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Abstract

Both the static and transient analysis of tightly coupled reactors differ from those of the loosely
coupled systems, requiring use of at least two-dimensional multigroup, transport methods.
Recently a few-group transient nodal method has been developed for tightly coupled reactors.
Although the accuracy of the static part of this model can be tested easily, in the absence of a time
dependent transport code, direct validation is not possible.

In this study, an indirect test, making use of a static, multigroup, discrete ordinate code, to measure
the accuracy of the few-group nodal (as well as any other approximate method) has been
developed. The validation is based on the fact that, at any stage during a transient calculation, the
transient equations can be converted to a static eigenvalue problem by replacing the time
derivatives of group-flux and delayed precursor concentration with instantaneous "frequencies"
multiplied into the quantities themselves. These time constants are edited at any time step from the
transient analyzed. A test of whether the nodal transient calculation would agree with a transient
transport calculation is then to see if the dynamic frequencies inserted into the time-dependent
equation (thereby converting it to a static equation) will yield an eigenvalue of unity. Moreover,
transient flux shapes should match the corresponding pseudo-static flux shapes.

Various reactivity transients of the two- and three-element Advanced Neutron Source Reactor are
analyzed by a few-group, space-time nodal model, an adiabatic approximation, and the point-
kinetics model with and without thermal feedback. Applying the indirect procedure the relative
accuracy with which transient behavior is predicted was found to correlate well with the closeness
to unity of the pseudo-static eigenvalues using the dynamic frequencies obtained from transient
models during the course of the transient.

Thesis Supervisor: Allan F. Henry
Title: Professor, Department of Nuclear Engineering
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Chapter 1

Introduction

1.1 Overview and Background

Accurate information about the neutron distribution in space, energy and time is essential

for the analysis of any nuclear reactor. For the last two decades, for neutronic analysis,

traditionally used diffusion theory models employing the finite difference approximation have

been replaced with modern nodal methods. These methods reduce computational cost. In

addition, situations where diffusion theory is invalid, such as near regions containing highly

absorbing material (e.g. control rods) or near interfaces between regions having different

scattering properties, are improved by introducing correction factors. For light water reactors,

the correction factors, usually called discontinuity factors, are obtained from independent,

detailed calculations (ideally fine mesh transport calculations with heterogeneity explicitly

represented) for a few, representative assemblies with zero current or known albedo boundary

conditions.

The accuracy of these and other approximate methods has been tested both theoretically

and experimentally for static solutions. Although, for obvious reasons, experimental

validation is prohibited for the severe transient analysis, validations have been made in many

different ways by obtaining reference solutions numerically [Y-1, 0-1, K-1]. Since the early

days of nuclear technology, as a result of the studies conducted much experience has been

gained about analysis methods and their accuracy for loosely coupled reactors.

However, for the reactors having long neutron mean free paths comparable to node sizes,

the situation is significantly different. First of all, there is strong neutron coupling preventing

generation of homogenized cross sections and correction factors from independent assembly

size transport calculations. Also for these tightly coupled reactors, high absorbing regions are

usually interspaced with low absorbing regions. That raises questions of the acceptability of

the diffusion theory approximations. Finally, the spectral shapes change drastically throughout

the core and can be altered significantly by perturbations. For accurate analysis, describing all

these behaviors requires the use of at least two-dimensional, full core, multigroup transport
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methods. This requirement raises a problem: There are many static transport codes available

for steady-state calculations (although they are very expensive in terms of computing time

compare to diffusion theory models). However, there is no time-dependent transport code

(two-dimensional, multigroup, discrete ordinate) that can be used for transient analysis.

The neutronic characteristics of reactors proposed for space-flight and for advanced

neutron sources exhibit all the features discussed above for tightly coupled reactors. The

Advanced Neutron Source (ANS) reactor is a new experimental facility originally planned

(but now cancelled) for the Oak Ridge National Laboratory (ORNL) to meet the need for an

intense steady state neutron source [R-l]. This small, high power density, high leakage, tightly

coupled core is difficult to analyze and require the use of advanced reactor physics methods.

Much research has gone into the steady-state and transient analysis of the ANS.

Early studies performed by Azmy and Ryskamp et al. from Oak Ridge National

Laboratory and Idaho National Engineering Laboratory (INEL) showed that diffusion theory

is not accurate enough for the ANS reactor [A-1, R-2]. Because of a small compact core, high

fuel enrichments (varying from 93% to 50% for different core designs), and low D2 0

moderator/coolant content in the core, the thermal flux gradient in the core and the fast flux

gradient in the large D2 0 reflector pool are extremely large, raising questions about the

accuracy of diffusion calculations. Accordingly, a discrete ordinate transport method has been

used for the conceptual design studies. The accuracy of the method has been tested for static

calculations by Azmy [A-2].

