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ABSTRACT

Multivariable design methodologies are compared in the context of controller
design for the torque-rebalance loop for a strapdown two-degree-of-freedom
dynamically tuned gyro described by complex coefficient differential equations.
The methodologies considered are linear quadratic Gaussian with loop transfer
recovery (LQG/LTR), formal loop shaping with LQG/LTR (FLS/LQG/LTR),
frequency weighted LQG (FW/LQG), and classical lead compensation. The
classical and multivariable methodologies are used to generate low bandwidth
controller designs. The multivariable methodologies are also used to generate
high bandwidth designs. The performance of the controllers are compared as
well as the design methodologies themselves. The overall performance of the
multivariable designs is much greater than that of the classical design, but com-
pensators of approximately double the order are required. There is little per-
formance difference between the multivariable designs. Of those examined, only
the FW/LQG design methodology directly produces compensators that meet all
of the typical torque-rebalance loop design requirements. LQG/LTR provides a
simple design approach, with the design problem reduced to the selection of two
scalar parameters. FLS/LQG/LTR has some promise in torque-rebalance loop
design, but more expertise is needed in the selection of suitable target loops.
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Chapter 1

Introduction

1.1 Overview

This thesis presents a comparison of some multivariable design methodolo-

gies. The comparison is based on the specific example of a strapdown, two-

degree-of-freedom dynamically tuned gyro torque-rebalance loop. The gyro

model is expressed in terms of complex coefficient differential equations, and the

controllers are designed for this complex plant description. The performance

of several torque-rebalance loops designed using modern, multivariable design

methodologies and by classical techniques is compared.

The thesis is organized as follows. The remainder of this chapter provides

background on the two-degree-of-freedom dynamically tuned gyro, the opera-

tion of the torque-rebalance loop, and the complex method. It also describes

the thesis goals and overall approach to the design problem. The gyro equa-

tions of motion are derived in Chapter 2. The complex method is applied to

the linearized equations of motion to yield the complex coefficient differential

equations on which the controller designs are based. Several properties of sys-

tems described by complex coefficient differential equations are summarized in

Chapter 3. The design tools presented are used in the subsequent chapters

in the design and analysis of the torque-rebalance loop controllers. The open

loop characteristics of the linear gyro model are analyzed in Chapter 4. The

controller designs are presented in Chapter 5. Each design methodology is de-

scribed, and the design approach used for each methodology is presented. The

unique characteristics and performance of the resulting loop designs are also

discussed. Finally, a comparison of the design methodologies and conclusions

are included in Chapter 6.

13



1.2 Background

1.2.1 Strapdown Gyro Operation

Over the past twenty years, the two-degree-of-freedom dynamically tuned
gyro (TDF-DTG) has gained widespread use in strapdown inertial naviga-

tion systems as an angular rate sensor. The TDF-DTG, like single-degree-

of-freedom floated instruments, uses a momentum wheel to measure angular
rates.

t

M w

Figure 1.1: Momentum Wheel Spinning in Inertial Space

A schematic of a rotor spinning in inertial space is shown in Figure 1.1. The

rotor spins with constant angular momentum, H. The motion of the rotor is
governed by the equation

dt-M= dH+ ,xK (1.1)
where M is a torque applied to the rotor and wa is the precession of the rotor

with respect to inertial space in rotor coordinates. The angular momentum in

(1.1) is assumed to be constant so the derivative term is zero. If no torques are

applied to the rotor, it will maintain its orientation in inertial space, conserving

angular mom-entum. If a torque perpendicular to the spin axis is applied to the

rotor, the rotor will precess at the rate w about an axis perpendicular to the

spin axis and the axis of the applied torque.

Figure 1.2 shows a schematic diagram of a TDF-DTG. The rotor is attached
to a shaft through a suspension system made up of a gimbal and a set of flexures.

14
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Figure 1.2: TDF-DTG Rotor and Suspension Schematic

The shaft is driven at a constant speed, wo, by a motor which is attached to the

gyro case (not shown). The flexures are stiff in bending but compliant in torsion,
allowing the rotor, through the gimbal, to precess about the x and y-axes shown
in the figure. This provides the instrument with the capability of sensing inertial
angular rates on two axes simultaneously.

The torsional spring constants of the flexures, gimbal inertias, and rotor spin
speed are chosen together such that the torque on the rotor due to the flexure

spring rates cancels the torque due to the dynamically induced spring rate. The
result is that the net average torque on the rotor due to the suspension system
is zero, and the rotor behaves like a free body. This is known as the tuning

condition and is described in Chapter 2.

A cross-section of a TDF-DTG is shown in Figure 1.3. The rotor is driven
by the motor at the base of the gyro case. The angle between the rotor and

the case is measured electromagnetically by two sets of variable inductance type
pickoffs, one pair on each axis. A pair of torquer coils, fixed to the case, on each

axis apply torques to the rotor electromagnetically as well. Current through the
coils acts with the magnets fixed to the rotor to precess the rotor about the
desired axis.

1.2.2 Strapdown Torque-Rebalance Loop Operation

A momentum wheel gyro employed in the strapdown mode makes use of the

gyroscopic properties discussed above. A block diagram of a torque-rebalance

loop is shown in Figure 1.4. In a strapdown application, the gyro case is bolted

to the vehicle and is subjected to the inertial angular rates experienced by the

15
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Stop

Suspension

Rotor

Figure 1.3: TDF-DTG Cross-Section

b Inertial Angular Rate

ie

nand

Figure 1.4: Torque-Rebalance Loop Block Diagram
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vehicle. No torques are applied to the gyro rotor about its input axes by the
suspension system so the rotor remains at a constant attitude with respect to
inertial space. The resulting angular offset between the case and rotor, , is
measured by the pickoffs and is called the pickoff angle. This signal is fed to the

controller which generates a commanded torque, M, to be applied to the rotor
in such away as to precess the rotor at a rate equal to the inertial angular rate
applied to the gyro case, thus driving the pickoff angle back to null.

This commanded torque is also the output of the torque-rebalance loop used
by the attitude update algorithm of the inertial navigation system as a measure
of the inertial angular rate. This relationship can be seen in Equation (1.1)
since the precession rate is equal to the inertial angular rate, and the angular
momentum of the rotor is known. Thus, the torque-rebalance loop is used to
keep the rotor spin axis perpendicular to the gyro input axes, keeping the pickoff
angles nulled, and its output, the commanded torque, is used as a measurement
of the inertial angular rates to which the gyro case is subjected.

1.2.3 The Complex Method

The complex method has been used to simplify the analysis of rotationally
symmetric systems for quite some time. It was first applied to the analysis of
a two-degree-of-freedom gyro two decades ago [13]. The primary advantage of

the complex method is that it turns the two input-two output real gyro model
into a single input-single output (SISO) system described by complex coefficient

differential equations. This in turn allows classical SISO design tools to be used

in the analysis of a nominally multi-input-multi-output (MIMO) system. The
complex method is discussed in Chapter 3.

1.3 Torque-Rebalance Loop Performance Re-
quirements

The torque-rebalance loop design requirements are typical of all regulator
loops: good distlrbance rejection, noise attenuation, and high bandwidth while
maintaining sufficient stability margins. The requirements for the loop are driven
by the specific dynamics of the gyro and the need for accurate inertial angular
rate measurements for the inertial navigation system. The performance of the

17



inertial navigation system attitude algorithm depends directly on the frequency
and time domain characteristics of the torque-rebalance loop. The torque com-
mand fed to the gyro must accurately reflect the angular rate environment of
the vehicle so that the attitude algorithm has an accurate measurement of the
inertial angular rates and so that accurate operation of the gyro can be ensured.

In order for the torque-rebalance loop to provide accurate measurements of
inertial angular rates, the rotor spin axis must always be perpendicular to the
gyro input axes, that is, the pickoff angles must always be nulled. Therefore,

the controller must provide torque commands that will precess the gyro at the
angular rates expected to be encountered by the vehicle with minimum error.
In this context, the inertial angular rate applied to the gyro case can be thought
of as a disturbance input that must be rejected by the regulator. This requires
a high bandwidth loop with large velocity or acceleration error constants.

It is desirable for the torque command to be as free of noise as possible.

Two major noise sources are vibration at the shaft spin frequency and high
frequency noise due to pickoff signal modulation. Therefore, loop gain at the
spin frequency must be as low as possible, effectively limiting the bandwidth of
the loop to below the spin frequency. In addition, the high frequency roll off of
the torque-rebalance loop gain must be as great as possible to attenuate noise
at the pickoff signal modulation frequency.

The computational bandwidth of the attitude algorithm is taken to be half of
the attitude update rate. The bandwidth of the torque-rebalance loop should
be equal to the computational bandwidth so that the attitude algorithm will
have angular rate information over its entire bandwidth. In addition, the loop
gain within the bandwidth must be as near unity as possible. If the vehicle is
subjected to coning motion within the torque-rebalance loop bandwidth and the
closed loop gain at the coning frequency is not unity, the attitude algorithm will
produce rectified attitude errors proportional to the square of the closed loop
gain [4], which cannot be compensated with coning compensation algorithms.

The torque-rebalance loop design must also have sufficient stability margins
so that the loop will remain stable in the presence of modelling errors, pickoff
and torquer misalignments, and changes in operating conditions. The above
design requirements are discussed in greater detail in Section 4.3.

18



1.4 Thesis Goals and Design Approach

Historically, classical design techniques have been used for the design of

torque-rebalance loop controllers [15], [3], and [11]. Only recently have mod-

ern, multivariable design techniques been examined for use in this problem [16].

The goal of this thesis is to compare some multivariable design methodologies in
the context of the torque-rebalance loop example. The methodologies consid-
ered are linear quadratic Gaussian with loop transfer recovery (LQG/LTR), for-
mal loop shaping with LQG/LTR (FLS/LQG/LTR), frequency weighted LQG

(FW/LQG), in addition to classical lead compensation. The design methodolo-
gies are described in Chapter 5.

As stated above, several torque-rebalance loop controllers are designed for a

continuous time gyro model described by complex coefficient differential equa-

tions. A first order lead design, which has been typically used in classical loop
designs, provides a low bandwidth baseline design. The multivariable method-

ologies are used to generate low bandwidth designs that are compared to the
classical lead design. These methodologies can be used to generate much higher
bandwidth designs; therefore, high bandwidth multivariable designs are also

compared.
The performance of the controllers are compared as well as the design method-

ologies themselves. The results of these comparisons are summarized in Chap-
ter 6. The overall performance of the multivariable designs is much greater than
that of the classical first order lead, but they require compensators of approx-
imately double the order of the classical design. There is little performance
difference between the multivariable designs however. Of those examined, only

the frequency weighted linear quadratic Gaussian design methodology produces
compensators that meet all of the typical TDF-DTG torque-rebalance loop de-
sign requirements directly through the design methodology. The LQG/LTR de-
sign methodology provides the easiest design approach, with the design problem
reduced to the selection of two scalar parameters. Finally, the FLS/LQG/LTR
design approach has some promise in torque-rebalance loop design, but more

expertise is needed in the selection of suitable target loops.
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Chapter 2

Gyro Model Description

In this chapter, the linear model of the gyro used in the design of the torque-
rebalance loop controllers is discussed. First, the dynamics of a single gimbal

rotor suspension system are analyzed in order to derive the tuning condition.
Then the equations of motion of the gyro rotor are derived and linearized to
generate the linear model used in the design analysis. Finally, the complex
method is applied to the linearized equations in order to take advantage of the
rotationally symmetric properties of the gyro.

2.1 Gyro Equations of Motion

2.1.1 Background

The dynamics of practical two degree of freedom, tuned gyroscopes have been

well understood for nearly two decades. Accordingly, there are several deriva-

tions of the equations of motion available. Savet [14] derived the equations
of motion for a gimballess, "vibra-beam" gyro using a Lagrangian potential.
An alternative derivation is presented by Craig [6], who derived the equations
of motion for a dynamically tuned gyro with n gimbals using a Newton-Euler
approach. Craig [5] also performed extensive analysis on the error sources as-
sociated with a physical gyro. In a subsequent paper, Craig [4] derived the
equations of motion for a physical tuned gyro under the assumption that the
gyro rotor is a free body and then introduced terms corresponding to the error
sources of a physical gyro into the free body equations of motion. A detailed
analysis of a one and two gimbal gyros is also presented in [3].

The derivation of the equations of motion for a single gimbal, tuned gyro that
is presented in this thesis follows the approach taken by Craig [4]. This analysis
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Figure 2.1: Suspension System Schematic Diagram

has been simplified somewhat to include the effects of an imperfect suspension
system only, which have a first order effect on the gyro rotor motion, ignoring

pickoff and torquer misalignments and other effects. A description of the overall
gyro system is presented in Section 1.2.1.

2.1.2 The Tuning Condition

A schematic diagram of the gyro shaft, rotor, and suspension system is shown
in Figure 2.1. Four reference frames are used in the analysis of the suspension
system. The i-frame is fixed in inertial space; the r-frame is fixed in the gyro
rotor; the g-frame is fixed in the gimbal, and the s-frame is fixed in the gyro

shaft. The shaft y-axis, y, coincides with the gimbal y-axis, and the gimbal
x-axis, xg, coincides with the rotor x-axis, x. The rotor has an angular velocity
of w, with respect to inertial space about its z-axis, which is'aiigned with the
inertial z-axis, zi.

A diagram showing the shaft deflected with respect to the rotor is shown
in Figure 2.2. The instantaneous attitude of the shaft relative to the rotor is

21



.9 z %z 

zs

Fr

5: XY
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defined by the two angles, Wm and cpy, which are assumed to be small.

The moment applied to the rotor about the x'-axis is the combined torsional
spring constant of the outer flexures, Kc, multiplied by the deflection angle, yp.

An = Kmcp, (2.1)

The moment applied to the rotor about the y'-axis is the difference between the
moment applied to the gimbal about the y-axis by the inner flexures, K,y,,
and the inertia moments of the gimbal about that axis.

M; = Ky - [Iigy - (Igz - Ig,) wgzw9] (2.2)

The components of the moments of inertia of the gimbal about the gimbal axes,
x9, yg, and z, are denoted by Ig_, Igy, and Ig, respectively.

The angular velocity of he gimbal with respect to inertial space, written in
gimbal coordinates is

W= Y = (2.3)
tgy - W. ]g
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Its value is found from:

= Wg + C;ig ~ 7-rg -sr

with

g = [0 W, = 0 

and where C9 is the direction cosine matrix relating the r-frame to the g-frame.
Assuming W, and py are small, it is shown below.

1 0 0

C, = 0 1 
0 - 1

Substituting Equation (2.3) into Equation (2.2) yields the two equations for the
moments applied to the rotor by the suspension system in rotor coordinates.

M;rr = K. P (2.4)

M = K y + (-Igz -Igy + Ig,,) w.. (2.5)

Assuming an angular displacement of the gyro case (to which the shaft is
connected) with respect to inertial space about the xi-axis of b, the angles
between the rotor and shaft become

WP = 0. cos W't (2.6)

WY = -O, sinwot. (2.7)

Substituting Equations (2.6) and (2.7) into (2.4) and (2.5) yields the following
moment equations

Mr. = K2.O.cosWt (2.8)

Mr = -[Ky + (-I-Igy +Ig ) ] W sin ,t. (2.9)

After some manipulation, Equations (2.8) and (2.9) can be written in inertial
coordinates as shown in Equations (2.10) and (2.11).

= [(K. + K) + (-Ig-Ig+I gz)w:] +

{ [(K - K) -(-Igz,. - Igy + Igz) ,,] .2 COS 2wt (2.10)

M [(K, -K,) -(-I. - Ig + Iz)w,] , sn2w,t (2.11)
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An ideal suspension system would transmit zero average moment to the rotor

regardless of the time history of qO. For the case of a constant b, the average

moment equations are

1 [(K + Ky)+(-I,. -I,, + I) w] (2.12)

MrY = O. (2.13)

Equation (2.12) suggests the tuning condition. If the flexure torsional spring

constants, gimbal moments of inertia, and rotor spin angular velocity can be

chosen according to (2.14), the suspension system is said to be tuned.

= IK + Ky . (2.14)

As a result, the rotor is decoupled from the suspension system, and the average

moments on the rotor due to the suspension system are zero.

2.1.3 Gyro Rotor Equations of Motion

The equations of motion of the gyro rotor are derived under the assumption
that the tuning condition is met, so that the gyro rotor behaves like a free

rotor in inertial space. Terms corresponding to moments due to an imperfect

suspension system are added to the free body equations of motion to complete
the model.

It is convenient to derive the equations of motion using coordinate systems

that do not rotate with the rotor because the gyro pickoffs and torquers are

fixed to the gyro case. Therefore, two new coordinate frames are defined. The

n-frame is attached to the rotor but does not spin with the rotor, and the n-

frame z-axis is aligned with the rotor spin axis. The c-frame is fixed in the gyro

case. Figure 2.3 shows the relationship between the n-frame and the c-frame.

The orientation of the n-frame with respect to the c-frame is defined by the two

pickoff angles 0. and Oy.

The angular velocity of the n-frame with respect to inertial space written in
the n-frame is

win = =Cc + (2.15)
where

[ OZ 0~~t 3~
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Figure 2.3: Orientation of C-frame and N-frame

The direction cosine matrix, C,', for small 8, and Ov is shown below.

1 0 -8y
C n = O 1 0

B0 -0. 1

Substituting the above quantities into Equation (2.15) yields Equation (2.16).

Wn[ 1 + 0 - 1yo.

Wi.n W ny= +y + Y +, (2.16)
JWnzq 1kzi - o6zq + OyvO

The moment on the rotor, written in the n-frame, is equal the the rate of

change of its angular momentum, as shown in Equation (2.17).

= (H) = () + x H (2.17)

The angular momentum of the rotor is

IrWnz J
n = IryWnyW, (2.18)

Irz (nz + W.)

25

14



where w, is the rotor spin speed, which is assumed to be held constant by the gyro

motor and is much larger than wnz,, and I,, Iy,, and I,, are the rotor moments

of inertia about the corresponding rotor axes. Substituting (2.16) and (2.18)

into (2.17) yields the following moments on the rotor, written in the n-frame.

[Ir nwn + (Irz - Iry)WnyWnz + Irzwnyws
Mn = Iryny + (Ir. - I,.z) ,wnz, - IIzw, (2.19)

IrzI nz + (Iry -r)Wn=Wny

The moment on the rotor can be expressed in the case fixed coordinate frame

as shown in (2.20).

ME = C Mn (2.20)

The motor shaft lies along the case fixed z-axis, and under the free rotor as-
sumption, can only provide moments to the rotor about this axis. Moments

applied to the rotor along the perpendicular axes, Mc,, and My, are provided

by the gyro torquers.
Up to this point, the moments on the rotor have been derived under the

assumption that the rotor is a free body. Actual rotor suspensions are not ideal,

and their imperfections can be easily modelled as additional sources of moments

on the rotor. These moments can be due to the effects of mistuning, suspension
damping, and other imperfections. Craig has described several sources of errors

in a dynamically tuned gyro in great detail [5].

For the purposes of this analysis, only the linear terms associated with the

moments due to suspension damping will be included. These moments are shown

below in Equations (2.21) and (2.22).

M.C, = HO + DJR, (2.21)

MC = _ 0 + DRy (2.22)

Where H = Izw, is the angular momentum of the rotor about its zn-axis. The

gyro quadrature time constant, , is infinite in an ideal gyro. It corresponds to
the rate at which the rotor will realign itself with the gyro case after an initi'

offset. The rotor damping term, DR, is zero in an ideal gyro. It corresponds to

viscous damping and tends to damp rotor nutation oscillations.

Combining Equations (2.20), (2.21), and (2.22) yields Equations (2.23) and
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M. = M + yM + .
S/= Mry-.M + MY

Expanding

Ir = Iy =

these equations and assuming that the rotor is symmetric so that
I,, yields:

+ I,, ( .+ + -
H+ O -9+DRiz

= Ir I

- H(. + i -o+z)(Ir.- Ir) + - 0 Rz)

Irz (E + oy+ + iY+ - 2§

H-r + DRiy
71

+ oyw- x

)Y- 0-4)Y) ey

(2.25)

± o - owy)

- G=4))e

(2.26)

When the gyro case is subjected to an inertial angular rate, 4, the gyro torquers
must supply the moments, l and MY, to precess the rotor at a rate equal to
the inertial angular rate.

2.2 Torquer and Pickoff Models

The gyro torque generators apply commanded moments to the rotor electro-
magnetically. An electrical coil is fixed to the gyro case, and a current through
the coil acts with permanent magnets on the rotor to magnetically torque the
rotor. The torque generator is modelled as a simple gain, KT, with units of
torque per millivolt.

The pickoff signal generators also work electromagnetically. A coil is fixed to

the gyro case, and the variation of the inductance of the coil due to rotation of
the rotor about the xC-axis and yc-axis is measured by the pickoff. The pickoff
output is amplified by a pre-amp and is modulated on a high frequency carrier
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signal. The combined pickoff, pre-amp, and signal generator is modelled as a

simple gain, KPO, with units of millivolts per radian.

2.3 Linearized Equations of Motion

The equations of motion in (2.25) and (2.26) can be simplified by assuming

that products including the pickoff angles, 80 and ,, are small and retaining

only the linear terms of the derivatives of . These linearized equations are

shown below.

MZ = I ( + i.) + H ( + y) + DR + HB

MY = I,. ( + y)-H ( + Ha) + DRiy- H mIr

(2.27)

(2.28)

The linearized model of the gyro can be expressed in the state space

in (2.29) and (2.30).

= Ax + B + Lid + L2d2

Y = Cr

form shown

(2.29)

(2.30)

The state vector, x, is made up of the pickoff angles and their derivatives;

the control input, u, consists of the moments applied to the rotor by the gyro

torquers; the output vector, y, consists of the rotor pickoff angles. The additional
inputs, d1 and d2 are the inertial angular rates and accelerations. The state space

form of (2.27) and (2.28) is shown below.

0 1 0 0

0 _D _ H
Irv TIr, Irr

0 0 0 1
H H 0 _ DR-tir Irr I, .
0 0 0

0 H 0 

H 0 0
I ,,. 11

d8.

