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Abstract

People often simulate a computer before its construction to find problems with its
architecture and to concurrently develop algorithms for it. When simulating mas-
sively parallel computers, simulation time generally increases proportionately with
the number of processing nodes. Thus, for large numbers of nodes, a simple opti-
mized C program can effectively simulate all relevant register values while running
significantly faster then many high level languages such as Verilog or VHDL. Instead
of taking many processor cycles to simulate complex processor logic with software, we
can extract the complex logic into a faster external hardware unit, typically imple-
mented as a field programmable gate array (FPGA) for flexibility. We ran simulations
of early vision algorithms on an Intel 80960 platform with an assisting FPGA and
found that the FPGA only speeded up our simulations by a negligible amount due
to the slowness of the external bus. The extra added cost and effort of programming
the FPGA was not worth the incremental speed increase.

Thesis Supervisor: Thomas F. Knight Jr.
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Motivation and Overview

The motivation for researching fast simulation implementations for highly parallel
SIMD architectures arose from the Abacus project currently developing under Tom
Knight at the MIT Artificial Intelligence Lab. The Abacus research group wishes to
develop processing algorithms as custom ASIC development continues. In an effort to
cut simulation time, we created an efficient simulation system to compute all relevant
register values in the Abacus system.

After describing the basics of the Abacus architecture and a brief description of

the software simulator, the remainder of the paper will discuss the following topics:

e Details of the Abacus simulator
e Implementation of a few vision algorithms
e Comparison of simulation times on different platforms

e Improvements to the system and future possibilities

1.2 Abacus Architecture Description

The Abacus computer is currently being developed by Mike Bolotski at the MIT Arti-

ficial Intelligence Lab.[4] It consists of an array of 256K processing elements arranged
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Figure 1-1: Block Diagram of Abacus System

in a two-dimensional toroidal architecture. Each processing element computes one
bit and communicates with its nearby neighbors through two internal networks. An
external sequencer delivers a 58 bit instruction word to all processors each cycle. It
also performs conditional instructions based on a global-OR signal computed from all

the processing elements.

1.2.1 Physical Implementation

Custom silicon chips will be used to implement the Abacus architecture. A 32x32
array of processing elements will exist on a single ASIC chip. In turn, a 16x16
array of ASIC chips will be interconnected with PC-boards to complete the toroidal
architecture of the machine. Each ASIC chip will have eight megabytes (2 megawords)
of local DRAM memory for external storage. A fast microsequencer, possibly made
of ECL components, sends instructions and memory controls to all 256 chips each

cycle.

1.2.2 Processing Element

Each processing element, shown in figure 1-2, computes a pair of bits and stores the
result in two 32-bit register files. During an instruction cycle, the processor reads
out two data bits from each register file and performs an operation on a combination

of those bits in two different ALUs. The processor then writes the results from each
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Figure 1-2: Block Diagram of Processing Element

ALU back into its corresponding register file.

1.2.3 Instruction Word

The Abacus is a SIMD machine where all 256K processing elements receive the same
instruction each cycle. The Abacus’ instruction word is 58 bits wide to allow flexible
functionality within the processor. 30 bits in the instruction determine the two read
addresses and write address for each of the 32-bit register files. Another 16 bits
determine the operation to be performed in each of the processor’s ALUs. Since each
ALU has three inputs from the register files, 8 bits of operation per ALU provides the
flexibility to compute any function of those inputs. The remaining twelve bits control

instruction distribution data movement through local communications networks.

1.2.4 NEWS Network

The Abacus allows communication with nearest neighbors as well as the ability to
propagate signals beyond neighbors with an internal mesh network called the NEWS
(North-East-West-South) network. Each processor owns one node on the NEWS
network. After all nodes have been precharged, a processor can pull down its node
and let the low logic value propagate to nearby neighbors. Two selection bits in the
register file control the propagation direction. Another bit turns off propagation from
a given processor. A fourth bit acts as the port for reading and writing values to

the network. Writing the port register causes a network precharge and changes the

12



value of the processors’ node. Reading the port register returns the value on the node
at the adjacent processor selected by the selection bits. Propagation through the
NEWS network cannot cross chip boundaries; however, a processor along a boundary
may read a value broadcast by the corresponding processor on the other side of the

boundary after two clock cycles of latency.

1.2.5 DRAM Plane and I0 Plane Networks

To exchange information with the outside world, the Abacus implements two other
networks. These networks shift information to and from external DRAM memory or
IO structures. We can think of the movement of data through the chip as a plane of
information, shifting from one edge of the chip to the other. Parts of the instruction
word control the movement of these two information planes. By accessing a particular
register in the register file, we can write data to or read data from these planes. The
10 and DRAM plane networks are separate due to the different requirements placed

on the external pins.

1.2.6 Sequencer and Global OR Line

An external sequencer runs the Abacus machine by distributing a 58 bit instruction
word to all the processors each cycle. A host workstation initially loads the sequencer
with instructions. The sequencer performs its own loops, subroutines, and conditional
branches based on a global-OR signal returning from the ASIC processor arrays. One
corner of the NEWS network serves as the global-OR output for each processor.
External logic, in turn, combines all the ASIC outputs together and presents them to
the sequencer for conditional processing.

The sequencer issues instructions to control the ALU portions of the chip as well
as control the movement of the DRAM plane and 10 plane networks described earlier.
Some bits of the instruction word drive the inputs to the external DRAM to control
the memory directly. In order to break up the symmetry of the toroidal mesh of

the Abacus on bootup, the instruction word also has provisions for loading local

13



addressing information to the individual processors through the NEWS network.

1.3 The Abacus Software Simulator

To speed up algorithm development, I wrote a C program to simulate the behaviors
of the Abacus architecture. The C program, developed on a Sun Sparcstation, was
ported over to an Intel 80960 hardware platform under the control of a host Sparc-
station. The 1960 platform runs at 5 Mhz and provides local access to the processor
bus through plug-in slots. I added a plug-in card to the hardware platform which
contained an FPGA to speed up parts of the simulation. In addition to speeding up
simulations with external logic, access to the local bus also allows us to interface 10
hardware directly with the software simulation. I will discuss the implementation of
this software simulation system and the issues of implementing the simulator on a

stand-alone platform with external FPGA simulation support.
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Chapter 2

The Abacus Simulator

The Abacus simulator is called Slocus (SLOw-abaCUS), and consists of two major
parts: the simulation software and the assisting hardware. The software is written
in GNU C code on a sparcstation for ease of debugging and then ported over to the
1960 hardware platform. The hardware platform contains a Field Programmable Gate
Array (FPGA) that attempts to replace many of the low-speed software subroutines

with high-speed hardware logic.

2.1 Simulation Software

The Slocus software is written in C code because it closely mimics assembler code and
can be ported across many different processors. This allows us to program and develop
C code on a Sparc workstation and port the code directly over to the 1960 platform
simply by recompiling it. Through pointer arithmetic and program optimizations, we
can speed up run time and hint to the compiler what kind of assembler loops we want.
All string processing functions and array manipulations are rewritten and optimized
to prevent excess overhead. The actual source code listing is included in Appendix A

for reference.
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| Variable | Description

slocus.instr0) | Low 32-bits of instruction word
slocus_instrl | High 26-bits of instruction word
slocus_control | State of the internal control bits
slocus_special | Special instruction flag
slocus_membits | High 10 bits of instruction to control DRAM
slocus_dramareg | Internal DRAM address register

Table 2.1: Global variables

This shows global variables which the machine uses to determine the environment for
simulating the current cycle.

2.1.1 Storage of Machine State

The actual state of the Abacus machine is stored in an eight megabyte general global
array. As the user changes the size of the machine for development purposes, pointers
to different parts of the machine are simply moved within the general array to prevent
the overhead of dynamic array sizing. The remainder of the general array is tagged
as user memory which the developer can use as storage space to swap out state for
debugging purposes or to store images. Simulation procedures only have access to
machine state in the forms of the global array and the global variables shown in
table 2.1. The section sizes of the Abacus machine state are listed in table 2.2.
Modular procedures concentrate on computing the distinct sections of the Abacus
architecture, namely the ALU operations, special instructions, the NEWS network

communication and the DRAM/IO network communication.

2.1.2 Program Structure

The Slocus program consists mainly of a string parser which dispatches to different
procedures based on the input command. The three main types of procedures do the

following kinds of operations:
1. View/Edit the state of the machine

2. Single step the machine with a specified instruction

16



| Variable [ Size | Description

slocus_regfile (chips)*32*64 | 64-bit register file for each PE
slocus_news (chips)*32 | State of the NEWS network
slocus_newsedgein (chips)*4 NEWS in state at chip edge
slocus_newsedgein2 (chips)*4 | Second NEWS in state at chip edge
slocus_newsedgeout (chips)*4 NEWS out state at chip edge
slocus_drampedgeinhi (chips) DRAM-Plane high input at chip edge
slocus_drampedgeinlo (chips) DRAM-Plane low input at chip edge
slocus_drampedgeouthi (chips) DRAM-Plane high output at chip edge
slocus_drampedgeoutlo (chips) DRAM-Plane low output at chip edge
; slocus_iopedgein (chips) I0-Plane input at chip edge
slocus_iopedgeout (chips) [0-Plane output at chip edge
usrmerm remaining | General purpose user memory

Table 2.2: Memory Allocation for Machine State

Space allocated for storing the Abacus state in the 8 Megabyte global integer array.
XCHIPS and YCHIPS define the number of physical chips(chips) containing a 32x32

array of processors.
3. Help and Debugging options

The main procedure in the stand-alone Slocus program simply accepts strings from
the standard input and sends results to the standard output. To make the program
more flexible, a user may also include the slocus.c program within a higher-level
C program designed to communicate with the Abacus simulator interactively. When
the user includes the Slocus program as part of his own source code, the main function
is commented out so he can send strings to the parsing routing directly. This allows a
programmer to write a high-level interface to observe graphically what the simulator
is doing to its registers. Image processing algorithms for the Abacus could easily be

written and debugged using a graphical interface.

2.1.3 Simulating Sections of the Abacus Architecture

When the main parsing routine receives a command to single-step the simulated

machine, it calls the following procedures:

1. alu-comp — parses the instruction and simulates the ALUs

17



[N]

. process-special — handles special instructions

3. dpm-comp — shifts or loads the DRAM/IO Plane if dpclk is asserted and alters

registers at chip boundaries

4. news-comp - propagates signals through the NEWS network and handles NEWS

communication at chip boundaries.

The following describes how each procedure operates to simulate the machine and

the optimizations done for each procedure.

Simulating the processor ALUs

We simulate the processor ALUs by parsing the instruction word for read addresses,
write addresses, operations and special instructions. If the current instruction word
is a special instruction, we skip simulating the ALU portion of the machine since
we would only be executing a NOP instruction. If the instruction is not special, we
continue simulating the ALU portion of each processing element in the array.

As described previously, each processor computes two bits and performs two ALU
operations based on cross-coupled inputs from its two register files. Each ALU is
essentially an 8-to-1 multiplexor which uses its three inputs to select one of the 8
opcode bits.

Being a SIMD machine, all processors perform the same ALU operation on each
of the selected bits. Similarly, we can effectively simulate 32 ALUs in parallel because
our C code handles 32-bit integers. By programming a pseudo-multiplexor using C
programming logic, we cycle through all the processor rows of a chip and quickly
compute 32 result bits which we write back in to the register file. The example code
in figure 2-1 shows the function for computing the left ALU result for 32 processors.

Some registers in the register file are dedicated to the DRAM/IO planes or the
NEWS network. The simulation parses these addresses out and retrieves the appro-
priate data before running the ALU computation. Similarly, Abacus processors have
an IDLE bit which disables that particular processor from performing any operation,

allowing data dependent processing. The simulation software masks the resulting 32-

18



lwd =
("sel2 & “sell & “sell &
(((lop >> 7) & 1) ? OxFFFFFFFF:0)) |
("sel2 & “sell & selO &
(((lop >> 6) & 1)7 OxFFFFFFFF:0)) |
("sel2 & sell & “sel0 &
(((lop >> 5) & 1)? OxFFFFFFFF:0)) |
("sel2 & sell &sel0 &
(((1op >> 4) & 1)? OxFFFFFFFF:0)) |
(sel2 & “sell & “sel0 &
(((lop >> 3) & 1)? O0xFFFFFFFF:0)) |
(sel2 & “sell & selO &
(((lop >> 2) & 1)? OxFFFFFFFF:0)) |
(sel2 & sell & “sel0 &
(((Lop >> 1) & 1)? OxFFFFFFFF:0)) |
(sel2 & sell & sel0 &
((lop & 1) ? OxFFFFFFFF:0));

Figure 2-1: Logic Programming to Compute ALU Result

bit word with the IDLE bits to prevent the state of halted processors from changing.

The IDLE can always be written to to prevent the machine from halting.

2.1.4 Handling Special Instructions

Several control signals inside the Abacus ASIC remain constant for hundreds of cy-
cles. Instead of using additional pins to control these signals, the Abacus has special
instructions which perform a NOP internally and change internal control registers
during that cycle. If the 8-bit opcode for the left ALU is all zeros (i.e. clear a
bit) then the Abacus looks at the otherwise irrelevant input addresses to the ALU.
If the addresses are zero, a normal clear instruction occurs; otherwise, the internal
instruction decoder performs a NOP for that cycle and parses the remainder of the
instruction word to alter the internal state of the Abacus.

When the simulation software finds a special instruction command, it simply
skips the subroutines which would normally be run during a regular instruction and

branches to a separate routine which sets internal program flags for subsequent in-

19



structions.

The special instructions include the following:

e Set the DRAM address register-

e Alter internal control register values

e Load an immediate constant into the NEWS network

e Load value from the 10 port, optionally shifting the 10 plane

e Store value to the IO port, optionally shifting the 10 plane

Internal control registers control aspects of the external pad ring. They shut down

the global-OR line, the DRAM interface, and the NEWS network.

Simulating the DRAM and IO Planes

To communicate with DRAM and the outside world, the Abacus uses two planes of
shift registers. We can represent each row of the DRAM and IO plane with a 32-bit
integer corresponding to the 32 processors in a given chip row. The data planes shift
left with their input/output located at the right edge of the processing array.

The array shifts to the left; thus, we can easily left shift all the 32-bit integers
once to simulate a shift in the DRAM or 10 plane. We have to make sure to save the
most-significant bit and replace it in the least-significant bit location. Simulating this
shifting could be more efficient by storing the shifting data in vertical 32-bit integers;
however, loading values to and from these networks from the register files (stored
horizontally) would take much more time. Since the relative time it takes to simulate
this shifting is tiny compared to simulating other parts of the machine, we essentially
sacrifice no speed. We can also more easily visualize the storage of the DRAM and

IO plane bits in terms of 32 rows of 32-bit integers.

Propagating Data Across the NEWS Network

Each processor can communicate with nearest neighbors or propagate information

several processors away using the NEWS network. The distinct electrical path be-

20



tween two adjacent processors defines a segment. After the network is precharged, a
single pulled-down node will propagate down a path of pass gates sixteen segments
long. The path of the segments is determined by the control bits in each processor’s
register file.

If the Abacus ASIC logic parses the instruction word and finds that the NEWS
network is written to on the following clock cycle, then it precharges the network
so that values written to the NEWS network will propagate out to other chips. For
simulation purposes, we determine if the code writes to the NEWS network output
register by parsing the instruction word. If the NEWS network is being written to,
we effectively precharge the network by setting the initial value of the network to the
values in the NEWS output registers. The simulation then iterates over the network
sixteen times and propagates signals down one segment per iteration. This procedure
takes the vast majority of simulation time because it must be run sixteen times per
clock cycle to effectively simulate the Abacus architecture.

The simulation uses page swapping for propagating information. The current state
of the entire NEWS network resides in one page of memory. The next state of the
NEWS network is written onto a second page of memory. At the end of the iteration,
the pointers to both pages are swapped and the next iteration starts. In a situation
where we must simulate 256 chips taking up multiple megabytes of state memory, the
program runs much faster if we perform all sixteen iterations on a single chip before
moving on to the next. Keeping the state of a particular chip localized in memory, we
more effectively utilize the data cache on our Sparcstation. Since NEWS propagation
does not occur across chip boundaries, keeping iterations local to a chip is feasible.

Three main locations in the register file control the propagation of signals through
the NEWS network: two direction bits and a break bit. The two direction bits
determine which path to a nearest neighbor is used for propagation (north, south,
east, or west). The break bit actually determines whether this path is turned on or
not. With a bi-directional pass gate connecting nodes, a node may either drive a, signal
outward to its neighbor or read a value from that neighbor. Thus, after precharging

the network and initially pulling down several nodes, an un-discharged node may
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become discharged over the course of the sixteen iterations if one of following happens:

1. A nearby discharged node is configured (by bits in the corresponding register
file) to drive the un-discharged node through a pass gate.

2. The un-discharged node is configured (by its own corresponding register file) to

read the value of a nearby neighboring discharged node.

When actually simulating this network in software, I initially tried to treat each
node as a 32-bit number. As a discharged node propagated, I could trace the path of
propagation for debugging purposes. Unfortunately, this took 1024 words of storage
for each simulated chip and simulation time was abysmally slow. Later, I optimized
the simulation by computing a row of 32 nodes in parallel, much like I did earlier with
simulating the ALU. Fortunately, each ASIC chip only has a 32x32 array of processors
on it. Since signals do not propagate outside the chip boundary, using 32-bit integers
for these calculations was easily implemented.

Using the page swapping described earlier to take the current state and compute
the next state of the network, we can reasonably simulate the NEWS network using
simple shifts and logical operations. Figure 2-2 shows a sample of code taken from
the simulation program which computes the next state of an internal row of NEWS
network nodes.

As we can see in the code, a logic one represents a discharged node. A node
becomes discharged because it is already discharged, discharged by its four nearest

neighbors, or discharged by looking at one of its four nearest neighbors.

2.1.5 Simulating the environment

Clocking instructions into our processor array is ineffective until we provide informa-
tion to compute on. The actual physical implementation of the Abacus ASIC has a
DRAM interface port on it as well as an IO port that can be attached to external
data producing hardware, such as a NTSC/PAL television signal decoder. For the
software simulation, several global variables exist that represent the external ports

on the chip.
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/* start with self */

*(snews++) = mynode |

/* check for above node driving down on us*/

(lregtmp[k-1] & rregtmpl[k-1] & *(pnews-1) & ~(brktmp[k-1])) |

/* check for seeking upward */

("1lselfile & “rselfile & brkfile & *(pnews-1)) |

/* check for below node driving up on us */

("(lregtmp[k+1]) & ~(rregtmp[k+1]) & *(pnews+1) & ~(brktmp[k+11)) |
/* check for seeking downward */

(1selfile & rselfile & brkfile & *(pnews+1)) |

/* check left node driving right on us */

/* AND off the top bit to correct arithmetic shift */

((("1selfile & rselfile & mynode & brkfile) >> 1) & Ox7FFFFFFF) |
/* check seeking left */

/* AND off the top bit to correct arithmetic shift */

((1selfile & “rselfile & ((mynode >> 1) & Ox7FFFFFFF) & brkfile)) |
/* check right node driving left on us */

((1selfile & “rselfile & mynode & brkfile) << 1) |

/* check right seeking */

("1selfile & rselfile & brkfile & (mynode << 1));

Figure 2-2: Logic Programming to Compute NEWS State
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Although it may be much easier from a simulation standpoint to write an image to
be processed directly into the global register file array, presenting values at the chip
boundary and clocking them into the chip creates a much more realistic situation.

In addition to presenting data at the chip boundary to compute, the toroidal
structure of the Abacus must have its symmetry broken on bootup time in order
to address individual processors. As mentioned before, addressing data for each
processor may be directly written into the global register file, or, more realistically,

loaded into the chip through special instructions that provide for immediate values.

2.1.6 Possible Future Additions

Because the entire simulator is written in C (with the exception of the external
hardware portion), we can easily modify our architecture through reprogramming
and compilation. Adding new features and special instructions as well as an entire
new communications network is relatively easy. As stated previously, the slocus.c
program may be included in another C program and used to help a higher level
program simulate the Abacus. In the future, we hope to integrate more system

functions such as the following:

e Microsequencer simulation and conditional looping based on the global-OR sig-

nal.

o Extended support for external DRAM memory storage - 2 gigabyte for the

entire system.

e Simulation of data acquisition hardware such as an NTSC/PAL decoder.