Monte Carlo procedures are also attractive methods of analysis since complex geometries

can be modelled easily. Redmond has shown the acceptability of the Monte Carlo code MCNP

[B-1] for the analysis of the ANS [R-3]. He also performed some preliminary studies for

transient analysis [R-4] using the Cartesian geometry, analytic nodal code QUANDRY [S-1].

Byers, in his thesis, used the r-z geometry nodal code ZAQ, and analyzed the control rod

removal transient [B-2]. Redmond and Byers reached the conclusion that the point kinetics

approximation is not accurate for transient analysis and that a space-time model is needed. In

parallel with these studies, the use of a two-point kinetics model by Difilippo et al. also

indicated that, if the transient is severe, it becomes sensitive to spatial effects which can not be

described by the point kinetics approximation [D- ].

Recently a transient nodal method incorporating transport corrections was developed by

13



Mohamed [M-1]. In this model, few-group node-averaged cross sections and discontinuity

factors are edited from full core (or to reduce the cost, where applicable, from partial core

calculations) higher order reference multigroup transport solutions for various conditions

expected during transients. For the transient problems, tables of nodal parameters are

constructed, and their values as the transient proceeds are found by interpolation. Mohamed

first suggested using Monte Carlo methods to generate these tables. However, statistical

uncertainties associated with the Monte Carlo results prevented him from making precise,

quantitative statements about the acceptability and accuracy of the method. He then used a

multigroup discrete ordinate code for the same purpose and applied the method to rod ejection

transients of the two-element ANS core.

It is not difficult to test the accuracy of the few-group nodal model for static cases. Using

the transport code, the case in question can be analyzed and compared with the nodal results.

However, without a time dependent transport code, the analogous validation for the time

dependent problem is not possible.

1.2 Research Objectives

The main objective of this work is to develop a model which can be used to validate a

space-time nodal model for tightly coupled reactors. The core characteristics of these reactors

require multigroup, transport methods for validation. Since the direct validation by using a

time-dependent multigroup, discrete ordinate code is not presently possible, the goal is

achieved by an indirect method. The procedure is based on the fact that, at any stage during a

transient calculation, transient equations can be converted to a static eigenvalue problem by

replacing the time derivatives of group-fluxes and delayed precursor concentrations with

"frequencies" multiplied into the quantities themselves. A static, multigroup, discrete ordinate

code can then be used for validation.

The good test of whether the nodal transient calculation would agree with a transient

transport calculation is to see if, when the dynamic frequencies are inserted into the time-

dependent transport equation (thereby converting it to a static equation), an eigenvalue of

unity results. Also, the flux shapes found from the transient model should match the

corresponding pseudo-static flux shapes.
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It is always desirable to have an inexpensive, acceptably accurate model for both static

and transient analysis. If the space and time behaviors of the neutron flux are close to being

separable, approximate methods such as the point-kinetics or adiabatic model will yield

acceptably accurate results. An adiabatic model has been considered for the safety analyses of

the ANS reactor by the design team. The second objective of this research is to investigate

when these approximate methods can be used for tightly coupled reactor transients. This goal

can be achieved by applying the indirect test described above and/or comparing results with

theoretically more accurate space-time solutions if they can be generated.

Accurate analysis requires neutronic, thermal-hydraulic coupling. By incorporating a

simple thermal feedback model, we shall investigate whether local values of changes in

thermal-hydraulic properties (fuel temperature, moderator density etc.) must be used to

predict accurate transient behavior or whether core-averaged values can be used.

The models and tests described in this study have been applied to the two- and three-

element Advanced Neutron Source reactors. Our final objective is to perform for this reactor

neutronic analysis of various transients.

1.3 Thesis Organization

Chapter 2 is devoted to background considerations. The few-group nodal diffusion theory

model incorporating transport corrections is reviewed. First the steady-state finite difference

nodal equations are derived. Then the use of Monte Carlo and discrete ordinate procedures to

obtain the nodal parameters required for both the static and transient model is discussed.

Finally, various transient models are outlined.

In Chapter 3, the procedure to validate the few-group diffusion theory model based on

cross sections and discontinuity factors found from higher order reference solutions is

developed. The pseudo-static diffusion and transport equations are derived starting from their

time-dependent forms. The calculational steps of the validation procedure are discussed in

detail.