OY

0
0

-1

0 0

+ 17 0
0 0

[sd]

~000z

0 1 0 yooo] Lt

M1 +
MY

(2.31)

(2.32)
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2.4 Application of the Complex Method to the
Gyro Model

The complex method has been used to simplify the analysis of a large class

of systems with rotationally symmetric dynamics. It has been applied to the

two-degree-of-freedom-dynamically tuned gyro by Lipman [13], Craig [6], and

others. The application of the complex method to two input-two output block

symmetric (TITOBS) systems has been analyzed in great detail by Johnson [12],

and many of his results, discussed in Chapter 3, are used in the remainder of

this thesis.

The complex method is applied to the gyro equations of motion by defining

the following complex variables:

c = 0 + jy

Xc = 00+i A
MC = M+ jMy.

Expressing Equations (2.29) and (2.30) in terms of the complex pickoff angle,

OC, complex inertial angular rate, ke, and complex moment command, M,, yields

the set of complex state space equations shown in (2.33) and (2.34).

r . r 1 M".

[ [ + )[ Irr ]

O Irr ] + [ - ]c (2.33)

[ [ O[ ] (2.34)

Clearly, there are several advantages to representing the system in complex

form. The two primary reasons that this is done are that a TITOBS system is

transformed into a SISO system and that the order of the system is reduced by

a factor of two. Addi'._onal properties of TITOBS systems and their complex

representations are discussed in Chapter 3.

It is also convenient at this point to introduce the torquer and pickoff gains

into the state equations, and to also write the angles in units of degrees instead

of radians. This results in Equations (2.35) and (2.36), where M' is the torque
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command in millivolts and ' is the pickoff angle output, also in millivolts.

[0c] [0 1 8 0 1[ ic ] [j [lv ( irr+i I) ] [ fc ]±[Kr Il] ±

[ H [ o- 0 Q] c (2.35)

of = [KP°180 c][ ] (2.36)

Throughout the remainder of this thesis, the terms in Equations (2.35) and
(2.36) are referred to as the corresponding terms in Equations (2.37) and (2.38).

ip = Apgp + Bpup + LpC + (2.37)

yp = CPp (2.38)

The SISO complex coefficient transfer function from the moment command in-
put, up, to the pickoff angle output, yp, is determined from the state space
representation of the system as shown in Equation (2.39).

Gp(s) = Cp (sI - Ap) - Bp (2.39)

2.5 Summary

In this chapter, the equations of motion for the two-degree-of-freedom, dy-
namically tuned gyro are derived. These equations lead to a linear model of
the gyro used in design and analysis of torque-rebalance loop controllers for the

gyro. The complex method is applied to the linear equations of motion, yielding
a single input-single output description of the gyro.
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Chapter 3

Properties of Block Symmetric
Matrices and Systems

In this Chapter, some properties of block symmetric systems are presented,
with special attention to real, two input-two output block symmetric (TITOBS)
systems. After some background is presented, block symmetric matrices are
defined, and the relationship between block symmetric systems and their corre-
sponding complex representations is discussed. Next, some properties of block

symmetric matrices are presented. Then some properties of TITOBS systems
and their corresponding complex single input-single output (SISO) forms are
examined. Included in this section is a discussion of the use of Bode plots of
complex systems and the complex SISO Nyquist criterion for control system
design. Lastly, the implementation of block symmetric dynamic compensators
in digital computers by taking advantage of the complex method is analyzed.

3.1 Background

The linear model of the two-degree-of-freedom tuned gyroscope, along with
many other systems with rotational symmetry, is a block symmetric system.
This block symmetric nature can be taken advantage of by using the complex
method, and the complex method has been used to simplify the analysis of
several systems with rotational dynamics. As was discussed in Chapter 2, the
complex method has been used to derive the equations of motion of the tuned

gyr¢ .nd has also been used to arrive at a complex coefficient transfer function
description of the linearized gyro model ([13] and [61). The use of the complex

method also has advantages in control system design, analysis, and implemen-
tation for block symmetric systems, especially TITOBS systems.
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Since TITOBS systems can be transformed into complex SISO systems via

the complex method, classical SISO design tools can be used in the design of a

nominally MIMO system. Root locus, Bode plots, and the Nyquist criterion can
be used, but must be interpreted differently for complex systems than for real

systems. A 1974 NASA report [15] used the complex versions of root locus and

Bode plots in the design of a tuned rotor gyro torque-rebalance loop controller.

Johnson [12] derived the rules for the root locus of complex systems and also

developed interpretations of Bode plots and the Nyquist criterion for complex

systems; both of which are used extensively in this thesis.

The reduction in system order and number of inputs and outputs afforded
by the complex method offers a possibility of computational savings in com-

pensator design. Compensators for block symmetric systems implemented in

digital computers can benefit from reduced memory storage requirements if the

complex version of the compensator is used.

3.2 Definition of Block Symmetric Systems and
Complex Notation

This chapter describes several properties of real, block symmetric matrices

and systems. A 2n x 2m real matrix, S, is block symmetric if it can be partitioned
as shown in Equation (3.1).

S =[ -SiS i (3.1)

The real sub-matrices, S, and Si, both have dimension n x m. The complex

matrix, S,, corresponding to the real block symmetric matrix, S, is defined in

(3.2).

S = S, + jS (3.2)

A real, linear, time invariant system that is block symmetric can be described

by a corresponding system in complex form. This is shown to be true for the

gyro model at the end of Chapter 2. Consider the real, block symmetric system
shown below in state space form

i(t) = A(t) + Bu(t) (3.3)

y(t) = C:(t) (3.4)
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with the control law

(t) = -G(t) (3.5)

where the matrices A, B, C, and G are properly sized, block symmetric, and
are partitioned as

A = A B =e -Bi
A, Bi B,

Ci C Gi G, 

and the state, control, and output vectors are partitioned as

2= Mr j U y= ·

Next, consider the corresponding complex-system shown below

i>(t) = Axc(t) + B__(t) (3.6)

y0(t) = C4c(t) (3.7)

with the control law
u(t) = -Gc0 (t) (3.8)

where the complex matrices and vectors are defined as

AC = A, + jAi

Be = B, + jBi

Cc = Cr+ jCi
Gc = G, + jGi

EC = gr + izi

Uc = _r + jU

ye = y, +jyi.

The real, block symmetric system described by Equations (3.3) through (3.5)
is fully described by the real and imaginary parts of the corresponding complex
system in Equations (3.6) through (3.8). This result has some important impli-
cations. First, the size of the complex state vector is half the size of the real
state vector, since its real and imaginary parts contain the information of the

33



full size, real vector. Also, the size of the control and output vectors are likewise

halved in the complex description of the system. This is particularly useful if
the original real system is TITOBS, since the real system is transformed into

a complex SISO system. This allows modified classical SISO design tools such

as root locus, Bode plots and Nyquist plots to be used for the design of what

is physically a two input-two output system. Finally, block symmetric compen-

sators implemented in digital computers can also benefit from the use of the

complex form of the system, since the memory required to store the smaller

complex matrices is less than that required for real block symmetric matrices.

3.3 Properties of Block Symmetric Matrices

This section summarizes some of the properties of block symmetric matrices
and their relationships to the corresponding complex matrices. Most of the
results in this section are due to Johnson [12], and the proofs of the following
results can be found there.

3.3.1 Algebraic Properties

Sum

The sum of two compatible, block symmetric matrices is block symmetric.

If R and S are real, block symmetric matrices with

R = -R. ] S = [ Si 

then their sum is shown below

T =R+S

r n {T} Re {T} 

where

T = R + Se

R = + jR
S = S,+ jSi.
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Product

The product of two compatible block symmetric matrices is block symmetric.

If R and S are real, block symmetric matrices with

R = . - Ri S S [ -Si 

then their product is shown below

T= RS
Re {T} -in{T} 1

n f {Tc} Re {T} J

where

T = RcSc

RC = R, + jRi

S = S,+jS .

Matrix Exponential

The matrix exponential of a block symmetric matrix is block symmetric. If

S is a real, square, block symmetric matrix with

S - 1S -Si l

[ Si S"]

then the matrix exponential is shown below

1 1ST = I+ S+ S2 + S3 + ...
2! 3!

_ [ Re{T} -m {T} 1
L I{TC} Re{Tc J

where

= + s +! 3! 
Sc = S,+j .S

This result follows directly from the sum and product properties.
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Matrix Inverse

The inverse of a block symmetric matrix, if it exists, is block symmetric. If

S is a real, square, block symmetric matrix with

s =[S -Si
Si Sl.

its inverse is

=-1 [ e{S-l} -m{S-n } .

where

Sc = S, +ji.

The inverse exists if the det(Sr) # 0.

Determinant

The determinant of a real, square, block symmetric matrix, S, with

s [St -]Si
Si St

is

det(S) = [det(S, + jSi)] [det(S, - jSi)] (3.9)

= [det(S.)] [det(Sc)]* (3.10)

where

Sc = S + iS

and * denotes complex conjugate.

3.3.2 Eigenvalues and Eigenvectors

The eigenvalues of a real, square, block symmetric matrix come in complex
conjugate pairs for both real and complex eigenvalues. The eigenvalues of the
real, block symmetric matrix, S, with

S=[S, -Si1
Si S,

are the eigenvalues, A, of the complex matrix

S = S. + s
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and their complex conjugates, A*. Therefore, the eigenvalues of a block sym-

metric matrix can be found from the eigenvalues of the corresponding complex
matrix.

The right eigenvectors of the real, 2n x 2n, block symmetric matrix, 5, can
be found from the eigenvalue problem shown in Equation (3.11)

Sy = Ak~y k = 1,2,3,... ,2n (3.11)

where vk is the kth right eigenvector and Ak is the kth eigenvalue, generally

complex. Equation (3.11) can be partitioned as shown in (3.12).

[S -Si ~] = Ak (3.12)

The n x 1 sub-vectors, vu and , are the upper and lower partitions of the 2n x 1
right eigenvectors.

The right eigenvectors of the corresponding complex, n x n matrix, S,, can
be found from the eigenvalue problem shown in Equation (3.13)

S.vi = Acv (3.13)

where

SC = S,.+jSi

V = ' + jivi,

and the subscripts have been removed to simplify the notation. The vector,

vc, is an n x 1 right eigenvector and Ac is its associated eigenvalue, generally

complex.

The eigenvectors, v, of the real, block symmetric matrix S can be found
from the eigenvectors, v_, of the corresponding complex matrix, Sc. The exact
relationship between these eigenvectors depends upon whether the associated
eigenvalues are real or complex.

For a real eigenvalue of Sc, s = A,, the eigenvalues of S are s = Ac and

s = A* = A. The associated eigenvectors of S are

v = _VC ]and v= ['Re v (3.14)
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For a complex eigenvalue of S, = A,, the eigenvalues of S come in the

complex conjugate pair, = A and s = A*. The associated eigenvectors of S

are, respectively

_jv and _v (3.15)

Equations (3.14) and (3.15) can be used to find the eigenvectors of a block

symmetric matrix from the eigenvectors of its corresponding complex matrix.

They can also be used to find the eigenvectors of the complex matrix from those

of the block symmetric matrix. A more detailed discussion and proof of (3.14)

and (3.15) is given by Johnson [121.

3.4 Properties of TITOBS Systems

In this section, some properties of TITOBS systems are discussed. The trans-

fer function matrix of a TITOBS system is considered. The complex method

yields the SISO complex coefficient transfer function (CCTF). This SISO trans-

fer function allows the use of the complex versions of the Bode and Nyquist

tools. Transmission zeros of TITOBS systems are also examined.

3.4.1 Transfer Function Description

The transfer function matrix of a real, linear, time invariant system relates

the Laplace transform of the input vector to the Laplace transform of the output

vector. This relation is shown in Equation (3.16).

Y(s) = G(s)U(s) (3.16)

The vector UL(s) is the Laplace transform of the input u1(t), and the vector Y(s)

is the Laplace transform of the output y(t). The transfer function matrix, G(s),

can be found from the state space representation of the system from

G(s), = C (sI - A)- ' B (3.17)

where the matrir-i, A, B, and C are defined in Equations (3.3) and (3.4).

If the system is a TITOBS system, then (3.16) can be partitioned in the

following manner,

[ Y(s) G(s) -Gi(s) U [ (s) (3.18)
Yi(s) Gi(s) G,(s) Ui(s)
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where all of the partitioned elements are scalars. The complex method is now

used to generate the complex coefficient transfer function (CCTF), Go(s), which
is a scalar function and is shown in Equation (3.19).

G,(s) = G,(s) + jGi(s) (3.19)

The complex version of (3.18) becomes

Yc(s) = G,(s)Uc(s). (3.20)

The complex time domain input to the system can be partitioned into its real
and imaginary parts as

u,(t) = u.(t) + jui(t),

and its Laplace transform is

U,(8) = U,(s) + jUi().

The Laplace transform of the output is

Y(S) = Y(s) + jYi(s),

and the complex time domain system output, yc(t), can be found from the inverse
Laplace transform of Y0(s):

yc(t) = y,(t) + jyi(t)

y,(t) = Re{ { - { Y(s)}}

yi(t) = {& {-'1 Y(s)}}

where £-1 denotes inverse Laplace transform.

One important fact about the CCTF is that it is not conjugate symmetric.
Ordinary, real coefficient transfer functions have the property that,

G(s*) = G*(8)

however, for the explicitly complex transfer function,

Gc(s*) = G,(*) + jGi(*)
= G(s) + jG(s)

but,
Gc(s) = G,(s) - jG(s);
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therefore, for nonzero G(s),

The result of this lack of symmetry is that the frequency response of the complex
system is different for positive and negative frequencies, yielding two different

Bode plots. Also, the Nyquist plot of a complex system is not symmetric about
the real axis. Conjugate symmetry does hold if Ge(s) has real coefficients only.

3.4.2 Transmission Zeros

The transmission zeros of a TITOBS system are the zeros of the correspond-
ing CCTF and their complex conjugates. The transmission zeros of a MIMO
system come from the solution to the generalized eigenvalue problem shown in
Equation (3.21)

(zkM - L)Vk = 0 (3.21)

where

M= 0 and L -C O'

and k is the kth transmission zero and v_ is the associated right generalized
eigenvector.

The transmission zeros are the roots of

det (zkM - L) = 0 (3.22)

det [zI - A l] det [C (zI- A)-' B] = 0 (3.23)

det [zI - A] det [G(zk) = 0 (3.24)

if there are no pole-zero cancellations, that is det [zkI - A] #: 0. With this

condition, the transmission zeros are the solutions to Equation (3.25).

det [G(zk)] = 0 (3.25)

If the system is a TITOBS system, the transfer function can be expanded as
in Equation (3.18). Using the determinant rule in Equation (3.9),

det [G(s)] = [det (G,(s) + jGi(s))] [det (G,(s) -jG(s))]

= [det (G,(s))] [det (G,(s*))]

= G(s)GC(s*)
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since G,(s) is a scalar function. Therefore, the transmission zeros of a TITOBS
system come from the solution to

G,(s) = 0 and G,(s*) = 0 (3.26)

so that if Zk is a zero of the CCTF, G,(s), it is also a transmission zero of the

corresponding TITOBS system, as is zk.

3.4.3 Bode Plots

Frequency domain analysis of linear systems is conducted by employing Bode

plots in the case of SISO systems, which can be extended to analysis using sin-
gular values in the case of MIMO systems. For the special MIMO case of the

TITOBS system, which can be described by a SISO complex coefficient transfer

function, an interpretation of the traditional Bode plot can be developed. The

Bode plot of the complex system contains the singular value information asso-

ciated with the typical MIMO singular value plot of the TITOBS system, and
also contains phase information associated with Bode plots of real SISO transfer
functions.

The singular values, ak(s), of a 2m x 2m real, linear system are the non-
negative square roots of the eigenvalues of the real matrix, G(s)GH(s), where
2m is the number of system inputs and outputs and GR(s) is the complex
conjugate transpose of G(s). In more compact notation,

O(s) = [AA, {G(a)GH (s)}] 2 > o (3.27)

where the eigenvalues, Ak, come from Equation (3.28).

det [AkI - G(s)GN( s)] = 0 (3.28)

If G(s) is a TITOBS system, it can be partitioned as follows

G(s)= G,(a) -G((s) ( G ) 1
G (a) G, (s) G (a) G()

where the partitioned elements are real coefficient, SISO transfer functions. Sub-

stituting the par*"ioned matrices into (3.28), making use of the rule for the
determinant, and simplifying yields (3.29).

det [AkI - (G,(s) + jGi(s)) (G,(s) + jGi(s))*] 

det [kI - (G,(s) - jGi(s)) (G,(s) - jGi(s))*] = 0 (3.29)
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Noting the following relations,

GC(s) = Gr(8) +jGi(s)

G:(s*) = G,(s)-jGi(s)

Equation (3.29) becomes

det [AkI - Gc(s)G(s)] det [AkI - G(s*)G*(s*)] = 0 (3.30)

with solutions

A = G(s)G*(s)

A,, = Gc(s*)G*(s*)

The square roots of these eigenvalues are the minimum and maximum sin-
gular values of the TITOBS system. They are also the magnitudes of G,(s) and

G,(s*). For s = jw, the singular values of G(jw) are the magnitudes of Gc(jw)

and G,(-jw), which can be found from the Bode magnitude plot of Gc(jw) for

positive and negative frequencies.
The phase of the CCTF Gc(s) is less well defined than its magnitude. The

phase angle of G,(jw) for w > 0 is the amount of phase by which the output leads

the input. This is not true, however, for negative frequencies. The phase angle

of G,(-jw) for w > 0 is the amount of phase by which the output lags the input.

In order for the phase angle to have the same meaning (output leading the input)
for both positive and negative frequencies, the magnitude and phase of G*(-jw)

for w > 0 is used in the Bode plot of the complex system. The magnitude of

G*(-jw) is equal to the magnitude of G(-jw), and the phase of G*(-jw) is

the amount of phase by which the output leads the input. This convention

was adopted by Johnson [12j. An additional advantage of this convention is

that a Bode plot of a transfer function with real coefficients will have the same

phase for both positive and negative frequencies. The one disadvantage of this
convention is that the corresponding complex SISO Nyquist plot is not apparent
from inspection of the Bode plot, since Gc(jw) is plotted for both positive and
negative frequencies in the Nyquist plot.

The CCTF Bode plots are used extensively in the remainder of this thesis.
Adopting the notation of Johnson [12], the transfer function G,(jw) for w > 0 is
referred to as the forward transfer function, and G*(-jw) for w > 0 is referred
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Figure 3.1: Stability Margins in the CCTF Bode Plot

to as the backward transfer function. An example of a Bode plot of a CCTF is

shown in Figure 3.1. The solid lines in the plot represent the gain and phase of

the forward transfer function, and the broken lines represent the gain and phase

of the backward transfer function.

The stability margins that are discussed in the next section can be read off

of the CCTF Bode plot. Figure 3.1 shows an open loop CCTF Bode plot with

the stability margins indicated. The precise definitions of these margins are

discussed in the next section.

The Bode plot interpretation of these margins is similar to that of the tradi-

tional marginr' or real coefficient transfer functions. From the Nyquist stbility

criterion, the phase of the forward and backward transfer functions cannot pass

through -180 ° while the magnitude of the respective transfer function is greater

than unity. The amount by which the phase of these transfer functions is greater
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than -180 ° when the magnitudes of the transfer functions are unity is the phase
margin. Since the magnitudes of the forward and backward transfer functions

can crossover at different frequencies, the positive and negative phase margins

can have different values. Another way of stating the Nyquist criterion is that

the magnitude of the forward and backward transfer functions must be below
unity while the phases of the respective transfer functions pass through -180 °.
The upward gain margin is the minimum amount by which the magnitude of
either transfer function can be increased before its magnitude becomes unity.

The CCTF Bode plot offers some directional information in terms of the
feedback required to stabilize a TITOBS system. Consider the feedback loop in

Figure 3.2 and the Bode plot of the CCTF G,(s) shown in Figure 3.3. The magni-

tude plot indicates that the low frequency behavior of the system is that of an in-

tegrator, with the magnitude both transfer functions rolling off at 20 dB/decade.

The phase angle of a transfer function with real coefficients is -90 ° for an inte-
grator, but the phase at low frequencies in this case is 00 for the forward transfer
function and -180 ° for the backward transfer function.

Figure 3.2: Example Feedback Loop

Compensation of this system with a purely real gain, K = k0, will result in
an unstable closed loop system, since the open loop phase at low frequencies is

-180 ° for the backward transfer function, while the gain is greater than unity,
indicating no phase margin. Therefore, the open loop gain must be of the form
K = -jko, where ko is a real constant. The multiplication of the loop gain

by the negative, pure imaginary gain introduces the "missing" phase needed to
bring the phase of both the forward and back.: .rd transfer functions to -90 °

in agreement with the magnitude plot. (Remember that the backward transfer
function is defined to be G*(-jw).) A Bode plot of the new open loop system

of -jG,(s), with k0o = 1, is shown in Figure 3.4.

The physical significance of a pure imaginary compensator gain is cross feed-
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back. Assuming the control law of the example,

u = -(-jko)yc

and expanding into real and imaginary parts yields

u, + jui = jk0o (y, + jy)
= -koyi + jKy,

The negative imaginary part of the output is fedback to the real part of the
input, and the real part of the output is fedback to the imaginary part of the
input. For the case of the TITOBS gyro, this would mean that the negative
y-pickoff angle is fedback to the x-moment command, and the -pickoff angle is

fedback to the y-moment command.

3.4.4 Complex SISO Nyquist Criterion

The use of the complex method to transform a TITOBS system into a com-
plex SISO system allows the use of the classical Nyquist criterion to investigate
the stability of the system. The complex SISO Nyquist criterion is identical to

the classical version except that the transfer function in question has complex
coefficients.