2.2 Hardware Implementation of the Simulator

The following sections describe the Intel 80960 platform that the simulator runs on

as well as the FPGA that supports the software simulation.
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Figure 2-3: Layout of Simulation Hardware

2.2.1 Intel 960 Platform

To allow the easy addition of assisting FPGAs to our simulation, the Slocus simulator
FPGA is contained on a daughter card on an already existing Intel 1960 platform built
by the Transit MIMD architecture group at the MIT Artificial Intelligence Lab under
Tom Knight.[9] A diagram for the platform is shown in figure 2-3. The card connector
slots on the platform provide full access to all of the 1960 processor control signals and
busses. The Slocus simulator daughter card contains sixteen megabytes of DRAM for
storing the Abacus machine state. An FPGA containing the DRAM controller also
has addressable hardware logic programmed into it for simulating part of the Abacus
machine. For external communication, the 1960 platform has an Sbus interface to a
host Sparc workstations so we can download and run code on the platform.|[8]

The host Sparc workstation runs a software package called Nindy which allows
the user to download and run binary files on the 1960 platform.[10] Nindy contains
standard user interface provisions for accessing keyboard input from the host, printing
output to the host screen, and accessing files on the host hard-drive. Code previously
developed and compiled to run on a Sparc workstation can be recompiled for the

1960 processor with gcc960 and run on the external 1960 platform with host user



input/output through Nindy.

One major factor affecting simulation time is the relative clock speeds of the Sparc
workstation and the 1960 platform. Currently, the workstation runs the C simulation
program at a 25Mhz clock speed with overhead for multitasking and window oper-
ations. The 1960 platform runs at a much slower 8Mhz clock speed, but has the
assistance of the locally addressable FPGA.

2.2.2 Utilizations of the FPGA

Field programmable gate arrays find extensive use in this simulation because they
can compute complex logic in one cycle that normally takes the simulating processor
many cycles. The simulation code consists mainly of loops which scan through the
state of each processor and compute the next state. These loops can take unusually
long for the full 256K processor implementation.

We can exploit the advantage of the common bus from the 80960 stand-alone
platform. By accessing an FPGA as memory from the common bus, we write the
current state of a row of nodes as well as the nodes around it into the FPGA. The
FPGA implements in one clock cycle all the complex logic that the 80960 implements
in several clock cycles. As a general model, the FPGA has eight general purpose
input register and produces a function of those inputs.

After researching a few different FPGAs, Actel components were used to imple-
ment the external programmable logic. In addition to having most of the tools readily
available, Actel components are relatively dense devices and offer faster propagation
delays relative to many other general FPGAs. The basic logic block inside Actel
components is a 4-to-1 multiplexor with an extra logic gate on one of the multiplexor
select lines. Since we require high fan-in for computing our logic (eight 32-bit registers
compute one 32-bit output), this logic block nicely suits our purposes.[1] [2]

Ideally, we would have simulated all aspects of the Abacus architecture using
the FPGA support; however, the component lacked a sufficient number of gates.
Although the ALU portion of the Abacus more elegantly maps to the multiplexing

structure of the Actel component, simulating the NEWS network with its sixteen
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iterations per clock cycle is the most time-critical component in our simulation. Thus
we implement the logic function described in the simulation software section. The
simulator quickly writes eight values out to the input registers of the FPGA and reads
out the result, implementing a single NEWS iteration in about nine bus accesses.
Actually applying the equations into the the Actel required writing out the equa-
tions in long-hand and piping them through a logic optimizer called espresso. I uses
existing logic optimization tools previously developed for a different project at the
lab under Andre De’Hon.[6] After running espresso to simplify the logic components,
we ran the synopsis design compiler to map the logic to Actel gates. The NEWS
network is a mesh in itself and mapped easily to the mesh of Actel logic blocks within

the chip.

2.2.3 Future Possibilities

Access to the local bus of the 1960 processor platform allows us much flexibility if we
decide to expand the simulation system in the future. The Sbus interface with the
platform allows the program to access files on the host Sparcstation easily. We might

implement the following in the future:
e Denser and additional FPGA support to speed up simulation further
e Vector testing of a single or small array of actual Abacus ASICs

e Comparison between simulation results against the actual Abacus ASIC

e Hardware interface to an NTSC/PAL decoder
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Chapter 3

Software and Algorithms

With the completed hardware simulator, we can run compiled Abacus code on it
to debug algorithms for the final custom silicon. The simulator will also provide us
important clues for altering the architecture to more efficiently handle common in-
structions. In turn, the simulation software will be altered to reflect the new changes
in architecture, showing the advantages and disadvantages of such changes. We can
also develop software concurrently with the hardware, thus cutting down total devel-
opment time. In this chapter we will discuss the different languages that run on the
Abacus, tools used to implement those languages, and a few early vision algorithms

run on the simulation system that use the languages.

3.1 Language Hierarchy for the Abacus

Before we discuss the actual algorithms implemented on the Abacus using the Slocus
simulator, we should discuss the different levels of software used to code the algo-
rithms. The simulation system has four levels of code, each of which compiles to the

next lower level.
1. Ascheme - A high level parallel version of Scheme
2. Assembler - Simple logical commands with macro support

3. Nanocode - The actual bits of the instruction word
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4. Sim Commands - commands used to run the simulation system

Higher levels of code are generally abstract and small, making them easier to pro-
gram and understand; the lower levels run more efficiently by utilizing more processor
power per clock cycle. By breaking up languages into this hierarchy, we can concen-
trate on optimizing each level to the next lower level, thereby making compilers easier.
The Abacus group intends to get all levels of code running reliably before trying to
implement optimizations. When a compiler for the Abacus matures, we can flatten
these levels of code out so that the compiler may convert parallel Ascheme directly
into highly efficient nanocode, thus bypassing some of the inefficiencies of hierarchy

overhead.

3.1.1 Ascheme

Ascheme is a version of Scheme specifically designed for the Abacus because of its
allowances for parallel variables. Currently the Ascheme compiler is ineffective for
coding most applications because it currently cannot exploit the advantages of a
microsequencer. All loops are unrolled and compiled down to long lists of assembly
code consisting mainly of optimized macros. An example piece of Ascheme code
which computes optical flow for images is shown in figure 3-1.

Just from comparing the size of this higher-level program to the corresponding
program in hand-coded assembler, we can see how much easier it would be to program

extensive algorithms in Ascheme.

3.1.2 Assembler

Currently, most programming for the Abacus is done in assembler code. This allows us
to access the low-level functions of the machine directly so we can optimize algorithms
to more fully utilize every clock cycle. Assembler code is much easier to debug and
understand than nanocode and lets us explicitly specify the two instruction opcodes
for each processing element ALU pair. In the future, the assembler code compiler

will read labels and perform conditional jumps based on the global by accessing the
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(progn

(set max 0)

(set bestx 0)

(set besty 0)

(set i1 val)

(set 12 (image_shift val 1 2))

(loop i 1 3
(loop j 1 3
(progn (set score 0)
(set i3 (image_shift i1 i j))
(set i4 (match 12 i3))
(regionop i4 boo 3
(set score (+ score boo)))
(if (> score max)
(progn (set max score)
(set bestx 1)
(set besty j)))
)))
max
bestx
besty
)

Figure 3-1: Ascheme Code for Optical Flow
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functions of the microsequencer.

The main advantage of using assembler code is that we can call abstract proce-
dures which simplify many clock cycles of operation down to one line of code. Each
procedure call typically runs a piece of pre-optimized assembler code which handles
functions such as addition, multiplication, shifting, and other instruction sequences
which would be too tedious to hand code in the main program. The Ascheme com-
piler, still in development, effectively uses these optimized procedures to compile
operators such as addition and shifting without diving into the complexity of the
actual hardware. The next section describes many of these optimized procedures and

the data types used in those procedures.

3.1.3 Nanocode

When first performing simulations of the Abacus, we did not have an assembler, and
thus hand coded everything in nanocode. Nanocode for the Abacus consists of the
raw ones and zeros that actually make up each 58-bit instruction word, shown in
table 3.1. The most-significant bit is an instruction polarity bit which reduces the
number of flipping instruction lines and saves power by optionally changing their
polarity each cycle. Currently, all simulation loops are unrolled into nanocode and
compiled down to simulator commands. With this implementation, we currently
do not have provisions for conditional branches using the global-OR line. In the
future, we will simulate the microsequencer and implement conditional loops. The
microsequencer (running at half speed), will take in two 58-bit instructions (116 bits)

as well as some additional bits to control program flow.

3.1.4 Sim Commands

After we actually compute several 58 bit instruction words, we want to simulate
them. The simulation language consists of commands, shown in table 3.2, which
alter the state of the machine as well as execute instructions. This allows the user

to observe variables as the machine is running or force variables to desired values
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] Bits T Description ]
0-7 | 8-bit operand for left bank ALU
8-12 | First left bank read address
13-17 | Second left bank read address
18-22 | Left bank write address
23-30 | 8-bit operand for right bank ALU
31-35 | First right bank read address
36-40 | Second right bank read address
41-45 | Right bank write address
46 | Inter-chip NEWS propagation direction
47 | increment the DRAM address counter
48 | DRAM-Plane clock: advance DRAM plane
49 | Row/Column address select to DRAM
50 | Output enable to DRAM
51 | Write enable to DRAM
52 | Refresh signal to DRAM
53 | Write/Read signal to DRAM
54 | Column address latch to DRAM
55 | Row address enable to DRAM
56 | Upper/Lower word latch select
57 | Instruction word polarity bit

Table 3.1: Breakdown of 58 bit Instruction Word

This shows the various sections of the instruction word as interpreted by the Abacus.
The instruction word polarity bit saves power by conserving the number of switching
instruction bits per cycle.
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| Command | Description ]

c reset the machine by clearing all bits to a known state
i single step the machine with a specified instruction word
1 single step the machine with the last instruction run
s single step the machine with a NOP instruction
TS reads a single number from a section of the Abacus
rb read a sequential block of numbers from the Abacus
ws writes a single number to a specified section
wb writes a sequential block of numbers to a section
m moves a block from one section of the Abacus to another
p prints a debug string to the user on the standard output
q quits the simulation program

Table 3.2: Brief Description of Abacus Simulator Commands

during simulation. In addition to the simulator, I wrote a program (included in the
appendix) to load images into the simulator, run algorithms on the images, save the

resulting images, and log the time it took to compute that algorithm.

3.2 Optimized Assembler Macros Operations

Since each processor represents a single bit of an image, we need to group sets of
processors together in “clusters” to perform operations on multi-bit words. To make
the programmer’s job easier and the compiler’s job easier, I wrote several assembly
code procedures to allow running of abstract operations on arbitrarily long numbers.
The following sections describe the configuration of the machine to operate on certain

data types and optimization of procedures to operate on those data types.

3.2.1 Common Data Types

Word boundaries and least-significant to most-significant bit paths are coded in the
configuration bits loaded at bootup. The Abacus primarily performs operations on
16-bit words distributed among the processors in the following “snake” format with

the numbers denoting bit position:
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Four configuration bits denote the relative bit position of each processor within
the word, while two configuration bits flag the most-significant and least-significant
bit of the word. This square array allows us to represent a 128x128 array of pixels in

our machine with a reasonable level of precision.

3.2.2 Machine Configuration

At bootup time, we need to produce all the configuration bits for the Abacus ma-
chine. Instead of producing the constants externally and piping them in using the
IO or DRAM plane, we can use a special instruction to load an immediate value into
the NEWS network directly from the instruction stream. The immediate value from
the instruction word presents itself at the east edge of the NEWS network on each
chip. We can use this to break the symmetry of our toroidal architecture and send
configuration data deterministically to each processing element. Because configura-
tion information is identical to every chip, we can configure all chips simultaneously.
Any data which is chip dependent must be loaded uniquely into each chip through
the DRAM plane or 10 plane.

Configuration data may have either horizontal or vertical dependencies on pro-
cessor location. Because our NEWS network can propagate information 16 nodes at
a time, we can present data at the east edge of the NEWS network and load it two
cycles later into the register files, provided that the data is identical for all the pro-
cessors in the horizontal direction. Loading configuration information with horizontal

dependencies takes longer because we must specify a column value with an immediate
instruction and shift the NEWS network left for all 32 columns.

As described earlier, we organize our data into 16-bit snaked clusters which divides
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the configuration for these clusters up into eight similar columns across the chip. We
can exploit this regularity by configuring the right four columns with the immediate
value instruction. We can then shift the data from these four columns to the left and
copy the values into each of the other seven columns of snaked clusters.

In total, we have ten configuration bits to set. Four of these we can load in about
five cycles because they have no horizontal dependency. Of the ten bits, four bits
flag the 16-bit snakes on the edges of the chip so we can handle latency across chip
boundaries. Another four bits configure the bit order of the 16-bit snakes themselves.
The remaining two bits flag the most and least significant bits of each snake so we
can handle number boundaries. These last two bits may be computed from the four
bits which determines the bit order within the snakes. With these configuration bits,
we can perform arithmetic operations on 16-bit clusters and effectively shift 16-bit

clusters in any direction across chip boundaries.

3.2.3 Shifting and Chip Boundaries

Many mesh algorithms require the values of nearby clusters for their result. A proces-
sor on one side of an inter-chip boundary may only read the value from the processor
on the other side of the chip boundary after two clock cycles of latency. With clusters
configured in a 4x4 array, we run into a problem when we try to shift our 128x128
mesh of data across chip boundaries. To compensate for boundary latencies, we use
four configuration bits to flag clusters on the four edges of each chip. If we want to
shift our array of clustered numbers north using the NEWS network, we take four
cycles to shift on-chip data north and tell the horizontal row on the south edge of
each chip to shift north for two additional clock cycles. This sequence corrects for
the two cycle inter-chip latency. Additionally, inter-chip NEWS network pads are
bi-directional but can only pass information in one direction at a time. One bit in
the instruction word determines the direction of propagation for a given clock cycle,
allowing rapidly configurable pads.

If we keep shifting operations within clusters, chip-boundaries become irrelevant.

Many operations, such as multiply and divide, make extensive use of logical and
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arithmetic shifts on numbers for computation. These operations are fairly simple, as
we can orient the NEWS network to point towards or away from the most-significant
bit of our snake clusters. Once oriented, a single cycle can move bits one position up
or down the word chain. The only major concern when doing shifts within clusters
is to observe the word boundaries at the least-significant and most-significant bits. If
we do not configure our NEWS network properly, one word might “spill” over into

the next.

3.2.4 Addition and Subtraction

Performing additions and subtractions in bit-parallel clusters is optimized in the Aba-
cus architecture through the NEWS network. We utilize the propagation of the
NEWS network along multiple segments between processors to implement a Manch-
ester Carry Chain. Using the configuration bits in our snaked clusters, we can orient
the NEWS network to let information propagate towards the most-significant bit in
our word. We then perform bitwise logical functions on our two input operands to
either drive the NEWS network at our bit or let information from a lower bit prop-
agate through to higher bits. Bitwise logical functions on the NEWS result produce
the sum of the two input operands. As listed in the source code in the appendices,
special precautions must be taken to prevent propagating carry bits from “spilling
over” into other adjacent clusters.

Subtraction is similar to addition in that we invert the subtracted operand and
activate the carry at the least-significant bit of the NEWS network. This creates the

twos-complement negative of the subtracted operand as part of the addition.

3.2.5 Accumulation and Decummulation

Bit-parallel additions may be fast compared to bit-serial ones; however, adding up
large numbers of variables is best done using accumulations with a carry-save-adder
implementation. Instead of using the NEWS network to implement a Manchester

Carry Chain, the accumulate procedure computes two numbers which we add together
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after all variables have been accumulated. When we implement this accumulation in
assembly code, we have a procedure to start the accumulation which takes four clock
cycles. Each subsequent accumulation takes two cycles and the final addition takes
five more cycles. This makes accumulation more efficient than simple adding if we
accumulate more than eight numbers, such as in multiplication.

Decummulation, the opposite of accumulation, is where we wish to subtract a
number from our running total instead of add a number to it. This operation also
only takes two cycles and helps the efficiency of algorithms which require many addi-
tions and subtractions to achieve a final result. The code for both accumulation and

decummulation exists in the appendices.

3.2.6 Multiplication, Division and Remainder

Although some algorithms require multiplication by variables, most of them multi-
ply registers by constants. The multiplication algorithm, listed in the appendices,
performs sixteen accumulations after shifting and testing bits in the source operands
to achieve its result. This algorithm was programmed mainly for use by an abstract
compiler. Mulitplications by a constant become much more efficient when the user
tailors the assembly program to optimize for the constant. For example, multiplying
by five would entail logically shifting a register left by two bit places and adding it
to itself.

Currently, procedures for computing a quotient and remainder have not been
written. As mentioned before, most algorithms require dividing by a constant, such
as the surface approximation algorithm described later. It is generally better to
optimize division by constant using additions and shifts. Division by five is as simple
as multiplying by three and adding the result shifted to the right by four, eight, and
twelve bit places. In essence, we are multiplying by 1100110011 and shifting right
twelve places, thus multiplying by .001100110011. See the surface reconstruction

algorithm listed in the appendices for an example of dividing by five.
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3.2.7 Comparisons

Often times, an algorithms will conditionally perform a function based on the compar-
ative values of two numbers, such as loading the maximum of two variables or testing
them for equality. When comparing word clusters to determine which is greater, we
compare corresponding bits starting with the most-significant bit and cycling down
to the least-significant bit. As soon as we find a mismatch, we know the numerically
greater cluster. We must then broadcast the difference in that single bit location
to the rest of the bits within the cluster so all cluster processors can perform their
conditional operation.

The NEWS network provides an ideal method for quickly comparing two numbers
in this fashion because it propagation through sixteen bits in a single cycle. By using a
method similar to the Manchester Carry Chain described in the section on additions,
processors can drive their nodes if the first variable bit is greater than the second.
Processors with same corresponding bits simply let values propagate from the LSBit
to the MSBit. A value of one will propagate to the MSBit if the first variable is greater
and zero will propagate if the second variable is greater or equal to the first. We can
then clear the NEWS network and broadcast the result captured at the MSBit back
to the remaining fifteen processors. See the compare.asm file in the appendices for
the implementation of this algorithm. Checking variables for the same value is easier
since we can simply let bit differences drive the NEWS network and propagate to all
Processors.

After all processors in a cluster have received a conditional bit based on the
comparison, they can set their IDLE bits to perform conditional statements. For
example, if we wanted to increment a counter if R1 was more than R2, we would
compute a greater-than function on R1 and R2, “turn off” all the processors that
contained a smaller R1, and then increment the counter. After the frozen processors
fail to increment their counter, we can “turn on” everyone again by disabling the

IDLE bit.
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3.2.8 Saving state to DRAM

For extensive algorithms which require amounts of memory beyond the two 32-bit
register files, the user may use the DRAM plane network to save registers to an
external DRAM memory. Currently, no algorithms have needed this resource, so no
procedure has been written to save the state of a specified register. A future version

of the simulator with associated assembly procedures will support this function.

3.2.9 Cycle Counts for Simple Procedures

Table 3.3 lists the cycles counts necessary to implement the listed functions. All pro-
cedures were written to operate on all registers in either register file. Thus, some extra
clock cycles within each procedure are needed to load input values into temporary

registers located in the proper bank.