In Chapter 4, application of the validation procedure for various reactivity transients

involving the Advanced Neutron Source reactor is presented. The control rod withdrawal and

the light water ingress events without feedback are analyzed by three different transient

15



models, and the accuracy of the results is assessed.

Since feedback effects change the development of transients significantly, in Chapter 5, a

simple feedback model is incorporated for the ANS reactor, and the reactivity transients are

reevaluated.

Finally, Chapter 6 presents a summary and conclusions of this research.

Recommendations for further research are also made.
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Chapter 2

Theoretical Background

2.1 Introduction

This chapter contains background considerations that are used in the remaining portions of

the dissertation. First, the theory underlying tightly coupled reactor neutronic analysis will be

reviewed. For both static and transient analysis, the few-group nodal diffusion theory model

including transport corrections will be summarized. For a complete description of that model,

the reader is advised to consult reference [M-1]. Next, various time-dependent solution

models used in this study will be outlined.

2.2 A Nodal Diffusion Theory Model Accounting Transport Corrections

The static and transient analysis of tightly coupled reactors differs from light water reactor

analysis. Spectral shapes change dramatically with position in such reactors and can be altered

significantly by perturbations. For that reason accurate analysis requires at least a two-

dimensional multigroup, transport treatment. Although for static cases such methods can be

applied, for transient analysis they would now be almost impossibly expensive.

One way around this difficulty is to apply a few-group nodal model, corrected by

discontinuity factors, for the analysis of transients. According to a scheme proposed by Amr

Mohamed [M-1], spatially-homogenized, few-group cross sections are edited from higher

order reference transport solutions for various conditions expected during the transient; tables

of the few-group parameters as a function of the variables of the transient (such as control rod

position or coolant density etc.) are constructed, and the few-group, node-homogenized cross

sections and discontinuity factors are found by interpolation as the transient progresses.

In subsequent sections, the elements of the neutronic model for tightly coupled reactors

will be summarized: first the nodal equations will be derived from the static diffusion

equation; then two candidates for a higher order reference solution (the Monte Carlo and

discrete ordinate procedures) will be outlined.
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2.3 Static Nodal Equations

Since our primary application is to the Advanced Neutron Source reactor, the nodal

equations will be derived in r-z geometry which is the most suitable geometry for this reactor.

A complete derivation can be found in reference [B-2].

Our starting point for the derivation is the few-group, steady state diffusion equation in P 1

form without any extraneous neutron source [H-l]

G

V Jg(+ (r)g(t)= Og [ 4 XgVz v (r)+lp (r), (r) (2.1)
8=1

Jg(r) = -Dg (r) Vg (r) (2.2)

where

Jg() = net neutron current in group-g (cm-2s'l),

(Og(r) = scalar neutron flux in group-g (cm-2sl1),

; = reactor eigenvalue,

Ltg(r) = macroscopic total cross section for group-g (cm-l),

Xg = fission spectrum for group-g,

VZfg(r) = mean number of neutrons emitted per fission times the macroscopic fission

cross section for group-g (cmnl),

Igg,(r) = macroscopic transfer cross section from g' to g (cml),

Dg(r) = diffusion coefficient for group-g (cm),

G = total number of energy groups.

For cylindrical geometry, defining nodes that are each hollow right circular cylinders

bounded above and below by planes normal to the axis of the reactor, and then integrating the

few-group diffusion equation over the volume of a node and using Gauss's divergence

theorem, yields the following balance equation
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Z7Kgr(- l~ri+I r-7gr(r + ]l [7gr(Zk+l) -r(Zk)] (2.3)

ik ik. k ,jk [ ' ik ii, k k

,'=1

where

k 27rrJzk+1 dzJgr(r, Z)
Jgr(r) = 27rAzk (2.4)

2r i+' rdrJgz (r, z)
Jgz(Z) 2 2 (2.5)

i 2KrdrI dz4 (r,z)
i,k /r g

i, k ' (2.6)
v/,k

2rdr* d kIag (r, z)dz(rZ)
Ig =, k (2.7)

r+' 2tcrdrfz+' dzog (r,z)(_2_ri Zk

= I27crdr k+dz = ri )zk . (2.8)

The currents in these equations can be expressed in terms of the fluxes using the second P1

equation (2.2). For example, on the outer radial face of the node i,k, integrating the Jgr(r) from

Zk to Zk+, we obtain:

One cn Di, k d r Zk+ aJgri+l8)- . k- d2cr .zk. d (r,z). (2.9)

One can approximate the derivative in this equation as a simple difference as follows
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, K i,k .