Figure 3.5: Complex Unity Gain Feedback Loop

A complex unity gain feedback system is shown in Figure 3.5. The nominal

open loop system is the CCTF G,(s). The perturbation, Ke j , is the complex
form of a block symmetric per+--rbation to the nominal TITOBS plant, G(s).
The nominal closed loop poles of the system are the zeros of the complex coef-

ficient characteristic equation,

1 + G,(s) = 0 (3.31)
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Figure 3.6: Nyquist Contour

In order for the closed loop system to be stable, the number of closed loop

poles in the right half s-plane, Z, must be zero. Stability of the system can be
determined by using the Nyquist criterion, which can be written as

N = N {-1, Ge(s), NR} = P- Z (3.32)

where N is the number of counterclockwise encirclements of the -1 point by the

clockwise mapping of the Nyquist contour, NR, by Ge(s). The Nyquist contour
is chosen to enclose the open right half s-plane as shown in Figure 3.6. P is the
number of poles of G,(s) encircled by NR in the s-plane, and Z is the number
of zeros of G,(s) encircled by NR in the s-plane. Again, for stability Z must be

zero, so the Nyquist criterion is

N = N {-1, Ge(s), NR} = P (3.33)

This is the usual SISO Nyquist criterion except that the open loop transfer
function, Go(s), is a CCTF. The resulting complex SISO Nyquist plot is not
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Figure 3.7: Complex SISO Nyquist Plot of a TITOBS System

symmetric about the real axis. An example of a complex SISO Nyquist plot is

shown in Figure 3.7. The solid line represents the plot of Go(s) for the part of

NR above the real axis in the s-plane while the broken line represents the plot
of GC(s) for the part of NR below the real axis. The lack of conjugate symmetry

of GC(s) can be clearly seen in the plot.

Gain and phase margins for the complex system are defined in the usual way
from the complex SISO Nyquist plot. These gain and phase margins are labeled
in Figure 3.7. Referring to t- complex perturbation in Figure 3.5, the gain and
phase margins are defined as follows. The upward and downward gain margin is
the amount by which the gain, K, can be increased and decreased on all feedback
paths simultaneously with y = 0 before the number of encirclements of the -1
point changes, and the system becomes unstable. Similarly, the negative and
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positive phase margin is the amount by which the phase, y, can be increased and
decreased on all feedback paths simultaneously with K = 1 before the number of
encirclements of the -1 point changes, and the system becomes unstable. These
stability margins are valid for the real TITOBS system only if the perturbations
are block symmetric. These complex stability margins will be used extensively

in the remainder of this thesis.

3.4.5 Linear Quadratic Regulators

Feedback controllers for block symmetric systems which are based on lin-

ear quadratic design methodologies have block symmetric form. This result is
summarized by Johnson [12]. This is important since it allows the use of the

CCTF Bode plots and complex SISO Nyquist plots with linear quadratic regu-
lator (LQR) designs. This result also applies to Kalman filter designs and linear
quadratic Gaussian (LQG) problems.

Consider the deterministic LQR problem of designing a feedback controller
to minimize the quadratic cost functional,

J= f [ (t)Qx (t) + 2X(t)Q ,u(t) + uT(t)Qu(t)] dt

starting from an initial condition, x(0), for the stabilizable linear system given
by

x(t) = A(t) + B(t).
The state weighting matrix, Q.,, is positive semi-definite, and the control weight-
ing matrix, Qu, is positive definite. The optimal steady state feedback control
law is

u(t = -Gx(t).

If the system is block symmetric and the weighting matrices, Q, Q,, and
Qu, are block symmetric, then the resulting optimal feedback gain matrix, G, is

block symmetric. Furthermore, the closed loop system matrix, A - BG, is also
block symmetric.
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3.5 Implementation of Block Symmetric Com-
pensators

In this section, the use of the complex method is examined for the digital
implementation of block symmetric compensators. The use of the complex rep-

resentation of a block symmetric compensator offers the possibility of reduced
storage requirements over implementation of the real compensator. Two types
of block symmetric compensators are analyzed: gain compensators and dynamic
compensators.

The implementation of the discrete control law,

u[n] = -Gy(n] (3.34)

where G is a 2m x 2m matrix, and there are 2m system outputs () and 2m
controls (), requires the storage of the feedback gain matrix, G. Storage space
is needed for 4m 2 real numbers.

If the system is block symmetric, (3.34) can be partitioned as,

r [nG] G -Gi [ G [n]1 (3.35)
i[n] Gi G, L[n]

which can be reduced to

[n] = -G.Y[n] (3.36)

where

GC = G, + jGi

y[n] = [n] + j1_
yc[n] = [n] + y.

The m x m gain matrix, Gc, has m2 complex elements. Storage of the real and
imaginary parts of these elements requires memory for 2m2 real numbers, or half
of the memory required for the block symmetric gain matrix.

A dynamic compensator has the form

z(t) = Fz(t) + Gy(t) (3.37)
u(t) = Hz(t) (3.38)
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where there are 2m inputs and outputs and 2n states, z. The discrete version
of the compensator is assumed to have the form

[n+ 1] = F'z[n] + G'y[n] (3.39)

u[n] = H'z[n] (3.40)

where

F' = eFT

G' f eFrG d r

H'= H

and where T is the sampling interval. Implementation of these equations requires
that the matrices F', G', and H' be stored in the computer. Storage for 4n2 +
8mn real numbers is needed.

If the compensator is block symmetric, then the memory required can again
be reduced by a factor of two, to 2n2+4mn if the complex version of the equations
is used. The complex system is found in the same manner as in Equations (3.6)
through (3.7).

There is no savings of the amount of required mathematical operations in
either case. Although the sizes the matrices and vectors are reduced by the
use of the complex method, the subsequent arithmetic becomes complex. There
is no reduction in the number of real arithmetic operations in a matrix-vector
multiplication, as is performed in a compensator, when the complex method is
used.

There can be a savings of arithmetic operations when a matrix-matrix mul-

tiplication is performed. The multiplication of two 2n x 2n real, block symmetric
matrices requires 8n3 real multiplies and 4n2(2n - 1) real adds. The multiplica-
tion of the two corresponding complex n x n matrices requires 4n3 real multiplies
and 2n2(2n - 1) real adds, a savings of a factor of two. This suggests that a

computational savings can be made in design and analysis by taking advantage
of the complex method. However, present design software, such as MATRIXX

and Control-C, do not allow complex matrices in many numerical routines, such
as Riccati equation solvers. Furthermore, these built-in routines are fast enough
such that making them faster would not speed the design process significantly.
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3.6 Summary

In this chapter some properties of block symmetric matrices and systems are

presented. The complex method can be used to transform a TITOBS system

into a complex SISO system. The complex coefficient transfer function is a

frequency domain description of the complex SISO system, and the classical

SISO design tools, Bode and Nyquist plots, can be extended to CCTF systems.

Finally, the use of the complex form of a block symmetric system in the design

and implementation of compensators is investigated.
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Chapter 4

Open Loop Gyro Characteristics

In this chapter, the model of the open loop gyro is discussed, and numerical

values for the complex, linear model are introduced. The open loop complex

frequency response, from the commanded complex moment input to the complex

pickoff angle output, is examined, and a modal analysis is performed, comparing

the complex modes to their real counterparts. The addition of required loop

dynamics to the gyro model is discussed and the design plant model is defined.

4.1 Numerical Values

The numerical values of the parameters discussed in Chapter 2 are shown

in Table 4.1. The rotor spin speed in Chapter 2, o, in radians/sec, is 2rf,.

Substituting these values into Equations (2.35) and (2.36) yields the state space
representation of the open loop gyro model in Equations (4.1) and (4.2).

[ I [j958333 (-0.2083 + j1916.67) ] [ + [ 62.2292 ] M+

[ j1916.67] •&± [ _ ] X (4.1)

= [3490.66 0 ] [] (4.2)

The open loop transfer function defined in Equation (2.39) is shown in Equa-

tion (4.3).
217221.0

G(s) - (-0.20833 + j1916.67)s - j95.8333 (4.3)
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Table 4.1: Gyro Model Numerical Values

Gyro Parameter Symbol Value Units
Rotor spin speed fL 200 Hz
Polar moment of inertia Igz 7.32 gm-cm2
Transverse moment of inertia I,, 4.80 gm-cm2

Rotor angular momentum H 9200 dyne-cm-sec
Gyro viscous damping DR 1.0 dyne-cm-sec
Quadrature time constant r 20.0 sec
Pickoff gain KPO 200000 mV/rad
Torquer gain KT 5.2133 dyne-cm/mV

The eigenvalues of the complex Ap matrix are shown below.

Al = -0.05 + jO.00000413

A2 = -.15833+j1916.7

The first eigenvalue corresponds to the quadrature mode, the first order damp-
ing due to the quadrature time constant discussed in Chapter 2. The second
corresponds to the lightly damped nutation mode. It has a natural frequency
of fn = 305.05 Hz, and damping, due to the viscous damping term, DR, of
tn = 8.26 x 10- 5. The frequency of the nutation is determined by the rotor spin

speed and rotor moments of inertia.

fn = f
I,.,.

The eigenvectors corresponding to the eigenvalues above are

[ 0.59296 + jO.80368 
V = [ -0.02965 - jO.04018 j

- 6.0548 x 10-8 - j5.2174 x 10-4

0.9999998 - j3.3448 x 10-5

A bode plot of the CCTF, Gp(s), is shown in Figure 4.1. The solid lines in
the plot correspond to positive frequencies, and the broken lines correspond to
negative frequencies. In the magnitude plot, the responses for the positive and
negative frequencies correspond to the maximum and minimum singular values
of the corresponding real, TITOBS system. Note the lightly damped nutation
resonance.
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Figure 4.1: Bode Plot of the Gyro CCTF, Gp(s)

4.2 Complex Modes

The complex method provides and alternate view of the gyro modes. The
eigenvalues of the complex system contain some directional information. If the
real, TITOBS system is analyzed, this directional information can only be found
from the eigenvectors. This result is discussed in detail by Johnson [12].

Figure 4.2 shows a plot of the response of the real TITOBS gyro to an initial
condition selected to excite the quadrature mode only. Both pickoff angles, ,
and ,, have an essentially first order decay with the time constant, r = 20 sec.

In comparison, Figure 4.3 shows a plot of the response of the complex pickogr
angle to the corresponding complex initial condition. The imaginary part of the
complex pickoff angle is plotted versus its real part. Here the complex pickoff

angle approaches the origin asymptotically.
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Figure 4.4 shows a plot of the response of the real TITOBS gyro to an initial

condition selected to excite the nutation mode only. Both pickoff angles, 

and OY, have a lightly damped sinusoidal oscillation at the nutation frequency
of approximately 305 Hz; leads ,y by 90°.

Figure 4.5 shows a plot of the response of the complex pickoff angle due to

the corresponding complex initial condition. The imaginary part of the complex

pickoff angle is plotted versus its real part. The complex pickoff angle spirals

toward the origin of the complex plane in a counterclockwise manner. The
direction of the spiral can be predicted by the sign of the complex part of the

eigenvalue. A positive, sign, as is the case here, indicates a counterclockwise

spiral. A negative imaginary part indicates a clockwise spiral.

4.3 Design Plant Model

In order to meet performance specifications, certain dynamics are required to
be included in the forward loop of the torque-rebalance loop. A block diagram of

the torque-rebalance loop is shown in Figure 4.6. The gyro is denoted by Gp(s)
while the required dynamics are a demodulation filter, Gd(s), and an integrator.
These, along with a notch filter which is not shown, are discussed below. For

compensator design, the gyro plant is augmented with the demodulation filter

and the integrator at the plant output to form the design plant model, Ge(s).

1
Ga(s) = -Gd(s)Gp(s) (4.4)

In state space form, the augmented plant is

k(t) = Ax(t) + B,up(t) (4.5)

y(t) = Cx(t) (4.6)

which can be partitioned into

zi 0 Cd O Xi 0

d O0 Ad BdCp xd [ 0 up

ip 0 0 AP lip BP

y i [ Z 

This is outlined in Figure 4.6. A Bode plot of G,(s) is shown in Figure 4.7.
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Figure 4.8: Torque-Rebalance Loop with Augmented Compensator

The compensator, Ko(s), is designed with respect to the design plant model.
Once the compensator is designed, the required dynamics are absorbed into the
compensator at the compensator input to form the final compensator, K(s).

K(s) = -Ko(s)Gd(S) (4.7)

The resulting feedback loop is shown in Figure 4.8.

4.3.1 Integrator

One design requirement is that there be zero steady state error in commanded
moment when the gyro case is subjected to a step input in inertial angular rate,
~c. This requires a Type I system which is achieved through the addition of an
integrator into the forward loop. With the integrator in the loop, the torquers
precess the rotor at a rate equal to c. Clearly, if there were a steady state
error in the commanded moment, the rotor would eventually hit the stops. An
integrator in a CCTF is equivalent to an integrator on each output of the real,
TITOBS system.

In some cases, a Type II system is required so that there is zero steady state
error in commanded moment to a step input in inertial angular acceleration.
However, only Type I systems are considered in this thesis.

4.3.2 Demodultion Filter

The gyro pickoff/signal generator modulates the pickoff angle information
on a high frequency carrier signal. The high frequency roll off of the torque-

rebalance loop frequency response is desired to be as great as possible such that
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the attenuation at the carrier frequency is high. The attenuation is increased by
including a low pass demodulation filter at the gyro output. The filter used in
this thesis is a second order low pass filter of the form shown in Equation (4.8).

2

Gd() = 2 + 2 Cdwd + w (4.8)

where

Wd = 27r 150Hz

d = 0.5.

The filter can also be described in state space form by the appropriate system
matrices, Ad, Bd, and Cd. The filter is placed on both outputs of the TITOBS
system so the CCTF in Equation (4.8) has real coefficients. The poles of Gd(S)
are -471 ± j816.35.

4.3.3 Spin Frequency Notch Filter

Another design requirement is the implementation of a notch filter at the
gyro rotor spin frequency of 200 Hz. This is required because it is expected that
there is a large amount of noise in the gyro output at this frequency, and it is
undesirable for the moment command to contain this noise, since it is the output
of the loop. The notch filter is not included in the design plant model because
different design methodologies require that it be implemented in different ways

in the compensator, Ko(s).
For designs which require a notch filter to be explicitly included in the com-

pensator, such as lead compensation, the transfer function of a suitable notch
filter is shown below in Equation (4.9).

a2 + 2C.w.s + W2

G(a) - s2 + 2CpWn, + wn (4.9)

where

,n = 2r. 200Hz

C, = O.;.0001

= 0.167.

The filter can also be described in state space form by the appropriate system

matrices, An, B,, Cn, and Dn. The filter is placed on both outputs of the real,
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TITOBS system so the CCTF in Equation (4.9) has real coefficients. The poles

of G,(s) are -209.86 ± j1239.0, and the zeros are -0.001256 + j1256.6.

4.4 Summary

In this chapter, numerical values of the gyro parameters are introduced into
the gyro model. The open loop response of the gyro is examined in the frequency
domain and in the time domain. The forward loop dynamics, required to meet
performance specifications, are discussed, and the gyro model is augmented with
these dynamics to form the design plant model.
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Chapter 5

Design Methodologies

The design methodologies employed in this thesis for the design of two-

degree-of-freedom, dynamically tuned gyro torque-rebalance loop controllers
are described in this chapter. After some background on the design of TDF-
DTG controllers, an overview of the design methodologies used and the overall
design approach taken is presented. Then each of the methodologies is described
and applied to the complex form of the linear gyro model. The desigh results
and the characteristics of the design methodologies are compared in Chapter 6.

5.1 Background

Very little work has been published on the design of controllers specifically

for strapdown tuned gyros. A NASA report [15] used complex root locus and

bode techniques for controller design. The complex root locus was also used

in [11]. Another NASA report [3] compared the performance of a controller with
both auto and cross feedback to a controller designed to diagonalize the system
transfer function matrix. The report found little difference in the performance of
the two designs. The use of modern control design methodologies on the TDF-
DTG problem has only been examined relatively recently in an internal CSDL
memo [16]. In it, the performance of some optimal regulators are compared to a
classical lead compensation design. It was found that an optimal regulator design

could be used to significantly extend the bandwidth of the torque-rebalance loop

beyond that possible with classical r- igns.
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5.2 Overview of Methodologies and Design Ap-
proach

The primary goal of this thesis is to compare multivariable design methodolo-
gies in the design of TDF-DTG torque-rebalance loop controllers. The design
methodologies considered in this chapter are classical first order lead compen-
sation of the complex system, linear quadratic Gaussian with loop transfer re-
covery (LQG/LTR), frequency weighted linear quadratic Gaussian (FW/LQG),
and LQG/LTR with formal loop shaping (FLS/LQG/LTR). Two loop design
bandwidths are considered for the gyro model used in this thesis, a low (50 Hz)
bandwidth design and a high (100 Hz) bandwidth design. Each design methodol-
ogy is used to generate a 50 Hz bandwidth design, which is nearly the maximum
attainable with lead compensation, and the remaining methodologies are also
used to generate 100 Hz bandwidth designs. This approach allows comparison
of all of the methodologies for the low bandwidth design and a comparison of
the multivariable designs at the higher bandwidth that they allow.

The feedback loop considered in the design and analysis of the TDF-DTG
torque-rebalance loop is shown in Figure 5.1. The signals up and y, are the
moment command input and pickoff angle output of the gyro, respectively. The
reference input signal, upi, is fictitious and is equal to zero. Therefore, the
output of the loop, u, is the negative of the moment command to the gyro.
The transfer function from upi to up, is used as a measure of loop performance,

since the moment command to the gyro, the output of the loop, is a measure of
the inertial angular rate applied to the gyro case.

Figure 5.1: Design Feedback Loop

The design tools discussed in Chapter 3 are used extensively to determine the

performance and stability margins of the designs. With reference to Figure 5.1,
Bode plots of the open loop transfer function from the plant moment command
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input to the output of the compensator, K(s)G,(s), are used to determine the
velocity error constant, K, which is used as an indication of steady state errors
in pickoff angle and moment command due to step inputs of angular acceleration.
Nyquist plots of the same transfer function are used to determine the stability
margins of the complex description of the system. Bode plots of the closed loop
transfer function from the fictitious signal, upi, to the compensator output are

used to determine loop bandwidth and Mp, the maximum closed loop peaking
within the bandwidth. The bandwidth of the system is considered to be the
frequency at which the magnitude falls below -3 dB or the phase falls below
-90 °, which ever is lower on either the forward or backward transfer function.
The gain of the closed loop system at 10 kHz is used as a measure of the high
frequency attenuation. The response of the closed loop system to a step in
inertial angular rate applied to the gyro case is also used as a measure of system
performance. The maximum deviation of the pickoff angles from null, time
required to drive the pickoff angles back to null, and the peak overshoot and
settling time of the moment commands are examined.
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5.3 Lead Compensation Design
5.3.1 Description of Design Methodology

Lead compensation of a complex system is identical to classical lead compen-

sation of real SISO systems except that the compensator gain may be complex.
The first order lead compensator has the form shown in Equation (5.1)

KL(s) = K + 1 a < b (5.1)

where a and b are real and K is a generally complex gain.

The notch filter described in Equation (4.9) must be explicitly included in
the compensator, so the design plant model is augmented with the notch filter
before the lead compensator is designed. A Bode plot of the gyro augmented

with an integrator, demodulation filter, and with the notch filter is shown in
Figure 5.2. The design goal is to select K, a, and b in order to obtain the
desired closed loop bandwidth and stability margins.

5.3.2 Low Bandwidth Design

With reference to Figure 5.2 and the discussion of CCTF Bode plot inter-
pretations in Chapter 3, it is clear that the lead compensator gain, K, must
be purely imaginary and negative. The resulting compensator output, up,, is
returned to the gyro input, up = M' with negative feedback. The TITOBS
interpretation of this is cross feedback with no auto feedback. That is,

M' = jK(s)O'

or

M' = -K(s);

My, = K(9)0'

where K(s) is the real coefficient, augmented compensa.tor: the lead compen-
sator with integrator, demodulation filter, and notch filter. The compensator,
K(s), is placed on both outputs of the TITOBS System.

In order to achieve a bandwidth of 50 Hz, the lead compensator pole, b,
is placed at s = -27r (1000 Hz) m -6283.2 so that its phase contribution is
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Table 5.1: Lead Compensator Poles and Zeros

negligible at 50 Hz. Then the magnitude of K and the zero location, a, are
adjusted so that the bandwidth requirement could be met while maintaining
reasonable phase margins. Care is exercised to keep the zero location far enough
away from the origin to prevent slowing of the step response of the loop. The
final lead compensator design is shown in Equation (5.2).

KL()= -j170 [8, ] (5.2)

A Bode plot of the overall compensator, K(s): lead compensator augmented
with the notch filter, demodulation filter, and integrator, is shown in Figure 5.3.
Note that the magnitude of the forward and backward transfer functions are
identical, indicating no coupling between the channels of the TITOBS compen-

sator. The compensator poles and zeros are listed in Table 5.1, and the com-
pensator integrator gain is -j170, giving a velocity error constant of 110.9 dB.
A Bode plot of the compensated open loop system is shown in Figure 5.4 while

a Bode plot of the closed loop system is shown in Figure 5.5. The system has

a -90 ° bandwidth of just over 50 Hz and a -3 dB bandwidth of 145 Hz. The
Mp of the forward transfer function is 3.95 dB while the Mp of the backward
transfer function is 2.37dB. The closed loop gain at 10 kHz is -170 dB. The
closed loop poles of the system are listed in Table 5.2.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or c= ' ldeg/sec, is shown in Figure 5.6. The real and imaginary
parts of the pickoff angle and the real and imaginary parts of the commanded
moments are plotted versus time. Related to the TITOBS system, the real and
imaginary parts are the -axis and y-axis pickoff angles and x-axis and y-axis
moment commands, respectively. The solid lines denote the x-axis response and
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Table 5.2: Lead Compensated System Closed Loop Poles

the broken lines denote the y-axis response. The response of the pickoff angles

has significant oscillation at the nutation frequency, while there is little in the
moment command response. The maximum deviation of the y-axis pickoff angle
is 0.00420 while the x-axis moment command has an overshoot of 31% and a

settling time of about 0.035 seconds.

A Nyquist plot of the lead compensated system is shown in Figure 5.7. The
stability margins obtained from the plot indicate a negative phase margin of
50°, a positive phase margin of 49°, an upward gain margin of 4.73 dB, and an
infinite downward gain margin. An interesting feature of this and the subsequent
Nyquist plots is the large circle occupying the right half of the plane. This is due
to the nutation resonance, where the frequency response has a large magnitude
and the phase rapidly goes through -180 °, tracing out the circle.