3.3 Vision Algorithm Implementation

Due to its architecture, most algorithms for the Abacus will concentrate on fast
image processing. Applications will include object recognition through bit plane
convolution and high-definition television frame processing. The IO plane port allows
the user to quickly shift in images to each processor for computation and shift them
back out. During simulation, loading images through the IO plane may take a few
thousand cycles to propagate the entire image to all the processors. Final simulations
should take this image loading overhead into account; however, for simple algorithm
purposes, we will directly write images into the register file to cut simulation time.
The following algorithms are currently written for the Abacus and simulated on

the Slocus simulator:
e Gaussian convolution algorithm
o [idge detection algorithm

e Surface approximation algorithm
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LProcedure LCycles ] Description
init-config 146 | Initial machine configuration
add Perform addition
acc-start Start a sequence of accumulations
accumulate Accumulate two registers
minus Subtract two numbers
unacc-start Start a sequence of decummulations
unaccumulate Decummulate the accumulator
greater-than Compare and distribute the result
less-than Compare and distribute the result
equal Produce all ones if all bits equal
orient-high Data flows to MSB
orient-low Data flows to LSB

orient-north

Data shifts up the toroid

orient-south

Data shifts down the toroid

orient-west

Data shifts left on the toroid

orient-east

Data shifts right on the toroid

global-or Computes and broadcasts global-OR
sign Broadcasts the sign bit to all other word bits
mult16 Multiply two 16-bit numbers

asr Arithmetic shift right

asr2 Arithmetic shift right by two

asr4d Arithmetic shift right by four

Isr Logical shift right

lsr2 Logical shift right by two

lsr4 Logical shift right by four

asl Arithmetic(Logical) shift left

asl2 Arithmetic(Logical) shift left by two
asl4 Arithmetic(Logical) shift left by four

numegen-zero

Shift left and add zero

numegen-one

Shift left and add one

shift-cluster-north

Move clusters up on toroid

shift-cluster-south

Move clusters down on toroid

shift-cluster-east

Move clusters right on toroid

shift-cluster-west

—
OOG)@OOt\D[\DU‘Ml\D(‘.ﬂC&DL\D\]OTPP&D»PQOOJOOOJQJQDW»P@@M%OOL\D%OT

Move clusters left on toroid

Table 3.3: Cycle Counts for Various Optimized Procedures
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e Object tracking algorithm

Assembler code for all of these algorithms reside in the appendices and are based on
algorithms implemented on the massively parallel Silt chip created by Bolotski and

Barman.[3]

3.3.1 Gaussian Algorithm

We can convolve our image with a Gaussian by passing it through two triangular
filters, one which is horizontal and the other vertical. Thus, we can achieve our

Gaussian transform by performing a two-dimensional convolution with the coefficients

11
472

1

, 3 on both axes. The following edge detection algorithm shows the results of the

Gaussian algorithm.[13]

3.3.2 Edge Detection Algorithm

We can find edges within a picture using the Marr-Hildreth edge detection algorithm
by passing the image through a Gaussian filter, performing a Laplacian transform
and finding zero-crossings.[12][15] We can use the Gaussian filter described in the
previous section for this. For the Laplacian filter, we convolve the image with the

discrete array shown here:
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The Laplacian filter produces both positive and negative numbers in our image.
We can use a sign function to determine the polarity of each pixel and then XOR the
result with a shifted version of itself. These XORs find the horizontally and vertically
dependent zero crossings, after which we can OR these functions together to get our
edges.

Figure 3-2 shows the results of our simulations. The images show that as we apply
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more Gaussian transforms, the image smears and we pick out larger and larger objects.
Additional Gaussians may cut down on high-frequency noise, but they remove finer

detail as well.

3.3.3 Surface Calculation Algorithm

Many times for vision applications, we need to reconstruct a surface from noisy input
data. We can use the following equations that exploit the local communication of the

Abacus:[11]

1 . } .
uft! = 1 [(“ki -1,7+ pi'c—l,j) + (Uf,j—l + qf{c,j—l) + (“?,j+1 - qzk,j) + (uf+1,j - Pf;)]

‘l’j
1
k k k k k k k
piit = 5 [(”ifll,j —ui ) Pl Pl TP T Pi+1,j]

1
k k41 k1 k k k k
g = 5 [(UJH — U )+ o1t i+ Gyt ‘Iz'+1,j]

We see from the equations that the computed depth is a function of current depth
of surrounding pixels and surrounding slopes. Computed slopes are an average of
surrounding slopes and difference in depths. Figure 3-3 shows the result of passing a

grayscale image through the algorithm with initial slopes of zero.

3.3.4 Optical Flow Algorithm

Often times, we use high speed vision machines for tracking moving objects or to
determine whether an object has moved or not. We can use optical flow techniques
to do this. To see if an object has moved, we take a picture at a given point in
time and compare it with another picture taken at some given time later. We shift
the second picture to locally by a square of pixels and compare it to the first. The
comparison consists of adding up a window of pixels in which corresponding pixels
from both images are the same. The window with the highest score (i.e. the most
similar pixels) wins and thus determines the highest probability displacement for the
moved object. This algorithm works best when the two compared pictures are binary

bitmaps. We can use the edge detection algorithm described earlier to convert a
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Image Passed Through Gaussian Filters
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Figure 3-2: Results of Edge Detection Algorithm
This figure shows the various stages that an image goes through during edge detection.
The first row shows the image resulting from subsequent double Gaussian filters. The
second row shows the zero crossings resulting from the Laplacian filter. The third row
shows the edges resulting from the horizontal and vertical zero crossings.
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Depth Information

s

%3'*3*;‘“; ;“.'.?,‘i“i :.4'5 foer i 5",&. ‘s ‘.".f..»."'*z = _‘E. =

l":'*'— e a8 - - A= ey,
i "‘3 "~ | TRy S prpetty Ty

e N i
ﬁwﬁﬁ”‘ "

:;;,W‘ ——-‘?-n—.<=

Y-Slope Information

Figure 3-3: Results of Surface Reconstruction Algorithm
This figure shows results of the surface reconstruction algorithm. We initially specified
slopes of zero. These four columns show resulting depths and slopes after subsequent
iterations. Because of twos-complement encoding, negative slopes are shown as bright
pizels.
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Figure 3-4: Results of Optical Flow Algorithm

This figure shows the optical flow result for some shifted objects. The altered picture
lists the corresponding displacements. The lower two pictures show the X and Y dis-
placements respectively with brighter pizels being greater displacement. This program
only summed up a 3 z 3 region and allowed a mazimum positive displacement of two
on both azes.

gray-scaled image into areas of ones and zeros.[12][14] The algorithm was hand coded
in assembly language so we only allowed a maximum positive shifting on both axes
of two. We also only used a summing window of three pixels on a side, which led to

further glitches in the output. Given a compiler and microsequencer we could more

effectively implement this algorithm with smaller code and greater accuracy.

3.3.5 Algorithm Execution Cycles

Table 3.4 lists the number of clock cycles required to perform a single iteration of

each algorithm. Code for each of these algorithms was hand coded in assembler using
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| Algorithm | Cycles |

Configuration 146
Gaussian 119
Edge Detection after two Gaussians 403
Surface Reconstruction 388
Optical Flow max 2 shift 3x3 sum 1811

Table 3.4: Cycle Count for Different Algorithms

This table shows the number of clock cycles required to perform one iteration of
each listed Algorithm. Cycle counts reflect hand coding assembly language with pre-
optimized macros.

predefined macro procedures. The Abacus Ascheme compiler was not reliable enough
at the time to code the various algorithms, although it would have been much easier
to do so. Our purpose in generating these algorithms is to determine how effective
the different simulation platforms handle the algorithms. Also, by simulating the
algorithms on the full 256K processor Abacus machine, we will more fully grasp
the abilities and limitations of the architecture and make changes to the final ASIC

implementation.
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Chapter 4

Observations

4.1 Simulation Times

Now that we have coded our simulation and written some algorithms, let us take a
look at some of the times for our simulations. We should also discuss the differences
between platforms and how the simulation times depend on these differences. The

platforms we ran the algorithms discussed in the previous chapter on include:
e An unloaded Sparcstation 1
e An unloaded Sparcstation 10
e The Transit Intel 80960 Platform
e The Transit Intel 80960 Platform with assisting FPGA

As we can see from tables 4.1 and 4.2, simulation times on the Sparc platforms
were much faster than simulation times on the 1960 platform. Sparc platform results
were obtained on an unloaded computer at night; thus, a system running additional

simulations or an active window manager would take longer.
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| Algorithm | Sparc 1 | Sparc 10 | 1960 |i960/FPGA | Abacus |

Gaussian 79s 22s 990s 989s 0.952us
Edge Detection 265s T4s 3353s 3349s 3.224us
Surface Approx. | 254.5s 71.5s 3186s 3175s 3.104us
Optical Flow 1186s 332s 14760s 14726s 14.49us

Table 4.1: Times for Various Algorithms

This shows the times (in seconds) required by different machines to compute the listed
algorithms. The last column shows the time it would actually take the final hardware
to compute the algorithm, assuming it runs at 125 Mhz.

| Machine | Cycle Time | Variation |

Sparc 1 0.658s +0.89%
Sparc 10 0.184s +0.50%
1960 8.2s +52.3%*
i960/FPGA 8.18s +52.4%*
Abacus 8ns -

Table 4.2: Cycle Times for Different Machines and Percentage Variation

This table shows the average cycle times for simulating the Abacus computer as well
as the percentage of variation in times due to additional loading on the machine. The
1960 columns reflect times gathered over long simulation times *(see text). The final
custom silicon will run eight orders of magnitude faster than our Sparc 10 stmulation,
which runs about one order of magnitude faster than the i960 platform.
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4.2 Abacus Code Dependencies

If we concern ourselves only with overall algorithm simulation time, neglecting cycle
simulation times, we should make sure our algorithms are coded in as few cycles
as possible. If we simulated algorithms produced with an unoptimized Ascheme
compiler, our simulations would take much longer due to the abstraction levels. The
simulation times listed above reflect the efficiency of hand-assembled code. Various
algorithms also use the NEWS network more more than others, which takes more

time within the NEWS network simulation routines.

4.3 Platform Dependencies

The simulation times for the Sparc platform greatly differed from the simulation times
on the external Intel 960 platform due to the hardware. I’ve observed the following

points to have a significant impact on the simulation speed:

o Architectural differences in the Sparc processor and the 1960 make compiling

for both of them different.

e The optimizing compilers used for each might have created significantly different

code efficiencies.

e The Sparc 1 clock (25 Mhz) is 5 times faster than the 1960 clock (5 Mhz) while
the Sparc 10 clock (50 Mhz) is even faster.

Major cause for the variation in simulation times on the 1960 platform came from
changes in the I/O bandwidth over time. The I/O interface program(Nindy) running
on the host Sparc station loses execution priority over time and runs more slowly. Our
benchmark test ran four iterations of each vision algorithm in sequence, taking over
25 hours of actual computation time. Simulated cycle times at the beginning of the
benchmark only took 3.9 seconds. This time exponentially slowed to 8.2 seconds after
about two hours of simulation time, thus showing that I/O consumed fifty percent of

simulation time. Additionally, loading and saving images to simulated registers on the
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1960 took roughly five minutes for each register transferred, adding another 3.5 hours
to the simulation. We actually save an order of magnitude in time initially configuring
the simulated Abacus by using simulated special instruction cycles instead of using
the I/O system to directly load registers. 1/O time on the Sparc consumed only
one percent of simulation time, including transferring images to and from simulated
registers. Although we might increase the clock on the 1960 platform, the fraction of
time spent on I/O operations would increase until time spent on actual simulation
would be insignificant. This I/O bandwidth problem effectively limits the ability to
interactively monitor the simulation on the 1960 platform.

In addition to faster simulation times, differences in the platforms also affected

ease of simulation and cost of the system. Some of these points include the following:

e Reprogramming the logic of the FPGA for the 1960 platform takes much more
time than simply changing the C-code. C-code also has debugging facilities that
the FPGA does not.

e The Sparc platform has a much better user interface to the simulation. We

could program code to interactively use simulator results for screen graphics.

e The i960 is an external piece of hardware with a custom FPGA attachment.

This costs us additional money and debugging time.

e We can run multiple separate cases of simulations on a multitasking Sparc
platform. We can also run separate simulations on different Sparc platforms to
distribute the load. We would need additional 1960 platforms for each separate

simulation.

e Sparc platforms are more readily available and probably have better C optimiz-

ing compilers from the long-established market.

® The 1960 platform has the advantage of access to its local bus. giving us the
ability to create a faster I/O bus or hardware interface to realtime data such as

an NTSC coded signal.
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Chapter 5

Conclusion

In an effort to cut down simulation times, we’ve demonstrated the use of an optimized
C program to simulate the Abacus, a massively parallel SIMD architecture. The C
program was ported to an auxiliary hardware platform and run with the assistance
of an FPGA hardware unit. We’ve implemented algorithms with assembler code
and simulated those algorithms to test the effectiveness of the simulator running on
different platforms. Looking back at the simulation results, the following section will
discuss possible improvements to the system and compare optimized C simulation
with other levels of simulation. We will also ponder the validity of using optimized C

with external FPGA support as a viable solution to simulating SIMD architectures.

5.1 Improving the Simulation

We used the Intel 80960 processor for our auxiliary platform processor since it was
debugged and readily available to us from the Transit Project being developed in the
same lab.[9] We have seen from raw numbers that our Sparc simulations were easier
to implement and faster; however, we have not considered how speeds might change
if we altered our 1960 platform to be more efficient. We should consider the following

options for improving the simulation system:
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5.1.1 Additional Hardware

We have seen that our simulation runs faster on a performance Sparc workstation
than a costly auxiliary hardware platform with FPGA support. If we abstract away
the problem of I/O briefly, we could consider altering our auxiliary hardware platform

to make it significantly faster than the host Sparc workstation.

IO optimization

Many poorly designed high speed computers today are I/O bandwidth limited. The
major factor which reduced our simulation time for the external 1960 platform con-
sisted of I/O operations to the host workstation. Qur Sbus interface hardware could
be dramatically improved with faster parts and a more efficient design. By download-
ing the entire set of test vectors to the external platform before simulation, we could
avoid I/O delays during simulation; however, this would prevent us from accessing

the simulation interactively.

Using Larger FPGAs

One factor limiting our current design is the size of our FPGA. The Actel compo-
nent we use cannot contain all of the logic that would have liked to implement. Our
design was not pin limited as we only needed to interface with the 1960 local bus.
By using a larger FPGA we could have simulated the NEWS network of the Aba-
cus more effectively and also included simulating the ALU portion of the Abacus as
well. Adding additional smaller FPGAs might also help solve our problem of lack-
ing enough register space. However, partitioning up the NEWS network logic into
many FPGAs would be difficult and waste clock cycles on inter-chip communication.
Reprogramming the FPGAs for each simulated architecture would also be less flex-
ible and consume more development time. Moreover, adding more FPGAs or larger
ones with faster cycle times would cost significantly more and might not justify the

incremental speed increase in simulation.
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Using a Large Array of FPGAs

If cost was not an issue with our simulation system, we could possibly implement
a large array of large FPGAs to simulate our architecture. Some problems arise
with this. FPGAs typically do not have large amounts of RAM on-board; thus, we
need to add external SRAMs to each FPGA for storage of machine state. Each
FPGA would probably need its own controller to cycle though the machine state and
compute the next state. An alteration in the programming would mean reburning
an EPROM to serially shift in a new configuration. Debugging would be extensive
and difficult due to the large number of hardware pieces. Connections among FPGAs
and message passing protocols would depend on the simulated architecture. Such an
interconnection network would tend to be pin limited and possibly difficult to route.
Additionally, a host processor running the array would have difficulty monitoring it
and accessing a piece of information from a particular FPGA. Again, the simulation
would tend to be I/O limited because we would have a tough time getting information
in and out of the array at high speed. This setup of many FPGAs pushes closer
to actually building the SIMD architecture itself and presents itself as inflexible to

architectural changes.

Using the Efficiency of a DSP Chip

Simulating the Abacus architecture consists mainly of doing bitwise and simple arith-
metic operations on very large arrays of machine state. Many high performance DSP
chips exist today which perform these array operations extremely well. A typical DSP
chip, such as the TMS320C31 from Texas Instruments, implements parallel instruc-
tions and contains instructions to efficiently perform tight loops with little overhead.
Because of their simpler architectures, DSP chips often run at higher clock speeds
than more general microprocessors. With on-board memory, parallel instructions,
high clock frequency, and quick loops, we could very efficiently utilize a DSP chip to
simulate our SIMD architecture.[16]

33



External Interfaces

If we want our simulation to interact with a real-time data producer, we can transfer
data in two ways. We can collect data from the real-time source into a file, process the
file with the simulator, and send the file back out to the real-time device. However,
this method takes up much I/O time and lags due to the latency of the disk storage.
If we develop a fast simulation on an external platform with a local bus, we can
directly interface the real-time data device to the local bus and communicate with
the simulation interactively. We could process NTSC signals from a television camera,

this way, or other image producing devices.

An Economical, Flexible Compromise

Combining the structures of large FPGAs to compute our complex logic, a DSP
chip to quickly address our machine state array, and a general purpose processor to
control the system, we could implement a fast general purpose simulation system.
We make a tradeoff between speed and complexity as we add more hardware and
increase programming time. We would need programming for the 1960, the DSP and
the FPGA to all act together, thus making debugging difficult. We could download
sections of code to the 1960 processor from a host workstation and have the 1960
program the FPGA as well as set up the boot code for the DSP before resetting the
system. The DSP chip and 1960 could both interact with a large section of DRAM
memory through DMA channels as well. An fast IO controller (possibly ethernet) or
external signal interface (such as NTSC) could use DMA as well. With everything on
a common bus, we have the flexibility of adding more FPGAs as we need to simulate
larger sections of logic. Multiple DSP chips could even do processing on their own
internal memory in parallel. This setup provides a flexible platform which we can
upgrade and alter for many different kinds of SIMD architectures without spending

excessive money.
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5.1.2 Software

Outside of optimizing hardware, many optimizations can be programmed in software
to speed up simulation. For our customized C program, most of these optimizations
can be handled with the optimizing compiler but we do additional optimizations
which take advantage of the hardware available to us.

When using the 1960 platform, much of our simulation time was taken up by I/0O
transfers to and from the host Sparc workstation. We can dig down into the machine
code for these transfers and optimize it to speed up the Sbus transfers. Similarly,
we could write software that downloads the state of the machine as well as all the
instructions to be executed, storing them in local memory to avoid I/O latencies.
Also, by simulating a microsequencer for our SIMD machine, we can compress our
code into loops instead of unrolling everything into a long list of instructions.

By writing programs that effectively utilize the instruction and data cache on
the simulation processor, we can cut our simulation time significantly avoiding cache
misses. Even running at full clock speed, the 1960 platform may still be slower than
a performance Sparc workstation with a large local cache and fast 1/0. If this is the
case, we either need to run the simulation directly on the Sparc and save on hardware
costs, or attach additional hardware to the 1960 processing platform to make using the
platform faster. As stated before, the faster speed of an auxiliary platform might be
unimportant if we do not pay close attention to the 1/O bandwidth to the host Sparc
workstation. We can save money by more effectively using our limited hardware than
we can using specialized hardware at the problem. Ideally, a combination of both

optimized software and fast, flexible hardware would work best.

5.1.3 The Future

What does the future of computer system simulation have in store for us? We have
already discussed the use of simulating our SIMD architecture with a huge array
of FPGAs. Future FPGAs might be fast enough and have enough density to han-

dle complex architectures. This system would be fast but inflexible to architectural
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changes and difficult to communicate with. We could also have a controlling pro-
cessor download code to a set of DSP chips and FPGAs on a common bus. This
system would be far more flexible, but bus transfers would slow the system down and
the inherent serial simulation would be significantly slower than the parallel arrays

of FPGAs.

MIMD Simulating SIMD

We could use a massively parallel MIMD computer with message passing and synchro-
nization capability such as the Thinking Machines CM5. Such architectures are good
at general purpose massive parallelism; however, message passing and synchroniza-
tion often takes many hundreds of cycles depending on the routing network. Future
MIMD machines might have faster networks and better synchronizers. For the case
of the Abacus where we want to simulate an array of 256 chips, we could simulate
each separate chip instead of each separate 1-bit processor on a node of the CM5 and
only message pass at the end of each cycle. This would cut down on message passing

and synchronization.

Computing with DPGA Processors

In our current simulation system on the 1960 platform, the superscalar processor
with fast instruction cache closely matched the speed of the external FPGA. Future
processors might avoid the inter-chip communication delays by including a Dynam-
ically Programmable Gate Array (DPGA) on the same substrate as the processor.
The processor core could have direct access to the programmable logic as well as
the instruction and data caches. We might even use a MIMD array of these DPGA

processors with fast message passing and synchronization to more quickly simulate

SIMD architectures.[5][7]
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5.2 Tradeoffs with Other Kinds of Simulations

We could have simulated the Abacus SIMD architecture using Verilog, Hspice or even
a high-level behavioral model instead of the current optimized C program. Different
kinds of simulations trade information for speed. Thus, we need to determine which
kind of simulation will run the fastest without sacrificing the critical information we

need to debug algorithms.

5.2.1 Hspice

Hspice simulations offer invaluable analog electrical information about the transistors
switching within a VLSI circuit. Unfortunately, simulations take up much memory
and run very slowly. Thus they are great for optimizing a small specialized circuit
within the computer that might get replicated man thousands of times throughout
the architecture. In the case of the Abacus, simulation of two processing elements
for forty nanoseconds (5 clock cycles) took about twenty minutes of computation on

a Sparc 10.