Jk [(r )-=gr(i+)] (2.10)7r Ar2
where the surface-averaged flux on the outer nodal face is defined by

27 kLJZ* dZog (r,z)

gr (ri+
)

Z2 (2.11)gri+1 2lAzk

Substituting these expressions, along with analogous expressions for the current across the

other surfaces of a node, yields one of the standard finite-difference forms of the group

diffusion equations. However, since equation (2.10) is an approximation, the resultant

equation is not very accurate, especially for large node sizes. There are also errors coming

from node averaged cross sections. This difficulty is overcome by altering equation (2.10) so

that it is forced to be exact. One scheme is to force (2.10) to be correct by dividing the surface

fluxes on the both sides of each nodal interface by correction factors. Since these correction

factors for each side of the same surface are generally not equal, the corrected surface

averaged fluxes must be discontinuous. For that reason, these correction factors are called

discontinuityfactors [H-2]. If reference values of the currents and the fluxes in eq (2.10) are

known, then we can define the discontinuity factors on the plus and minus side of the radial

interface between nodes i,k and i+l,k at ri+1 so that,

Ji, k i,k k
i, + _ D+I,kL'g -- 'r (ri

g(r )+- Ai+ 112 (2.12)

k (r1ar i +, 2

_ik ik[Lgr(ri+l)/fgr J ( 
Jgr (ri+ ) -D r2 (2.13)

Since the face averaged current is continuous, equations (2.12) and (2.13) can be

combined to yield:

k i l 2rAri ik- Ar. (Jkgr j(ri+l ) 2 jJ '+E i,k gr ki+l,k
= i 7gi r. 1k+ D=+l-k - 3r g (2.14)
LgD 9 fgr g . gr
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One of the important properties of this corrected finite-difference coupling equation is that

discontinuity factors appear as a ratio. This ratio for the equation given above can be

expressed as:

tgr

, k+
Yr

i k i,k + i+lk
2Dg g -ArJg (r+i) D_ I Ii ,k

2D i +lk ik +7gk Di, k
2 ' g +Ari+Jgr (ri+) gg r g

(2.15)

Deriving similar discontinuity factor ratios and current expressions for other faces, and

introducing them into the nodal balance equation, permits rewriting the nodal balance

equation as;

(2.16)

G
g ik rl i,k i,k i k

g'=I

If all of the discontinuity factors are set to unity, the above equation simplifies to the

coarse mesh finite difference equation. With the appropriate boundary conditions, the

corrected finite difference equations yield very accurate results for the reactor eigenvalue and

flux distributions provided that good approximations for the homogenized cross sections and

discontinuity factor ratios can be found. (Exact homogenized cross sections and discontinuity

factors yield exact eigenvalues and flux distributions.)

In the next two section, we shall describe how the few-group node homogenized cross-

sections and discontinuity factor ratios appearing in Equation (2.16) can be edited from higher

order reference solutions.
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2.4 Monte Carlo Methods

One transport theory method that can be used to get the corrected finite difference

equation parameters is the Monte Carlo technique. As the name suggest, the Monte Carlo

method is a statistical procedure wherein the expected characteristics of a neutron population

in a reactor are estimated by drawing samples from a large number of case histories of

neutrons whose individual lives are simulated. This method is best suited for the analysis of

geometrically complex reactors for which other numerical schemes are extremely time

consuming.

A general purpose, continuous-energy, generalized-geometry, coupled neutron/photon

Monte Carlo transport code MCNP [B-l] has been widely used by many authors for the

neutronic analysis of the Advanced Neutron Source as well as other geometrically complex

reactors [R-3, H-3]. However none of these early studies attempted to edit few-group

parameters from the Monte Carlo calculations.

In his dissertation [M-l], Mohamed, first attempted to use MCNP, and investigated the

acceptability of the Monte Carlo technique for editing the required nodal parameters at

different times during a transient.

The case analyzed was the removal of the one of the central control rods of the two

element ANS core. (The core description can be found in Appendix A-1.) For that transient,

full core criticality calculations were performed for the central control rod in three different

locations (fully inserted, half removed from the first node, fully withdrawn from the first

node). Two-group homogenized cross sections and discontinuity factor ratios for the r-z nodal

code ZAQ were edited from the MCNP calculations.