5.3.3 Performance Limitations of First Order Lead Com-
pensator Designs

The 50Hz bandwidth design is nearly the highest attainable with classi-
cal first order lead compensation. Slightly higher bandwidths are possible, but

with reduced phase margins. The loss of phase can be alleviated somewhat by
increasing the demodulation filter cutoff frequency; however, there is a funda-

mental limit on the bandwidth imposed by the nutation resonance.

Consider the schematic Nyquist plot in Figure 5.8 showing the nutation cir-
cle for increasing system crossover frequency. For the 50 Hz bandwidth design,

the phase just before the nutatior sonance is approximately -230°, and after
the nutation resonance it is approximately -410 °, tracing out the circle in the
right half of the Nyquist plane. As the crossover frequency is increased, compen-

sator phase lead is also increased to maintain reasonable positive phase margins.
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Figure 5.6: Lead Compensated System Step Response

This in turn, increases the phase at nutation, rotating the nutation circle in a

counterclockwise manner, reducing the available negative phase margin. The

diameter of the circle increases due to the increased crossover frequency. If the

phase just before nutation becomes greater than -180 °, then the nutation circle

will encircle the -1 point, causing the system to become unstable.

Therefore, the requirement that the phase be less than -180 ° just before

nutation places a strict limit on the achievable bandwidth for lead compensated

systems. An alternative requirement is that the phase must be greater than

0° just before nutation. This requirement is met by linear quadratic designs,

discussed below, but cannot be met with simple, first order lead compensation.
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Figure 5.7: Lead Compensated System Nyquist Plot

5.3.4 Summary

The stability and performance of the first order lead design are summarized
in Table 5.3. The upward gain margin is very small while the downward gain

margin is infinite. The bandwidth of 50 Hz is nearly the maximum attainable
with this design methodology due to the nutation phase restriction. Another
feature of the design is that although the -90 ° bandwidth is 50 Hz, the -3 dB

bandwidth is 145 Hz. This implies the loop will pass significant high frequency
angular rate information w;' large phase lags. In addition, if the attitude
algorithm computational bandwidth is set at 50 Hz, this could cause significant
errors due to coning motion as discussed in Section 1.3.
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Figure 5.8: Nyquist Nutation Circle for Increasing Crossover Frequency

Table 5.3: First Order Lead Compensation Design Parameters

73

Parameters Units Lead Design
Upward Gain Margin dB 4.73
Downward Gain Margin dB oo
Negative Phase Margin deg 50
Positive Phase Margin deg 49
-90 ° Bandwidth Hz 50
-3 dB Bandwidth Hz 145
Forward TF AMp dB 3.95
Backward TF Mp dB 2.37
Velocity Error Constant dB 110.9
CL Gain at 10 kHz dB -170
Moment Command Overshoot % 31
Settling Time sec 0.035
Pickoff Angle Deviation deg 0.0042
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Figure 5.9: LQG/LTR Feedback Loop Block Diagram

5.4 LQG/LTR Design

5.4.1 Description of Design Methodology

The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) de-
sign methodology has been described by Doyle and Stein [7] and extended by
Athans and Stein [2]. LQG/LTR combines a linear quadratic regulator and a
Kalman filter to produce a model based compensator, KMBC(S), of the form
shown in Figure 5.9. In the figure, the design plant model transfer function
is denoted by G.(s). The gain matrix G, is the optimal feedback gain that is
the solution to a linear quadratic regulator problem and H= is the steady state
Kalman filter gain matrix.

The gain matrix, G., is the solution to the deterministic LQR problem to
minimize the cost functional

J j [xH(t)Q ,o(t) + u(t)*Quuup(t)] dt (5.3)

constrained by the complex augmented system dynamics,

(t) = A.:(t) + B.up(t) (5.4)

and the control law,

up(t) = -Gx(t) (5.5)

where x is the complex augmented state vector discussed in Section 4.3, and up
is the complex scalar moment command to the gyro. The state vector weighting
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Figure 5.10: LQ Feedback Loop Block Diagram

matrix is positive semi-definite, and Q. = NHN, where N is an auxiliary output
matrix. The control weighting is a positive scalar, Q,, = p. Assuming [A, B,]
stabilizable and [A,, N] detectable, G, comes from the solution to the algebraic
Riccati equation,

= SA + As + Q SBBHS (5.6)

G = B'HS (5.7)
P

where H denotes complex conjugate transpose.
The weighting parameters, Q., and Qu, are chosen to shape the frequency

response of the LQ loop,

GLQ() = G (I - A,)-' B, (5.8)

which can be found by breaking the LQ feedback loop at the plant input. A

block diagram of the LQ feedback loop is shown in Figure 5.10.

A Kalman filter is used in the model based compensator to generate state esti-
mates, i(t), for the linear quadratic regulator full state feedback. The LQG/LTR
design methodology uses the "accurate measurement" Kalman filter problem to
recover the good performance and stability properties of the LQ loop, GLQ(),

in the feedback loop of Figure 5.9.
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Consider the stochastic, linear, time invariant system

i(t) = A,x(t) +B.(t) (5.9)

yp(t) = Cx(t) + 0(t) (5.10)

where the process noise, (t), is a scalar, zero mean, Gaussian, white noise

process with covariance,

E {((t)~(t - )) = =6(r),

and the measurement noise, 0(t), is a scalar, zero mean, Gaussian, white noise
process with covariance,

E {O(t)O(t - r)) = 6(),

and the process noise input matrix is identical to the control input matrix.
Assuming [A., B,] stabilizable and [A., C,] detectable, the Kalman filter gain

matrix, H,, comes from the solution to the algebraic Riccati equation

0 = EA + A. + BB - CCE (5.11)

H, = -cH (5.12)

If the augmented plant, G.(s), has no non-minimum phase zeros, then, point-
wise in s,

lim KMBC(s)G,(s) = GLQ(s)- (5.13)

Also, since G,(s) is a scalar transfer function, the loop broken at the plant
input, KMBC(s)G=(s), has the same transfer function as the loop broken at
the plant output, G(s)KMBc(s), so the properties of the LQ loop, GLQ(s),

can be recovered in the feedback loop broken at either point. The value of 
determines the frequency to which the LQ loop is recovered. This is referred to
as the recovery bandwidth.

The LQG/LTR design procedure is as follows:

1. Design a target LQ loop that has the desired performance and stability
properties by choosing N to shape the loop and p to achier- the desired
bandwidth.

2. Recover the target LQ loop in the feedback loop to the desired bandwidth
by choosing the design parameter p.
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During the recovery process, as -- 0, the model based compensator has the
following properties [1]:

* The zeros of KMBC(s) start at some open loop poles of G,(s) and approach
the zeros of GLQ(s).

* Some of the poles of KMBC(S) cancel the undesirable zeros of G,(s).

* The rest of the poles of KMBC(S) go to infinity in a stable manner.

5.4.2 Design Approach

A total of four LQG/LTR designs are examined. Two are based on a 50 Hz

bandwidth LQ target loop, one recovered to provide a bandwidth of 50 Hz and
the other recovered a decade beyond the nutation frequency. The other two de-
signs are based on a 100 Hz LQ target loop, one recovered to provide a bandwidth
of 100 Hz and the other recovered a decade beyond the nutation frequency.

One major drawback to the LQG/LTR methodology is that an LQ target
loop with a notch filter beyond the crossover frequency cannot be generated
with the constant weightings in the cost functional in Equation (5.3). (A notch
filter can be generated with the use of a frequency weighted cost functional,
which is treated in Section 5.5.) In addition, since the target loop is recovered

asymptotically, a sharp notch filter may not be recovered adequately for practical
values of , leading to a recovered notch at the wrong frequency with the wrong
depth. These problems are solved by designing and recovering LQ target loops
without notch filters, and then incorporating the notch filter in Equation (4.9)
at the output of the model based compensator. A block diagram of the model
based compensator modified with the notch filter is shown in Figure 5.11. This
ad hoc implementation of the notch filter destroys the optimality and guaranteed
stability properties of the recovered LQ loop, so a separate check of the feedback

loop stability must be performed.

5.4.3 Linear Quadratic Target Loop Design

Loop Shaping

The LQ target loops are designed using the design plant model and the de-
sign parameters N and p, as discussed at the beginning of this section. The two
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Figure 5.11: Block Diagram of KMBC() Modified With Notch Filter

open loop LQ target Bode plots are shown in Figures 5.12 and 5.14. Two design

characteristics of these loops require discussion. First, the magnitudes of the
forward and backward transfer functions are matched at high and low frequen-
cies, which is the equivalent of matching the singular values of the real TITOBS
system at these frequencies. Second, the highest attenuation in the forward
transfer function between crossover and nutation is placed at the spin frequency
to augment the effect of the notch filter on the forward transfer function in the
recovered design.

The shape of the magnitude of the frequency response of the LQ loop can
be controlled through the use of the state and control weightings, N and p.
In particular, the magnitude responses of the forward and backward transfer
functions can be matched at high and low frequencies in a systematic way. This
ensures that the magnitude response of the system at high and low frequencies is
identical for every input direction [1]. The frequency of the highest attenuation
in the forward transfer function can also be easily controlled.

Consider the TITOBS version of the LQR problem stated in Equation (5.3).
The TITOBS LQ loop is

GLQ(s) = G, (sI - A.) - ' B. (5.14)

where all of the matrices in Equation (5.14) are the corresponding block sym-

metric versions of those in Equations (5.3) and (5.4). In the 'cheap control"
limit of the LQ problem,

lim VG, = N. (5.15)
p-0O
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Therefore, assuming p < 1, Equation (5.14) can be written as

1
GLQ(jW) -N (jw - A,) B~. (5.16)

where jw is substituted for s. The goal is to select N in such a way that the

singular values of the TITOBS LQ loop are matched at high and low frequencies,

that is

limOrk {GLQ(jw)} = k/V (5.17)

lim or0 {GLQ(jw)} (5.18)W---+00 LO

where k and kh are real constants. This is equivalent to matching the mag-

nitudes of the forward and backward transfer functions of the CCTF LQ loop
at theses frequencies, since the minimum and maximum singular values of the
TITOBS system are the magnitudes of the forward and backward transfer func-
tions. Therefore, the magnitudes of the LQ forward and backward transfer func-
tions are shown below, where the matrices are once again those of the complex

representation of the system.

IGLQ(jW)I N (jwI - A,)-' B (5.19)

IGLQ(-jW)i1 IN (jwI- A,) - 1 B (520)

Partitioning the terms of N (sI - A) - l B, yields,

sI 1 -Cd 0 0
[NL NM NH] 0 s I-Ad -BdCp 0

0I 0 sIO O - ]AP BP
where the subscripts, L, M, and H, indicate the partitions of N that control the
shape of the LQ loop at low, middle, and high frequencies as is shown below.

After some manipulation,

N (sI - A,)-1 B = NL-Cd(sI - Ad)-1BdCp(sI - Ap)-'Bp +
NM(sI - Ad)-BdCp(sI - Ap)-Bp +
NH(sI - Ap)-Bp. (5.21)

In the low Lrid high frequency limits,

limN (sI - A,)- 1 B, = NL [CdA-1BdCpA1Bp] (5.22)

lim N (sI - A) - ' B = NH -B. (5.23)
s--~Oo s
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Choosing the following values for the partitions of N

NL = [CdA-1BdCpA;1BP]

NM = [ 0 ]

NH = kh [BHBp] BE

yields the following limits for Equations (5.22) and (5.23)

limN (sI- A.) - ' B. = (5.24)

lim N (I - A) - B. = kh- (5.25)

and for s = jw,

lim IGLQ(j)I IGLQ(-jWi)l , 1(5.26)
-40 W

lim IGLQ(jW)I IGLQ(-jW)I t kh (5.27)

With N specified in this way, the design problem is reduced to determining
the two scalar design parameters, kh and p. The value of p determines the
bandwidth of the LQ loop. Increasing p lowers the bandwidth, while decreasing

p raises the bandwidth. Recall that for the above approximations to hold, p
must be much less than unity. The value of kh controls the point of highest
attenuation in the forward transfer function between crossover and nutation.

Reducing kh for a given value of p moves the point down in frequency, while

increasing kh moves the point up in frequency. The effects of p and kh are

somewhat coupled so they must be iteratively adjusted to achieve the desired
results.

The matrix NM provides two additional degrees of freedom in shaping the

LQ loop, which have not been exploited here. It can be used to control the

loop shape in the middle frequencies, but is not used here because NL and NH

provide adequate control of the loop shape. A good choice of NM could provide

a better loop shape than is possible with just matching the transfer function

magnitudes at high and low frequencies, and it is possible to chose N such that
the magnitudes are matched at all frequencies, that is

IGLQ(j)l IGLQ(-jW)l P

for all w. The recovery of this loop generates a compensator that completely

inverts the plant. This produces a loop with unacceptable time response char-
acteristics which are discussed in more detail in Section 5.6.
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Table 5.4: Low Bandwidth LQ Target Closed Loop Poles and Zeros

Table 5.5: High Bandwidth LQ Target Closed Loop Poles and Zeros

LQ Target Loops

Bode plots of the open and closed loop low bandwidth LQ target are shown

in Figures 5.12 and 5.13. The LQ design parameters shown below are chosen to

give a -3 dB bandwidth of 50 Hz.

Qu = 2.5 x10 - 12

N = [-j4.4118 x 10- 4 0 0 0 3.3586 x 10-6 ]
The resulting closed loop LQ poles and zeros are shown in Table 5.4.

Bode plots of the open and closed loop high bandwidth LQ target are shown

in Figures 5.14 and 5.15. The LQ design parameters shown below are chosen to

give a -3 dB bandwidth of 100 Hz.

QU = 1.0 x 10- 13

N = [-j4.4118 x 10-4 0 0 0 1.7677 x 10 ]
The resulting closed loop LQ poles and zeros are shown in Table 5.5.

Another interesting feature of open loop LQ targets is that. the phases of
forward and backward transfer functions are not equal at low frequencies. Con-
sidering the discussion of CCTF Bode plots in Chapter 3 and the results of the

81

Poles Zeros
-134.45 + j1917.7 -57.441 + j1271.5
-474.06 + j818.00 -469.60 + j817.69
-470.72 - j815.75 -466.00 - j802.92
-135.11 + j122.05 -122.92 - j12.155
-119.00 - j125.18 I

Poles Zeros
-351.64 + j1921.7 -163.72 + j1280.3
-503.91 + j842.02 -470.25 + j751.99
-465.12 - j808.81 -463.49 - j823.86
-320.80 + j235.30 -254.46 - j54.320
-257.63 - j277.45
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lead compensator design in Section 5.3.2, this indicates that the feedback gain
at low frequencies is complex. Furthermore, since the phase is near -90 °, this

would indicate a gain with a small real part and a large, negative imaginary
part, corresponding to a small auto feedback gain and a large cross feedback

gain. For example, the element of G, corresponding to the integrator state for
the low bandwidth target is 41.110 - j275.94; the phase angle of which is -81 ° ,
which can be read off of the Bode plot of the forward transfer function..

5.4.4 Recovery of the LQ Target Loops

A family of compensators is generated by the recovery process, each one

better approximating the target loop, as - 0. Two compensators are recov-
ered for each target loop, one in which the -90 ° bandwidth of the feedback

loop matches the -3 dB bandwidth of the target and one in which the target is
recovered about one decade beyond the nutation frequency.

Recovery Zero Locus

One surprising and non-intuitive feature of the recovery of the target loops

for this system is the locus of compensator transmission zeros during recovery.
Figures 5.16 and 5.17 show the zero loci for the recovery of each target loop. For

both target loops the zeros of KMBC(S) start at open loop poles of the system
for large p and approach the zeros of the target as - 0. The locus of the
zero that starts at the nutation pole is very striking, however, since it spirals
away from the pole and enters the right half plane twice before approaching the

target zero.

In view of the discussion in Section 5.3.3 the reason for this behavior is appar-

ent. During recovery, the compensator poles move out in frequency, increasing
the phase at low frequencies. In order to maintain stability, the phase cannot
increase to the point that the phase before nutation is greater that -180 °. This
is prevented by the zero moving into the right half plane, introducing a phase
lag in order to hold the phase at nutation below -180 °. Once the poles have
moved out in frequency sufficiently, the zero moves back into the left half plane,
introducing phase lead to bring the phase above 0°. This process actually oc-
curs twice during recovery, the first time the phase is kept below -540 ° and is

brought up above -360 ° when the zero moves back into the left half plane.
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Figure 5.17: Zero Locus During Recovery of the High Bandwidth Target
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This behavior has a significant effect on the recovery of the phase characteris-
tic of the LQ target loop. Take, for example, the recovery of the high bandwidth

target. The Bode plot of the open loop system for low bandwidth recovery in
Figure 5.29 indicates that the magnitude characteristic is recovered well beyond

nutation but the phase characteristic is not recovered. However, examination
of the high bandwidth recovery in Figure 5.34 shows that once the zero crosses

back into the left half plane, the phase is suddenly recovered beyond nutation
as well. There are discontinuities in phase during recovery that depend on the
value of ,u and the nutation frequency. Therefore the nutation frequency must
be known well in order to have confidence in the recovery of the target phase
characteristic.

Compensator Designs

A compensator design which provides a -90 ° bandwidth of 50 Hz for the
low bandwidth LQ target, is achieved with values of the Kalman filter design

parameters p = 10-7 and - 106. This design is referred to as LQG/LTR-la.
A Bode plot of the overall compensator, K(s): the model based compensator,

KMBC(s), modified with the notch filter, and augmented with the demodulation
filter and integrator, is shown in Figure 5.18. The compensator poles and zeros
are listed in Table 5.6, and the compensator Bode gain is 18.1 - j227.8 which

yields a velocity error constant, K,, of 113.5dB. Note that this compensator
has a zero in the right half plane. A Bode plot of the compensated open loop

system is shown in Figure 5.19 while a Bode plot of the closed loop system is

shown in Figure 5.20. The system has a -90 ° bandwidth of just over 50 Hz and
a -3 dB bandwidth of 70 Hz. The Mp of the forward transfer function is 2.51 dB

while the Mp of the backward transfer function is 3.02 dB, and the attenuation

at 10kHz is -170 dB. The closed loop system poles are listed in Table 5.7.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or c = j ' ldeg/sec, is shown in Figure 5.21. The real and imaginary
parts of the pickoff angle and the real and imaginary parts of the commanded

moments are plotteu versus time. Related to the TITOBS system, the real a' 4

imaginary parts are the x-axis and y-axis pickoff angles and x-axis and y-axis

moment commands, respectively. The solid lines denote the x-axis response and
the broken lines denote the y-axis response. The maximum deviation of the y-
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Table 5.6: Design LQG/LTR-la Compensator Poles and Zeros
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Table 5.7: Design LQG/LTR-la Closed Loop

-3501.7 + j372.06
-475.05 + j819.44
-470.66 - j815.43
-140.16 + j127.01
-123.55 - j129.15
-116.66 + j1870.0

-201.82 - j1185.8
-1072.8 + j3925.1
-1088.6 - j3138.4
-2820.4 + j2559.9
-2842.4 - j1802.1
-225.15 + j1230.7

axis pickoff angle is 0.0039° while the x-axis moment command has an overshoot

of 31% and a settling time of about 0.03 seconds.

A Nyquist plot of the compensated system is shown in Figure 5.22. The
stability margins obtained from the plot indicate a negative phase margin of

48° , a positive phase margin of 50°, an upward gain margin of 12.40 dB, and a
downward gain margin of 48.16 dB. The LQG/LTR designs all have downward

gain margins as opposed to the lead compensation design in Section 5.3 which

has an infinite downward gain margin.

A compensator design which recovers the magnitude characteristic of the

low bandwidth LQ target loop a decade beyond nutation, but does not recover

the phase characteristic beyond nutation is achieved with values of the Kalman
filter design parameters i = 10-15 and = 106. This design is referred to as
LQG/LTR-lb. A Bode plot of the overall compensator, K(s): the model based
compensator, KMBC(S), modified with the notch filter, and augmented with the

demodulation filter and integrator, is shown in Figure 5.23. The compensator
poles and zeros are listed in Table 5.8, and the compensator Bode gain is 42.1 -
j258.3 which yields a velocity error constant, K,, of 115.5dB. Note that this

compensator also has a zero in the right half plane, so the phase is not recovered

beyond nutation. A Bode plot of the compensated open loop system is shown in

Figure 5.24 while a Bode plot of the closed loop system is shown in Figure 5.25.

The system has a -90 ° bandwidth of 80 Hz and a -3 dB bandwidth of 50 Hz.
The Mp of the forward '.ansfer function is 1.85 dB while the Mp of the backward

transfer function is 2.59 dB, and the attenuation at 10 kHz is -90 dB. The closed

loop system poles are listed in Table 5.9.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
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Figure 5.22: Design LQG/LTR-la Nyquist Plot

Table 5.9: Design LQG/LTR-lb Closed Loop Poles

Closed Loop Poles
-27831. - j188.72 -225.15 + j1230.7
-475.05 + j819.44 -201.82 - j1185.8
-470.66 - j815.43 -5654.9 + j21543.
-140.16 + j127.01 -5677.2 - j20641.
-123.55 - j129.15 -17963. + j11069.
-116.66 + j1870.0 -18255. - j9948.1
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Figure 5.25: Design LQG/LTR-lb Closed Loop Bode Plot

rate, or = j' deg/sec, is shown in Figure 5.26. The maximum deviation

of the y-axis pickoff angle is 0.00310 while the x-axis moment command has

an overshoot of 25% and a settling time of about 0.03 seconds. The improved

overshoot over the low bandwidth recovery design is due to the increased phase

margins provided by the recovery of the LQ phase characteristic to a higher

frequency.

A Nyquist plot of the compensated system is shown in Figure 5.27. The

stability margins obtained from the plot indicate a negative phase margin of

560, a positive phase margin of 620, an upward gain margin of 20.00 dB, and a

downward gain margin of 39.08 dB. Note that the Nyquist plot for this design is

rotated slightly in a counterclockwise manner compared to design LQG/LTR-la,

and that the downward gain margin has been correspondingly reduced.

A compensator design which provides a -90 ° bandwidth of 100 Hz for the

high bandwidth LQ target, is achieved with values of the Kalman filter design

parameters ;z = 10- and E = 106. This design is referred to as LQG/LTR-2a.