5.2.2 Verilog

Verilog simulations go one step higher than Hspice in the ladder of abstraction as
they more quickly result in signal timings, but do not produce analog waveforms. We
have traded off information for speed in this case. Unfortunately, Verilog simulations
take up large amounts of memory as well, which causes huge lags in simulation time
if the processor swaps memory space out to disk. We can effectively simulate small
clusters of Abacus processing elements with this to determine the interactions among

processors, but for our 256K node machine, this simulation would tend to be disk

I/O limited.
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5.2.3 Optimized C

Our current optimized C implementation simulates nanocode and is able to determine
the exact state of the registers and communication networks in the Abacus on any
given clock cycle. On a Sparc 10 we can simulate about 3000 clock cycles for the
entire 256K node machine in about ten minutes. While we don’t get exact timing
information, we can still debug large portions of code for the whole machine in a
reasonable amount of time and get feedback from the instruction stream to detect

possible flaws and improvements in the hardware.

5.2.4 Abstract Behavioral Model

We could run a behavioral model of our system in Lisp to interpret the algorithms
written for the Abacus in Ascheme code. This might be great for future programmers
who want to write extensive algorithms taking millions of clock cycles. The simulation
would be extremely fast; however, we could only debug Ascheme code and would not

see what the actual registers in the Abacus were doing.

5.2.5 Optimal Choice

Our optimal choice for which simulation to use is clearly dependent upon what we try
to create. In the case of developing the actual Abacus hardware, we need to run analog
simulations using Hspice to engineer special circuits throughout the machine. We can
propagate those timing numbers up to Verilog for use in larger scale simulations
which assume the specified timings. The optimized C implementation is ideal for
developing nanocode and compilers. The abstract behavioral model would be good
for programmers who wish to write quick pieces of code they can compile down to
nanocode without worrying about all the levels of abstraction. Thus, for creating the
hardware, Hspice and Verilog is best while developing compilers and low-level code

requires simulation of many clock cycles with an Optimized C simulator.
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5.3 Accomplishments

We programmed C and built hardware, forming the Slocus simulator to quickly sim-
ulate code for the non-extant Abacus. This allows us to develop code concurrently
with the actual hardware as well as find architectural flaws and improvements in the
hardware through code analysis. By utilizing an auxiliary processing platform with
FPGA support we hoped to decrease our simulation time beyond that of a perfor-
mance workstation. Unfortunately, the hardware platform ran an order of magnitude
slower than the workstation. Even though we might be able to clock the the external
platform at its full rate in the future, the computation power of the external device

was swamped by the extensive latency needed for input/output operations.

5.4 Was it Worth it?

I found the Abacus simulator to be a very effective tool in debugging algorithms
requiring hundreds of clock cycles to execute. The optimized C code without the
auxiliary hardware platform ran smoothly on all the Sparc stations in the lab. Ad-
ditionally, the code was easily ported from one platform to another with little hassle
which makes compiling for faster workstations simple.

Not only did I get feedback from the algorithms, but I found bugs in the assembly
code compiler as well. After the Abacus simulator was debugged (primarily prob-
lems with NEWS network propagation), it worked flawlessly and even pointed out
very subtle errors with the assembly language compiler as well as my hand coded
algorithms.

Unfortunately, I found the 1960 hardware platform lacking in its simulation ability.
As mentioned before, I/O was extremely slow and its 5 Mhz clock cycle made it an
order of magnitude slower than corresponding Sparc 10 simulations. Engineering and
debugging the hardware to simulate the Abacus took much time and programming
the assisting FPGA was tedious. The additional monetary cost for the 1960 platform,

Sbus interface and assisting FPGA daughter card was also undesirable. Given the
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funds, I would have rather purchased a general simulation system than designed and
built my own custom one. A general simulation system could simulate many different
architectures and could be used by many people. Ideally we should be able to specify
our logic and registers in an abstract code and compile it directly to an array of
FPGAs or similarly configurable logic.

Engineers often develop extensive software for a machine only after they build
the running hardware, which causes them to miss flaws in the architecture and to
cause their customers to wait months before being able to use the new hardware.
Programming an optimized C program to quickly simulate the hardware would be
valuable for finding bugs in the architecture and for developing extensive software so

that it can be released with the machine and not after.
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Appendix A

Code Listings

A.1 Abacus Simulation System

The following pages list code for the following parts of the Abacus Simulation system:

1. slocus.c - The main core of the simulation which computes the behavior of

the Abacus architecture.

2. sloconv.c - A program to convert nanocode produced by the assembler into

simulation commands that slocus.c recognizes.

3. slorun.c- A program that loads .pgm images into specified registers and runs

algorithms on those images while logging simulation times and other statistics.
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A.1.1 Slocus Simulator

/* C code for the Slocus Abacus machine simulator */
/* Written by Tim Kutscha for the Abacus Project */
/* This rev 11-10-93 */

/* suggestions: */

/* calculate own array address to save processor time */
/* how do we do global OR 7 */

/* take stuff off of upper left corner of news network */
/* adder implemented as manchester carry chain */

#include <stdio.h>

/* The number of processors per chip */

/* is fixed into a 32 x 32 array which */

/* is easily handled by long 32 bit integers */
/* define these if not already predefined */

#ifndef XCHIPS
#define XCHIPS 16
#endif

#ifndef YCHIPS
#define YCHIPS 16
#endif

/* define verbosity level for simulations if not already defined*/
#ifndef VERBOSELEVEL

#define VERBOSELEVEL 1

#endif

/* define addresses in register files */
/* make sure we can define these in either side!! */
/* left register file is 0-31 and right is 32-63 */

/* these have been changed!! */
/* #define IDLE_ADDR 0

#define SEL_ADDRO 1

#define DPM_ADDR 2

#define TOP_ADDR 3

#define BRK_ADDR 32

#define SEL_ADDR1 33

#define NEWS_ADDR 34 x*/
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/* old values */
#tdefine NEWS_ADDR 0
#define SEL_ADDRO 1
#define SEL_ADDR1 2
#define DPM_ADDR 32
#define BRK_ADDR 33
#define IOP_ADDR 34
#define IDLE_ADDR 35

/* define number of iterations per cycle */

/* for NEWS network */

/* ITERATIONS must be an even number due to swapping !! */
#define ITERATIONS 16

/* set variables for i960 hardware */
#define DRAM_START (1ong int *)0xE0000000
#define ALU_LDRIVE 0x0C000000
#define ALU_LNODE 0x0C000004
#tdefine ALU_RDRIVE 0x0C000008
#define ALU_RNODE 0x0C00000C
#define ALU_SEL1 0x0C000010
#define ALU_SELO 0x0C000014
#define ALU_MYNODE 0x0C000018
#define ALU_BREAK 0x0C00001C
#define ALU_RESULT 0x0C000000

/* define this for FPGA support */
/* #define FPGAHARDWARE 1 */

/* define the bit masks for the control register bits */
#define SLOCUS_PADPWR_MASK 0x01

#define SLOCUS_GLOBORPWR_MASK 0x02

#define SLOCUS_DRAMPWR_MASK 0x04

#define SLOCUS_NDIR_MASK 0x08

/* define the bit masks for the dram path bits */
#define SLOCUS_WORDSEL_MASK 0x0200

#define SLOCUS_DPCLK_MASK 0x02

#define SLOCUS_ADDRINC_MASK 0x01

/* set up all global variables for state */

/* general array of 8 megs for everything */

/* long int genreg[XCHIPS*YCHIPS*(32%64+32%2+4+4+32+2)]; */
/* 8 megs of memory and comio flags */

#ifdef sparc
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long int slocus_general [0x200000];
#else

long int *slocus_general=DRAM_START;
#endif

long int slocus_verbose=VERBOSELEVEL, slocus_breaksig=0;

/* left and right register files */
long int *slocus_regfile;

/* NEWS network and chip boundaries */

/* news network is twice as large to handle swapping */
/* newsedgein2 covers the two cycle latency */

long int *slocus_news;

long int *slocus_newsedgeout;

long int *slocus_newsedgein;

long int *slocus_newsedgein2;

/* DRAM plane network and edge registers */
long int *slocus_drampedgeinlo;

long int *slocus_drampedgeinhi;

long int *slocus_drampedgeoutlo;

long int *slocus_drampedgeouthi;

/* 10 plane network and edge registers */
long int *slocus_iopedgein;
long int *slocus_iopedgeout;

/* user memory for swapping state and general storage (DPM,etc) */
long int *slocus_usrmem;

/* global instruction word and control bits */
long int slocus_instr0, slocus_instrl, slocus_control, slocus_membits;

/* special instruction flag and dram address register */
long int slocus_special, slocus_dramareg;

/* results from routines if called externally */
long int slocus_result;

/* declare routines to prevent errors */
char *clear_space(char *);

char *next_space(char *);

long int alu_comp();

long int dpm_comp();
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long int news_comp();

long int or_comp();

long int slocus(char *);
long int process_special();

/* Main program: */
/* You may include slocus.c in your file but be sure to define */
/* the SLOCUSSLAVE variable and set VERBOSELEVEL=0 */
#ifndef SLOCUSSLAVE
main()
{
char input[60];
if(slocus_verbose==1)
puts("Welcome to the Slocus Abacus simulator.");
reset_slocus();
for(;;)
{
if (slocus_verbose==1) puts("Slocus Command (h for help):");
gets(input);
slocus(input) ;
}
}
#endif

/* slocus dispatcher takes a pointer to a command string and */
/* processes it, results are returned in the variable slocus_result */
/* which is a long integer */
long int slocus(char *cmdptr)
{
char *parse;
parse=cmdptr;
parse=clear_space(parse) ;
/* dispatch on first character */
if (xparse=="h’) print_help();
else if (*parse==’q’) exit(1);
else if(*parse==’s’) step_zero();
else if (*parse==’i’) run_cmd(parse);
else if(*parse==’r’) read_routine(parse);
else if(*parse==’w’) write_routine(parse);
else if (*parse==’c’) reset_slocus();
else if(*parse==’1’) single_step();
else if (*parse=='m’) move_mem(parse);
else if(*parse==’p’) debug_string(parse);
else puts("Invalid Command - h for help");
return slocus_result;
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/* string parsing routines */

/* clear space takes a character string and returns the pointer */
/* to the first non-space character or NULL if none exists */

char *clear_space(char *parse)

{
char *ptr=parse;
for(;;) {
if (*ptr == 0) return ptr; /* end of string */
if (*ptr != 32) return ptr; /* found non space */
ptr++;
}
}

/* finds next space in character string to get next token */
/* returns NULL if no next space */
char *next_space(char *parse)

{
char *ptr=parse;
for(;;){
if (*#ptr == 0) return ptr; /* end of string */
if (*ptr == 32) return ptr; /* found space */
ptr++;
}
}

/* this routine returns a long integer with the value contained */
/* in the the string scanptr */
long int scanhex(char *scanptr)

{

long int 1i,now;

char *ptr;

i=0;

ptr=scanptr;

for(;;){
now=(long)*(ptr++);
if (now>96) now -=32;
if((now>64) && (now<71)) now -=55;
else if ((now>47) &% (now<58)) now -=48;
else break;
i=(i<<4) |now;

}

return i;
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/* this routine converts a long word into hex text scanptr*/
void makehex(long num,char *scanptr)
{
char *ptr;
long int k,i,now;
=num;
ptr=scanptr;
for(i=7;i>=0;i--) {
now=(long) (k & 15);
k >>=4;
if (now>9) *(ptr+i)=55+now;
else *(ptr+i)=48+now;
}
/* terminate string */
*(ptr+8)=0;
¥

/* this routine put the Abacus simulated machine in a known */
/* state by setting all register files to zero, clearing the */
/* NEWS network and the DPM netork */
reset_slocus()
{

long int *nein,*nein2,*neout,*nn,*reg,cnt,i,j;

long int *dpinhi,*dpinlo,*dpouthi,*dpoutlo,*iopin,*iopout;

/* initialize all pointers to parts of the general array */
slocus_regfile=slocus_general;

slocus_news=slocus_regfile+(XCHIPS*¥YCHIPS*32%64) ;
slocus_newsedgeout=slocus_news+(XCHIPS*YCHIPS*32) ;
slocus_newsedgein=slocus_newsedgeout+(XCHIPS*YCHIPS*4);
slocus_newsedgein2=slocus_newsedgein+(XCHIPS*YCHIPS*4) ;
slocus_drampedgeinhi=slocus_newsedgein2+(XCHIPS*YCHIPS*4) ;
slocus_drampedgeinlo=slocus_drampedgeinhi+(XCHIPS*YCHIPS);
slocus_drampedgeouthi=slocus_drampedgeinlo+(XCHIPS*YCHIPS) ;
slocus_drampedgeoutlo=slocus_drampedgeouthi+(XCHIPS*YCHIPS) ;
slocus_iopedgein=slocus_drampedgeoutlo+(XCHIPS*YCHIPS) ;
slocus_iopedgeout=slocus_iopedgein+(XCHIPS*YCHIPS) ;
slocus_usrmem=slocus_iopedgeout+(XCHIPS*YCHIPS) ;

/* set instruction to NOP (write 63 and 31 to themselves */
slocus_instr1=0x3fff;slocus_instr0=0x87ffff0f;
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/* clear result and control register */

slocus_result=0; slocus_control=0;

/* set everything to zero */

if(slocus_verbose==1) puts("Initializing...");
nein=slocus_newsedgein; neout=slocus_newsedgeout;
nein2=slocus_newsedgein2;

nn=slocus_news; reg=slocus_regfile;
dpinhi=slocus_drampedgeinhi; dpouthi=slocus_drampedgeouthi;
dpinlo=slocus_drampedgeinlo; dpoutlo=slocus_drampedgeoutlo;
iopin=slocus_iopedgein; iopout=slocus_iopedgeout;

/* cycle through chips */

cnt=XCHIPS*YCHIPS;
while(cnt-->0){
*(nein++)=0;
*(nein++)=0;
*(nein++)=0;
*(nein++)=0;
*(nein2++)=0;
*(nein2++)=0;
*(nein2++)=0;
*(nein2++)=0;
* (neout++)=0;
* (neout++)=0;
*(neout++)=0;
*(neout++)=0;
*(dpinhi++)=0;
* (dpouthi++)=0;
*(dpinlo++)=0;
* (dpoutlo++)=0;
*(lopin++)=0;
* (lopout++)=0;
for(i=0;i<32;i++){
*(nn++)=0;
for(j=0;j<32;j++){

/* clear left and right register files */

}

*(reg++)=0;
*(reg++)=0;
)
}
}

if (slocus_verbose==1) puts("Initialized.");
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/* print a help listing */

print_help()

{
puts('"Commands are all lowercase with optional arguments.");
puts("h - prints this help listing");
puts("c - clear machine (reset)");
puts("s - single step the machine with a zero instruction");
puts("i <hi-instr> <lo-instr> run a given hex instruction");
puts("l - repeat last instruction command ") ;
puts("p - print a string to the screen (for debugging) ");
puts('q - exits back to the operating system");
puts('rs <sect> <addr> - read a single 32-bit word");
puts("rb <sect> <addr> <length> - read multiple words");
puts("ws <sect> <addr> <value> - write a single value");
puts("wb <sect> <addr> <length> - write multiple values");
puts("m <sect> <addr> <sect> <addr> <length> - move memory");
puts("all numerical values are in hexadecimal");
puts("<sect> is one of the following:");

puts("r - registers u - user memory");

puts("n - NEWS network g - machine state");

puts("i - DPM in register o - DPM out register");
puts("e - NEWS edge in register t - NEWS edge out register");
puts(" ");

/* debugging routine to force strings to print to stdout */
debug_string(char *parse)
{
char *ptr=parse;
long int vflag;
ptr=next_space(ptr);
ptr=clear_space(ptr);
vflag=slocus_verbose;slocus_verbose=1;
puts(ptr);
slocus_verbose=vflag;

/* read the contents of a particular array in relative order */
read_routine(char *parse)
{

long int cnt,*start_addr,offset,max,i,j;

long int block,flagb,tmp,flagj,skip,vflag;

char outstr[80],*ptr=parse;

skip=1;
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ptr++;
if (*ptr==’s’) block=0;

else if (*ptr==’b’) block=1;

else {
puts("Incorrect read instruction - type h");
return;

3

if(*(ptr+1)=="s’) { flagj=1; ptr++; } else flagj=0;
if (*(ptr+1)==’1’) flagb=1; else flagb=0;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts('"No arguments were specified");
return;
}
/* print status of global OR */
if(¥ptr=="g’) {
i=or_comp();
vflag=slocus_verbose; slocus_verbose=1;
if (i==1) {
#ifndef SLOCUSSLAVE
puts('"1i");
#endif
slocus_result=1; }
else {
#ifndef SLOCUSSLAVE
puts("O");
#endif
slocus_result=0; }
slocus_verbose=vflag;
return;
}
else if(¥ptr=="n’) {start_addr=slocus_news;
max=32*xXCHIPS*YCHIPS; skip=32; }
else if (*ptr=="r’) {start_addr=slocus_regfile;
max=32*64*XCHIPS*xYCHIPS; skip=64; }
else if(xptr=="1i’) {start_addr=slocus_drampedgeinlo;
max=XCHIPS*YCHIPS; }
else if (¥ptr=='0’) {start_addr=slocus_drampedgeoutlo;
max=XCHIPS*YCHIPS; }
else if(*ptr=="e’) {start_addr=slocus_newsedgein;
max=4*XCHIPS*YCHIPS; skip=4;}
else if (*ptr=="t’) {start_addr=slocus_newsedgeout;
max=4*XCHIPS*YCHIPS; skip=4;}
else if (*ptr==’u’) {start_addr=slocus_usrmem; max=0x200000-
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XCHIPS*YCHIPS* (32%64+32*2+4+4+32+1+1) ; }
else {
puts('Incorrect section type specified - see h");
return;
}
/* if jumping flag not set, set skip back to one */
if (flagj==0) skip=1;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (xptr==0) {
puts(''no address specified");
return;
}
offset=scanhex(ptr);
if ((offset<0) || (offset>=max)) {
puts("Address must be hexadecimal and in range');
return;
b
if(block==0) {
if (flagb==0) makehex (*(start_addr+offset),outstr);
else {
tmp=*(start_addr+offset) ;
for(j=0;3<32;j++){
if (((tmp << j) & 0x80000000) == 0x80000000) *(outstr+j)=’X’;
else *(outstr+j)=’.";
}
*(outstr+32)=0;
}
slocus_result=*x(start_addr+offset);
/* always print */
#ifndef SLOCUSSLAVE
vflag=slocus_verbose; slocus_verbose=1;
puts(outstr);
slocus_verbose=vflag;
#endif
return;
+
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts("No length specified");
return; }
cnt=scanhex(ptr);
if ((ent<1) || ((cnt-1)*skip+offset>max-1)){
puts("0Offset plus length of block are out of range or not hex");
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return;}
for(i=offset;i<offset+cnt*skip;i+=skip){
if (flagb==0) makehex(*(start_addr+i),outstr);
else {
for(j=0;3j<32;j++){
if (((*(start_addr+i)<< j) & 0x80000000) == 0x80000000)
*(outstr+j)=’'X’; else *(outstr+j)=’.’;
}
*(outstr+32)=0; /* terminate string with slash zero */
}
slocus_result=+*(start_addr+i);
#ifndef SLOCUSSLAVE
vflag=slocus_verbose; slocus_verbose=1;
puts(outstr) ;
slocus_verbose=vflag;
#endif
}
}

