticlastic bending. A con-

ceptual view of the anticlastic e�ect on a plate as it bends is presented in Figure 4-11.

As shown, when the plate bends up, the compression in the top half and tension in

the bottom half of the plate cause its outer corners, points A and C, to travel through

smaller deection than its center, point B. In the analytical model, the tip displace-
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Figure 4-12: E�ect of anticlastic bending on poles and zeros.

ment was calculated by averaging the deections over the width of the bender. If the

anticlastic e�ect is large enough in comparison to the lengthwise bending of the plate,

the calculated tip displacement will be zero. By the same argument, if even more

anticlastic bending occurs, the calculated tip displacement could have a net value

reecting a downward motion when the plate bends up. This type of behavior would

be reected in the frequency response of the system by a phase shift of 180 deg caused

by the zero moving to a frequency greater than the second modal frequency. This is,

in fact, how the analytical model behaves. By modifying, at the output, the amount

of anticlastic bending accounted for in the calculation of the tip displacement from

zero curvature up to a curvature greater than the actual value used to calculate the

analytical curves of Figures 4-8 and 4-9, the change in the location of the zero may

be shown by a sequence of frequency response plots, as in Figure 4-12. In this �gure,
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the meaning of \small" and \large" are, of course, relative. The actual change in the

amount of anticlastic bending between each case is not too substantial. Each level of

curvature was chosen to demonstrate how the analytics follow the above explanation.

As shown, the change in the zero location with di�erent amounts of curvature does

indeed follow this explanation.

The location of the zero is important because in feedback control, it is often useful

to know the location of high frequency dynamics in order to determine if they con-

tribute to the magnitude or phase of the system under control. It is not clear whether

extra anticlastic bending is the sole reason why the �rst zero of the actual system is

located at a frequency much greater than the second mode. The coherence problems

discussed above preclude the ability to clearly identify the high frequency dynamics.

However, the above discussion does present a plausible explanation, implying that

future models of the bender's behavior should treat the expected anticlastic bending

with some depth for a realistic prediction of the location of and the e�ect that changes

in system parameters have on the �rst zero.

4.2.3 Achievable Hinge Moments

Figure 4-13 shows the measured ap deections for sinusoidally applied electric �elds

applied to the bender at 0.1, 1, 5 and 10 Hz. As with the frequency response data of

the previous section, the electric �elds representing the abscissas of this plot are the

sum of the electric �elds into both sides of the bender.

Two di�erent low frequency e�ects contribute to create larger maximum deec-

tions at 0.1 and 1 Hz as compared to the 5 and 10 Hz data traces. The �rst e�ect is

the nonlinear strain to electric �eld relationship discussed in Section 4.2.1 and 4.2.2.

It is believed that it is the main cause of the larger deections seen in the 1 Hz data.

As discussed above, this strain mechanism is frequency dependent, contributing less

for higher frequency actuation as shown by comparing the 1 Hz trace to the 5 and 10

Hz data traces. The second e�ect is one due to the creep mechanism in the piezoelec-

tric ceramics. Because creep is a phenomenon limited to frequencies less than 1 Hz,

its contribution to the magnitudes of response for the 1 Hz data trace are assumed
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Figure 4-13: Low frequency voltage to deection behavior.

to be minimal. However, it is suspected to be the main cause in the di�erence in

magnitude between the 0.1 and 1 Hz data traces.

In addition to creep, another interesting phenomenon highlighted by this �gure

is the hysteresis of the piezoelectric bender with frequencies. As shown in Figure 4-

13, the amount of hysteresis is relatively constant for frequencies up through 10 Hz.

However, the amount of hysteresis changes with higher frequencies, as shown in Fig-

ure 4-14, which is the same type of plot as Figure 4-13, but at higher frequencies

and slightly lower input �eld levels. This �gure shows that the amount of hysteresis

begins to increase at approximately 20 Hz, with the trace corresponding to actuation

at 40 Hz showing a great deal of hysteresis. This behavior is expected when one

considers that the amount of hysteresis is proportional to the square of the amplitude

of the response [36]. Therefore, as the �rst mode is approached, the hysteresis should

increase as shown.
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Figure 4-14: High frequency voltage to deection behavior.

The original strategy for measuring hinge moment capability was to hang weights

o� the end of the ap and measure the resultant deection. Unfortunately, however,

creep in the piezoelectric ceramic proved to be a limiting factor in performing these

measurements because to avoid its e�ects, the measurements had to be performed at

frequencies greater than 1 Hz. Performing such measurements at this frequency level

is not feasible considering the inertial forces that would exist due to the tip weights.