A Bode plot of the overall compensator, K(s): the model based compensator,

KMBc(S), modified with the notch filter, and augmented with the demodulation
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Figure 5.26: Design LQG/LTR-lb Step Response

filter and integrator, is shown in Figure 5.28. The compensator poles and zeros

are listed in Table 5.10, and the compensator Bode gain is 243.9 - j923.3 which

yields a velocity error constant, K,, of 125.9 dB. Note that this compensator

has a relatively well damped zero in the right half plane. A Bode plot of the

compensated open loop system is shown in Figure 5.29 while a Bode plot of the

closed loop system is shown in Figure 5.30. The system has a -90 ° bandwidth

of 100 Hz and a -3 dB bandwidth of 120 Hz. The AIp of the forward transfer

function is 1.93 dB while the AlIp of the backward transfer function is 4.89 dB,

and the attenuation at 10 kHz is -140 dB. The closed loop system poles are

listed in Table 5.11.

The response of the system to a 1 deg/sec step in the y-axis inertial angular

rate, or ,c = j ldeg/sec, is shown in Figure 5.31. The maximum deviation of

the y-axis pickoff angle is 0.00225° while the x-axis moment command has an
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Figure 5.27: Design LQG/LTR-lb Nyquist Plot

Table 5.10: Design LQG/LTR-2a Compensator Poles and Zeros

0.0
-471.00 + j816.35
-471.00 - j816.35
-130.24 + j1242.7
-132.03 - j1221.0
-1398.1 + j6103.5
-1366.7 - j5207.9
-4980.3 + j4687.5
-4793.4 - j3972.7
-6855.9 + j280.59

254.87 + j1348.5
-470.05 + j822.68
-460.76 - j790.35

-0.001256 + j1256.6
-0.001256 - j1256.6

-211.89 - j34.268.
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Figure 5.30: Design LQG/LTR-2a Closed Loop Bode Plot

overshoot of 40% and a settling time of about 0.02 seconds. The faster response
compared to the 50 Hz bandwidth designs is due to the higher bandwidth of the
system, but this causes more control authority to be used by both the x-axis
and y-axis torquers.

A Nyquist plot of the compensated system is shown in Figure 5.32. The
stability margins obtained from the plot indicate a negative phase margin of
340, a positive phase margin of 520, an upward gain margin of 6.38 dB, and
a downward gain margin of 24.35dB. Note that the low frequency portion

Table 5.11: Design LQG/LTR-2a Closed Loop Poles
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Closed Loop Poles
-5649.8+ j378.24 -308.61 + j1785.4
-525.19 +j865.18 -165.05 - 1116.7
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Figure 5.31: Design LQG/LTR-2a Step Response

of the Nyquist plot is rotated counterclockwise somewhat. This is due to the
combination of cross and auto feedback at low frequencies. This effect tends to
reduce downward gain margins and negative phase margins, and increase positive
phase margins. The upward gain margin for this design is also significantly lower
than those of the other LQG/LTR designs.

A compensator design which recovers the magnitude characteristic of the
high bandwidth LQ target loop a decade beyond nutation and recovers the phase

characteristic slightly beyond nutation is achieved with values of the Kalman

filter design parameters = 10- 15 and = 106. This design is referred to as

LQG/LTR-2b. A Bode plot of the overall compensator, K(s): the model based
compensator, KMBC(S), modified with the notch filter, and augmented with the

demodulation filter and integrator, is shown in Figure 5.33. The compensator
poles and zeros are listed in Table 5.12, and the compensator Bode gain is
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Figure 5.32: Design LQG/LTR-2a Nyquist Plot

455.1 -j1167 which yields a velocity error constant, K,, of 128.3 dB. This is the

only minimum phase LQG/LTR compensator of those presented here. A Bode
plot of the compensated open loop system is shown in Figure 5.34 while a Bode

plot of the closed loop system is shown in Figure 5.35. The system has a -90 °

bandwidth of 125 Hz and a -3 dB bandwidth of just over 100 Hz. The AIp of
the forward transfer function is 1.18 dB while the Mp of the backward transfer
function is 3.95 dB, and the attenuation at 10 kIHz is -90 dB. The closed loop
system poles are listed in Table 5.13.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or Xc = j ldeg/sec, is shown in Figure 5.36. The maximum deviation
of the y-axis pickoff angle is 0.001560 while the x-axis moment command has

an overshoot of 34% and a settling time of about 0.02 seconds. The improved
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Table 5.12: Design LQG/LTR-2b Compensator Poles and Zeros
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-183.57 - j1239.7 -0.001256 - j1256.6
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Table 5.13: Design LQG/LTR-2b Closed Loop Poles

Closed Loop Poles
-29487. - j595.43 -308.61 + j1785.4
-525.19 + j865.18 -165.05 - j1116.7
-459.57 - j805.35 -5633.5 + j21787.
-350.70 + j258.15 -5537.5 - j20823.
-288.78 - j292.45 -17184. + j10987.
-220.93 + j1218.6 -17539. - j9521.4

overshoot over the low bandwidth recovery design is due to the increased phase
margins provided by the recovery of the LQ phase characteristic to a higher
frequency.

A Nyquist plot of the compensated system is shown in Figure 5.37. The
stability margins obtained from the plot indicate a negative phase margin of
43°, a positive phase margin of 70°, an upward gain margin of 10.45 dB, and a
downward gain margin of 22.92 dB.

5.4.5 Summary

The LQG/LTR design methodology allows the performance and stability
properties of a linear quadratic regulator loop to be recovered in the feedback
loop. Due to the requirement of a notch filter in the compensator, the compen-
sator resulting from the recovery process must be augmented with a notch filter.
This destroys the guaranteed stability properties of the recovered LQ loop, but

the stability margins for the designs investigated remain quite large.
Two LQ loops are designs, one with a 50 Hz bandwidth and one with a 100 Hz

bandwidth. Each design is recovered to the LQ bandwidth and also a decade

beyond the nutation frequency. The stability and performance parameters for

the four LQG/LTR compensator designs are summarized in Table 5.14. The
first three compensator designs in the table contain a non-minimum phase zero.
The high frequency recovery designs (lb and 2b) provide bette- performance
and stability than the low frequency recovery designs, since the performance
and stability properties of the LQ loops are better recovered. However, this
comes at a cost of lower attenuation at high frequencies. The high bandwidth
designs use more auto feedback than the low bandwidth designs, which results
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Figure 5.36: Design LQG/LTR-2b Step Response

in a counterclockwise rotation of the Nyquist plot and lower negative phase

margins but higher positive phase margins. The downward gain margins of the
high bandwidth designs are also lower than those of the low bandwidth designs.
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Figure 5.37: Design LQG/LTR-2b Nyquist Plot
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Table 5.14: LQG/LTR Compensator Design Parameters

105

Parameters Units LQG/LTR Designs
la lb 2a 2b

Upward Gain Margin dB 12.40 20.00 6.38 10.45
Downward Gain Margin dB 48.16 39.08 24.35 22.92
Negative Phase Margin deg 48 56 34 43
Positive Phase Margin deg 50 62 52 70
-90 ° Bandwidth Hz 50 80 100 125
-3 dB Bandwidth Hz 70 50 120 100
Forward TF Mp dB 2.51 1.85 1.93 1.18
Backward TF Mp dB 3.02 2.59 4.89 3.95
Velocity Error Constant dB 113.5 115.5 125.9 128.3
CL Gain at 10 kHz dB -170 -90 -140 -90
Moment Command Overshoot % 31 25 40 34
Settling Time sec 0.03 0.03 0.02 0.02
Pickoff Angle Deviation deg 0.0039 0.0031 0.00225 0.00156



5.5 FW/LQG Design

5.5.1 Description of Design Methodology

The frequency weighted linear quadratic Gaussian design methodology was
derived by Gupta [9] and has been found useful in the control of flexible space
structures [10]. The methodology generates a linear quadratic regulator which
minimizes a cost functional of the state variables and controls weighted as func-

tions of frequency instead of time as in the traditional LQR formulation. The
main advantage of FW/LQG is that it can be used to create special LQ loop
shapes, such as notch filters, that are not possible with a time domain weighting
function. The dual of the frequency weighted LQ problem is the correlated noise
Kalman filter problem. This Kalman filter problem is derived in Appendix C.

Consider the frequency based cost functional

J = f [2H(jw)Q (jW)(jW) + u;(iw)Q,(iw)up(jw)] dw (5.28)

constrained by the augmented system dynamics

_'(t) = Az(t) + Bup(t) (5.29)

and the control law,
up(t) = -Gx(t) (5.30)

where x is the augmented state vector discussed in Section 4.3. The state vector

weighting matrix, Q..(jw), is a function of frequency, and the control weighting
matrix, Q,,(jw), is also a function of frequency. The superscript H in Equa-
tion (5.28) denotes complex conjugate transpose, and the control, ul, is a scalar
for the gyro problem described by a complex coefficient transfer function.

The state vectors and control variables are weighted in the frequency domain
by the generally complex coefficient filters N(s) and P(s)

z(8) = N(s):P(S) (5.31)

u(S) = P(s)up(s) (5.32)

which have the state space representations shown in Equations (5.33) and (5.34)

and Equations (5.35) and (5.36).

,(t) = A,(t) + B(t) (5.33)
z(t) = Cz.(t) + Dz(t) (5.34)
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_U(t) = AU (t) + B.p(t) (5.35)

u(t) = CU.U(t) + Dup(t) (5.36)

The state and control weighting matrices are formed by

Q.,(jw) = N(jw)HN(jw) (5.37)

Quu(jw) = P(jw)HP(jw) (5.38)

where a has been replaced by jw. The cost functional in Equation (5.28) can

now be written as

2 1- [Z (jw)z(jw ) + u*(jw)u(jw)] dw. (5.39)

Augmenting the design plant model dynamics with the state vector and control
weighting dynamics yields the new complex system dynamics in Equation (5.40)

X(t) = AX(t) + Bup(t) (5.40)

which is partitioned as

.. A. 0 x Bo
iz_= B, Az 0 z + 0 up(t).

XU 0 0 Au _mu B,

The frequency based cost functional in Equation (5.39) is expressed in the time
domain by application of Parseval's theorem, and is shown in Equation (5.41).

J-= lim 2T [X (t)Qx(t) + 2IyX (t)Q uu(t) + u*(t)Quup(t)] dt (5.41)

The new, constant weighting matrices are partitioned as

DHDz DHCZ 0 0
Q,,X CD CHCZ 0 Q.U = 0 QUU = DHDu

-0 0 - CU j Du .D

where Q.. is a positive semi-definite matrix and Q,. is positive definite.
The optimal feedback gain matrix comes from the solution o the algebraic

Riccati equation

0 = SA + AHS + Q - (SB + Q.u) QU- (BHS + QHt) (5.42)

G = QUU (BHS) (5.43)
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Figure 5.38: Frequency Weighted LQ Loop Block Diagram

where G is partitioned as

G=[G G G ]

with the new control law
up(t) = -GX(t). (5.44)

A block diagram of the FW/LQ loop is shown in Figure 5.38. The controller

contains the dynamics of the state and control variable weighting functions of
Equations (5.31) and (5.32).

To complete the FW/LQG design, a Kalman filter is used to form estimates

of the plant states, (t), from the output of the design plant model. The filter
gain matrix, H, comes from the standard Kalman filter problem described in
Equations (5.9) through (5.12) where the intensities of the measurement and
process noises are chosen to place the closed loop filter poles about a decade

beyond the crossover of the LQ loop. A block diagram of the complete FW/LQG

system is shown in Figure 5.39. The FW/LQG compensator is a model based

compensator including thte ynamics of the plant as well as the state and control
weighting function dynamics.

The FW/LQG controller has several interesting properties. As noted by
Gupta [9], poles of the control weighting function, P(s), are zeros of the com-
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Figure 5.39: Complete FW/LQG Feedback Loop Block Diagram

pensator, and poles of the state weighting function, N(s), are poles of the com-

pensator. In addition, some of the closed loop system poles approach the stable

zeros of N(s) and P(s) even though these zeros do not explicitly appear in

the compensator. These properties give some indication of how N(s) and P(s)

should be chosen to place some closed loop poles and zeros.

5.5.2 Design Approach

Two FW/LQG designs are examined. One compensator design provides a

bandwidth of 50 Hz, and the other provides a bandwidth of 100 Hz. Both designs

have estimator poles placed far enough beyond the LQ loop crossover frequency

such that the bandwidth of the original LQ loop is preserved.

The LQ loop is shaped by the choice of the weighting functions, P(s) and

N(s). The control weighting is chosen to introduce a notch filter into the com-

pensator and allow large control at low frequencies. A number of different choices

are available for the state weighting, and three different functions are presented

to illustrate the effects of N(s) on the 50 Hz bandwidth controller design.
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For the designs considered here, both N(s) and P(s) are real coefficient SISO

transfer functions. Only the output of the design plant model, y, is weighted by

N(s) since direct weighting of individual states is considered to be too compli-

cated. There is only one control variable in the complex representation of the
system so P(s) is also a scalar function. They have real coefficients because the

weighting functions are applied equally to each output and control of the real

TITOBS system.

Control Weighting Function Selection

The control weighting function, P(s), is chosen to satisfy the requirement
for a notch filter in the compensator and also to allow large control values at

low frequencies to make it easy to generate high bandwidth LQ loops. A Bode

plot of P(s) is shown in Figure 5.40. It has the form shown in Equation (5.45)

s(s ±w,)
P(s) = + 2 s + (5.45)

where

w, = 2r 1000 Hz

wn = 27r 200 Hz

, = 10- 6.

Since there is expected to be noise in the gyro output at the spin frequency

of 200 Hz, it is not desirable for the gyro moment command to contain this

noise. Therefore, the control variable is weighted very heavily at 200 Hz, by

placing a lightly damped pair of poles at that frequency. Since the poles of the
control weighting function are zeros of the compensator, this guarantees that
the compensator will have a notch filter at that frequency. The notch at 200 Hz

created by the control weighting can be seen in the closed loop Bode plot for

one design in Figure 5.41.

Additionally, control at low frequencies is weighted less than at high frequen-

cies so that high bandwidths can be obtained without requiring overly large state

weightings. The zero L 1000 Hz is included so that the response of the weight-

ing function is flat at high frequencies. This causes D, = 1 since there are the

same number of zeros as poles in the control weighting function, forcing Q,, to

be positive definite. A closed loop pole will approach this zero. This control

weighting is used for both FW/LQG designs.
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Figure 5.40: Control Weighting Function Bode Plot

State Weighting Function Selection

Once P(s) is fixed, the state weighting function is used to further control
the shape and bandwidth of the LQ loop by weighting the plant output as a
function of frequency. Three different choices of N(s) for the 50 Hz bandwidth

design which illustrate how the loop can be shaped in a systematic manner are

presented.
The simplest choice of state weighting is a constant weight on the output for

all frequencies. This results in no state weighting dynamics, leaving

N(s) = (5.46)

or

(5.47)

where p is a design parameter used to select the bandwidth of the loop. A larger

p weights state deviations more heavily, and thus increases the bandwidth.

A value of p = 7 x 105 generates a 50 Hz bandwidth LQ loop. A Bode plot of

the closed loop system is shown in Figure 5.41. Note how closely the magnitudes

and phases of the forward and backward transfer functions are matched. This
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indicates that the two channels of the TITOBS system are nearly decoupled,
producing the near inversion of the plant nutation dynamics. The LQ loop has

a zero near the nutation pole of the plant, and cancellation of resonant poles

near the jw-axis should be avoided, as noted in [2]. The resulting response
of the feedback loop based on this LQ loop for a step in inertial angular rate

applied to the gyro case about the y-axis is shown in Figure 5.42. Since the
compensator nearly cancels the nutation pole, the moment command does not
work to dampen the nutation oscillation of the pickoff angles. Also note the very

small y-axis moment command, a result of the nearly decoupled channels.

The oscillation of the pickoff angles can be reduced by penalizing output

deviations at the nutation frequency very heavily. This state weighting function
has the form

N(s) VIP- +(5.48)
2 + 2W + W2

where w, is the nutation frequency, and C, is the plant nutation damping. Since
the poles of N(s) are poles of the compensator, the compensator has poles

corresponding to the plant nutation mode. This ensures that the compensator
will have nutation dynamics that are not cancelled, so the moment command

will have authority at that frequency. A Bode plot of this weighting function
with p = 1 is shown in Figure 5.43.

A value of p = 5 x 105 with this resonant state weighting produces an LQ

loop with a bandwidth of 50 Hz as shown in Figure 5.44. The corresponding step
response is shown in Figure 5.45, and as can be seen, the nutation oscillations

in the pickoff angle response have been greatly attenuated.
A problem that remains is the large closed loop peaking of the LQ loop. In

this case, the forward transfer function has an Mp = 3.35 dB, and the backward

transfer function has an Mp = 4.35 dB. This peaking corresponds to a large
overshoot in the moment command step response of the system.

The peaking can be reduced by increasing the weighting on the output at
the crossover frequency and above. This is done by including a zero in the

state weighting function below the crossover frequency. The resulting we:hting
£unction is

V/k(s + w1)w2/wl
N(s) - s2 + 24 ,,s + (5.49)

where wl is the frequency of the zero location. A closed loop pole will approach

this zero, so wl cannot be too near the origin or the system step response will be
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Figure 5.43: Resonant State Weighting Bode Plot

slowed. This is the form of N(s) that is used in the FW/LQG designs below.
Values of p = 105 and wt = 150 produce the closed loop LQ Bode plot in

Figure 5.48 and the corresponding step response is shown in Figure 5.55. A
Bode plot of N(s) with p = 1 is shown in Figure 5.46. Note that the Mp of both

transfer functions has been reduced; the new values are 1.85dB and 3.05 dB,
respectively. Also, the overshoot of the moment command is reduced, and the
damping of the pickoff angle response is improved.

5.5.3 FW/LQ Loops

As stated above, the low (50 Hz) bandwidth LQ design uses the control

weighting function in Equation (5.45) and the state weighting function of Equa-
tion (5.49) with p = 105 and w = 150. A Bode plot of N(s) with p = 1 is shown

in Figure 5.46.

Bode plots of the open and clor iloop low bandwidth LQ design are shown

in Figures 5.47 and 5.48. The LQ design parameters shown above are chosen to

give a -90 ° bandwidth of 50 Hz. The resulting closed loop LQ poles and zeros

are shown in Table 5.15.
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Table 5.15: Low Bandwidth Design LQ Closed Loop Poles and Zeros

116

100

0n

60

40

20

0

-

;D

z
:3

-20
.0001 .001

90

60

30

0

-. 30

-60

En
W
Wuz

U

r_
c

-~~~~

-90

-I V(

.0001 .001 .01

Poles Zeros
-74.721 + j1845.0 -70.468 + j1926.4
-68.080 + j1988.2 -39.011 - j1942.7
-468.78 + j817.83 -493.76 + j818.77
-470.78 - j815.91 -475.04 - j815.53
-181.47 + j188.69 -0.001256 + j1256.6
-150.76 - j189.55 -0.001256 - j1256.6
-6283.2 + j0.0067 -88.331 - j5.1365
-2.6650 - j1916.7 -655.27 + j392.10
-142.11 - j0.8969

i I

i

I

I . ., ...,. ' ' I ' '.... . I . ....,. � .

i W. ll l X E l Illll I

_

_L

M', I I I I ..", I . I .-I I111 1111 ! 1 1 1 1111. . .,



zuu

150

0

- 0

-100'd - 5 °

.000 L .001

1 0(

0

100

.0001 .001

.01 .1 1 10 100 Iont 10000
FREQUENCY (HZ)

.01 .1 10 100 1000 10000
FREQUENCY (HZ)

Figure 5.47: Low Bandwidth LQ Design Open Loop Bode Plot

30

0

-30

-60

-90

-120

-150

50

0

-50

-100

.000 L .001 .01 .1 1 10 100 1000 10000

FREQUENCY (HZ)

.0001 .001 .01 .1 1 IC
FREQUENCY (HZ)

100 1000 10000

Figure 5.48: Low Bandwidth LQ Design Closed Loop Bode Plot

117

S

U,

4:0WEnC
2.
wU)

s

/

W
W

-:

C

- -

m 

I-L`J · · '· '·· -·Y

.2

11 ",I

ZI)M .-

_

II
---------------- ·

- ... , . ,., ... ,t_

~ nn
II!1

. I I

I

";

ii

I *l.,,, I I .1Il l I I . . Ill-·· I_ ! 1 ti_ sxn



/i~~~~~~~~~~~~~~~~~~~~~~~~~~~C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i/ \
_~. / \ .~

I ~ '' I'1 ~ , ·. ~ i I. ,i , ~ tl~,l ~ i ,ll.~, . . II; ~ ~ ~ ~ I I 1 I ,. A, Ij'll l.l

.01 .1 1 10

FREQUENCY (HZ)

.01 .1 1 10

FrEQI.ENCY (Z)

100 10(O0 10000

100 1000 10000

Figure 5.49: High Bandwidth State Weighting Function Bode Plot

The high bandwidth LQ design uses the control weighting function in Equa-
tion (5.45) and the state weighting function of Equation (5.49) with p = 1.5 x 107
and w, = 300. A Bode plot of N(s) with p = 1 is shown in Figure 5.49.

Bode plots of the open and closed loop high bandwidth LQ design are shown

in Figures 5.50 and 5.51. The LQ design parameters shown above are chosen to

give a -90 ° bandwidth of 100 Hz. The resulting closed loop LQ poles and zeros

are shown in Table 5.16.