/* write values to a particular array in relative order */
write_routine(char *parse)
{
long int block,cnt,*start_addr,offset,max,i,flagj,skip;
char input[20],*ptr=parse;
skip=1;
ptr++;
if (*ptr==’"s’) block=0;
else if (*ptr=='b’) block=1;
else {
puts("Incorrect write instruction - type h");
return;
}
if (¢ (ptr+1)==’s’) { flagj=1; ptr++; } else flagj=0;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (kptr==0) {
puts("No arguments were specified");
return;
}
if(*ptr=="n’) {start_addr=slocus_news;
max=32*XCHIPS*YCHIPS; skip=32;}
else if (*ptr=="r’) {start_addr=slocus_regfile;
max=32%64*XCHIPS*YCHIPS; skip=64;}
else if(*ptr=="i’) {start_addr=slocus_drampedgeinlo;
max=XCHIPS*YCHIPS;}
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else if (*ptr==’0’) {start_addr=slocus_drampedgeoutlo;
max=XCHIPS*YCHIPS;}
else if (*ptr=="e’) {start_addr=slocus_newsedgein;
max=4*XCHIPS*YCHIPS; skip=4;}
else if(*ptr==’t’) {start_addr=slocus_newsedgeout;
max=4*XCHIPS*YCHIPS; skip=4;}
else if(*ptr==’u’) {start_addr=slocus_usrmem;
max=0x200000-
XCHIPS*YCHIPS* (32%64+32%2+4+4+32+1+1) ; }
else {
puts("Incorrect section type specified - see h");
return;
}
if (flagj==0) skip=1;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts("no address specified");
return;
}
offset=scanhex(ptr);
if((offset<0) || (offsetd>=max)) {
puts("Address must be hexadecimal and in range'") ;
return;
}
if (block==0) {
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (xptr==0){
puts("no data specified");
return; }
*(start_addr+offset)=scanhex(ptr);
return;
}
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*xptr==0) {
puts("No length specified");
return; }
cnt=scanhex(ptr);
if((cnt<1) |1 ((cnt-1)*skip+offset>max-1)){
puts("0Offset plus length of block are out of range or not hex");
return;}
for(i=offset;i<offset+cnt*skip;i+=skip) {
gets(input);
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*(start_addr+i)=scanhex(input) ;
}
}

/* move a block of memory from one place to another */
move_mem(char *parse)
{
long int cnt,*src_addr,*dest_addr,offsetl,offset2,maxl,max2,i;
long int flagj,skipl,skip2;
char *ptr=parse;
skipl=1; skip2=1;
if (x(ptr+1)=="s’) { flagj=1; ptr++; } else flagj=0;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (¢ptr==0) {
puts("No arguments were specified");
return;
3
if(*ptr=="n’) {src_addr=slocus_news;
max1=32*XCHIPS*YCHIPS; skip1=32;}
else if (*ptr=="r’) {src_addr=slocus_regfile;
max1=32%64*xXCHIPS*YCHIPS; skip1=64;}
else if (¥ptr==’"1i’) {src_addr=slocus_drampedgeinlo;
max1=XCHIPS*YCHIPS;}
else if(*ptr=='0’) {src_addr=slocus_drampedgeoutlo;
max1=XCHIPS*YCHIPS;}
else if(xptr=='e’) {src_addr=slocus_newsedgein;
max1=4*XCHIPS*YCHIPS; skipi=4;}
else if (*ptr=="t’) {src_addr=slocus_newsedgeout;
max1=4*XCHIPS*YCHIPS; skipl=4;}
else if(¥ptr==’u’) {src_addr=slocus_usrmem;
max1=0x200000-
XCHIPS*YCHIPS* (32%64+32%2+4+4+32+1+1) ;}
else {
puts("Section invalid for source - see h");
return;
}
/* don’t skip blocks if flag not set */
if(flagj==0) skipi=1;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (xptr==0) {
puts("no source address specified");
return;

}
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offsetl=scanhex(ptr) ;
if ((offset1<0) || (offseti>=max1)) {
puts("Source address out of range or not hex");
return;
}
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts("No destination specified");
return;
¥
if(*ptr=="n’) {dest_addr=slocus_news;
max2=32*XCHIPS*YCHIPS; skip2=32;}
else if (¥ptr==’"r’) {dest_addr=slocus_regfile;
max2=32*64*xXCHIPS*YCHIPS; skip2=64;}
else if(¥ptr==’i’) {dest_addr=slocus_drampedgeinlo;
max2=XCHIPS*YCHIPS;}
else if (¥ptr==’0’) {dest_addr=slocus_drampedgeoutlo;
max2=XCHIPS*YCHIPS;}
else if(¥ptr==’e’) {dest_addr=slocus_newsedgein;
max2=4*XCHIPS*YCHIPS; skip2=4;}
else if(*ptr=="t’) {dest_addr=slocus_newsedgeout;
max2=4*XCHIPS*YCHIPS; skip2=4;}
else if(*ptr=="u’) {dest_addr=slocus_usrmen;
max2=0x200000-
XCHIPS*YCHIPS* (32%64+32%2+4+4+32+1+1) ;}
else {
puts("Section invalid for destination - see h");
return;
}
if (flagj==0) skip2=1;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts('no destination address specified");
return;
}
offset2=scanhex(ptr);
if ((offset2<0) || (offset2>=max2)) {
puts("Desination address out of range or not hex");
return;
}
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (xptr==0) {
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puts("No block length specified");
return; }
cnt=scanhex(ptr) ;
if ((cnt<1) ||
((cnt-1)*skipl+offsetid>maxi-1) ||
((cnt-1)*skip2+offset2>max2-1)){
puts("Block larger than the range of source or destination.");
return;}
if (slocus_verbose==1) puts("Copying Block");
for(i=offsetl;i<offsetl+cnt*skipl;i+=skipl) {
*(dest_addr+offset2)=*(src_addr+i);
offset2+=skip2; }

/* run a user specified command string */
run_cmd (char *parse)
{
char *ptr=parse;
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts("No instruction specified");
return;
}
slocus_instr1=scanhex(ptr);
ptr=next_space(ptr);
ptr=clear_space(ptr);
if (*ptr==0) {
puts("Need two instruction arguments");
return;
}
slocus_instrO=scanhex(ptr) ;
single_step();

step_zero()

{

/* set instruction to NOP (write 31 and 63 back on itself) */
slocus_instr0=0x87ffff0f; slocus_instr1=0x3fff;
single_step();

}

single_step()
{
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/*

/%
/*
/*
/%
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/%
/*

/*
/*
/%
/*
/*

get_instr(); */

if(alu_comp()==1) return;
if(dpm_comp()==1) return;
if (news_comp()==1) return;
or_comp();

This function takes two words instr[ipc][0] and */

instr[ipc][1] and parses their bits into appropriate */

addresses for use by the alu */

the bits are as follows: */

0-4 right write address */

5-9 right b read address */

10-14 right a read address */

15-22 right 8 bit operand */

23-27 left write address */

28-32 left b read address */

33-37 left a read address */

38-45 left 8 bit operand */

46 DPM clock bit (clock if one) */

47 DPM selection bit (1=load or O=shift) */

48 direction of NEWS shifting (0=SE) (1=NW)=*/
accross chip boundaries */

this alu_comp routine takes the ra,rb... variables */
looks up their values, computes a result based on rop */
and lop and puts them back into rw and lw addresses */
special cases are handled for idle bits and DPM/NEWS */
network operations */

long int alu_comp()

{

/*

/*

/*

long int la,lb,lw,lop,ra,rb,rw,rop,cmdl,cmd2;

long int lad,lbd,rad,rbd,lwd,rwd,idlbits,ltmp,rtmp;
long int cnt,lselfile,rselfile,sel0,sell,sel2,i;
long int *nein2,*nn,*reg;

parse instruction word */

cmdi=slocus_instr0; cmd2=slocus_instri;

parse instruction word */

lop=(cmd1l & 0x000000FF); cmdl >>=8;
la=(cmd1l & 0x0000001F); cmdl >>=5;
1b=(cmdl & 0x0000001F); cmdl >>=5;
lw=(cmd1 & 0x0000001F); cmdl >>=5;

add 32 to right register file instructions */

rop=(cmdl & 0x000000FF); cmdl >>=8;
ra=(cmdl & 0x00000001)+
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((cmd2 & 0x0000000F) << 1)+32; cmd2 >>=4;
rb=(cmd2 & 0x0000001F)+32; cmd2 >>=5;
rw=(cmd2 & 0x0000001F)+32; cmd2 >>=5;

/* get timing information bits */
slocus_membits=(cmd2 & 0x003FF); cmd2 >>=10;

/* check for special instruction */
1f(lop==0 && la'=0) slocus_special=1;
else slocus_special=0;
if(slocus_special == 1) {
process_special();
if(slocus_verbose==1) puts("special alu done'");
return; }

reg=slocus_regfile;

nein2=slocus_newsedgein2;

nn=slocus_newvs;

/* cycle through all chips */
cnt=XCHIPS*YCHIPS;
while(cnt-->0){

if (slocus_breaksig==1){
slocus_breaksig=0;
return 1;

}

/* debug */

/% printf("la %d 1b %d 1w %d lop %x ra %d rb %d rw %d rop %x \n",
la,lb,lw,lop,ra,rb,rw,rop); */

/* step through the rows */

for(i=0;i<32;i++){

/* special case for NEWS address access */

if ((la==NEWS_ADDR) ||

(1b==NEWS_ADDR) ||
(ra==NEWS_ADDR) ||
(rb==NEWS_ADDR) )

{

lselfile=*(reg+SEL_ADDR1);

rselfile=+*(reg+SEL_ADDRO) ;

ltmp=

/* seek left */

(lselfile &
“rselfile &

/* make sure to get rid of top bit ! x/
((((*nn) >> 1) & OxT7FFFFFFF) |
((*(nein2+3) << i) & 0x80000000))) |

/* seek right */
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("1selfile &
rselfile &
(((*nn) << 1) |
((*(nein2+1) >>(31-i)) & 1)));
/* seek upwards */
if(i==0) 1ltmp |= “1lselfile & “rselfile & *nein2;
else ltmp |= “lselfile & "rselfile & *(nn-1);
/* seek downwards */
if(i==31) ltmp |= lselfile & rselfile & *(nein2+2);
else ltmp |= 1lselfile & rselfile & *(nn+1);
/* printf ("NEWS in value is %x \n",ltmp); */

if (1a==NEWS_ADDR) lad=1tmp;
else lad=*(reg+la);

if (1b==NEWS_ADDR) 1lbd=1tmp;
else 1lbd=*(reg+lb);

if (ra==NEWS_ADDR) rad=ltmp;
else rad=*(reg+ra);

if (rb==NEWS_ADDR) rbd=1tmp;
else rbd=*(reg+rb);

/* try implementing combinational logic here !! */
sel2=lad;
sell=1bd;
selO=rbd;
/* compute value for left register file */
lwd =
("sel2 & “sell & “selO &
(((Qop >> 7) & 1) ? OxFFFFFFFF:0)) |
("sel2 & “sell & sel0 &
(((Llop >> 6) & 1)? OxFFFFFFFF:0)) |
("sel2 & sell & “sel0 &
(((Lop >> 5) & 1)? OxFFFFFFFF:0)) |
("sel2 & sell &sel0 &
(((Lop >> 4) & 1)7 OxFFFFFFFF:0)) |
(sel2 & "sell & "sel0 &
(((Qop >> 3) & 1)? OxFFFFFFFF:0)) |
(sel2 & “sell & sel0 &
(((lop >> 2) & 1)7? OxFFFFFFFF:0)) |
(sel2 & sell & “sel0 &
(((Lop >> 1) & 1)7? OxFFFFFFFF:0)) |
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(sel2 & sell & sel0 &
((lop & 1) 7 OxFFFFFFFF:0));
/* compute value for right register file */
sel2=rad;
sell=rbd;
sel0=1bd;
rwd =
("sel2 & “sell & “sel0 &
(((xop >> 7) & 1) ? OxFFFFFFFF:0)) |
("sel2 & “sell & sel0 &
(((rop >> 6) & 1)? OxFFFFFFFF:0)) |
("sel2 & sell & “sel0 &
(((rop >> 5) & 1)? OxFFFFFFFF:0)) |
("sel2 & sell &selO &
(((rop >> 4) & 1)? OxFFFFFFFF:0)) |
(sel2 & “sell & “sel0 &
(((rop >> 3) & 1)? OxFFFFFFFF:0)) |
(sel2 & “sell & sel0 &
(((rop >> 2) & 1)? OxFFFFFFFF:0)) |
(sel2 & sell & “sel0 &
(((rop >> 1) & 1)7? OxFFFFFFFF:0)) |
(sel2 & sell & sel0 &
((rop & 1) ? OxFFFFFFFF:0));
/* assign results back into register file */
/* if idle bit is set then we won’t write to any addresses */
idlbits=*(reg+IDLE_ADDR) ;
/* get old values */
ltmp=*(reg+lw) ;
rtmp=*(reg+rw) ;
/* write left registerfile results */
/* allow writing to idle_addr bit all the time */
if (1w == IDLE_ADDR) *(reg+IDLE_ADDR)=1wd;
else *(reg+lw)=(lwd & ~idlbits) | (ltmp & idlbits);
/* write to right registerfile results */
/* allow writing to idle_addr bit all the time */
if (rw == IDLE_ADDR) *(reg+IDLE_ADDR)=rwd;
else *(reg+rw)=(rwd & ~idlbits) | (rtmp & idlbits);
/* debug */
/* printf("lad %x 1bd %x rad %x rbd %x lwd %x rwd %x\n",
lad, 1bd, rad, rbd, lwd, rwd); */
/* increment pointers per row */
reg += 64; nn++;
}
/* increment newsedge pointer per chip */
nein2+=4;
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}
if(slocus_verbose==1) puts("alu done");
return O;

}

long int process_special()

{
long int special_op,c,m,i,k,cnt,*nein;
long int itmp,outtmp,*ioptr,*ipin,*ipout;
special_op=(slocus_instr0 >> 8) & 0x07;

/* load control registers */
if (special_op==1) {
/* get eight control bits - just in case */
c=(slocus_instr0 >> 13) & O0xFF;
/* get mask control */
m=(slocus_instr0 >> 11) & 0x03;
if(m==0) slocus_control=c; /* copy */
else if(m==1) slocus_control &=c; /* set bits */
else 1f(m==2) slocus_control &= “c; /* clear bits */
else if(m==3) slocus_control "= “c; /* toggle bits */

/* set DRAM address register */
else if(special_op==2) {
slocus_dramareg=(slocus_instr0 >> 11) & OxOFFFFF;
+

/* load immediate constant */
else if(special_op==4) {

cnt=XCHIPS*YCHIPS;

nein=slocus_newsedgein+l; /* select east edge */

c = ((slocus_instr0 >> 11) & O0xO01FFFFF) +
((slocus_instrl & 0x07FF) << 21) ;

while(cnt-->0) {
*nein=c;
nein += 4; }

/* load and store I0 port (option to shift) */
else if((special_op==5) || (special_op==6)){
if((slocus_instrl >> 12) & 0x01) {
cnt=XCHIPS*YCHIPS;
1optr=slocus_regfile+I0OP_ADDR;
ipin=slocus_iopedgein;
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ipout=slocus_iopedgeout;
while(cnt-->0) {
itmp=*ipin;
/* go down rows and shift all bits left*/
for(k=0;k<32;k++) {
/* do next bit of outward register */
outtmp = (outtmp << 1) + ((*(ioptr+kx64) >> 31) & 1);
/* shift bit in from input register */
/* make sure to and off the top bit because of arithmetic shift */
* (ioptr+k*64)=(*(ioptr+k*64) << 1) | ((itmp >> 31 ) & 0x01);
/* shift to next bit in input register */
itmp <<=1; }
/* store final result in output register */
*ipout=outtmp;
ipin++; ipout++; ioptr += 32%64;
}
}
¥

/* bad special instruction */
else if(slocus_verbose==1) puts("Bad special instruction.");

}

/* this routine parses the slocus_membits variable and */
/* does things accordingly */
long int dpm_comp ()
{
long int cnt,*dpptr,*reg,*dpin,*dpout,k,outtmp,intmp;
long int dpclk,dpsel;

/* increment dram address register if needed */
if(slocus_membits & SLOCUS_ADDRINC_MASK) slocus_dramareg++;

/* parse dram plane clock */
dpclk=slocus_membits & SLOCUS_DPCLK_MASK;
if (dpclk==0) return 0; /* return if nothing */

dpptr=slocus_regfile+DPM_ADDR; /* pointer into register file */
if (slocus_membits & SLOCUS_WORDSEL_MASK) {
dpin=slocus_drampedgeinhi;
dpout=slocus_drampedgeouthi; }
else {
dpin=slocus_drampedgeinlo;
dpout=slocus_drampedgeoutlo; }
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/* cycle through all chips */
cnt=XCHIPS*xYCHIPS;
while(cnt-->0){
intmp=*dpin;
/* go down rows and shift all bits left (dpsel=0)x*/
for(k=0;k<32;k++) {
/* do next bit of outward register */
outtmp = (outtmp << 1) + ((*x(dpptr+k*64) >> 31) & 1);
/* shift bit in from input register */
/* make sure to and off the top bit because of arithmetic shift */
*(dpptr+k*64)=(*(dpptr+k*64) << 1) | ((intmp >> 31 ) & 0x01);
/* shift to next bit in input register */
intmp <<=1; }
/* store final result in output register */
*dpout=outtmp;
dpin++; dpout++; dpptr += 32%64;
}
if(slocus_verbose==1)puts("dpm done");
return 0O;

}

/* we don’t do news precharge before! we write all values */
/* of the newsregisters out after the alu_comp cycle if someone */
/* writes to a location */
/* we must make sure not to do this during special instructions */
news_precharge ()
{
long int cnt,*nn,*reg;
if (slocus_special==1) return;
cnt=XCHIPS*YCHIPS*32;
nn=slocus_news;
reg=(slocus_regfile+NEWS_ADDR);
while(cnt-->0) {
* (nn++) =*reg;
reg +=64;
X
)

/* subroutine to compute the news network after each cycle */
/* number of nodes travelled defined in ITERATIONS */

/* this number must be even, or the swapping doesn’t work */
long int news_comp()

{

#ifdef FPGAHARDWARE
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volatile long int *alu_ldrive=(long int *)ALU_LDRIVE;
volatile long int *alu_lnode =(long int *)ALU_LNODE;
volatile long int *alu_rdrive=(long int *)ALU_RDRIVE;
volatile long int *alu_rnode =(long int *)ALU_RNODE;
volatile long int *alu_selil =(long int *)ALU_SEL1;
volatile long int *alu_sel0 =(long int *)ALU_SELO;
volatile long int *alu_mynode=(long int *)ALU_MYNODE;
volatile long int *alu_break =(long int *)ALU_BREAK;
volatile long int *alu_result=(long int *)ALU_RESULT;
#endif
long int i,k,mynode,swap,lw,rw;
long int cnt,*lreg,*rreg,*breg,*nn;
long int *pnews,*snews;
long int brkfile,lselfile,rselfile;
/* these local arrays are for swapping the NEWS network in SRAM */
long int swap1[32],swap2[32],lregtmp[32],rregtmp[32],brktmp[32];

/* if current instruction writes to NEWS register */
/* then copy NEWS registers to NEWS network (precharge) */
lw=(slocus_instr0 >> 18) & 0x001F;
rw=((slocus_instrl >> 9) & 0x001F) + 32;
if ((lw==NEWS_ADDR) ||
(rw==NEWS_ADDR)) news_precharge();

/* ITERATIONS must be an even number due to swapping !! */
swap=0;

/* cycle through all the chips */
cnt=XCHIPS*YCHIPS;

/* load address registers with proper offset */
breg=slocus_regfile+BRK_ADDR;
lreg=slocus_regfile+SEL_ADDR1;
rreg=slocus_regfile+SEL_ADDRO;
nn=slocus_news;
while(ent-->0){

if(slocus_breaksig==1) {
slocus_breaksig=0;
return 1;
¥
/* get values from large array into local small arrays */
for(i=0;i<32;i++) {
swapl[i]=*(nn+i);
lregtmp[i]=*1lreg; lreg+=64;
brktmp[i]=*breg; breg+=64;
rregtmp[i]l=*rreg; rreg+=64;

¥
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/* perform 16 iterations */
for(i=0; i< ITERATIONS;i++) {
if (swap==0){
pnews=swapi;
snews=swap2;
swap=1;}
else{
snews=swapl;
pnews=swap2;
swap=0;}
/* if FPGAHARDWARE flag not set, do all logic internally */
#ifndef FPGAHARDWARE
/* msbit is at the top of the column */
/* first iteration is for row zero */
brkfile="(brktmp[0]);
lselfile=lregtmp[0];
rselfile=rregtmp[0];
mynode=*pnews;
/* start with self */
*(snews++) = mynode |
/* check for below node driving up on us */
("(lregtmp[1]) & ~“(rregtmp[1]) & *(pnews+1) & ~(brktmp[1])) |
/* check for seeking downward */
(1selfile & rselfile & brkfile & *(pnews+1)) |
/* check left node driving right on us */
/* AND off the top bit to correct arithmetic shift */
((("1selfile & rselfile & mynode & brkfile) >> 1)
& OxT7FFFFFFF) |
/* check seeking left */
/* AND off the top bit to correct arithmetic shift */
((1selfile & “rselfile & ((mynode >> 1) & Ox7FFFFFFF)
& brkfile)) |
/* check right node driving left on us */
((1selfile & “rselfile & mynode & brkfile) << 1) |
/* check right seeking */
("1selfile & rselfile & brkfile & (mynode << 1));
/* increment pointer */
pnews++;
/* do rest of internal rows... 1 to 30 (not 0 or 31) */
for(k=1;k<31;k++) {
brkfile="(brktmp[k]) ;
1selfile=lregtmp[k] ;
rselfile=rregtmp(k];
mynode=*pnews;
/* start with self */
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/*
/*
/*