The Monte Carlo code MCNP edits reaction rates and fluxes (and hence energy- group

cross sections) only over homogeneous material compositions. To avoid modelling each

composition separately, the graded fuel was simulated as homogeneous. Using the total,

absorption, fission, and nu-fission interaction rate tallies from the MCNP calculations for each

node (i,k), tg, lag, Mfg, and V;fg were determined by

Ci, k a-type interaction rate in node (i,k) (2.17)
a,g volume - integratedflux in node (i,k) '
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Edits for the discontinuity factor ratios were made using equation (2.15) for the finite

difference model. In those expressions the diffusion coefficients were arbitrarily set to

Dik 1 (2.18)
g i k '

3 tg

Unfortunately MCNP does not edit scattering events so that group-to-group scattering

cross section had to be determined by neutron balance. Specifically, the homogenized group-

one to-group-two cross section, 2l1, for the nodes could be edited from either the group-one or

group-two balance equation. Because of statistical errors (particularly in the current terms)

and failure to account for (n,2n) and upscattering events, the two values of C21 did not agree.

For the test cases the thermal group balance, which had better statistics compared to the fast

group, was used.

Because of the way they are defined, the discontinuity factors were expected to force the

nodal equation to match exactly results edited from the reference Monte Carlo calculations.

But results showed that this did not happen. The difference in the eigenvalue and fluxes

between the reference and nodal exact results were higher than the statistical error in the

MCNP predictions.

The discrepancy was even larger when nodal parameters for the partially inserted rod were

found by interpolation from the rod-in and rod-out data and compared with reference, partially

inserted MCNP calculations. The error in the nodal flux was as great as 60% for the axial node

below the node containing the partially inserted rod. Attempts to improve matters, by running

extra MCNP cases for intermediate rod positions and applying a least square fit before

interpolating, were successful. However statistical fluctuations in the MCNP results,

prevented them making precise, quantitative statements about the accuracy with which

homogenized nodal parameters can be found by Monte Carlo methods.

Because of this failure, attention was switched to deterministic discrete ordinate

procedures [M-1].

2.5 Discrete Ordinates Transport Methods

We shall start our discussion from the time independent transport equation, and its
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solution using discrete ordinate methods and then outline how few-group parameters can be

edited from a discrete ordinate solution.

2.5.1 Theory

The time-independent Boltzman transport equation for the directional flux density

T(r,fE) is [H-l]

Q -V(r,, E) +t ,(r,E) '(r,, E) (2.19)

= JdEfd-2'[X(E) vf(r,E) + s(r,---, -E)] T(r, , E)

where

* VT (r, Q, E) dEdg2dV = rate at which the number of neutrons in volume dV change

because of leakage in the range dEdi2,

t (r, E) xT (r, , E) dEdfdV = rate at which neutrons in dEd92 are removed by

absorption and scattering from the volume dV,

IdEJ(d~Q'X(E)vf(r,E)P(r4,',E))dV = rate at which fission neutrons in dV appear

in the range dEd,

JdE'(dQ's(r,Q'x-*, E-*E)W(r,',E))dV = rate at which neutron enter dEd in

dV due to scattering,

X = reactor eigenvalue.

There are several deterministic methods that provide solutions to the neutron transport

equation. The first two of them, the spherical harmonics and Fourier-Transform techniques are

intractable for complex situations. For these geometrically complex problems, the discrete

ordinate method has become the most important tool for obtaining the numerical solution for

the integrodifferantial form of the transport equation. In reactor physics calculations, the

discrete ordinate method, which has its earlier roots in radiation transport calculations, looks

for solution to the transport equation in a number of discrete angular directions. Thus the

unknown function (r, E) is replaced by the D functions (r,lfd,E) (d=l,...,D) and the left-

hand side of (2.19) is replaced by
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-d ' VT (r,id,E) +t(r,E) W(sd,E) .

By expanding the angular dependency of the flux in an infinite series of spherical

harmonics Y () , the directional flux density can be written as,

00 n

(rQ,E) = I T m(r,E) (Q) (2.20)
n=O m=-n

The expansion coefficients are defined formally as

n (r, E) = dY () (r, ,E) (2.21)

where rn is the complex conjugate of Y:. Similarly scattering kernels can be written using

Legendre polynomials:

s (r,E E, go) = _, (2n+ 1)sl,(r,E'- E)Pn(g o0 ) (2.22)
1=0

where

o='0 and sl (r,E -E) =l _ s(rn

In the discrete ordinate treatment of angle, the integral over Q becomes a summation

D

dWf()-_ Wdfd (2.23)
d=l

where wd 's are a set of quadrature weights chosen in such a way that the sum matches the

integrals as closely as possible.

Accordingly, expanding 'P (r', E) as in eq. (2.20) and I s (r, E - E, ' -, Q) as in eq.