Because of this fact, only an estimate of the achievable hinge moments is presented

here.

If the tip sti�ness of the bender is known, the expected hinge moments can be

extrapolated in a relatively straight-forward fashion using the deection characteristic

of the system under zero load. The main problem in doing this is that an accurate

measurement of the tip sti�ness of the bender also could not be obtained due to the

creep e�ects. For this reason, the analytical model is used to estimate the tip sti�ness.

107



As discussed in Section 4.2.1, assuming the electrodes add only space between the

piezoelectric wafers and no additional bending inertia, the tip sti�ness is calculated

as 113 lb/in/in.

As a note, Spangler and Hall also had di�culties in measuring the tip sti�ness

of their piezoelectric bender, noting that there did not seem to be a constant value

of the tip sti�ness of these piezoelectric ceramics, and that a practical method to

measure this property did not exist [44].

As shown in Figure 4-13, the maximum ap deection of the actuator at 10 Hz is

11.5 deg. Recalling that only six out of the eight layers of the bender were in service

for these experiments, the measured ap deections were estimated to be 8% less

than that possible, as discussed in Section 4.1. Accounting for this factor gives the

expected maximum ap deection at 10 Hz as 12.5 deg, which, using the analytically

calculated tip sti�ness of 113 lb/in/in, translates into an expected ap deection of

4.5 deg for 10 Hz operation at the 90% span location on the target model rotor in

Freon. As mentioned in Section 3.2, the poling and coercive �eld limits for this study

were conservatively set at 40 V/mil and 20 V/mil, respectively. However, by pushing

the applied voltages to their maximum levels, corresponding to electric �eld limits of

60 V/mil and 30 V/mil, deections of 6.8 deg for 10 Hz operation at the 90% span

location on the target model rotor in Freon can be expected.

The question remains as to how this actuator would perform if scaled for imple-

mentation on a real helicopter in air. As noted in Section 3.1.3, the target model rotor

has dynamic pressures 35% smaller than those that exist on an operational helicopter

in air. However, assuming that all dimensions are scaled geometrically, the di�erence

in ap deections can be related by using the ratios of the dynamic pressures for each

case. Therefore, using Equation (3.13), if actuating with the non-conservative poling

and coercive �eld limits of 60 V/mil and 30 V/mil, the above results indicate that a

5.0 deg deection can be expected if the present actuator was scaled up and placed

at the 90% span location on a typical operational helicopter in air. Furthermore, if

the actuator was impedance matched to the aerodynamics present at the 90% span

location of such a helicopter, the expected deections could be as large as 5.6 deg.
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A major source of error in the above calculations occurs because the tip sti�ness

used was analytically determined. True validation of these numbers will only be

obtained by determining a valid experimental value for the tip sti�ness of the bender.

4.3 Summary

These experiments demonstrated the e�ectiveness of the actuator in producing ap-

preciable ap deections. The friction and backlash problems originally identi�ed by

Spangler and Hall [45], have been overcome. However, additional complications from

the nonlinearities of the piezoelectric ceramics have also been identi�ed. Furthermore,

the e�ects of creep proved to be insurmountable in obtaining a good experimental

estimate of the achievable hinge moments of this actuator.

Flap deections of 11.5 deg were demonstrated on the bench top while operating

at a frequency of 10 Hz. Using an analytical prediction of the bender's tip sti�ness,

this data suggests that properly scaling and impedance matching the actuator can

result in ap deections greater than 5 deg while operating at the 90% span location

on an operational helicopter in air.

In addition, the data also indicates that, if proper inertial scaling of the ap is

performed, the actuator could have a �rst modal frequency as high as 10/rev on both

the target model rotor, and, if properly scaled, on a full scale helicopter rotor.
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Chapter 5

Conclusions

In this thesis, a piezoelectric actuator intended for the control of a helicopter rotor was

designed, built, and tested on the bench top. The design used was based on a previous

study performed on this actuation mechanism by Spangler and Hall [45]. Its lengths

were chosen so that it �t within the cross-section of a model scale rotor operating in

Freon with a 4.454 in chord and a 20% ap. In this study, a number of improvements

over the original design were introduced. This chapter, the contributions of this

research are described and suggestions for future research are given.

5.1 Design Contributions and Improvements

Three major improvements to the actuator originally built by Spangler and Hall were

introduced in this thesis. The most signi�cant of these was the use of the exure

mechanism to transmit the bender deections to the ap. The e�ectiveness of the

actuator used by Spangler and Hall [45] was signi�cantly reduced due to friction and

backlash generated from the use of hinges in coupling the bender and ap deections.

The greatest bene�t found in the operation of the exure mechanism is the complete

elimination of these friction and backlash problems.