5.5.4 Compensator Designs

A compensator design which provides a bandwidth of slightly less than 50 Hz

for the low bandwidth LQ design is a achieved with values of the Kalman fil-

ter design parameters L = 10-14 and E = 10 4 . This design is referred to as

FW/LQG-1. A Bode plot of the overall compensator, K(s): the model based
compensator, TMBC(s), augmented with the demodulation filter and integra-
tor, is shown in Figure 5.52. The compensator poles and zeros are listed in
Table 5.17, and the compensator Bode gain is 36.8 - j195.7 which yields a ve-

locity error constant, K,, of 112.4dB. A Bode plot of the compensated open
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Table 5.16: High Bandwidth Design LQ Closed Loop Poles and Zeros
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Figure 5.50: High Bandwidth LQ Design Open Loop Bode Plot
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Poles Zeros
-156.83 + j2093.7 -169.07 + j1972.3
-198.19 + j1733.4 -71.926 - j1950.9
-410.18 + j893.46 -563.83 + j720.91
-450.62 - j803.66 -494.61 - j812.76
-531.39 + j367.13 -0.001256 + j1256.6

-360.42 - j448.17 -0.001256 - j1256.6

-6283.2 + jO.1387 -187.71 - j15.648

-16.484 - j1916.9 -1020.0 + j1142.6

-292.02 - j2.1662 
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High Bandwidth LQ Design Closed Loop Bode Plot

loop system is shown in Figure 5.53 while a Bode plot of the closed loop system

is shown in Figure 5.54. The system has a -90 ° bandwidth of 48 Hz and a
-3 dB bandwidth of 48 Hz. The Mp of the forward transfer function is 1.59 dB
while the Mp of the backward transfer function is 3.98 dB, and the attenuation
at 10 kHz is -109 dB. The closed loop system poles are listed in Table 5.18.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or Q = j I1 deg/sec, is shown in Figure 5.55. The real and imaginary
parts of the pickoff angle and the real and imaginary parts of the commanded
moments are plotted versus time. Related to the TITOBS system, the real and
imaginary parts are the x-axis and y-axis pickoff angles and -axis and y-axis
moment commands, respectively. The solid lines denote the -axis response and
the broken lines denote the y-axis response. The maximum deviation of the y-
axis pickoff angle is 0.0034 ° while the x-axis moment command has an overshoot

of 31% an' a settling time of about 0.03 seconds.

A Nyquist plot of the compensated system is shown in Figure 5.56. The
stability margins obtained from the plot indicate a negative phase margin of
410, a positive phase margin of 59°, an upward gain margin of 16.83 dB, and a
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Figure 5.52: Design FW/LQG-1 Augmented Compensator Bode Plot

Table 5.17: Design FW/LQG-1 Compensator Poles and Zeros
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Table 5.18: Design FW/LQG-1 Closed Loop Poles
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Figure 5.55: Design FW/LQG-1 Step Response
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Closed Loop Poles
-3505.0 + j11440. -468.76 + j817.83
-3528.1 - j10327. -470.78 -j815.91
-74.721 + j1988.2 -8811.8 + j7140.7
-68.080 + j1845.0 -9653.6 - j6357.3
-2.6650 - j1916.7 -11274. - j142.94
-181.47 + j188.69 -142.11 -j0.8968
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Figure 5.56: Design FW/LQG-1 Nyquist Plot

downward gain margin of 30.50 dB.

A compensator design which provides a bandwidth of 100 Hz for the high

bandwidth LQ design is a achieved with values of the Kalman filter design

parameters p = 10- 14 and E = 105. This design is referred to as FW/LQG-2.
A Bode plot of the overall compensator, K(s): the model based compensator,
KMBC(8), augmented with the demodulation filter and.integrator, is shown in
Figure 5.57. The compensator poles and zeros are listed in Table 5.19, and the
compensator Bode gain is 309.6 -j1000.3 which yields a velocity error constant,

K,, of 126.7dB. A Bode plot of the compensated open loop system is shown in
Figure 5.58 while a Bode plot of the closed loop system is shown in Figure 5.59.

The system has a -90 ° bandwidth of 100 Hz and a -3 dB bandwidth of 105 Hz.
The ./Ip of the forward transfer function is 0.95 dB while the Mp of the backward
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Figure 5.57: Design FW/LQG-2 Augmented Compensator Bode Plot

transfer function is 3.46 dB, and the attenuation at 10 kHz is -89 dB. The closed
loop system poles are listed in Table 5.20.

The response of the system to a 1 deg/aec step in the y-axis inertial angular
rate, or = j ·1 de/aec, is shown in Figure 5.60. The maximum deviation of

the y-axis pickoff angle is 0.001520 while the x-axis moment command has an

overshoot of 25% and a settling time of about 0.015 seconds.

A Nyquist plot of the compensated system is shown in Figure 5.61. The
stability margins obtained from the plot indicate a negative phase margin of
430, a-positive phase margin of 550, an upward gain margin of 10.45 dB, and a
downward gain margin of 16.25 dB.

5.5.5 Summary

In this section, the frequency weighted linear quadratic Gaussian design
methodology is described and used to generate two controllers or the gyro.
The controls and states of the design plant model are weighted as functions
of frequency, allowing the generation of special LQ loop shapes. The control

weighting function is used to generate a notch filter in the compensator. The
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Table 5.19: Design FW/LQG-2 Compensator Poles and Zeros
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Poles Zeros
0.0 -177.52 - j21.676
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-471.24 + j816.21 f -0.001256 + j1256.6
-471.24 - j816.21 -0.001256 - j1256.6
-1008.3 + j734.35 -506.37 + j674.95
-18466. - j9725.8 -487.61 - j811.02
-14158. - j10481. -653.52 + j1160.0
-12020. + j12125.
-3069.3 + j14532.

-3775.1 - j14170.

-1646.5 - j1973.9

-400

v)w

i.4C.<

- aill

.00
FREQUENCY (HZ)

Figure 5.58: Design FW/LQG-2 Open Loop Bode Plot
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effects of different state weighting functions are examined, and an evolutionary
design example is presented. The state weighting function is used to guarantee

pickoff angle damping and reduce step response overshoot. The performance
parameters of the designs are summarized in Table 5.21.

Table 5.20: Design FW/LQG-2 Closed Loop Poles
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Figure 5.60: Design FW/LQG-2 Step Response
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Figure 5.61: Design FW/LQG-2 Nyquist Plot
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Table 5.21: FW/LQG Compensator Design Parameters

130

Parameters Units FW/LQG Designs
FW/LQG-1 FW/LQG-2

Upward Gain Margin dB 30.50 10.45
Downward Gain Margin dB 16.83 16.25
Negative Phase Margin deg 41 43
Positive Phase Margin deg 59 55
-90 ° Bandwidth Hz 48 100
-3 dB Bandwidth Hz 48 105
Forward TF Mp dB 1.59 0.95
Backward TF Mp dB 3.98 3.46
Velocity Error Constant dB 112.4 126.7
CL Gain at 10 kHz dB -109 -89
Moment Command Overshoot % 31 25
Settling Time sec 0.03 0.015
Pickoff Angle Deviation deg 0.0034 0.00152



5.6 FLS/LQG/LTR Design

5.6.1 Description of Design Methodology

The LQG/LTR with formal loop shaping (FLS/LQG/LTR) design methodol-
ogy is described in [1] and in [2]. A limitation of the LQG/LTR design method-
ology described in Section 5.4 is that the target loop that is recovered must

be made up of the dynamics of the design plant model. The FLS/LQG/LTR

methodology extends the loop transfer recovery result so that arbitrary stable

target loops, not only those based on the plant dynamics, may be recovered

in the feedback loop. This methodology produces a model based compensator,
containing the dynamics of the target loop to be recovered as well as the dy-
namics of the design plant model, that inverts the plant dynamics and inserts
the recovered dynamics of the target loop.

Consider the design plant model, G=(s), factorable as shown in Equation

(5.50)

G(8) = G,.(s)() (5.50)

where G1,(s) contains the strictly stable, minimum phase dynamics of G.(s)
and 11(s) contains the dynamics directly on the jw-axis. In this case, with the

loop broken at the plant input, the formal loop shaping procedure consists of
simply incorporating the desired loop shape, the target loop W(8), at the plant
input as shown in Figure 5.62. The target loop must also be factorable as shown

in Equation (5.51)

W(s) = W,(s)a(s) (5.51)

where W.(s) contains the strictly stable, minimum phase dynamics of W(s). In-
clusion of 1l(s) in W(s) is required because the formal procedure produces com-

pensators that completely invert the stable dynamics of the plant, and forming
W(s) in this manner prevents the compensator from inverting dynamics on the
jw-axis, which could result in an unstable system. The factorization in (5.50) is
clearly possible in the case of the gyro problem where G(s) consists of the gyro

and demodulation filter dynamics, and l(s? is an integrator. This factorization,

however, may not be possible for cases in which the 12(s) dynamics are part

of the plant and not added to the loop as part of the design plant model. A
factorization similar to the one in (5.50) is required for plants with open right
half plane poles and zeros and is discussed in [2].
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Figure 5.62: Incorporation of the Target Loop Shape at the Plant Input

It is desirable that the target loop, W(s), come from the solution to a linear
quadratic regulator problem for some desired target dynamics. The guaranteed

stability properties of the LQ loop can then be recovered in the feedback loop.

It is also suggested [2] that W(s) be constructed as much as possible out of

the plant dynamics, especially highly resonant dynamics with poles close to the

jw-axis. Poles and zeros on the jw-axis are forced to be included in the target
as discussed above.

The FLS/LQG/LTR design methodology generates a model based compen-

sator, KMBC(s), with the structure shown in Figure 5.63. The compensator
contains the strictly stable dynamics of the augmented plant, the strictly sta-

ble dynamics of the target, and the dynamics directly on the jw-axis which are

shared by both the augmented plant and the target. The target loop, W(s), is

the transfer function from up to u,, as shown in Figure 5.62, which has the time

domain representation

iw(t) = Aa,.(t) + B,L,u(t) (5.52)
u,(t) = Gxww(t) (5.53)

which is partitioned as

0[ B/Cn ] [ ]+[ U (5.54)
n 0 An nx _ Bn

uW [G.w Go ][ Z ] (5.55)

The elements of the output matrix in Equation (5.55) could be the feedback

gains that are the solution to a linear quadratic regulator problem based on Aw
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KMBC(S)

Figure 5.63: FLS/LQG/LTR Feedback Loop Block Diagram

and B,,. The design plant model discussed in Section 4.3 is partitioned as

= [A BACn ] [ +[ U (5.56)
X ° An Xn Bn

[ C. o][a ] (5.57)

The subscript denotes matrices corresponding to the dynamics in fl(s). Note
that here the design plant model is the gyro augmented at the input with the
integrator ((s) dynamic-) but at the output with the demodulation filter.

As with the normal LQG/LTR design methodology, the target loop is re-
covered in the feedback loop with the "accurate measurement" Kalman filter
problem. Consider the stochastic system in Figure 5.64 which has the state
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Figure 5.64: FLS/LQG/LTR Stochastic Model

space representation

X(t)

y(t)

= AX(t) + LI(t)

= CX(t) + (t)

which is partitione

in
;68s

. ;kn

The process noise, ~(t),

with covariance,

ed as

A- 8 0 BoCn X,

= A,, BWCn x.
0 O An A i

= [ C 0 O ] [ +.
L On 

is a scalar, zero mean, Gaussian, white.noise process

E {((t)~(t - T)j = 6(),

and the measurement noise, (t), is a scalar, zero mean, Gaussian, white noise
process with covariance,

E {6(t)O(t - r)} = /(),

and the process noise input matrix is identical to the control input matrix.
Assuming [A,L] stabilizable and [A, C] detectable, the Kalman filter gain

natrix, H, comes from the solution to the algebraic Riccat; - uation

0 = EAH + AZ + LELH _ 1 CHC (5.62)

H = 1 CH
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where H is partitioned as

H= H.80
Ho

Under the assumption of a plant, G.(s), with no poles or zeros in the open right
half plane, pointwise in s,

lim KMBC(S)G.(s) = W(s). (5.64)

As with LQG/LTR, since the CCTF of a TITOBS system is a scalar trans-
fer function, the loop broken at the plant input, KMBC()G.(s), has the same
transfer function as the loop broken at the plant output, G.,()KMBC(8), so the
target loop, W(s), can be recovered in the feedback loop broken at either point.

The value of pi determines the frequency to which the target loop is recovered.

This is referred to as the recovery bandwidth.
The FLS/LQG/LTR design procedure for a.plant with no open right half

plane poles or zeros is as follows:

1. Choose a target loop W(s) which shares the plant dynamics on the jw-axis
and has the desired performance and stability properties.

2. Recover the target target loop in the feedback loop to the desired band-
width by choosing the design parameter A.

The model based compensator has the following properties:

* All of the poles in Ga,,(s), the strictly stable dynamics of the design plant
model, are cancelled by zeros of KMBC(s)-

During the recovery process, as u 0:

* The remaining zeros of KMBC(s) start at some open loop poles of G2,(s)

and approach the zeros of W0(s).

* Some of the poles of KMBC(s) cancel the undesirable zeros of G,,(s).

* Some of the poles of KMBC(s) approach poles of Wo(s).

* The rest of the poles of KMBC(s) go to infinity in a stable manner.
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5.6.2 Design Approach

The ability of the FLS/LQG/LTR design methodology to recover any target

loop, not just those based exclusively on the plant dynamics, provides a wide

choice of design options. The only restriction on the target loop is that it must

contain the closed right half plane plant dynamics [2]. Two design approaches

for the gyro are described below.

One design approach would be to recover an LQ target loop based on an

FW/LQ regulator design. The methodology could be applied to some very
simple A,, dynamics, with the control and output weighted with functions similar

to those chosen in Section 5.5. This would allow an LQ target loop with a notch

filter and large state weighting at nutation so that the target loop contains the

resonant nutation dynamics. A disadvantage of this approach is the recovery of

the notch filter. Since the zeros of the compensator only approach the target

zeros as/4 -- 0, the notch may not be sufficiently recovered with practical values

of /i, leading to a notch filter that is at the wrong frequency with the wrong

depth.
A second approach would be to recover a target loop, preferably an LQ loop

based on a normal time weighted design, and to incorporate the notch filter

into the compensator after recovery. The A, matrix in this case would contain
simpler dynamics than the gyro but should include the nutation dynamics, since

these poles are close to the jw-axis. This ad hoc implementation of the notch

filter destroys the optimality and guaranteed stability properties of a recovered

LQ loop, but does guarantee that the notch in the compensator will have the

desired properties.

This second approach is used in the LQG/LTR designs in Section 5.4 and two

different FLS/LQG/LTR designs based on this approach are presented below.

Both of the designs are based on real coefficient target loops, W(s). The corre-

sponding TITOBS target loop then has the dynamics of W(s) on each channel

with no coupling between the channels. Recovery of these target loops generates

compensators that tend to decouple the torque-rebalance loop channels. The

result is that an inertial input on one gyro axis produce a moment command

on the opposite axis only.

The first design recovers an LQ target loop based on a real A,, matrix consist-

ing of an integrator and dynamics corresponding to the gyro nutation dynamics.
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This design provides excellent frequency domain characteristics due to the sin-

gle integrator behavior at low frequencies, but because the quadrature dynamics
are inverted by the compensator, the step response of the pickoff angles is unac-

ceptable. This design is referred to as FLS-0 and is discussed in Sections 5.6.3

and 5.6.4.

The second design recovers a target loop based on a real A, matrix consisting
of an integrator and dynamics corresponding to both the gyro nutation and

quadrature dynamics in order to address the problem of the first design. Low and
high bandwidth designs are generated, denoted FLS-1 and FLS-2 respectively,

and are discussed in Sections 5.6.5 and 5.6.6.

5.6.3 Linear Quadratic Target Loop

The LQ target loop for design FLS-0, the target based on a real A,, matrix
consisting of an integrator and a complex pair of poles corresponding to the gyro
nutation dynamics, is of the form shown in Equation (5.52) and partitioned as
shown in Equation (5.54). The numerical values of the elements in (5.54) are
shown below.

0 1 3.673 x10 ]
Aw =[ -3.6737 x 10 -0.3166 B8 [3.6737 x16 ]

An = O Bn =1 C =1

The eigenvalues of the Aw matrix are

A1 = 0.0

A2,3 = -0.15833±j1916.7.

The output gain matrix, Gw, comes from the solution of the standard LQR
problem outlined in Equations (5.3) through (5.7). The LQ design parameters
shown below are chosen to give a -3 dB bandwidth of 50 Hz.

Qu = 8x10 -

N = [-1 8.619x 10-8 10-8 ]

The resulting gain matrix is

G, = [ -331.34 0.06384 684.90 ],
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Poles of G,(s)

nutation .-- X

X

demodulation quadrature
filter

X

target nutation

Figure 5.65: Poles of G,(s) and W(s) for Design FLS-O

and
W(s) = G, (sI - A,)- 1 B:

Figure 5.65 shows the pole locations of the design plant model and those
of W(s). The target loop and the design plant model share the integrator,

but the remainder of the poles of G,(s) are cancelled by the FLS/LQG/LTR
compensator of the next section. The compensator then asymptotically replaces
the cancelled nutation pole with the complex pole pair of the target loop. In

this way, the feedback loop retains dynamics at the nutation frequency so that
the controller can generate moment commands to null pickoff angle deviations
at this frequency.

Bode plots of the open and closed loop FLS-O LQ target, W(s), are shown

in Figures 5.66 and 5.67. Note that this target, like the subsequent ones in Sec-

tion 5.6.5, is a real coefficient transfer function. Therefore, the TITOBS target
has the transfer function W(s) on each channel, with no cross coupling, and the
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Table 5.22: Design FLS-O LQ Target Closed Loop Poles and Zeros

forward and backward transfer functions are identical. The compensator gen-
erated by the recovery process will tend to decouple the torque-rebalance loop
channels. The resulting closed loop LQ poles and zeros are shown in Table 5.22.

5.6.4 Recovery of the LQ Target Loop

A family of compensators is generated by the recovery process, each one

better approximating the target loop as the design parameter - 0. The com-
pensator presented below is recovered to provide a -90 ° bandwidth of 50 Hz.
The behavior of the compensator zero locus during recovery is very similar to
that of the LQG/LTR design methodology discussed in Section 5.4.4, with the
locus crossing into the right half plane. After the target loop is recovered to
the desired bandwidth, the compensator is augmented at its output with the
notch filter in Equation (4.9) in an analogous way to the augmented LQG/LTR

compensator shown in Figure 5.11. As noted in Section 5.6.3, the compen-
sator cancels the stable dynamics of the design plant model and replaces them
asymptotically with the decoupled dynamics of the target loop. This yields
torque-rebalance loop dynamics with decoupled channels through the recovery
bandwidth.

A compensator design which provides a -90 ° bandwidth of 60 Hz for the
LQ target in Section 5.6.3, is achieved for values of the Kalman filter design

parameters /A = 10- 7 and . = 106. This design is referred to as FLS-0. (The
loop bandwidth is higher than the target bandwidth due to the addition of the
notch filter to the compensator.) A Bode plot of the overall compensator, K(s):
the model based compensator, KMBC(S), modified witbh he notch filter, and
augmented with the demodulation filter and integrator, is shown in Figure 5.68.
The compensator poles and zeros are listed in Table 5.23, and the compensator
Bode gain is 0.00016 - jO.1040 which yields a velocity error constant, K,, of
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Poles Zeros
-171.30+j1939.5 -171.38 +j1366.4
-171.30 - j1939.5 -171.38 - j1366.4

-342.61
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46.7 dB. Note that this compensator has a zero in the right half plane. A Bode
plot of the compensated open loop system is shown in Figure 5.69 while a Bode

plot of the closed loop system is shown in Figure 5.70. From the open loop Bode

plot, it can be seen that the forward and backward transfer functions are almost

identical up to nutation, indicating that the channels of the feedback loop have

been decoupled up to that frequency. Moreover, both transfer functions have the

characteristic of an integrator for frequencies through crossover, indicating that

the quadrature dynamics of the gyro have been inverted by the compensator.
The system has a -90 ° bandwidth of 60 Hz and a -3 dB bandwidth of 65 Hz.

Since the open loop system has a low frequency characteristic of an integrator,
the closed loop system has no peaking within the bandwidth. The attenuation

at 10 kHz is -195 dB. The closed loop system poles are listed in Table 5.24.

Note that the two gyro poles and the poles of the demodulation filter have been

cancelled by zeros of the compensator.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or b, = jldeg/sec, to 0.1 seconds is shown in Figure 5.71, and the response
to 40 seconds is shown in Figure 5.72. The real and imaginary parts of the pickoff
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Table 5.23: Design FLS-0 Compensator Poles and Zeros

Table 5.24: Design FLS-0 Closed Loop Poles

angle and the real and imaginary parts of the commanded moments are plotted

versus time. Related to the TITOBS system, the real and imaginary parts are

the x-axis and y-axis pickoff angles and x-axis and y-axis moment commands,

respectively. The solid lines denote the x-axis response and the broken lines

denote the y-axis response.
The step response of the system indicates the problem with this design ap-

proach. In order to recover a loop with a frequency response of an integrator

for frequencies below crossover, the FLS/LQG/LTR compensator cancels the

quadrature mode pole of the plant, making that mode unobservable in the mo-

ment command output of the torque-rebalance loop. The response of the x-axis

moment command is essentially first order with some nutation oscillation, and
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Poles Zeros
0.0 1875.7 + j2547.1

-471.24 + j816.21 -471.24 + j816.21
-471.24 - j816.21 -467.24 - j816.21
-125.45 + j1220.3 -0.001256 + j1256.6
-127.82 - j1222.3 -0.001256 - j1256.6
-0.1583 + j1916.7 -0.1583 + j1916.7
-41.577 - j1902.6 -0.05 - j0.00000413
-591.00 + j2839.5 -83.091 - j3033.6
-1859.4 + j2064.4
-2511.3 + j372.65
-1938.2 - j1286.3
-724.14 - j2085.6 

Closed Loop Poles
-670.37 - j1917.8 -208.03 + j1218.7
-155.71 + j1879.0 -208.03 - j1218.7
-155.71 - j1879.0 -471.24 + j816.21
-1728.8 - j1061.5 -471.24 - j816.21
-625.07 + j2736.9 -0.1538 + j1916.7
-2112.7 + j358.01 -0.05 + jO.00000413
-1677.2 + j1801.0 -377.4 + j0.00000030



has a settling time of about 0.02 seconds with no overshoot. However, the pick-

off angles return to null only with a first order decay at the quadrature time

constant of r = 20 sec after a maximum deviation of 0.0046°.

A Nyquist plot of the compensated system is shown in Figure 5.73. The

stability margins obtained from the plot indicate a negative phase margin of
62°, a positive phase margin of 710, an upward gain margin of 9.90 dB, and an
infinite downward gain margin.