(2.22), making use of relation (2.23) and terminating the polynomial expansion (2.22) at I=L,

the Boltzman transport equation given in (2.19) is replaced by D equations for the

' (r, ad, E) .For example in two-dimensional r-z geometry the transport equations becomes:
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r a (r,( d, E)) + zdaZ (r d -E) + ( E) (' E ) (2.24)

= dE { VfivE(r,E) I wd, Q iE)
d=1

L n D

+ Y Esn (rE -4 E)[E wdY'm('dr)td(r'QdE)] '(Qd) } d=l,...,D
n =Om =-n

These equations are referred to as SN equations. The mathematical form of the equations

is much better suited to solution by iterative procedures than the spherical harmonics

equations.

For the numerical solution, the energy variable can be discretized by first partitioning the

energy range into intervals (energy groups). Then the equation is integrated over each energy

group AEn, and the integral over E' is replaced by a sum over all energy groups.

The group fluxes are defined as

f (r, Q) = dEg (rE, Q)
AEg

The spatial domain of the problem is partitioned into fine mesh intervals, and the cross-

sections are taken to be piecewise continuous in these intervals.

2.5.2 TWODANT Multigroup Transport Code

TWODANT [A-3] is a two-dimensional multigroup discrete ordinate transport code

developed by Los Alamos National Laboratory. It has been used to generate cross sections sets

and discontinuity factors required for the static as well as transient analysis of the ANS. It

solves the multigroup form of the steady state Boltzman transport equation in x-y, r-z and r-

theta geometries. The discrete ordinates form of approximation is used for treating the angular

variation of the particle distribution and the diamond difference scheme is used for space

angle discretization. For the iterative solution a standard inner (within group) iteration, outer

(energy-dependent source) iteration technique is used. Both inner and outer iterations are

accelerated using the diffusion synthetic acceleration method. The diffusion solver uses the

multigroup method and Chebychev acceleration of the fission source. The details of the code

features and iteration strategy can be found in reference [A-3].
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2.5.3 Nodal Parameters Edits

In this section, we describe how coarse mesh few-group nodal parameters, derived in

Section 2.3, can be edited using fine mesh multigroup transport code TWODANT results.

Figure 2.1 shows the fine and coarse mesh layout in r-z geometry.

k+lJ2

k

k-l2

Coarse Mesh
Boundary

Fine Mesh
Boundary

i-1/2 i i+1/2

r

Figure 2.1: Cell centered spatial mesh in r-z geometry

As was discussed in Section 2.3, surface-averaged currents and node averaged fluxes are

needed for the determination of the nodal parameters. The converged multigroup directional

fluxes will be written as 'P d where p and q are indices for fine mesh (similarly i,k are indices

for coarse mesh), n is the index for energy-group, and d is one of the chosen directions. Using

the converged P', q the nodal parameters are calculated as follows:

The multigroup scalar fluxes, ' q4, for each fine mesh (p,q) and the currents at each fine

mesh boundary, ( ), are approximated by

D

p qn, dd = E Wdn d
d=l
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q(piZ= W~y + 2, q.: W)Ljp+l/2, q
!d> . d<

As a next step, multigroup fluxes and cross sections for each coarse mesh are calculated

applying flux-volume weighting and preserving the reaction rates. For example, the volume

weighted flux, i, and a-type average cross section, -, for coarse mesh (i,k), which

comprises fine meshes (p,q)'s, are respectively,

i, k
kn

. pci,qck
Vi k

i,k Pciqcki ' = pc'iqck
an i~kVk

CIk

(2.27)

(2.28)

where V is the either fine or coarse mesh volume.

For the currents, ifA q is the surface area of the right face of fine mesh node (p,q) and Ak is

the surface area of the right face of coarse mesh (i,k) for which we want to find the surface

averaged current, then,

E J (rp+l/2)A q

k Zk<Za< Zk+l (2.29)

A'
VK

Finally, the few-group parameters can be found from,

i,'k i, k
i' k = ncg
ag i,k

ncg

where the symbol indicates a sum over
ncg

lying in the larger energy interval AEg.

Xk n X i, c k

i,kncgn'c'

n'cg'

all multigroups having n energy intervals AEn

The diffusion coefficient appearing in the discontinuity factor ratios can be set to
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ik 1
D i -- i' k for isotropic scattering, and

3 tg

i,k 1
D = 1 for the anisotropic scattering where 1g is the P1 component of the

g 3[ ki1

group-g scattering cross section.