/*
/*
/*
/*

/*

/*

/*
/*
/*
/*
/*

/%
/*

/*

*(snews++) = mynode |
check for above node driving down on us*/
(lregtmp[k-1] & rregtmp[k-1] & *(pnews-1) & ~(brktmp[k-1])) |
check for seeking upward */
("1selfile & “rselfile & brkfile & *(pnews-1)) |
check for below node driving up on us */
(" (lregtmp[k+1]) & ~(rregtmplk+1]) & *(pnews+1)
& ~(brktmp[k+1])) |
check for seeking downward */
(1selfile & rselfile & brkfile & *(pnews+1)) |
check left node driving right on us */
AND off the top bit to correct arithmetic shift */
((("1selfile & rselfile & mynode & brkfile) >> 1)
& Ox7FFFFFFF) |
check seeking left */
AND off the top bit to correct arithmetic shift */
((1selfile & “rselfile & ((mynode >> 1) & Ox7FFFFFFF)
& brkfile)) |
check right node driving left on us */
((1selfile & “rselfile & mynode & brkfile) << 1) |
check right seeking */
("1lselfile & rselfile & brkfile & (mynode << 1));
increment pointer */
pnews++;
}
do last row */
brkfile="(brktmp[31]);
lselfile=lregtmp[31];
rselfile=rregtmp[31];
mynode=*pnewvs;
start with self */
*(snews++) = mynode |
check for above node driving down on us*/
(lregtmp[30] & rregtmp[30] & *(pnews-1) & ~(brktmp[30])) |
check for seeking upward */
("1selfile & “rselfile & brkfile & *(pnews-1)) |
check left node driving right on us */
AND off the top bit to correct for arithmetic shift */
((("1lselfile & rselfile & mynode & brkfile) >> 1)
& Ox7FFFFFFF) |
check seeking left */
AND to correct arithmetic shift */
((1selfile & “rselfile & ((mynode >> 1) & Ox7FFFFFFF)
& brkfile)) |
check right node driving left on us */
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((1selfile & “rselfile & mynode & brkfile) << 1) |
/* check right seeking */
("lselfile & rselfile & brkfile & (mynode << 1));
#else
/* do all computations using external FPGA - how elegant!! */
/* FPGA thinks rows are vertical - alter the sel bits slightly */
/* first row */
*alu_ldrive=0;
*alu_lnode=*(pnews+1);
*alu_rdrive=("(lregtmp[1]) &
“(rregtmp[1]) &
* (pnews+1) &
“(brktmp[1]1));
*alu_rnode=0;
*alu_sell=lregtmp[0];
*alu_selO="rregtmp[0];
*alu_mynode=* (pnews++) ;
*alu_break=brktmp[0];
* (snews++)=+alu_result;
/* middle rows */ :
for(k=1;k<31;k++){
*alu_ldrive=(lregtmp[k-1] &
rregtmp [k-1] &
*(pnews-1) &
“(brktmp[k-11));
*alu_lnode=*(pnews+1);
*alu_rdrive=(~(lregtmp[k+1]) &
“(rregtmpl[k+1]) &
*(pnews+1) &
“(brktmp[k+1]));
*alu_rnode=*(pnews-1);
*alu_sell=lregtmp [k];
*alu_selO="rregtmp[k];
*alu_mynode=*(pnews++) ;
*alu_break=brktmp[k] ;
* (snews++)=xalu_result;
}
/* last row */
*alu_ldrive=(lregtmp[30] &
rregtmp[30] &
*(pnews-1) &
“ (brktmp[30]1));
*alu_lnode=0;
*alu_rdrive=0;
*alu_rnode=*(pnews-1);



*alu_sell=lregtmp[31];
*alu_selO="rregtmp[31];
*alu_mynode=*pnews;
*alu_break=brktmp[31];
*snews=*alu_result;
#endif
}
/* write array back into global array */
/* increment news pointer as well */
for(i=0;1i<32;i++) *(nn++)=swapi[i];
}
news_edge();
if(slocus_verbose==1)puts("news done");
return 0;

/* propagate edges of NEWS network accross chip */
/* boundaries and then accept new values off network */
news_edge()

{
long int i,j,cnt,nrtmp,nltmp,*nn,*nein,*neout;

/* compute two latency registers */

/* cycle through all chips */
cnt=XCHIPS*xYCHIPS;
nein=slocus_newsedgein;
neout=slocus_newsedgein2;

/* cycle and do all four edges */
while(cnt-->0){

*(neout++)=*(nein++);

*(neout++)=*(nein++) ;

* (neout++)=*(nein++);

*(neout++)=+(nein++);
}

/* compute cycle after output */
nein=slocus_newsedgein;
neout=slocus_newsedgeout;

/* cycle through all the chips */
for(j=0; j<YCHIPS; j++)

for(i=0;i<XCHIPS;i++) {
/* inout register direction (O=up,l=right,2=down,3=left) */
/* ndir=1 is NW while ndir=0 is SE */
if (slocus_control & SLOCUS_NDIR_MASK){
*(nein++)=*neout;
*(nein++)=*(neout+((i==(XCHIPS-1))7?
(7-4*XCHIPS) :
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7))
* (nein++)=*(neout+((j==(YCHIPS-1))7
(-4*XCHIPS* (YCHIPS-1)):
(4*XCHIPS)));
*(nein++)=*(neout+3);
}
else {
* (nein++) =% (neout+((j==0)7
(2+4*XCHIPS* (YCHIPS-1)):
(2-4*XCHIPS)));
*(nein++)=*(neout+1);
*(nein++)=x(neout+2);
*(nein++)=*(neout+((i==0)7
(4*XCHIPS-3):
-3));
}
neout+=4;
}

/* get new values off of network edge */

/* cycle through chips */
cnt=XCHIPS*xYCHIPS;
neout=slocus_newsedgeout;
nn=slocus_news;
while(cnt-->0){

if ((slocus_control & SLOCUS_PADPWR_MASK)==0) {
for(i=0;i<32;i++){
nltmp<<=1;
nltmp |= (*(nn+i) & 0x80000000)7 1:0;
nrtmp<<=1;
nrtmp |= *(nn+i) & 1;
}
*(neout++)=%*nn;
*(neout++)=nrtmp;
* (neout++)=*(nn+31) ;
*(neout++)=nltmp;
nn+=32;
}
else { /* powerdown if one */
*(neout++)=0;
*(neout++)=0;
*(neout++)=0;
* (neout++)=0;
}
¥
}
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/* compute global-OR function */
long int or_comp()
{
long cnt,*nn,orflag;
nn=slocus_news;
orflag=0;
/* cycle through all chips */
cnt=XCHIPS*YCHIPS;
/* check upper right bit */
if((slocus_control & SLOCUS_GLOBORPWR_MASK)==0) {
while(cnt-->0){
if(*nn & 0x01){ orflag=1; break;}
nn+=32;%}
if(slocus_verbose==1)
if (orflag==1) puts("Global OR returned TRUE");
else puts("Global OR returned FALSE");
ks
else if(slocus_verbose==1) puts("Global OR disabled");
slocus_result=((orflag << 7) | (slocus_control &O0x7F));
return orflag;
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A.1.2 Sloconv Nanocode Converter

/* the Sloconv Slocus convertor */

/* By Tim Kutscha 12/1/93 */

/* produces slocus script files from */

/* assembler output files from the slocus assember */

#tinclude <stdio.h>

int offset, interval,perchip;
char tmp;

main(int argc, char *argv([])
{
/* set up variables for counters, chip count and files */
long int 1i,j,k,cnt;
unsigned long int instrl,instrO;
long int xc,yc,reghex,binary;
FILE *fpl,*fp2,*fp3;
char str[256],1inp[65600],*ptr;
int flags[77];
/* parse command line arguments */
if (arge ==1) {
printf("No arguments given\n");
printf("Must specify assembler <filename> \n");
exit(1); }
if (arge !'=2) {
printf ("Too many arguments specified\n");
printf("Only supply assembler <filename>\n");
exit(1); }
strcpy(str,argv[1i]);
fpi=fopen(str,"r");
if (fp1 ==NULL){
printf("Can’t open %s for input!\n",str);
exit(1);}
strepy(str,argv([1]);
strcat(str,".slocus");
fp2 = fopen(str,"w");
if (fp2 ==NULL){
printf("Can’t open %s for output!\n",str);
fclose(fpl);
exit(1); }
fp3 = fopen("slocus.def","w");
if (£p3 ==NULL){
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printf("Can’t open slocus.def for output!\n");
fclose(fpl);
fclose(fp2);
exit(1); }
/* get first line - PE array count */
fgets(linp,25600,fpl);
ptr=linp+1;
if(linp[0]'=’m’) {
printf("Error in first line (not mesh definition):\n");
printf ("%s\n",linp);
exit(1); }
sscanf (ptr,"%dx/kd",&yc,&xc);
if((xc % 32) =0 || (yc %32) '=0) {
printf ("Input mesh is not a factor of 32: %s\n",linp);
exit(1);}
xc=xc/32; yc=yc/32;
if((xc € 0) Il (yc < 0) |l (xcxyc > 800)) {
printf(""Mesh parameters are negative or out of range: %s\n",linp);
exit(1);}
puts("");
puts("Welcome to SLOCONV, the Slocus assembler converter.");
printf("Using an array of %d by %d chips.\n",xc,yc);
/* set up line counter and start parsing lines in the file */
1=0;
for(;;){
/* fgets returns NULL at end of file */
if (fgets(1inp,65600,fp1)==NULL) break;
i++; /% increment line count */
ptr=1linp+i;
/* execute command */
if(linp[0]=="0"){
instr1=0; instr0=0;
/* parse high 24 bits */
for(j=0;j<24;j++){
instrl <<=1;
if(*ptr=="1’) instri++;
else if (*ptr!=’0’){
printf("Instruction error in line %d. Continuing...\n",i);
break;
}
ptr++;
}
/* parse low 32 bits */
for(j=0;3j<32;j++){
instr0 <<=1;
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/*

/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*

/*
/*
/*
/*
/*

if (*ptr==’1’) instrO++;
else if (*¥ptr!=’0’){
printf("Instruction error in line %d. Continuing...\n",i);
break;}
ptr++;
}
output to file */
fprintf (fp2,"i %08x %08x\n",instrl,instr0);
fprintf(£fp2,"p Executing Instruction %08x %08x\n",
instril,instr0);
ADD stuff for printing out current state of machine !!!*/
numbers are as follows: */
0-63 register files (left first, top to bottom) */
64 top news in port */
65 right news in port */
66 bottom news in port */
67 left news in port */
68 top news out port */
69 right news out port */
70 bottom news out port */
71 left news out port */
72 DPM in port */
73 DPM out port */
74 Global or status (read only) */
75 News network nodes */
76 Data-plane network nodes */

for(j=0;3j<77;j++)
if(flags[j]) {
if (j==76) {
fputs("p Global OR flag",fp2);
fputs("rs g",fp2); }
else {
get_param(j);
fprintf (fp2,"p Register %d status:\n",j);
for(k=offset;k<xc*yc*interval*perchip;k+=interval)
fprintf(£fp2,"rs Yc %x\n",tmp,k);

}
NOTE: All values are loaded on a per chip basis */

i.e. the first 32 bit words in a line will go into all the rows */
of the first chip of the array and not along the top row */
for each chip in line !! This will cause major problems when */
simulating a greater than 32x32 array !! */
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/* set up general register */
else if(linp[0]=="g’) {
sscanf (ptr,"%d",&j);
1f(3>=0 || j<=73) {
ptr=(char *)strchr(ptr,’=’);
ptr++;
tmp=*(ptr++);
if (tmp==’b’) binary=1;
else if(tmp==’h’) binary=0;
else {
printf("Register in line %d has incorrect type.\n",i);
fclose(fpl);
fclose(£fp2);
fclose(£fp3);
exit(1);
}
get_param(j);
for(cnt=offset; cnt<interval*xc*yc*perchip;cnt+=interval){
if (binary==1)
for(k=0;k<32;k++){
reghex <<=1;
if (% (ptr++)=="1") reghex++;
}
else {
strncpy(str,ptr,8);
ptr+=8;
*(str+8)=0;
sscanf (str,"%x",&reghex) ;
}
fprintf(£p2,"ws %c %08x %08x\n",tmp, cnt, reghex);
}
b
}
/* set up flagged register */
else if(linp[0]=="f") {
sscanf (ptr,"%d",&j);
if(j>=0 && j<=76)
flags[j]=1;
ptr=(char *)strchr(ptr,’=’);
if (ptr!=NULL && j '=76) {
ptr++;
tmp=* (ptr++) ;
1f(tmp==’b’) binary=1;
else if(tmp==’'h’) binary=0;
else {
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printf("Register in line %d has incorrect type.\n",i);
fclose(fpl);
fclose(fp2);
fclose(£fp3);
exit(1);
3
get_param(j);
for(cnt=offset; cnt<interval*xc*yc*perchip;cnt+=interval){
if(binary==1)
for(k=0;k<32;k++){
reghex <<=1;
if (% (ptr++)=="1’) reghex++;
}
else {
strncpy(str,ptr,8);
ptr+=8;
*(str+8)=0;
sscanf (str,"/x",&reghex) ;
}
fprintf (£fp2,"ws %c %08x %08x\n",tmp, cnt, reghex);
¥
}
}
}
unflag a given register */
else if(linp[0]=="u’) {
sscanf (ptr,"%d",&j) ;
if(j>=0 && j<=76) flags[j1=0;
else printf("Tried to unflag bad register /d, line %d\n",j,i);
}
send command directly to slocus simulator (sans initial ’c’) */
else if(linp[0]=="c’) {
fputs(ptr,fp2);
}
print out comment in output file by preceeding with p */
else if(linp[0]==";’) {
strcpy(str,"p ");
strcat(str,linp);
fputs(str,fp2); }
everything else is an error - break out and finish */
else {
printf("Error in file...finishing anyway.\n");
break;
}
}
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printf("Processed )d lines.\n",i);
fputs("quit\n",fp2);
fprintf (fp3,"#define XCHIPS %d\n",xc);
fprintf(£fp3, "#define YCHIPS Jd\n",yc);
fprintf (£fp3,"#define VERBOSELEVEL O\n\n");
fclose(fpl);
fclose(fp2);
fclose(fp3);
printf(""Make sure to recompile the Slocus program with\n");
printf ("XCHIPS=Y%d, YCHIPS=}d and VERBOSELEVEL=0\n",xc,yc);
printf("These parameters are in the slocus.def file.\n");
puts("");
}

get_param(int num)
{
if (num>=0 && num<=63) {tmp='r’; offset=num; interval=64; perchip=32;}
else if(num>=64 && num<=67){tmp=’e’; offset=num-64;
interval=4; perchip=1;}
else if (num>=68 && num<=71){tmp=’t’; offset=num-68;
interval=4; perchip=1;}
else if(num==72){tmp="1i’; offset=0; interval=1; perchip=1;}
else if (num==73){tmp=’0’; offset=0; interval=1; perchip=1;}
else if(num==75){tmp=’n’; offset=0; interval=1; perchip=32;}
else if (num==76){tmp=’d’; offset=0; interval=1; perchip=32;}
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A.1.3 Slorun Execution Program

#include <stdio.h>
#include <string.h>
#define SLOCUSSLAVE 1
#define VERBOSELEVEL 0
#define XCHIPS 16
#define YCHIPS 16
#include "slocus.c"

#ifndef sparc
#include "_filbuf.c"
#endif

main()
{
char fio[120],*charptr,filstr[100],cmdstr[200],*tmpptr,buf[129];
unsigned char chunk;
long int sresponse,regnum, i,j,k,l,cnst,*regptr,vl,v2;
int fd ;
FILE *filecmd,*fileslocus,*fileout;

#ifndef sparc
filecmd=
fopen("/home/ar/urop/kutscha/slocus/i960/slorun.cmd","r");
#else
filecmd=fopen('"slorun.cmd","r");
#endif
if(filecmd == NULL)
{ puts("error opening command file.."); exit(1); }

#ifndef sparc
fileout=
fopen("/home/ar/urop/kutscha/slocus/i960/slorun.output”,"w");
#else
fileout=fopen(''slorun.output","w");
#endif
if(fileout == NULL)
{ puts("error opening output.."); exit(2); }

while(1)
{
if (fgets(fio,120,filecmd) == NULL) break;
charptr=fio;
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if (*charptr=="q’) break;

if (*charptr==’c’) reset_slocus();

if (*charptr=="1r’) {
tmpptr=next_space(charptr);
tmpptr=clear_space(tmpptr) ;
sscanf (tmpptr,"%s",filstr);
fileslocus=fopen(filstr,"r");
if(fileslocus != NULL) {

#ifndef sparc

#telse

#endif

sprintf (cmdstr,

"echo Running 1960 %s >> slorun.log",filstr);
systemd(cmdstr) ;
systemd("date >> slorun.log");

sprintf(cmdstr,

"echo Running Sparc %s >> slorun.log",filstr);
system(cmdstr) ;
system("date >> slorun.log");

while(1)

{
if(fgets(fio,120,fileslocus) == NULL) break;
if (*fio==’q’) break;
if(xfio=="p’) fputs((fio+2),fileout);
*(fio+strlen(fio)-1)=0; /* clear the newline */
sresponse=slocus(fio);
if(*fio==’r’) fprintf(fileout,"/08X\n",sresponse);

}

#ifndef sparc

#telse

#endif

b

systemd("date >> slorun.log");
sprintf(cmdstr,

"grep -c Executing %s >> slorun.log",filstr);
systemd(cmdstr) ;

system("date >> slorun.log");
sprintf(cmdstr,

"grep -c Executing %s >> slorun.log",filstr);
system(cmdstr) ;

fclose(fileslocus);

else printf("Error opening file %s\n",filstr);

by
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if (*charptr==’s’) {
tmpptr=next_space(charptr) ;
tmpptr=clear_space(tmpptr) ;
sscanf (tmpptr,"%d %s",&regnum, filstr);
fd=creat (filstr,0664);
if(fd = -1) {
#ifndef sparc
sprintf(cmdstr,
"echo Saving register %d to %s >> slorun.log",
regnum,filstr);
systemd(cmdstr) ;
#else
sprintf(cmdstr,
"echo Saving register %d to %s >> slorun.log",
regnum,filstr);
system(cmdstr) ;
#endif
sprintf (buf,"P5\n128 128\n255\n");
i = write(fd,buf,15);
if(i!'=15) printf("error writing file header %s\n",filstr);
printf("Saving register /d to %s\n",regnum,filstr);
for(i=0; i<16;i++) { /* down 16 chips */
printf ("%2d\n", (15-1));
for(j=0; j<8; j++) { /* down 8 numbers */
for(k=0; k<16;k++) {/* accross 16 chips */
regptr=slocus_regfile +
(regnum + (k*64%32+j*64*%4+64%32%16%1));
vi=#regptr; v2=x(regptr+64);
for(1=7;1>=0;1--){ /* accross 16 snakes */
chunk=((v2 >> (1*4)) & 0x0F) << 4 |
flipa((vi >> (1%4)) & 0xOF);
* (buf+k*8+(7-1) ) =chunk;
}
}
k=write(fd,buf,128);
if(k!=128) printf("write error s i %d\n",filstr,i);
}
}
}
else printf("Error writing picture file %s\n",filstr);
}
if (*charptr=="1’) {
tmpptr=next_space(charptr);
tmpptr=clear_space(tmpptr) ;
sscanf (tmpptr,"%4d %s",&regnum,filstr);
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fd=open(filstr,0);
if(fd !'= -1) {

#ifndef sparc

sprintf(cmdstr,
"echo Loading register /d from %s >> slorun.log",
regnum,filstr);

systemd (cmdstr) ;

#telse

sprintf(cmdstr,
"echo Loading register /d from %s >> slorun.log",
regnum,filstr);

system(cmdstr) ;