5.6.5 Target Loops Based on Real Coefficient Gyro Dy-
namics

The target loops of this section are similar to the target of Section 5.6.3
except that a complex pair of poles corresponding to the gyro quadrature mode
is included to rectify the problems discussed above in Section 5.6.4.

The poles of the design plant model and the target are compared in Fig-
ure 5.74. Again, the target loop, W(s), is a real coefficient transfer function
so that the dynamics of W(s) appear on each channel of the corresponding
TITOBS target with no cross coupling. The target loop shares the integrator
with the design plant model, but the rest of the poles are cancelled by zeros of

the compensators of the next section. The two cancelled poles of the CCTF gyro
description are then replaced asymptotically by the two complex pole pairs of

the target loop, which are at the same locations as the gyro poles. Therefore, the
cancelled, coupled gyro dynamics are asymptotically replaced by the uncoupled

target dynamics.

Two target loops, a low bandwidth loop (FLS-1) and a high bandwidth
loop (FLS-2), are considered. The dynamics of W(s) are of the form shown in
Equation (5.52) and partitioned as shown in Equation (5.54). The numerical
values of the elements in (5.54) are shown below.

0 1 0 0 0O

A -- 0.0025 -0.1 -0.0025 0 B 0
0 0 0 1 0

v =25 0 -3.6737 x 106 -0.3166 3.6737 x 106]

A =0 Bn =1 C=1
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Figure 5.73: Design FLS-O Nyquist Plot

The eigenvalues of the A, matrix are

A1 = 0.0

A2,3 = -0.05 i jO.00000413

A4,5 = -0.15833 j1916.7

The output gain matrix, G,, is chosen to generate two target loops, one with
a bandwidth of 50 Hz (FLS-1) and one with a bandwidth of 100 Hz (FLS-2). It
is difficult to choose LQ state weighting matrices that do not place eros on or

near the quadrature poles of A,. The goal of this approach is to include these

dynamics in the target in order to avoid the problems discussed in Section 5.6.4,
so they must not be cancelled in the target loop. Therefore, a pole placement
algorithm is used to place the closed loop poles of the target, W(s). Since the
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Figure 5.74: Poles of G2 (s) and W(s) for Designs FLS-1 and FLS-2

performance of the compensators discussed in Section 5.6.6 depends directly on
the performance of the recovered target loop, different choices for the closed loop

poles could provide better results. Also, since these designs are not based on a

linear quadratic regulator solution, they would be more properly referred to as
FLS/LTR designs.

A target with a -3dB bandwidth of 50 Hz is produced by specifying the
closed loop poles in Table 5.25, generating the gain matrix,

G,, = [ 4.3566 x 108 1.0086 x 107 -359.12 0.0238 619.58].

Bode plots of the open and closed loop low bandwidth target, W(s), are shown
in Figures 5.75 and 5.76. The resulting closed loop LQ poles and zeros are shown

in Table 5.25.
A target with a -3 dB bandwidth of 100 Hz is produced by specifying the
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Table 5.25: Low Bandwidth Target Closed Loop Poles and Zeros

Table 5.26: High Bandwidth Target Closed Loop Poles and Zeros

Poles Zeros
-375.00 ± j1870.0 -97.041 ± j1275.0
-130.00 + j130.00 -101.55 ± j92.907

-340.00

closed loop poles in Table 5.26, generating the gain matrix,

G, = [ 4.5516 x 109 4.9312 x 107 -727.53 0.1457 1349.6 ].

Bode plots of the open and closed loop high bandwidth target, W(s), are shown
in Figures 5.77 and 5.78. The resulting closed loop LQ poles and zeros are shown

in Table 5.26.

5.6.6 Decoupling Compensators

Two compensators are examined in this section that are recovered from the
two target loops in Section 5.6.5. A family of compensators is generated by the

recovery process, each one better approximating the target loop as the design

parameter p - 0. The behavior of the compensator zero locus during recov-
ery is very similar to that of the LQG/LTR design methodology discussed in

Section 5.4.4, with the locus crossing into the right half plane. In addition,
compensator poles that approach the target quadrature poles also go into the
right half plane, potentially creating an unstable compensator. After the target
loop is recov. ed to the desired bandwidth, the compensator is augmented at
its output with the notch filter in Equation (4.9) in an analogous way to the
augmented LQG/LTR compensator shown in Figure 5.11.

A compensator design which provides a -90 ° bandwidth of 50 Hz for the

low bandwidth target in Section 5.6.5, is achieved for values of the Kalman
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Poles Zeros
-180.00 ± j1900.0 -22.085 + j1239.1
-65.000 ± j65.000 -48.662 + j42.857

-130.00
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filter design parameters = 10- 5 and - = 106. This design is referred to
as FLS-1. A Bode plot of the overall compensator, K(s): the model based

compensator, KMBC(s), modified with the notch filter, and augmented with the
demodulation filter and integrator, is shown in Figure 5.79. The compensator
poles and zeros are listed in Table 5.27, and the compensator Bode gain is
1.044 x 105 -j2.830 x 105 which yields a velocity error constant, K,, of 176.0 dB.

Note that this compensator has a zero in the right half plane. A Bode plot of
the compensated open loop system is shown in Figure 5.80 while a Bode plot
of the closed loop system is shown in Figure 5.81. From the open loop Bode

plot, it can be seen that the forward and backward transfer functions are almost
identical for frequencies from about 0.01 Hz up to nutation, indicating that the
channels of the feedback loop have been decoupled in this frequency range. The

system has a -90 ° bandwidth of 50 Hz and a -3 dB bandwidth of 75 Hz. Both
the forward and backward transfer functions have an M = 4. dB, and the
attenuation at 10 kHz is -200 dB. The closed loop system poles are listed in
Table 5.28. Note that the two gyro poles and the poles of the demodulation

filter have been cancelled by zeros of the compensator.
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Table 5.27: Design FLS-1 Compensator Poles and Zeros

0.0
-471.24 + j816.21

-471.24 - j816.21

-139.82 + j1228.2
-146.72 - j1230.8
-0.1583 + j1916.7
-40.691 - j1894.6
-629.84 + j2836.3
-1874.4 + j1972.2
-2392.2 + j316.97
-1858.0 - j1194.0
-771.88 - j2034.4

-0.0121
-0.0878

+ jO.006377
- jO.006347

-143.79 + j562.01
-471.24 + j816.21
-471.24 - j816.21

-0.001256 + j1256.6
-0.001256 - j1256.6

-0.1583 + j1916.7

-0.05 - jO.00000413

-40.390 - j45.731

* Two additional zeros could not be found accurately.

Table 5.28: Design FLS-1 Closed Loop Poles

-670.37 - j1917.8
-147.87 + j1836.6
-147.87 - j1836.6
-1728.8 - j1061.5

-625.07 + j2736.9
-2112.7 + j358.01
-1677.2 + j1801.0

-66.091 + j63.763

-235.63 + j1230.8
-235.63 - j1230.8
-471.24 + j816.21

-471.24 - j816.21
-0.1538 + j1916.7

-0.05 + jO.00000413
-140.54 - iO.00000052

-66.091 - j63.763
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Figure 5.82: Design FLS-1 Step Response

.08 .09 .1

The response of the system to a 1 deg/sec step in the y-axis inertial angular

rate, or I = j · ldeg/sec, is shown in Figure 5.82. The maximum deviation

of the y-axis pickoff angle is 0.0044° while the x-axis moment command has an

overshoot of 41% and a settling time of about 0.066 seconds. Note that there

is very little y-axis moment command, as the TITOBS loop channels are nearly

decoupled. The response time of the loop is slow because only one torquer is

working to null the pickoff angles. The loop performance is also not optimal

since the target is not a solution to a linear quadratic regulator problem and

could probably be improved significantly.

A Nyquist plot of the compensated system is shown in Figure 5.83. The
stability margins obtained from the plot indicate positive and negative phase

margins of 46°, an upward gain margin of 9.90 dB, and a downward gain margin
of 12.71 dB.
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Figure 5.83: Design FLS-1 Nyquist Plot

A compensator design which provides a -90 ° bandwidth of 100 Hz for the

high bandwidth target in Section 5.6.5, is achieved for values of the Kalman filter

design parameters / = 10-1° and E = 108. This design is referred to as FLS-2.

A Bode plot of the overall compensator, K(s): the model based compensator,

KMBC(S), modified with the notch filter, and augmented with the demodulation
filter and integrator, is shown in Figure 5.84. The compensator poles and zeros
are listed in Table 5.29, and the compensator Bode gain is -7818- j5077 which
yields a velocity error constant, K,, of 145.7 dB. Note that this is an unstable
compensator, and it has a zero in the right half plane. A Bode plot of the
compensated open loop system is shown in Figure 5.85 while a Bode plot of the

closed loop system is shown in Figure 5.86. From the open loop Bode plot, it can

be seen that the forward and backward transfer function magnitudes are almost
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Figure 5.84: Design FLS-2 Augmented Compensator Bode Plot

identical for frequencies from about 0.1 Hz up to nutation, but the phases are
different due to the unstable compensator. The system has a -90 ° bandwidth
of 100 Hz and a -3 dB bandwidth of 125 Hz. Both the forward and backward
transfer functions have an lip = 3.68dB, and the attenuation at 10 kHz is
-107dB. The closed loop system poles are listed in Table 5.30. Note that the
two gyro poles and the poles of the demodulation filter have been cancelled by

zeros of the compensator.

The response of the system to a 1 deg/sec step in the y-axis inertial angular
rate, or q = j . deg/sec, is shown in Figure 5.87. The maximum deviation
of the y-axis pickoff angle is 0.00210 while the -axis moment command has an

overshoot of 44% and a settling time of about 0.03 seconds. Note that there is

virtually no y-axis moment command, as the TITOBS loop channels are nearly
decoupled. The response time of the loop is slow because only one torquer is

working to null the pickoff angles. The loop performance is also not optimal
since the target is not a solution to a linear quadratic regulator problem and
could probably be improved significantly.

A Nyquist plot of the compensated system is shown in Figure 5.88. The
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Table 5.29: Design FLS-2 Compensator Poles and Zeros

stability margins obtained from the plot indicate positive and negative phase
margins of 47°, an upward gain margin of 12.11 dB, and a downward gain mar-
gin of 13.06dB. Note that the -1 point is encircled once due to the unstable
compensator.

Table 5.30: Design FLS-2 Closed Loop Poles

-11088. - j51.229
-248.22 + j1212 .0
-248.22 - j1212.0
-3636.6 + j13140.
-3532.9 - j10607.
-9173.6 + j7386.5
-8996.6 - j6470.3
-293.76 + j1729.9

-132.16 + j1256.0
-132.16 - j1256.0
-471.24 + j816.21
-471.24 - j816.21
-0.1538 + j1916.7

-0.05 + j0.00000413
-421.43 - jO.0060958

-293.76 - j1729.9
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Poles 1 Zeros
0.0 186.51 + j1326.7

-471.24 + j816.21 -471.24 + j816.21
-471.24 - j816.21 -471.24 - j816.21
-149.20 + j1240.0 -0.001256 + j1256.6
-149.07 - j1240.1 -0.001256 - j1256.6
-0.1583 + j1916.7 -0.1583 + j1916.7
-0.1578 - j1916.7 -0.05 - jO.00000413
-3068.5 + j11438. 186.51 - j1326.7
-2994.1 - j10809. -95.297 + j88.034
-9437.6 + j8771.2 -95.297 - j88.034
-9474.4 - j7837.0
-12924. - j59.836
-0.3634 + j0.5615

0.2553 - jO.5737

Closed Loop Poles
- -

.
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5.6.7 Summary

The FLS/LQG/LTR design methodology allows recovery of arbitrary target
loops in the feedback loop, by generating a compensator that completely inverts
the plant dynamics and recovers the target loop dynamics. Inversion of the
plant dynamics causes those dynamics to be unobservable at the output torque
command. The result is that if the target loop does not contain these dynamics,
the gyro pickoff angles are not driven to null by the controller. Recovery of a
target loop that does not contain the gyro quadrature dynamics is investigated
in Section 5.6.4, demonstrating the poor step response of the pickoff angles even
though the recovered loop has excellent frequency domain characteristics.

Controllers with better time domain characteristics are generated by recovery
of real coefficient target loops that are based on decoupled dynamics correspond-

ing to both the gyro nutation and quadrature modes as shown in Section 5.6.6.
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Figure 5.88: Design FLS-2 Nyquist Plot

Recovery of these targets produces compensators that tend to decouple the x
and y-axes of the torque-rebalance loop so that an input in inertial angular rate

on the y-axis produces only x-axis torque commands.

The performance parameters of the low and high bandwidth decoupling de-
signs of Section 5.6.6 are shown in Table 5.31. The performance of the recovered

loops depends on the performance of the targets. Since the target loops for these
designs do not come from the solution to an optimal regulator problem, their
performance is expected to be relatively low.
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Table 5.31: FLS/LQG/LTR Compensator Design Parameters

161

Parameters Units FLS/LQG/LTR Designs
FLS-1 FLS-2

Upward Gain Margin dB 9.90 12.11
Downward Gain Margin dB 12.71 13.06
Negative Phase Margin deg 46 47
Positive Phase Margin deg 46 47
-90o Bandwidth Hz 50 100
-3 dB Bandwidth Hz 75 125
Forward TF M dB 4.00 ·3.68
Backward TF Mp dB 4.00 3.68
Velocity Error Constant dB 176.0 145.7
CL Gain at 10 kHz dB -200 -107
Moment Command Overshoot % 41 44
Settling Time sec 0.066 0.030
Pickoff Angle Deviation deg 0.0044 0.0021



5.7 Summary

In this chapter, four design methodologies are used to generate controllers for
the TDF-DTG torque-rebalance loop. The design methodologies used are classi-
cal first order lead compensation, LQG/LTR, FW/LQG, and FLS/LQG/LTR.
Classical first order lead compensation is used to generate one design with a
50 Hz bandwidth, which is near the maximum achievable bandwidth for that de-
sign methodology due to the nutation phase characteristic of the gyro. LQG/LTR
is used to generate four controller designs, two with a bandwidth of 50 Hz and
two with a bandwidth of 100 Hz. These designs illustrate the effect of the recov-
ery bandwidth on the loop performance parameters. The LQG/LTR compen-
sators allow non-minimum phase zeros which provide additional negative phase
margin by introducing phase lag at nutation when required during the recovery
process. FW/LQG is used to generate two controllers, one with a 50 Hz band-
width and one with a 100 Hz bandwidth. In this methodology the states and
controls are weighted as functions of frequency. This provides great flexibility

in shaping the LQ loop and allows the inclusion of a notch filter directly in the
LQ loop. In addition, the effects of different state weighting transfer functions
are examined to present a systematic design approach. Two different design
approaches are examined for the the FLS/LQG/LTR design methodology. One
provides good frequency domain characteristics but has a poor time response.
The other approach is used to generate two controllers, one with a 50 Hz band-
width and one with a 100 Hz bandwidth, which provide acceptable time response
behavior. These designs decouple the torque-rebalance loop channels so that an
inertial angular rate input on one axis produces a moment command on the
opposite axis only. The design methodologies and the designs are compared in
Chapter 6.
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Chapter 6

Comparison of Design Methodologies
and Conclusions

In this chapter, the controller designs presented in Chapter 5 are compared.

First, the performance of the designs is compared, and second, the design pro-

cedures and special characteristics of the designs are compared. Finally, some

recommendations for future work in torque-rebalance loop compensation are

made.

6.1 Performance Comparisons

6.1.1 Overview

The general design requirements for strapdown torque-rebalance loops are

described in Section 1.3. The primary points of comparison are:

* stability margins with respect to block symmetric plant perturbations;

* Mp, the maximum closed loop peaking within the bandwidth as a measure

of how close the closed loop gain within the bandwidth is to unity;

* K,, the velocity error constant as a measure of steady state error in mo-

ment command and pickoff angle due to a step in inertial angular acceler-

ation;

* the closed loop gain at 10 kHz as a measure of high frequency attenuation

for high frequency noise rejection;

* time response characteristics including overshoot and settling time of the

moment command and maximum deviation from null of the pickoff angles

due to a 1 deg/sec step in inertial angular rate.
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Table 6.1: Low (50 Hz) Bandwidth Compensator Design Parameters

Compensator Designs
Parameters Units 1st Order LQG/LTR FW/LQG FLS/LTR

Lead la lb 1 1
Upward GM dB 4.73 12.40 20.00 30.50 9.90
Downward GM dB 00 48.16 39.08 16.83 12.71
Negative PM deg 50 48 56 41 46
Positive PM deg 49 50 62 59 46
-90 BW Hz 50 50 80 48 50
-3 dB BW Hz 145 70 50 48 75
Fward TF Mp dB 3.95 2.51 1.85 1.59 4.00
Bward TF Mp dB 2.37 3.02 2.59 3.98 4.00
K. dB 110.9 113.5 115.5 112.4 176.0
10 kHz Gain dB -170 -170 -90 -109 -200
Overshoot o 31 31 25 31 41

Settling Time sec 0.035 0.03 0.03 0.03 0.066
Max. PO Ang. deg 0.0042 0.0039 0.0031 0.0034 0.0044
Order of K(s) 6 10 10 12 14

All four designs, first order lead, LQG/LTR, FW/LQG, and FLS/LQG/LTR,
are compared for the low (50 Hz) bandwidth case while the multivariable designs,

LQG/LTR, FW/LQG, and FLS/LQG/LTR, are compared for the high (100 Hz)
bandwidth case. The performance parameters for the designs of Chapter 5 are

summarized in Table 6.1 and Table 6.2 for the low and high bandwidth designs

respectively.

The differences between the low and high bandwidth designs are essentially

that stability margins, high frequency attenuation and moment command over-

shoot are traded for improved bandwidth, K,, and response time. Clearly all of
the designs presented could be improved with further iteration of the respective
design parameters or weighting functions. However, they are designs that are

representative of the performance attainable for each of the methodologies.
A performance parameter not disc osed in Section 1.3 is the order of the com-

pensator itself. The augmented classical lead compensator has 6 states while all

of the multivariable, model based compensators have many more. This param-
eter could be important because it is desirable to have compensators with as

few states as possible. If a high order compensator is implemented with ana-
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Table 6.2: High (100 Hz) Bandwidth Compensator Design Parameters

log electronics, more components are required, and if it is implemented in a
digital computer, more processing time is required, leading to time delays that
could degrade the performance of the torque-rebalance loop. Therefore, there
is a tradeoff between the loop performance achievable with the particular design
methodology and the order of the resulting compensator.

6.1.2 Low Bandwidth Designs

The performance parameters of the low bandwidth designs are shown in

Table 6.1. The designs are compared with respect to each of the performance
parameters of interest.

Stability Margins

The phase margins of all of the designs are comparali , with the high band-
width recovery LQG/LTR design (LQG/LTR-lb) having the largest phase mar-

gins as well as the largest gain margins. Although the downward gain margin of
the lead compensation design is infinite, the upward gain margin is only 4.73 dB.

The downward gain margins of the multivariable designs are very large, and the
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Compensator Designs
Parameters Units LQG/LTR FW/LQG FLS/LTR

2a 2b 2 2

Upward GM dB 6.38 10.45 10.45 12.11
Downward GM dB 24.35 22..92 16.25 13.06
Negative PM deg 34 43 43 47
Positive PM deg 52 70 55 47
-90 ° BW Hz 100 125 100 100
-3 dB BW Hz 120 100 105 125
Fward TF Mp dB 1.93 1.18 0.95 3.68
Bward TF Mp dB 4.89 3.95 3.46 3.68
K, dB 125.9 128.3 126.7 145.7
10 kHz Gain dB -140 -90 -89 -107
Overshoot % 40 34 25 44
Settling Time sec 0.02 0.02 0.015 0.030
Max. PO Ang. deg 0.00225 0.00156 0.00152 0.0021
Order of K(s) '10 10 i 12 14



upward gain margins of the designs, between 9.90 dB and 30.50 dB, are much
larger than that of the lead design. The stability margins of the FLS design are

lower than those of the other multivariable designs because the target loop for

that case is not based on a linear quadratic regulator so the stability properties

of the LQG based designs are not achievable.

Bandwidth

The FW/LQG design has the best bandwidth characteristic in that the

-3dB and -90 ° bandwidths are identical. The other multivariable designs
have between 20 Hz and 30 Hz difference between the bandwidths while the lead

design has a -90 ° bandwidth of 50 Hz and a -3 dB bandwidth of 145 Hz. If the
lower -90 ° bandwidth is matched to the attitude algorithm bandwidth, then a

larger -3 dB bandwidth would pass high frequency motion which could lead to
coning errors. Design LQG/LTR-lb has a -90 ° bandwidth that is higher than
its -3 dB bandwidth, so there is a point during recovery where these bandwidths
are matched.

Closed Loop Peaking

The Mp for all of the designs are comparable. The Mp of design LQG/LTR-

lb is somewhat better than the rest, but that of the FW/LQG design could be
improved using the technique described in Section 5.5. Since the channels of
the FLS design are decoupled, the Mp for that design is identical for both the

forward and backward transfer functions; however, it is higher than the rest,

again due to the non-optimal target loop.

Velocity Error Constant

The K, of all of the designs is near 110 dB with the exception of the FLS

design which is over 1000 times better, or over 60 dB higher. A K, of 110 dB

yields a pickoff angle steady state hang off error of about 16 arcsec for a 100°/sec 2

step in inertial angular acceleration, and this would be improved by a factor of
about one thousand or the FLS design.
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High Frequency Attenuation

The closed loop gain at 10 kHz for the lead design is -170 dB and that of

the FLS design is -200 dB. The LQG/LTR closed loop gain at high frequencies

is a function of recovery bandwidth so that recovery of the target stability and

other performance properties are traded off against high frequency attenuation.
Design LQG/LTR-la has a closed loop gain at 10 kHz of -170 dB while design

LQG/LTR-lb has a gain at 10 kHz of -90 dB, but with better stability, step

response and Mp properties. The FW/LQG design has a rather high gain of

-109 dB.

Step Response

The response of the designs to a 1 deg/sec step in inertial angular rate is
presented in the table. The step responses of all of the designs, except for the

FLS design, are comparable, with that of the LQG/LTR-lb design being slightly

better. The FLS design has clearly the worst response in terms of the parameters

listed. The settling time in particular is twice as long as the other designs. The

characteristic of the design that does not appear in the table is that the moment
command response on the opposing channel is very small compared to that of
the other designs. The advantage of this is that no rate on the opposing axis is

seen by the attitude algorithm. The disadvantage is that the moment and pickoff

angle settling times are much longer, due in part to a non-optimal design.