2.5.4 Early ANS Studies with the Discrete Ordinate Transport Code TWODANT

For deterministic models, homogenized nodal cross sections and discontinuity factors that

cause the nodal model to match, exactly, the reference results can always be found. In his

thesis, Mohamed investigated how to do so at minimum expense [M-1]. He first showed that

discrete ordinate methods can be used to generate nodal parameters for tightly coupled reactor

analysis. As with the MCNP studies discussed in Section 2.4, the case analyzed was the

removal of one of the control rods from the two-element ANS core. When nodal solution

(ZAQ) results were compared with reference TWODANT results, it was found that the

eigenvalue agreed to within roundoff and the fluxes to within 0.1% for the nodes in the outer

reflector (where the values were a factor of 1010 lower than those in the core) and to within

roundoff in the interior of the reactor.

When interpolated nodal (ZAQ) parameters for the rod half withdrawn from the node

were used, agrement was found to be 0.015% in eigenvalue and 0.03% in the interior fluxes.

Mohamed also showed that, expense could be reduced by generating nodal parameter sets

from partial core calculations. The final conclusion was that the discrete ordinate method

provides more accurate interpolated values of the nodal parameters than the Monte Carlo

technique.

2.6 Models for Time Dependent Solution

In this section we outline the transient models used throughout this study. Our main

objective is to point out the differences between the various models, not to describe them in

detail.
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2.6.1 Time Dependent Corrected Finite Difference Equations

Our starting point will be the time dependent diffusion equation. If fuel is stationary, the

time dependent nodal balance equation in the absence of an external source is [H-1]

I 
t-4g (, t)=-V Jg (r, t) -g (r, t)g (r, t) (2.30)

G D

+ Id 1P(l-p)vI:fg(rtt) +_gg(E t) ]g. (Et) + y dCd(rrf)
g'=1 d=l1

G

tE (r, t) = Pd Vyfg (r, (t) g,(r t)-Cd(Et)(2.31)
g =l

Where, in addition to the static equation notation,

XgP = fraction of prompt fission neutrons appearing in group-g,

Xgd = fraction of delayed neutrons from family d, appearing in group-g,

cd(L;t)= density of delayed neutron precursors in family-d,

Xd = decay constants for delayed neutron precursor family-d,

Pd = fractional yield of delayed neutrons in family-d,

[3 = total fractional yield of delayed neutrons,

f0g = neutron speed for group-g,

D = total number of delayed precursors families.

Proceeding as in Section (2.3), Equations (2.1)-(2.16), and adopting a matrix notation

permits us to derive from eq. (2.30), corrected time-dependent nodal equations:

idcl D

['i]-. = [Mp]- [L] + Xdcd (2.32)
dt L~cI+~d=l

d=I
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dc
dt = [Md] D-XdC d d=l,...,D (2.33)

where

N = total number of nodes,

= The vector NGxl, { g},

Cd = the vector NGxl {XdCd} 

[v-'] = the matrix NGxNG u' ,

[Mp] = the matrix NGxNG {XPvYfg, },

[Md] = the matrix NGxNG {JXdvZfg,I

[D] = a matrix NGxNG consisting of diffusion operator and discontinuity factor ratios,

[1,] = the matrix NGxNG {fI;g},

[]gg] = the matrix NGxNG {Egg., }

[L] = - [D] + [,] - [Egg].

2.6.2 Point Kinetics Equations

To derive the point kinetics equations, the flux is partitioned into a shape function S, which

is a function of space, energy and time, and an amplitude function T, which is a function of

only time, such that, for the nodal model

[] = [S]T(t) (2.34)

where the amplitude function (a scalar) and the NG element shape functions are formally

defined as

T(t) = WT[o'][cD]; [SI = [(] . (2.35)
T(t)

Here W is a vector weight function having the same dimension as the flux, but time

independent. In accord with first order perturbation theory, this weight function is chosen as

the adjoint flux associated with a static reference calculation. It can be proven that this choice
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reduces significantly the error due to approximating the shape function.

If we define the matrix representing the total fission neutron production as

D

[Ml = (1-I) [M + I d[Md] (2.36)
d=l

it can be shown that the amplitude function is a solution of the system:

d(t) (t) T(t) T + dd(t) (2.37)
d=l

d 13d(t)
tCd(t) -t T(t)-dCd(t) d=l,...D (2.38)

where

WT([(t) [M(t)]-[L(t)])S(t)
WT[M(t)]S(t)

WT[M l (t) ] S (t) (2.)
d(t) = (2.40)

A(t) = , (2.41)
w[M(t)]S()

wTcd(t)
Cd(t)= -(t) (2.42)

The point kinetics equations can also be derived starting from the transport equation [H-

4].