#tendif

i=read (fd,buf,15);
if((xbuf t= ’P’) || (i != 15))
printf("bad input file %s\n",filstr);
printf("Loading register %d from %s\n",regnum,filstr);
for(i=0; i<16;i++) { /* down 16 chips */
printf ("%2d\n", (15-i));
for(j=0; j<8; j++) {/* down 8 numbers */
k=read(fd,buf,128);
if(k !'= 128) printf("error reading i %d\n",i);
for(k=0; k<16;k++) {/* accross 16 chips */
cnst=(regnum + (k*64%32+j%64%4+64%32%16%1));
regptr=slocus_regfile + cnst;
v1=0; v2=0;
for(1=0;1<8;1++){ /* accross 16 snakes */
chunk=* (buf+k*8+1) ;
vl <<=4; v1 |= flip4((int)chunk & 0x0F);
v2 <<=4; v2 |= ((int)chunk & 0xO0F0) >> 4;
}
if(i==0) printf("vi %8x v2 %8x\n",v1,v2); */
*regptr=vl; *(regptr+64)=v2;
*(regptr+128)=0; *(regptr+192)=0;
}
}
}
} :
else printf("Error reading picture file %s\n",filstr);
}
}

fclose(fileout);
fclose(filecmd) ;

exit(0);
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flip4(n)

{

switch(n)

{

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

0
1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

return 0;
return 8;
return 4;
return 12;
return 2;
return 10;
return 6;
return 14;
return 1;
return 9;
return 5;
return 13;
return 3;
return 11;
return 7;
return 15;
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A.2 Vision Algorithms

The following pages list the Abacus assembler code utilizing optimized procedures to

implement the four following vision algorithms:

1.

o

gtest.asm - Performs a single Gaussian convolution by convolving the image

with a triangle in both the horizontal and vertical direction.

edgetest.asm - Applies two Gaussians to an image, then a Laplacian kernel,

then searches for resulting zero-crossings in the image.

surfacetest.asm - Uses surface reconstruction equations to approximate a
surface given noisy information. Approximates the height, X-slope and Y-slope

of a given surface.

optiflowtest.asm - Takes two binary images and determines the most-likely
displacement of the objects in the second image relative to the first. Finds a
maximum positive displacement of two on both axes and calculates a voting

sum over a 3x3 area using a spiral technique.
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A.2.1 Gaussian

include /projects/abacus/src/asm/all-lib.asm ;
globals : image = 11 , output = 12 ;
mesh : 32 , 32 ;

procedure main ( none )

{
call ( init-config ) ;
comment shifting precision up ;
call ( orient-high ) ;
call ( asl4 image image ) ;
comment performing gaussian ;
call ( gauss image image ) ;
comment shifting precision down ;
call ( orient-low ) ;
call ( asr image output ) ;
call ( asr2 output output ) ;
call ( asr4 image image ) ;
comment done ;
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A.2.2 Edge Detection

include /projects/abacus/src/asm/all-1lib.asm ;

globals : i1l = 11 , tmpl = 44 , tmp2 = 45 , tmp3 = 46 ,
tmp4 = 47 , tmp5 = 48 , tmp6 = 49 , tmp7 = 50 , tmp8 = 51 ,
tmp9 = 52 , tmpl0 =53 , 1p = 12 , cy = 13 , horiz = 54 ,
vert = 55 , diag = 56 , gl = 14 ;

mesh : 32 , 32 ;

procedure main ( none )
{
! image loaded in il already
call ( init-config ) ;
comment shifting precision up ;
call ( orient~high ) ;
call ( asl4 i1 i1 ) ;
comment performing gaussian 1 2 ;
call ( gauss i1l i1 ) ;
call ( gauss i1 il ) ;
comment shifting precision down ;
call ( orient-low ) ;
call ( asr2 i1 g1 ) ;
call ( asr g1 gl ) ;
call ( asr4 i1 i1 ) ;
comment doing laplace kernel ;
call ( orient-high ) ;
call ( asl2 il tmp4 ) ;

call ( orient-north ) ;

call ( shift-cluster-north il tmpl ) ;
call ( shift-cluster-north tmp4 tmp5 ) ;
call ( orient-south ) ;

call ( shift-cluster-south il tmp2 ) ;
call ( shift-cluster-south tmp4 tmp6 ) ;

(

(

(

(

(

(

call ( orient-east ) ;

call ( shift-cluster-east tmp4 tmp7 ) ;
call ( shift-cluster-east tmp2 tmp9 ) ;
call ( shift-cluster-east tmpl tmpl0 ) ;
call ( orient-west ) ;
call ( shift-cluster-west tmp4 tmp8 ) ;
call ( shift-cluster-west tmp2 tmp2 ) ;
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call ( shift-cluster-west tmpl tmpl ) ;
cy = ( zero ) ;

lp = tmp5 ; ! initial number

comment final laplacian ;

call ( orient-high ) ;

call ( acc-start lp tmp6 cy 1lp ) ;
call ( accumulate 1lp cy tmp7 1lp ) ;
call ( accumulate 1lp cy tmp8 lp ) ;
call ( accumulate lp cy tmpl 1lp ) ;
call ( accumulate 1lp cy tmp2 lp ) ;
call ( accumulate 1lp cy tmp9 1lp ) ;
call ( accumulate 1lp cy tmpi0 1lp ) ;
call ( add cy 1p 1p ) ;

call ( asl4 il tmpl ) ;

call ( minus 1lp tmpl 1p ) ;

call ( minus lp tmp4 lp ) ;

comment find-zero-crossings ;

call ( sign 1lp tmpl ) ;

call ( orient-north ) ;

call ( shift-cluster-north tmpl tmp2 ) ;
horiz = ( xor tmpl tmp2 ) ;

call ( orient-west ) ;

call ( shift-cluster-west tmpl tmp4 ) ;
= ( xor tmp4 tmpl ) ;

diag = ( or horiz vert ) ;

comment done ;

vert
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A.2.3 Surface Approximation

include /projects/abacus/src/asm/all-lib.asm ;

globals : image = 11 , 11 = 10 , tmpl = 44 , tmp2 = 45 , tmp3 = 46 ,
tmp4 = 47 , tmpb5 = 48 , tmp6 = 49 , tmp7 = 50 , tmp8 = 51 ,

tmp9 = 52 , tmpl0 =53 , 1p = 12 , cyl = 13 , u2 = 54 , p2 = 55,

q2 =56 , ul =57, pl =58, q1l =59 ;

mesh : 32 , 32 ;

procedure iteration ( ui , u2 , pt , p2 , q1 , g2 )
{

comment computing height ;

call ( orient-east ) ;

call ( shift-cluster-east pl tmpl ) ;
call ( shift-cluster-east ul tmp3 ) ;
call ( orient-north ) ;

call ( shift-cluster-north q1 tmp2 ) ;
call ( shift-cluster-north ul tmp4 ) ;
call ( orient-west ) ;

call ( shift-cluster-west ul tmp6 ) ;
call ( orient-south ) ;

call ( shift-cluster-south ul tmp5 ) ;
call ( orient-high ) ;

call ( acc-start tmp6 tmp2 cyl tmp6 ) ;
call ( accumulate tmp6 cyl tmp3 tmp6 ) ;
call ( accumulate tmp6 cyl tmp4 tmp6 ) ;
call ( accumulate tmp6 cyl tmp5 tmp6 ) ;
call ( accumulate tmp6 cyl tmpl u2 ) ;
call ( add cyl u2 cyl ) ;

call ( minus cyl ql cyl ) ;

call ( minus cyl pl cyl ) ;

call ( orient-low ) ;

call ( asr2 cyl u2 ) ;
comment computing slopel ;
call ( orient-west ) ;

call ( shift-cluster-west u2 tmp6 ) ;
call ( shift-cluster-west pl tmp5 ) ;
call ( orient-north ) ;
call ( shift-cluster-north pl tmp3 ) ;
call ( orient-south ) ;
call ( shift-cluster-south pl tmp4 ) ;
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call ( orient-high ) ;

call ( acc-start tmp6 tmpl cyl tmp6 ) ;
call ( accumulate tmp6 cyl tmp3 tmp6 ) ;
call ( accumulate tmp6 cyl tmp4 tmp6 ) ;
call ( accumulate tmp6 cyl tmp5 p2 ) ;
call ( add cyl p2 cyl ) ;

call ( minus cyl u2 cyl ) ;
comment dividing by five ;
call ( asl cyl tmp3 ) ;

call ( add cyl tmp3 cyl ) ;
call ( orient-low ) ;

call ( asr4 tmp3 cyl ) ;
call ( orient-high ) ;

call ( add cyl tmp3 cyl ) ;
call ( orient-low ) ;

call ( asr4 cyl cyl ) ;
call ( orient-high ) ;

call ( add cyl tmp3 cyl ) ;
call ( add cyl 1sb cyl ) ;
call ( orient-low ) ;

call ( asr4 cyl p2 ) ;

comment computing slope2 ;
call ( orient-south ) ;

call ( shift-cluster-south u2 tmp3 ) ;
call ( shift-cluster-south ql tmp4 ) ;
call ( orient-east ) ;

call ( shift-cluster-east ql tmp5 )
call ( orient-west ) ;

call ( shift-cluster-west ql tmp6 ) ;
call ( orient-high ) ;

call ( acc-start tmp6 tmp2 cyl tmp6 ) ;
call ( accumulate tmp6 cyl tmp3 tmp6 ) ;
call ( accumulate tmp6 cyl tmp4 tmp6 ) ;
call ( accumulate tmp6 cyl tmp5 q2 ) ;

call ( add cyl q2 cyl ) ;
call ( minus cyl u2 cyl ) ;
comment dividing by five ;
call ( asl cyl tmp3 ) ;

call ( add cyl tmp3 cyl ) ;
call ( orient-low ) ;

call ( asr4 cyl cyl ) ;
call ( orient-high ) ;

call ( add cyl tmp3 cyl ) ;
call ( orient-low ) ;

call ( asr4 cyl cyl ) ;
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call ( orient-high ) ;
call ( add cyl tmp3 cyl ) ;
call ( add cyl 1lsb cyl ) ;
call ( orient-low ) ;
call ( asr4 cyl q2 ) ;

procedure main ( none )

{

! image, pl and ql already loaded
call ( init-config ) ;
comment getting landscape ;
ul = image ;
call ( iteration ul u2 pl p2 ql q2 ) ;
image = u2 ;
pl = p2 ;
ql = q2 ;
comment done ;
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A.2.4 Optical Flow

include /projects/abacus/src/asm/all-lib.asm ;

globals : R1 = 5 , R2 =6 ,R4 =45 ,R5 =7, R6 = 46 ,
R7 =8, RB=47 , R9 =9 , = 48 , R11 = 10 , R12 = 49 ,
R13 = 11 , R14 = 50 , R15 = 12 , R16 = 51 , VAL = 13 , image = 14 ;

i
S
S

2w
o W
|

mesh : 32 , 32 ;

procedure main ( none )

{

! image loaded into '"image" and moved into R5
call ( init-config ) ;
comment generating initial mover ;
Rl = ( zero ) ; ! max

R7 = ( zero ) ; ! best x
R8 = (zero ) ; ! best y
R4 = image ;

call ( orient-north ) ;

(
call ( shift-cluster-north image R5 ) ;
call ( shift-cluster-north RS R5 ) ;

call ( orient-east ) ;
call ( shift-cluster-east R5 R5 ) ;

comment doing loop O O;
R3 = ( zero ) ;

R2 = R4 ;

call ( oriemt-high ) ;
call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
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call ( orient-high ) ;

call ( add E2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = ( zero ) ;
R8 = ( zero ) ;
IDLE = ( zero ) ;

comment doing loop 0 1 ;
R3 = ( zero ) ;

call ( orient-north ) ;

call ( shift-cluster-north R4 R2 ) ;
call ( orient-high ) ;

call ( equal R2 R6 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;
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call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = ( zero ) ;

R8 = 1lsb ;

call ( numgen-zero R8 ) ;
IDLE = ( zero ) ;

comment doing loop 0 2 ;
R3 = ( zero ) ;

call ( orient-north ) ;

call ( shift-cluster-north R4 R2 ) ;

call ( shift-cluster-north R2 R2 ) ;

call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;
call ( shift-cluster-south R2 R2 ) ;
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call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = ( zero ) ;

R8 = 1sb ;

call ( numgen-zero R8 ) ;
IDLE = ( zero ) ;

comment doing loop 1 O ;

R3 = ( zero ) ;

call ( orient-east ) ;

call ( shift-cluster-east R4 R2 ) ;

call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
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call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = 1sb ;

R8 = ( zero ) ;
IDLE = ( zero ) ;

comment doing loop 1 1 ;

R3 = ( zero ) ;

call ( orient-east ) ;

call ( shift-cluster-east R4 R2 ) ;
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call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = 1sb ;

R8 = 1sb ;

IDLE = ( zero ) ;
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comment doing loop 1 2 ;
R3 = ( zero ) ;

call
call
call
call
call
call
call

orient-high ) ;

add R2 R3 R3 ) ;
orient-south ) ;
shift-cluster-south R2 R2 ) ;
orient-high ) ;

add R2 R3 R3 ) ;
greater-than R3 R1 IDLE ) ;

call ( orient-east ) ;
call ( shift-cluster-east R4 R2 ) ;
call ( orient-north ) ;
call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;
call ( equal R2 R5 R2 ) ;
R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;
call ( orient-south ) ;
call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-east ) ;
call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-north ) ;
call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-north ) ;
call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-west ) ;
call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-west ) ;
call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;
call ( add R2 R3 R3 ) ;
call ( orient-south ) ;
call ( shift-cluster-south R2 R2 ) ;
(
(
(
(
(
(
(

117



call ( logic-not IDLE IDLE ) ;

R1 = R3 ;
R7 = 1sb ;
R8 = 1sb ;

call ( numgen-zero R8 ) ;
IDLE = ( zero ) ;

comment doing loop 2 0 ;
R3 = ( zero ) ;

call ( orient-east ) ;

call ( shift-cluster-east R4 R2 ) ;
call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;
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orient-south ) ;
shift-cluster-south R2 R2 ) ;
orient-high ) ;

add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = 1sb ;

call ( numgen-zero R7 ) ;

R8 = ( zero ) ;

IDLE = ( zero ) ;

call
call
call
call

NN NN AN N

comment doing loop 2 1 ;
R3 = ( zero ) ;

call ( orient-east ) ;

call ( shift-cluster-east R4 R2 ) ;
call ( shift-cluster-east R2 R2 ) ;
call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;
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call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = 1sb ;

call ( numgen-zero R7 ) ;

R8 = 1sb ;

IDLE = ( zero ) ;

comment doing loop 2 2 ;
R3 = ( zerc ) ;

call ( orient-east ) ;

call ( shift-cluster-east R4 R2 ) ;
call ( shift-cluster-east R2 R2 ) ;
call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( equal R2 R5 R2 ) ;

R2 = ( and R2 1sb ) ; ! set matching things to one
call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-east ) ;

call ( shift-cluster-east R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;

call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-north ) ;
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call ( shift-cluster-north R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-west ) ;

call ( shift-cluster-west R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( orient-south ) ;

call ( shift-cluster-south R2 R2 ) ;
call ( orient-high ) ;

call ( add R2 R3 R3 ) ;

call ( greater-than R3 R1 IDLE ) ;
call ( logic-not IDLE IDLE ) ;

R1 = R3 ;

R7 = 1sb ;

call ( numgen-zero R7 ) ;

R8 = 1sb ;

call ( numgen-zero R8 ) ;
IDLE = ( zero ) ;
comment done ;
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A.3 Optimized Assembly Procedures

The following pages contain listings of optimized assembly procedures to help the

compiler abstract away from the internals of the Abacus architecture. Some proce-

dures are not fully optimized due to bugs in the assembler. Procedures assume that

operands come from either register file bank and may have to take extra cycles to

move registers around. Procedure groups include the following:

all-lib.asm, registers.asm- A general include file for programs and a file

to tell the assembler all the globally assigned registers.

orient.asm- Procedures to orient the NEWS network for all procedures.

add.asm- Contains adding, subtracting, accumulation and decummulation rou-

tines.

multdiv.asm - Contains multiplication. (division and remainder not imple-

mented yet)

shift.asm - Provides for inter-chip shifting of clusters as well as logical and

arithmetic shifts for intra-cluster functions.

logic.asm - Gives the Ascheme compiler an abstract bitwise logic library to

use. (Not really needed at the assembler level)

compare.asm- Performs greater-than, less-than and equal comparisons of num-

bers.

rebroadcast.asm - Broadcasts a register to the global-OR pin on each chip.

Also contains a procedure to determine the sign (polarity) of a number.

. gauss.asm- Performs a triangle convolution on a register in both the horizontal

and vertical direction to approximate a Gaussian function. Used by gtest.asm

and edgetest.asmin the vision algorithms.
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A.3.1 Library Listing and Global Registers

include /projects/abacus/src/asm/registers.asm ;
include /projects/abacus/src/asm/config.asm ;
include /projects/abacus/src/asm/add.asnm ;

include /projects/abacus/src/asm/compare.asm ;
include /projects/abacus/src/asm/orient.asm ;
include /projects/abacus/src/asm/shift.asnm ;
include /projects/abacus/src/asm/rebroadcast.asm ;
include /projects/abacus/src/asm/logic.asm ;
include /projects/abacus/src/asm/multdiv.asm ;
include /projects/abacus/src/asm/gauss.asn ;

'FILE OF REGISTER GLOBALS - counterpart of registers.sc

globals : in = 0 , out = 0 , inselect0 = 1 , inselectl = 2 ,
dp-in/out = 32 , break = 33 , idle = 35 ,
msb = 36 , 1sb = 37 , pid0 = 3 , pidl = 4 ,
pid2 = 38 , pid3 = 39 , news-in-north = 64 ,
news-in-east = 65 , news-in-south = 66 ,
news-in-west = 67 , news-out-north = 68 ,
news-out-east = 69 , news-out-south = 70 ,
news-out-west = 71 , data-plane-in = 72 ,
data-plane-out = 73 , global-or-flag = 74 ,
news-network = 75 , data-plane-network = 76 ,
top-edge = 40 , right-edge = 41 ,
bottom-edge = 42 , left-edge = 43 ;
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A.3.2 Orientation Procedures

! Orient to one direction along snake, or reverse thereof
'necessary : pid0,1,2 not all in same, in-selectl,0 with majority
possible arrangement : (pid2) (pidl pid0 in_selectl in_select0)

1

! The major problem with these orientations is the the msb of one
! cluster points to the 1lsb of an adjacent one so we get very long
! propagation lines. This must be corrected....

'read from lower id number ->flow to msb

procedure orient-high-connect ( none )

{
inselectl = ( not-and-or pid2 pidl pid0 ) , break = ( one ) ;
inselect0 = ( and-or pid2 pidl pid0 ) ;

3
'read from higher id number ->flow to 1lsb
procedure orient-low-connect ( none )

{

inselectl
inselectO

( or-and pid2 pidl pid0 ) , break = ( one ) ;
( not-or-and pid2 pidl pid0 ) ;

! The two following procedures try to correct this problem at
! expense of a clock cycle.

'read from lower id number ->flow to msb

procedure orient-high ( none )

{
inselectl = ( not-and-or pid2 pidl pid0 ) , break = ( one ) ;
inselect0 = ( and-or pid2 pidl pid0 ) ;
inselect0 = ( or inselect0 1lsb ) ;

}

'read from higher id number ->flow to 1sb
procedure orient-low ( none )

{
inselectl = ( or-and pid2 pidl pid0 ) , break = ( one ) ;
inselect0 = ( not-or-and pid2 pidl pid0 ) ;
inselectl = ( and-not inselectl msb ) ;

+

! These procedures allow image shifting and orient the
! chip boundaries as well. The break bit is turned on to save
! cycles since it is easy to turn it off and let values propagate
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procedure orient-south ( none ) !'read from processor above
{

controlbits copy O ;

inselectl = ( zero ) , break = ( one ) ;

inselect0 = ( zero ) ;

procedure orient-north ( none ) !read from processor below
{

controlbits copy 8 ;

inselectl = ( one ) , break = ( one ) ;

inselect0 = ( one ) ;

procedure orient-east ( none ) !read from processor to left
{

controlbits copy O ;

inselectl = ( one ) , break = ( one ) ;

inselect0 = ( zero ) ;

procedure orient-west ( none ) !read from processor to right
{

controlbits copy 8 ;

inselectl = ( zero ) , break = ( one ) ;

inselect0 = ( one ) ;
}
procedure orient-read-from-north ( none )
{
controlbits copy O ;
inselectl = ( zero ) , break = ( one ) ;
inselect0 = ( zero );
}
procedure orient-read-from-east ( none )
{
controlbits copy 8 ;
inselectl = ( zero ) , break = ( one ) ;
inselect0 = ( one );
}

procedure orient-read-from-west ( none )

{
controlbits copy O ;
inselectl = ( one ) , break = ( one ) ;
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inselect0 = ( zero );

procedure orient-read-from-south ( none )

{
controlbits copy 8 ;
inselectl = ( one ) , break = ( one ) ;
inselect0 = ( one );
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A.3.3 Addition and Accumulation Routines

'This performs a manchester-carry-chain addition

'again, watch for direction of read-set-up - again, I think it
'should be toward the 1lsb... orient-high (flow to msb)

!