The other major improvements introduced were the tapering of the bender's thick-

ness properties, increasing its e�ciency by over 20%, and the implementation of a
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nonlinear electric circuit to increase the average electric �eld applied to the bender

by 50%.

A state space model of this actuator based on Classical Laminated Plate Theory

was developed using the Rayleigh Ritz energy method. This model provided a metric

against which the experimental results were measured and highlighted the e�ects

of nonlinearities inherent in the operation of piezoelectric ceramics, such as creep,

hysteresis, nonlinear strain to �eld and nonlinear strain to temperature behavior.

A preliminary treatment of these e�ects was presented, but they deserve a more

thorough investigation.

On the bench top, ap deection amplitudes of 11.5 deg were demonstrated for

actuation at 10 Hz. Because only six of the eight piezoelectric wafers in the bender

were in operation for the tests, it was calculated that this deection was 8% below

the actuator's actual ap deection capability.

There was a substantial amount of creep present in the operation of the bender at

frequencies below 1 Hz. For this reason, it was not possible to obtain measurements

of the achievable hinge moments of this actuator on the bench top. However, using

an analytically determined bender tip sti�ness and the experimentally measured ap

deections, the operational characteristics of this actuator were extrapolated

The actuator was designed for operation at the 90% span location on a model

rotor in Freon. Based on the experimental results and analysis, it is concluded that a

ap deection of 6.8 deg should be possible at frequencies below the natural frequency

for an actuator located at the 90% span location of this target model rotor. Using the

scaling laws developed in Section 3.1.3, the data also suggests that if this actuator

were properly scaled up to an operational helicopter, ap deections of 5.0 deg at

the same electric �eld and relative frequency levels can be expected at the 90% span

location of an operational full-scale helicopter blade.

The experimental data showed a �rst modal frequency of 90.1 Hz, which corre-

sponds to the 7/rev frequency of the model rotor. From the scaling laws, this implies

that a scaled version of this actuator will also have a �rst modal frequency corre-

sponding to the 7/rev frequency of a full-scale rotor. Because the inertial properties
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of the ap were not addressed, however, larger modal frequencies (and therefore larger

actuator bandwidths) should be expected when this actuator is used with a lighter

servo-ap.

In summary, a trailing edge servo-ap actuator has been re�ned to correct the fric-

tion and backlash problems identi�ed originally by Spangler and Hall [45]. Substantial

deections have been demonstrated on the bench top for an actuator designed to �t

within a scaled model helicopter blade allowing for a 20% ap. The results of this

study indicate that this actuator should be able to actuate the rotor of an operational

helicopter.

5.2 Future Research Goals

There are three major suggestions for future research;

1. Demonstration of piezoelectrically actuated trailing edge servo-ap in a wind

tunnel typical section. To truly gauge the abilities of the present design, a wind

tunnel test of a typical section incorporating the improved actuator presented in this

thesis should be performed.

2. Detailed design of a model rotor system with integrated trailing edge servo-

aps. There are many issues to be addressed in order to integrate the piezoelectric

actuators described in this thesis into an operational model rotor. One major design

consideration is the large centripetal accelerations that these actuators will encounter

in the rotor blade environment. Enough strength must be ensured to withstand accel-

erations that are on the order of hundreds of g's. In addition, proper mass balancing

of the blades must also be addressed to overcome the stability issues associated with

placing heavy actuators in the trailing edge of an airfoil.

3. Tests on a model scale rotor. Once a viable rotor with integrated piezoelec-

trically actuated trailing edge servo-aps is designed and constructed, tests must be

conducted to determine the ultimate usefulness of these actuators in controlling a

helicopter rotor.
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Appendix A

Assumed Mode Shapes

In Chapter 2, the assumed mode shapes in the lengthwise (x) direction correspond

to the exact mode shapes of a cantilevered beam. These shapes are
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where L is the beam length and the coe�cients �i and �i are given in Table A.1.

Table A.1: Coe�cients for �rst �ve exact cantilevered beam mode shapes

ModeNumber; i �i �i

1 1:87510407 0:734095514

2 4:69409113 1:018467319

3 7:85475744 0:999224497

4 10:99554073 1:000033553

5 14:13716839 0:999998550
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Appendix B

Non-Linear Circuit

The following circuit diagram is that of the non-linear circuit used to drive the piezo-

electric bender. The motivating discussion behind this circuit is in Section 3.2. In

this diagram, Vin is the input signal from the signal wave generator while Vbot and

Vtop are the output signals to the high voltage ampli�ers which power the bottom and

top sides of the bender, respectively.
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