6.1.3 High Bandwidth Designs

The performance parameters of the high bandwidth multivariable designs

are shown in Table 6.2. The designs are compared with respect to each of the

performance parameters of interest.

Stability Margins

The phase margins of the designs are similar, with design LQG/LTR-2b

having the largest margins. The gain m- rgins are also comparable, again with
those of design LQG/LTR-2b being the largest. The low bandwidth recovery

LQG/LTR design (LQG/LTR-2a) has a downward gain margin of only 6.38 dB

which is very small. Overall, the stability margins for the high bandwidth designs
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are lower than for the low bandwidth designs, except for the FLS designs. Again,

this is likely to be due to the fact that these FLS designs are not based on an

LQ regulator solution as are the other multivariable designs.

Bandwidth

The bandwidth results for these designs are similar to those of the low band-
width designs. The -3 dB and -90 ° bandwidths are between 20 Hz and 25 Hz

apart with the exception of the FW/LQG design, for which they are only 5 Hz

apart.

Closed Loop Peaking

In this case, the LQG/LTR designs have the highest Mp, with the low band-
width recovery having an Mp of 4.89 dB and the high bandwidth recovery having
an Mp of 3.95 dB. Here, the advantage of selecting the FW/LQG weighting func-

tions specifically to reduce Mp is obvious, since this has the lowest Mp of the

high bandwidth designs. Note again that the Mp of the FLS design is identical

for both transfer functions.

Velocity Error Constant

As with the low bandwidth case, the FLS design has the highest K,, though
not as high as the previous case. This is due to the fact that the high bandwidth

FLS/LQG/LTR compensator is unstable. The other designs have a K near

126 dB which yields a pickoff angle steady state hang off error of about 3.0 arcsec

for a 100°/sec2 step in inertial angular acceleration.

High Frequency Attenuation

The closed loop gain at 10 kHz for the LQG/LTR-2a design is -140 dB which

is between 40 dB and 50 dB better than that of the other designs. These values

are much higher than those of the low bandwidth designs and represent one of

the major trade- fs for higher bandwidth.
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Step Response

In this case the FW/LQG design has superior step response performance to
the other designs. Again the moment command overshoot, and settling times
for the FLS design are poor for the reasons discussed in the previous section.

6.1.4 Summary

No multivariable design has a clear performance advantage over the others,

but all out-perform the first order lead compensation design, except in the cat-
egory of compensator order. The LQG/LTR designs provide superior stability

margins with good Mp and step response characteristics traded for closed loop

attenuation at high frequencies. The FW/LQG designs provide good stability,

lMp, and step response with superior bandwidth characteristics, but poor closed

loop attenuation at high frequencies. The FW/LQG designs also have two more

states than do the LQG/LTR designs. The FLS/LTR designs have superior K,

and high frequency attenuation with decoupled but slow step response perfor-

mance.

6.2 Design Procedures

In this section, the design procedures for each of the design methodologies are

compared. The special characteristics of the compensators are also discussed.

6.2.1 Classical Lead Compensation

Classical first order lead compensation requires the selection of three param-
eters, the compensator gain and the locations of the compensator pole and zero.

If the pole location is fixed to be about a decade beyond crossover, then the

remaining two parameters must be adjusted to achieve the desired performance
and stability properties. Selection of these parameters is fairly straight forward,

and designs can be generated quickly using Bode techniques.

The performance achievable with rirst order lead compensation, discussed in

Section 5.3.3, is limited by the gyro nutation. The open loop transfer function

phase just before the nutation frequency must be less than -180°; therefore, the
phase contribution of the lead cannot be such that it increases the phase at nu-
tation above -180 ° . This can be avoided to some extent by using a second order
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lead network to improve the phase at crossover somewhat, or by including an ad-
ditional low pass filter to increase phase lag at nutation but not at crossover. An
advantage of the addition of a low pass filter is that high frequency attenuation
would be improved.

6.2.2 LQG/LTR

The performance of the linear quadratic Gaussian with loop transfer recovery
designs is limited by the performance of the linear quadratic target loop that is
recovered. The degree to which it is recovered directly affects the high frequency

attenuation, but the recovery process is simply a "crank turning" process. The

shape of the LQ target loop depends on the state and control weighting ma-
trices. In Section 5.4, the selection of the weighting matrices is reduced to the

selection of two scalar parameters by matching the magnitudes of the forward
and backward transfer functions at high and low frequencies. One parameter,
the control weighting, is used to control the bandwidth of the LQ target loop
while the other determines the frequency of the maximum attenuation between
crossover and nutation. This weighting selection scheme, however, ignores two

additional degrees of freedom in loop shaping.

A serious disadvantage of the LQG/LTR design methodology is that notch
filters beyond crossover cannot be generated with a time weighted LQ problem.
In addition, since the zeros of the compensator approach the zeros of the target
only asymptotically, high Q notch filters cannot be accurately recovered for

practical recovery bandwidths. These problems require that the notch filter at

the spin frequency be included in the compensator after recovery is completed.
This solves the requirement for a notch filter but creates two new problems: first,
the LQ loop should be designed to take the notch filter into account so that the
final feedback loop has the desired characteristics, and second, the notch filter

destroys the optimality and guaranteed stability properties of the recovered LQ
loop.

An interesting feature of the LQG/LTR compensator for the TDF-DTG
problem is that it may be non-minimum phase. This result is discussed .l detail
in Section 5.4.4. The phase lag of the non-minimum phase zeros is employed by

the compensator to keep the phase angle at nutation well below -180 °, maintain-
ing large positive and negative phase margins. Because of this, the LQG/LTR
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designs have larger overall stability margins than do the other multivariable
designs.

6.2.3 FW/LQG

The frequency weighted linear quadratic Gaussian design methodology allows
a linear quadratic regulator loop to be shaped in the frequency domain by the
selection of control and state (or output) weighting transfer functions. Since the
poles of the state weighting transfer function are poles of the compensator and
poles of the control weighting transfer function are zeros of the compensator,
loop pole and zero selection is very straight forward.

A notch filter in the LQ loop (and consequently in the compensator) can be
generated by penalizing the control variable heavily at the desired frequency by
placing resonant poles in the control weighting transfer function at the desired
compensator zero locations. As demonstrated in Section 5.5.2, the LQ loop

shape and system time response may be further controlled by adding dynamics
to either the state or control weighting functions in a straight forward manner.
For example, excessive output oscillation at the nutation frequency is corrected
by weighting the output more heavily at the nutation frequency.

The FW/LQG design methodology offers great flexibility in the generation of
desired LQ loop shapes, limited only by the additional consideration of keeping
the compensator order low. In Section 5.5.2 only the output of the design
plant model is weighted, and the frequency weighting of individual states is

ignored. This may also offer a possibility of increased loop performance and
design flexibility without a large increase in the number of compensator states.

6.2.4 FLS/LQG/LTR

The LQG/LTR with formal loop shaping design methodology allows addi-
tional design flexibility within the LTR framework. It allows the recovery of

any target, even a target loop not based on the plant dynamics or a target not
based on the solution to a linear quadratic regulator problem, in which case the
methodology should probably be called simply FLS/LTR. The only restrictions
on the target loop are that it must contain all of the closed right half plane
dynamics of the design plant model, and for the gyro torque-rebalance loop
problem, it must include the gyro dynamics in some form.
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The design approaches examined in Section 5.6.2 outline some of the ad-

vantages and disadvantages of the FLS/LQG/LTR design methodology. As
discussed above, the recovery of a target loop is asymptotic, so a high Q notch

filter cannot be accurately recovered. This problem reduces the value of the
recovery of a FW/LQ loop with a notch filter which would otherwise be a very

attractive design approach. (If the depth and frequency of the notch are less
critical, this could still be a valuable approach.) An attempt to recover a tar-
get loop that does not contain the low frequency gyro dynamics in an effort to
achieve good low frequency loop shapes results in a compensator that cancels

those low frequency gyro dynamics, making those modes unobservable in mo-
ment command output. The result for the gyro torque-rebalance loop design
is that the pickoff angles are not driven back to null by the controller, which
is unacceptable for accurate gyro operation. The designs presented are based
on target loops that contain decoupled plant dynamics. The recovered loops
succeed in decoupling the TITOBS torque-rebalance loop channels, but have
slow time response characteristics compared to the other multivariable designs.

6.2.5 Summary

In terms of the ability of the design methodologies to directly satisfy the gyro
torque-rebalance loop design requirements, the FW/LQG design methodology
is clearly superior since the notch filter requirement can be included in the LQ
loop. This methodology also provides excellent flexibility in shaping the LQ loop

through reasonably straight forward modification of the weighting transfer func-
tions to improve system time and frequency response. The frequency weighted
estimator, discussed in Appendix C, could be employed with the FW/LQ design
for additional design flexibility.

The LQG/LTR design methodology provides the easiest design approach,
with the target loop design reduced to two parameters. The remainder of the
design is simply recovery of the target loop to the desired bandwidth, trading
off the good qualities of the target loop for high attenuation at high frequencies.
Loop transfer recovery with formal loop shaping uses the recovery process to

recover arbitrary loop shapes. This methodology offers the greatest flexibility
in target loop design, and the designs presented here have only scratched the

surface of what may be possible with this methodology. However, with both
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LTR design methodologies, the notch filter requirement must be satisfied by
augmenting the compensator with the notch filter after recovery, since a notch
filter in the target loop may not be sufficiently recovered.

6.3 Conclusions and Recommendations

In this thesis multivariable design methodologies are used to design con-
trollers for a two-degree-of-freedom dynamically tuned gyro torque-rebalance
loop. The LQG/LTR, FW/LQG, and FLS/LQG/LTR multivariable design
methodologies, in addition to classical first order lead compensation are ap-
plied to a gyro model described by complex coefficient differential equations.

The maximum torque-rebalance loop bandwidth achievable with first order lead
compensation is limited by the gyro nutation. For the gyro model considered,
this imparts a practical bandwidth limit of about 50'Hz. All of the design
methodologies are used to generate 50 Hz designs, and the multivariable design
methodologies are also used to generate 100 Hz bandwidth designs. The perfor-
mance and stability properties of the resulting designs are compared, as are the
design methodologies themselves.

The multivariable design methodologies can be used to double the bandwidth
achievable with classical means. A comparison of the performance of the designs
shows that while the multivariable design methodologies out-perform classical
lead compensation, none provides a clear performance advantage over the others.
In terms of the ability of the design methodologies to produce compensators
which satisfy the typical gyro torque-rebalance loop design requirements, the
FW/LQG design methodology is superior. The LQG/LTR design procedure
is probably the most straight forward, with the target loop design problem
reduced to the selection of two scalar parameters. The FLS/LQG/LTR design
methodology holds promise, but the best way to select target loops in this case
is not clear.

There are several areas where further work could be performed. The perfor-
mance of the FJIS/LQG/LTR design methodology could be improved by finding

improved target loops for the gyro torque-rebalance loop problem, only a few
of which are presented in this thesis. Additional design methodologies could be

compared. In particular, Ho optimization could be examined. It is expected
that it would produce results similar to those of the FW/LQG design method-
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ology.

Another area of interest is a type II torque-rebalance loop. The designs

presented here are all type I, with the high bandwidth designs allowing a steady

state error in pickoff angle of about 3 arcsec for a step input of 100°/sec 2 in

inertial angular acceleration. For some applications, this hang off error may be

too large for accurate operation of the gyro and could be eliminated with a type

II loop. For this gyro model, first order lead compensation cannot be used to

stabilize a type II loop for useful bandwidths, so second order lead compensation

or multivariable designs must be used.

Finally, since many torque-rebalance loops are implemented digitally, direct

discrete time controller designs could be examined and compared to discretized

versions of the continuous time designs described in this thesis.
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Appendix A

List of Symbols

Vectors are underlined, with lower case usually denoting vectors that are
functions of time and upper case usually denoting vectors that are functions of
the Laplace variable a. Scalars are usually lower case. Matrices are upper case.

Operators

di ( ) derivative with respect to time in frame a
det( ) determinant

( )* complex conjugate
( )T matrix transpose
( )H complex conjugate transpose
L{ } Laplace transform

L-l{ } inverse Laplace transform

x vector cross product

I determinant or magnitude
() derivative with respect to time

(^) estimated value

(1) variable dimensioned in mV

(2) discretized matrix

ark{ } singular value

Subscripts

c complex variable

d variable associated with the demodulation filter
i explicitly imaginary
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one of a series

variable associated with the
variable associated with the

explicitly real

strictly stable dynamics
variable associated with the
variable associated with the

target dynamics

(1) -direction component
(2) variable associated with
(design plant model)
variable associated with the

of the design plant model
y-direction component
(1) z-direction component
(2) variable associated with
variable associated with the
variable associated with the
variable associated with the

notch filter
plant model

FW/LQG control weighting function

FLS/LQG/LTR strictly stable

the augmented plant model

strictly stable dynamics

the FW/LQG state weighting function
dynamics on the jw-axis

CN/KF measurement noise shaping filter
CN/KF process noise shaping filter

Superscripts

i
C

9g
n
r
aTL8

Variables

a

A

b

inertial reference frame

gyro case-fixed frame

gimbal-fixed frame

non-rotating rotor-fixed frame
rotor-fixed frame

shaft-fixed frame

lead compensator zero location

state dynamics matrix
lead compensator pole location
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n

p
r

's

Xr

M,8

Y

Z

f
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B control input matrix
C system output matrix
Cb direction cosine matrix relating the a-frame to the b-frame
D control feed through matrix

DR gyro rotor viscous damping term

fn nutation frequency in Hz
f. rotor spin speed in Hz
G feedback gain matrix

G(a) transfer function
Ge(s) explicitly complex coefficient transfer function
GLQ(s) linear quadratic regulator loop transfer function
H Kalman filter gain matrix

H rotor angular momentum vector
I identity matrix

Is gimbal moment of inertia
It,, rotor moment of inertia about its x and y-axes
Irz rotor moment of inertia about its z-axis

kh LQ loop shaping parameter

K (1) compensator Bode gain

(2) suspension flexure torsional spring constant
(3) block symmetric gain perturbation

K(s) compensator transfer function
KL(s) lead compensator transfer function

KMBC(S) model based compensator transfer function
KPO pickoff gain

KT torquer gain

K. velocity error constant
Li(s) ith noise or disturbance input matrix
M moment or torque applied to the rotor

Me complex moment

M, moment on rotor due to a physical suspension system
N (1) auxiliary output matrix

(2) number of encirclements of the -1 point
N(s) FW/LQG state weighting transfer function
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NR Nyquist contour
P number of ORHP poles of Go(s)

P(s) FW/LQG control weighting transfer function

Qu LQR control weighting matrix

QTU LQR cross weighting matrix

Q.2 LQR state weighting matrix
s Laplace variable

S LQR Riccati equation solution
t time

u control variable

Upo controller output
up/ control reference

v time correlated measurement noise

vk kth eigenvector

w time correlated process noise

W augmented white process noise

xc generally complex state vector

X state vector augmented with weighting or shaping filter dynamics

y system output variable
zk kth transmission zero

Z number of closed loop ORHP poles of Gc(s)

7 block symmetric phase perturbation

nutation damping
0 (1) pickoff angle

(2) white measurement noise

0 complex pickoff angle

O measurement noise intensity matrix

Ak kth eigenvalue

IL scalar measurement noise intensity parameter

white process noise

process noise intensity matrix

p (1) LQR scalar control weighting parameter

(2) FW/LQG scalar state weighting parameter

E Kalman filter Riccati equation solution

r gyro quadrature time constant
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inertial angular rate
_o attitude of the shaft relative to the rotor

in the spinning coordinate frame
w frequency in radians/second
WA}8 gyro shaft (or rotor) spin frequency

Ab angular rate of frame b with respect to frame a, written in frame c
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Appendix B

Computer Software

The numerical analyses contained in this thesis were performed using the

matrix and control analysis package MATRIXX from Integrated Systems, Inc.

Listings of MATRIXX macros used in this thesis may be obtained from the

author. The verification of many algebraic results and some analysis of complex

matrices were performed using the symbolic manipulation program MACSYMA.
The text of this thesis was formatted using the ITEX document preparation

system.
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Appendix C

Correlated Noise Kalman Filter
Problem

The derivation of the Kalman filter dual to the frequency weighted linear
quadratic regulator problem discussed in Section 5.5 is presented in this ap-
pendix. This Kalman filter problem corresponds to that for a plant driven by
independent, time correlated process and measurement noise. The filter can

also be used for the design of a class of compensators that is the dual of the

FW/LQG compensator.

C.1 Correlated Noise Kalman Filter Derivation

Consider the real, linear, time invariant, stochastic system

2(t) = Ag,(t) + B,(t) + L.(t) (C.1)

y(t) = C.(t) + (t) (C.2)

where w(t) and v(t) are independent, Gaussian, time correlated noise processes,

and (t) is a deterministic control input. The noise inputs are generated from
Gaussian white noise by the shaping filters in Equations (C.3) and (C.4) and
Equations (C.5) and (C.6).

:(t) = Aexe(t) + L(t) (C.3)

_(t) = Ce(t) + De(t) (C.4)

ie(t) = A 9 (t) + LeO(t) (C.5)
v(t) = Cec(t) + DeO(t) (C.6)

The shaping filter inputs are the independent white noise processes (t) and
O(t), which have intensities E and E9 respectively.
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The plant dynamics are augmented with the shaping filter dynamics to form
the system shown in Equations (C.7) and (C.8), where the deterministic input,
which does not affect the solution to the problem, has been dropped.

_(t) = AX(t) + LW(t) (C.7)

y(t) = cx(t) + DeO(t) (C.8)

These equations are partitioned as

[ A L O x L D 0 

0 O A s O +e Le 0 (C.9)
.= 0 0 Ae0 Lo -

y= [c 0 C ]1[ + D. (c.10)
x e

From Equations (C.9) and (C.10) it can be seen that the process noise of the

augmented system, W(t), and the measurement noise, _(t) are correlated,

r = E {W(t)OT(T)} = O(t-)

The process and measurement noises can be made to be uncorrelated by making
use of the method in [8] of adding D (y(t)- CX(t)- De_(t)) = 0 to the right
side of (C.7). The result is

x(t) = (A - DC) X(t) + Dy(t) + (LW(t) - DDoO(t)) (C.11)

where Dy(t) is a deterministic term, and LW(t)-DDe0(t) is a new process noise.

The parameter D is chosen to make the new process noise and the measurement
noise uncorrelated,

E [LW(t) - DDO(t)] OT (t)} = 

if

D = LrF - 'D-1.

The problem can now be solved by ordinary means. The st(..y state Kalman
filter gains come from the Riccati equation

0 = AS + SAT + , - (CT + rT) o'1 (r, + cs) (c.12)
H = (ECT + rT) -1 (C.13)
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where

L,DD f L L~,DEL 0
&, = LIED TLT L0L O

0 O L OLJ

r = [o o DoE)L]

0 = DeODT

and H is partitioned as

H = He .
He

The resulting filter equations are shown below, where the deterministic control
input has been included.

£(t) = (A - HC).)i(t) + LCCe(t)- HC 9 (t) + Hy(t) +

Bau(t) (C.14)

;f(t) = Acfr(t) - HfC.i(t) - HCeZe(t) + Hey (C.15)

72(t) = (A - HeC)(t)- HeCi(t) + Hey(t) (C.16)

C.2 The CN/KF Model Based Compensator
A feedback loop with a model based compensator based on the correlated

noise Kalman filter is shown in Figure C.1. The process and measurement noise

shaping filter dynamics as well as the plant dynamics appear in the compensator.
The shaping filters can be used to model true noise inputs to the system, or they
can be used to place the poles and zeros of the compensator. The gain G. is a

regulator state feedback gain matrix. In the setting of a standard LQG problem,
a typical time domain weighted LQ regulator can be designed using the original
plant dynamics, A,, to place the regulator poles, and the shaping filters of the
CN/KF problem can be used to model the actual process and measurement
noise to obtain optimal estimates of the plant state.

A dual design procedure to the FW/LQG design methodology for the loop
broken at the plant input is the use of the CN/KF shaping filters to shape the
loop by including desired dynamics in the compensator. These shaping filters

create correlated measurement and process noises in the same way that the
weighting functions of the FW/LQ problem weight the states and controls as
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functions of frequency. This CN/KF compensator has dual properties of the
FW/LQ compensator. The poles of the measurement noise shaping filter are
zeros of the compensator, and the poles of the process noise shaping filter are
poles of the compensator. Also, the closed loop poles approach the zeros of

both shaping filters. Therefore, the measurement noise shaping filter is the dual
of the control weighting, and the process noise shaping filter is the dual of the
state weighting. The LQ gain matrix, G., is then the solution to a time domain
weighted linear quadratic regulator problem designed using the original plant
dynamics, A,, the input matrix, B., and output matrix, C,. The poles of which
are placed beyond the CN/KF loop crossover frequency.

Another possible compensator design combines the FW/LQ regulator with
the CN/KF to achieve further flexibility in pole-zero placement. Some advan-
tages of combining FW/LQ regulators with frequency based state estimators are
discussed in [10].

KMBC(S)

G 3 (s)r - - - - - - -- - - -

Figure C.1: CN/KF Feedback Loop Block Diagram
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C.3 Summary of Duality

The duality between the frequency weighted linear quadratic regulator and
the correlated noise Kalman filter is summarized in Table C.1. The duality
between the augmented systems for these frequency based problems is identical
to the standard duality between the linear quadratic regulator and the Kalman
filter problems, with the addition of the duality between the state-control cross
weighting and the process-measurement noise cross correlation.

Table C.1: Duality Between the FW/LQ and the CN/KF Problems

FW/LQ Duality CN/KF
Augmented System Matrix A X AT Augmented System Matrix
Augmented Input Matrix B X CT Augmented Output Matrix
Control Weighting Matrix Q, X 01 Measurement Noise Covariance
State Weighting Matrix Q== : E1 Process Noise Covariance
Cross Weighting Matrix Q., r1 Cross Correlation
Linear Quadratic Gain G I} H T Kalman Gain
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