!The add functions do a full carry-propagate addition of
'registers "a'" and "b", storing the result in "s"

!

'When adding large numbers of registers, use the accumulate

loption instead.
|

! This procedure makes sure the input carry bit is zero so we don’t
! have a carry from an adjacent number
! altered to handle all register banks
procedure add ( srci , src2 , dst )
{
locals-a : a , s ;
locals-b : b , blarg ;
a=srcl , b src?2 ;
! make sure lowest bit is broken
break = ( or-same lIsbab ) , out = (and ab ) ;
! not (A+B) & ~(A%B) wierdly enough...
blarg = ( xor a b ) ; ! also delay
s = ( and-not in 1lsb ) , break = ( one ) ;
dst = ( xor blarg s ) ;

'this may be slightly faster if you don’t need to worry about the
!carry bit propagating from nearby clusters
'necessary : a, b NOT in same bank.
'if a, s or a, b in same bank
'break, s not in same bank (although this is fixable)
!possible setup : (break a) (b s in/out)
procedure addshort (a , b, s )
{
break = ( or-same lsb a b ) ;
'not (A+B) & ~(A&B) wierdly enough...
out = ( and a b ) ; 'wait for break before writing to net
delay ; !wait for propagation
s = ( sum in a b ) , break = ( one ) ;
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! Accumulate

! This function adds the register "n" to the accumulation register "s"
! Register "c" is the carry register which stores the state of the

! system. After all is accumulated, the user should use a carry-prop
! addition to add the "c" and "s" registers for the final result.

i This function is good for multiplication functions which require

! the sum of many numbers.

| We should add a subtract accumlate in the future....

|

'necesary : s, ¢, n not all in same bank.

! at least two of above in bank with out.

! If in, 1lsb in same bank, ¢ in that bank as well

I

! orient-high required

! altered to handle all banks (for 7 or fewer "add" is faster)
! assume acc-start

procedure accumulate ( src , cy , nextnum , dst )

{
locals-a: s , cl ;
locals-b: n , c2 , d ;
S = src¢ , n = nextnum ;
cl=cy, c2 =cy ;
out = (carry sncl) ,d=(sumsnc2) ;
cy = ( and-not in 1sb ) ;
dst = d ;
}

! src and nextnum in different banks
! cy in left and dst in right
| assumes orient-high and acc-start
procedure accumulate-short ( src , ¢y , nextnum , dst )
{
locals-b : c2 ;
out = ( carry src nextnum cy ) , c2 = cy ;
cy = ( and-not in 1sb ) , dst = ( sum src nextnum c2 ) ;

! this acc-start instruction must be used to start ALL accumulates
! it sets the break bit and sets up the carry register

! assumes orient high

procedure acc-start ( srci , src2 , cy , dst )

{
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locals-a : sl ;
locals-b : s2 ;
sl = srcl , s2 = src2 ;
out = ( carry sl s2 ) , break = ( one ) ;
cy = ( and-not in 1lsb ) ;
dst = ( sum sl s2 ) ;
}
procedure acc-start-short ( srcl , src2 , cy , dst )
{
out = ( carry srcl src2 ) , break = ( one ) ;
cy = ( and-not in 1sb ) , dst = ( sum sl1 s2 ) ;

! this function subtracts two numbers s=a-b

! we accomplish this by inverting b and asserting the carry bit

! assumes orient-high-isolate

procedure minus ( srcl , src2 , diff )

{
locals-a : a , s , cdrv , tmpcar ;
locals-b : b ;
a=srcl , b= ( not src2 ) ;

! COMPILER CREATES AN ERROR IF WE TRY TO COMBINE THE NEXT TWO LINES

I FIX THIS!!
break = ( or-same 1lsb a b ) ;
cdrv = 1sb ;
out = ( sel-and-xor cdrv a b ) ;
delay ;
tmpcar = ( or in 1lsb ) ;
s = ( sum tmpcar a b ) , break = ( one ) ;
diff = s ;

}

procedure minus-short (a , b, s )

{
locals-a : cy , tmpcar ;

! should be or-xor
cy =1sb , s = (not b ) ;

! break if a and b are different

! should be sel-andnot-same
out = ( sel-and-xor cy a s ) , break = ( or-same 1lsb a s )
delay ;
tmpcar = ( or in 1sb ) ;
s = ( same tmpcar a b ) , break = ( one ) ;

I

! this is the reverse of accumulate and subtracts a number
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! from a stockpile by inverting the number and asserting the
! carry bit on the way out .
! assume orient-high-isolate
! altered to handle all registers (use minus if fewer than 7 )
! assumes unacc-start (break is one )
procedure unaccumulate ( src , cy , nextnum , dst )
{
locals-a : s, c ;
locals-b : n , d , c2 ;
s = src , n = ( not nextnum ) ;
c=<c¢cy, c2 =cy ;
out = (carrysnc) ,d=(sumsmnc2) ;
cy = ( or in 1sb ) ;
dst = d ;
}
! src, nextnum in different banks, cy in left , dst in right
procedure unaccumulate-short ( src , cy , nextnum , dst )
{
locals-b : c2 ;
out = ( uncarry src nextnum cy ) , c2 = ¢y ;
cy = ( or in 1sb ) , dst = ( same src nextnum cy ) ;

! these procedures start off the unaccumulate instructions
! they assume orient high
procedure unacc-start ( src , subtract , cy , dst )
{
locals-a : sl ;
locals-b : s2 ;
sl = src , s2 subtract ;
out = ( and-not s1 s2 ) , break = ( one ) ;
cy = ( or in 1sb ) ;
dst = ( sum s1 s2 ) ;

procedure unacc-start-short ( srcl , src2 , cy , dst )

{
out = ( and-not srcl src2 ) , break = ( one ) ;
cy = (or in 1sb ) , dst = ( same si s2 ) ;
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A.3.4 Multiplication Code

! multiply function
! result = a * b. a and b in either bank. result in left bank
I (in/out/result) (1sb/break)
! assuming orient-high-isolate
procedure mult16 ( a , b , output )
{
locals~a : tmp2 , decbit , cy ;
locals-b : tmp , result , cy2 ;
decbit = 1sb , tmp = b ;
out = ( and decbit a ) , break = ( zero ) ;
result = ( zero ) ; ! do delay here..
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 1
out = ( carry result tmp2 ) , result = ( sum result tmp2 ) ;

cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;

decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;

delay ;

tmp2 = ( and in tmp ) , break = ( one ) ;

! accumulate 2
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;

out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
I accumulate 3
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1lsb ) , cy2 = ( and-not in 1sb ) ;

out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;
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delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 4
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not
out = tmp ;

tmp = ( and-not in 1sb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero )
delay ;

tmp2 = ( and in tmp ) , break = ( one ) ;

! accumulate 5
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1lsb ) , cy2 = ( and-not
out = tmp ;

tmp = ( and-not in 1sb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero )

delay ;

tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 6

out = ( carry result tmp2 cy ) ,

result = ( sum result tmp2 cy2 ) ;

cy = ( and-not in 1sb ) , cy2 = ( and-not

out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero )

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
I accumulate 7
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1lsb ) , cy2 = ( and-not
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero )

delay ;

in 1sb )

in 1sb )

in 1sb )

in 1lsb )

3

b

J

)
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tmp2 = ( and in tmp ) , break = ( one ) ;
I accumulate 8
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;

out = tmp ;

tmp = ( and-not in 1sb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;
delay ;

tmp2 = ( and in tmp ) , break = ( one ) ;

! accumulate 9
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1lsb ) , cy2 = ( and-not in 1sb ) ;
out = tmp ;

tmp = ( and-not in 1sb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;
delay ;

tmp2 = ( and in tmp ) , break = ( one ) ;

! accumulate 10
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;

cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;

decbit = ( and-not in 1lsb ) ;

out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 11
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1lsb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
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I accumulate 12
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1sb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 13
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;
tmp = ( and-not in 1lsb ) , out
decbit = ( and-not in 1lsb ) ;

decbit ;

out = ( and decbit a ) , break = ( zero ) ;
delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
I accumulate 14
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1sb ) ;
out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 15
out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;
out = tmp ;

tmp = ( and-not in 1lsb ) , out = decbit ;
decbit = ( and-not in 1lsb ) ;
out = ( and decbit a ) , break = ( zero ) ;

delay ;
tmp2 = ( and in tmp ) , break = ( one ) ;
! accumulate 16
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:

out = ( carry result tmp2 cy ) ,
result = ( sum result tmp2 cy2 ) ;
cy = ( and-not in 1sb ) , cy2 = ( and-not in 1lsb ) ;

final add
should use or-same
out = ( and result cy ) , break = ( or-same lsb result cy ) ;
delay ;
tmp2 = ( and-not in 1lsb ) ;
result = ( sum tmp2 result cy2 ) ;
output = result ;

assumes orient-high-isolate
calculate a/b , produces result and remainder
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A.3.5 Cluster, Logical and Arithmetic Shifting

! Arithmetic Shift Right
'note, reads should be organized from the MSB down... orient-low
'necessary : if in, msb in same bank, src there as well
'all asr’s assume orient-low-isolate
procedure asr ( src , dst ) ! an arithmetic shift right...
{

locals-a : 4 , s ;

s = src ;

out = src , break = ( one ) ;

= ( mux in s msb )

dst = d ;
bs
procedure asr2 ( src , dst ) ! an arithmetic shift right..
{

locals-a : d , s ;

s = src ;

out = src , break = ( one ) ;

out = ( mux in s msb ) ;

d = ( mux in s msb )

dst = d ;
}
procedure asr4 ( src , dst ) ! an arithmetic shift right.
{

locals-a : d , s ;

s = src ;

out = src , break = ( one ) ;

out = ( mux in s msb ) ;

out = ( mux in s msb ) ;

out = ( mux in s msb ) ;

d = ( mux in s msb ) ;

dst = d ;
}
procedure asr-short ( src , dst ) ! an arithmetic shift right.
{

out = src , break = ( one ) ;

dst = ( mux in src msb )
}
procedure asr2-short ( src , dst ) ! an arithmetic shift right.
{

out = src , break = ( one )

out = ( mux in src msb ) ;
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dst = ( mux in src msb ) ;

}
procedure asr4-short ( src , dst ) ! an arithmetic shift right...
{
out = src , break = ( one ) ;
out = ( mux in src msb ) ;
out = ( mux in src msb ) ;
out = ( mux in src msb ) ;
dst = ( mux in s msb ) ;
}

! Do logic shift rights, assume orient-low
procedure 1sr ( src , dst )

{
out = src , break = ( one ) ;
dst = ( and-not in msb ) ;

}

procedure 1lsr2 ( src , dst )

{
out = src , break = ( one ) ;
out = ( and-not in msb ) ;
dst = ( and-not in msb ) ;

b5

procedure 1lsr4 ( src , dst )

{
out = src , break = ( one ) ;
out = ( and-not in msb ) ;
out = ( and-not in msb ) ;
out = ( and-not in msb ) ;
dst = ( and-not in msb ) ;

}

! these are also logic shift lefts...

! all shift left procedures assume orient-high-isolate

procedure asl ( src , dst ) ! an arithmetic shift left...

{
out = src , break = ( one ) ;
dst = ( and-not in 1sb ) ;

}

procedure asl2 ( src , dst )

{
out = src , break = ( one ) ;
out = ( and-not in 1lsb ) ;
dst = ( and-not in 1sb ) ;

}

procedure asl4 ( src , dst )
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out = src , break = ( one ) ;
out = ( and-not in 1lsb ) ;

out = ( and-not in 1lsb ) ;

out = ( and-not in 1sb ) ;

dst = ( and-not in 1lsb ) ;
}
! number generation shifts, these shift left and add a one or zero
procedure numgen-zero ( dst ) ! an arithmetic shift left...
{

out = dst , break = ( one ) ;

dst = ( and-not in 1sb ) ;
}
procedure numgen-one ( dst ) ! an arithmetic shift left...
{

out = dst , break = ( one ) ;

dst = ( or in 1lsb ) ;
}

! cluster shifts - shift a 16 bit number up, down, left or right
! destination must be in B bank and edge flags must be in B!!

! assumes orient-north with break set

procedure shift-cluster-north ( src , dst )

{
locals-b : 4 ;
out = src ;
out = in ;
out = in ;
out = in ;

out = in , d = in ;
! take care of boundary shifting
out = in, d = ( mux d in bottom-edge ) ;
d = ( mux d in bottom-edge ) ;
dst = d ;
}
! assumes orient-south
procedure shift-cluster-south ( src , dst )

{
locals-b : 4 ;
out = src ;
out = in ;
out = in ;
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out = in ;
out = in , d = in ;
! take care of boundary shifting
out = in, d = ( mux d in top-edge )
d = ( mux d in top-edge ) ;
dst = d ;
¥
| assumes orient east
procedure shift-cluster-east ( src , dst )

{

locals-b : d ;
out = src ;
out = in ;

out = in ;

out = in ;

out = in , d = in ;
! take care of boundary shifting

out = in, d = ( mux d in left-edge ) ;
d = ( mux d in left-edge ) ;
dst = d ;

3

| assumes orient west
procedure shift-cluster-west ( src , dst )

{

locals-b : 4 ;
out = src ;
out = in ;
out = in ;
out = in ;

out = in , d = in ;
! take care of boundary shifting
out = in, d = ( mux d in right-edge ) ;
d = ( mux d in right-edge ) ;
dst = d ;

! a and s in same bank as break

| assume the orient command sets break to one

! This DOES NOT handle chip boundary conditions!!
procedure image-shift-same-bank ( src , dst )

{

out = src ;
out = in ;
out = in ;
out = in ;
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dst = in ;
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A.3.6 Bitwise Logical Operations

! computes general logic functions

! needed for the compiler to handle registers in both banks
! this takes twice as long but comes out correctly

! this also prevents the compiler from handling primitives.

procedure logic-not ( src , dst )

{
dst = ( not src ) ;
}
procedure logic-and ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b ;
a =srcl , b= src2;
dst = (and a b ) ;
}
procedure logic-or ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b ;
a =srcl , b= src2;
dst = (or abdb) ;
}
procedure logic-nand ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b ;
a = srcl , b= src2 ;
dst = ( nand a b ) ;
¥
procedure logic-nor ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b ;
a = srcl , b= src2 ;
dst = (nor ab ) ;
}
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procedure logic-same ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b
a = gsrcl , b = src2 ;

-

dst = ( same a b ) ;

procedure logic~-xor ( srcl , src2 , dst )
{
locals-a : a ;
locals-b : b
a =srcl , Db src2 ;
dst = ( xor a b ) ;

-

142



A.3.7 Comparison Functions

! this routine compares two numbers

' A>B?7

! orient-high-isolate is assumed

! NOTE: This ignores the state of the topmost bit!!
! returns all ones if A > B otherwise all zeros

Inecessary : if a, b in same bank, so is break. diff and break not in
! same bank
'possible arrangement : (a break) (b diff in/out)
procedure greater-than ( srcl , src2 , diff )
{
locals-a : a , d ;
locals-b : b ;
a=s8rcl , b src2 ;
! deal with 1lsb bit!! or-xor 1lsb a b
d=(xorab) ;
out = ( and-not a b ) , break = ( or 1sb d ) ;
delay ;
! combin next instructions
d = ( and-not in 1sb ) ; ! get bits minus 1lsb
out = ( and d msb ) , break = 1sb ;
delay ;
d = in , break = ( one ) ;
diff = 4 ;

}
procedure greater-than-short ( a , b , diff )
{
! use or-xor lsb a b
out = ( and-not a b ) , break = ( xor a b ) ;
delay ;
! combine next two lines into one using special func
| or-andnot msb in 1lsb , move msb to left bank first
diff = ( and-not in 1lsb ) ;
out = ( and diff msb ) , break = 1lsb ;
delay ;
diff = in , break = ( one ) ;
}
procedure less-than ( srcl , src2 , diff )
{
locals-a : a , d ;
locals-b : b ;
a =srcl , b= src2;
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! use or-xor 1lsb a b
out = ( and-not b a ) , break = ( xor a b ) ;

delay ;
| combine next two instructions
d = ( and-not in 1sb ) ; ! get bits minus 1lsb
out = ( and d msb ) , break = 1sb ;
delay ;
d = in , break = ( one ) ;
diff = 4 ;
+
procedure less-than-short ( a , b , diff )
{
! user or-xor 1lsb a b
out = ( and-not b a ) , break = ( xor a b ) ;
delay ;
| combine next two instructions
diff = ( and-not in 1sb ) ; ! get bits minus 1lsb
out = ( and diff msb ) , break = 1lsb ;
delay ; ! propagate difference
diff = in , break = ( one ) ;
}

!a procedure which sends a one out if the bits are not equal,
!then inverts - (so a one indicates that things are okay)
!Assumes an orient-high-isolate

procedure equal ( srcl , src2 , result )

{
locals-a : a ;
locals-b : b ;
a =srcl , b= src2 ;
out = ( xor a b ) , break = 1sb ;
delay ; !wait for broadcast to all processors
result = ( not in ) ;
}
procedure equal-short ( a , b , result )
{
out = ( xor a b ) , break = 1sb ;
delay ; 'wait for broadcast to all processors
result = ( not in ) ;
}
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A.3.8 Global-OR and Polarity Functions

lrebroadcast a result back over the net, in one of two flavors...
'in most applications, you will want to make source and dest the same
'location...
!This function makes <dest> have all ones if there are ANY ones
'in <src>. If break is zero, orienting high or low should have the
Isame effect. (i.e. it doesn’t matter)
'You may orient the select registers orient-high or orient-low
'altered to handle all registers
procedure broadcast-low ( source , dest )
{

locals-a : d ;

break = ( zero ) , out = source ;

delay ;
d = ( or source in ) , break = ( one ) ;
dest = 4 ;

procedure broadcast-high ( source , dest )
{

locals-a : d ;

break = ( zero ) , out = source ;

delay ;
d = ( or source in ) , break = ( one ) ;
dest = d ;

! this procedure computes the global-OR function and propagates
! the or-out throughout the chip and reads back the or-in after
! full propagation

procedure global-or ( or-out , or-in )

I
L

inselectO0 = ( one ) , break = ( zero ) ;
inselectl = ( one ) ;

out = or-out ;

controlbits clear 2 ; ! enable OR output pad
delay ;

inselectl = ( zero ) ;

delay ;

delay ;

or-in = in ;
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! this procedure takes the msb bit from a cluster and broadcasts it
! to all other processors in the cluster. This lets everyone know
! what the sign bit for the current number is. The bit is loaded

! negated so that zero or a positive number yields all ones and

! negative number produces all zeros.

! assumes orient-high with isolation

procedure sign ( src , dst )
{
locals-a : s ;
s = src , break = ( zero ) ;
out = ( and s msb ) ;
delay ;
dst = ( not in ) ;
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A.3.9 General Gaussian Algorithm

! Gaussian computation program

! input must be in left register

! include all-lib.asm just to be sure

! should work with either config32x32 or configb12x512

procedure gauss ( src , out )
{
locals-a : dst ;
locals~b : left , right ;
dst = src ;
comment horizontal shifting ;
call ( orient-east ) ;
call ( shift-cluster-east dst left ) ;
call ( orient-west ) ;
call ( shift-cluster-west dst right ) ;
call ( triangle dst left right ) ;
comment vertical shifting ;
call ( orient-north ) ;
call { shift-cluster-north dst left ) ;
call ( orient-south ) ;
call { shift-cluster-south dst right )
call ( triangle dst left right ) ;
out = dst ;

procedure triangle ( a , lnum , rnum )
{
comment performing triangle ;
call ( orient-high ) ;
call ( asl a a ) ;
comment addl ;
call ( add lnum a a ) ;
comment add2 ;
call ( add rnum a a ) ;
call ( orient-low ) ;
call ( asr2 a a ) ;
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