It has to be emphasized that equations (2.37) and (2.38) have been derived in a formal

fashion without making any approximation. The utility of the point kinetics equations depends

on the possibility of computing, by some simple procedure, good approximations to the point
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kinetics parameters defined by equations (2.39) through (2.42).

Having summarized the time dependent nodal equations and the point kinetics equations

we can now discuss various methods for analyzing time-dependent problems. Here we

describe only three of them: the point kinetics approximation, adiabatic model and quasi-static

space-time model.

2.6.3 Point Kinetics Approximation

In the point kinetics approximation, only the time variation of the flux amplitude is

determined. The initial, unperturbed flux, which is the solution of equation:

[L(to)](t) M(to )= [M (to ) (2.43)

is usually taken as the shape function. Using the corresponding unperturbed adjoint function,

O0, as a weight function, reactivity at any instant of time can be calculated from:

() = ) ([M( t)]- [L(t)])()(t 0)
p(t) =- (2.44)

(Do) [M(t) I l (to )

Other point kinetics parameters are defined similarly. Because of the simplification that

only the initial shape function (or more generally, a constant shape function) is required, the

point kinetics equations can be solved using only the instantaneous production and loss

operators.

2.6.4 The Adiabatic Model

In the adiabatic approximation, the shape function appearing in the definition of the point

kinetics parameters is found from fundamental solutions of the static equation. Thus equations

(2.32) and (2.33) can be combined by introducing an eigenvalue, X, appropriate to the

conditions in the reactor at time, t, and neglecting the time derivatives of the flux and delayed

precursor concentrations:
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[L(t)] ( x) (t) = [M(t)1( ) (2.45)

If D (1) (t) is used as a shape function, reactivity becomes:

P ( ( [M(t)]-[L(t)])c (t) (2.46)
O (t) (2.46)

(D;) [M(t)]4(') (t)

The use of equation (2.45) yields a simple expression for the reactivity:

() ([M(t)] [M(t) (
P (t) ) =1-- (2.47)

(<t(

Since some of the time dependent changes in the system are reflected in c(D) (t), the

adiabatic approximation is expected to give much better results than the point kinetics

approximation. However, it should also be emphasized that the adiabatic model doesn't

distinguish the shape of the delayed neutron source from the prompt neutron source. In other

words, in the adiabatic model, all neutrons are treated as prompt neutrons. Therefore if there is

a significant difference between those two source shapes, the model can fail to predict reactor

behavior accurately. This flux shape difference is particularly important when the response of

the reactor is sensed with localized neutron detectors. Even if the perturbations don't change

the shape function significantly, small changes in the shape may be as significant in

determining the detector response as small perturbations in the amplitude function [B-3].

For time-dependent solutions, reactivity tables as a function of transient variables, such as

control rod position, are calculated from a series of static calculations, and the transient is run

by using these precalculated rod calibration curves. If feedback effects are neglected, the

shape and amplitude equations become completely independent, and time-dependent shape

functions can be precalculated [0-2].

In this study, for the ANS studies, the adiabatic model with precalculated shape functions

was used for transient analysis. For various transients, time-dependent shape functions and

reactivity curves were precalculated using the static mode of the nodal code ZAQ, and

throughout the transient, their values were found by interpolation assuming both values
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change linearly between any two state points. For some cases, to measure the sensitivity to

changes in the shape function, the initial flux shape was used throughout the transient.

2.6.5 The Space-Time Model

The space-time model which will be described here is an extension of the improved quasi-

static method used in the nodal code ZAQ [B-2]. This method solves Equations (2.32) and

(2.33), replacing the derivatives in the flux equation by a first order backward difference

approximation. Delayed precursors can either be directly integrated, or a similar backward

difference scheme can be applied to eliminate the time derivatives. Defining the time steps

Atn = tn - tn.1 over the discretized time domain, and application of a "theta method" to the

right hand side results in the following algebraic equations:

n n-i

[I]-0 c I =O [M ] D+ [L] D +,d } (2.48)
d

)[M ]n-l n-l + [L]n n-l+j:dCn}
+ (1--)[M J C + [L]

d

n n-1

= { [Mp]_ =-OdC d + (- [Mp ] -d } (2.49)
At P -qdd -X dCd} (249)

Because of stability considerations, theta is usually chosen to be either 1 or 1/2.

In the improved quasi-static model, since the shape of the flux is slowly varying, this first

order-difference form is applied over larger time intervals. The error in the more rapidly

varying amplitude function can be compensated, at the end of each time step, by recalculating

the amplitude function using the point kinetics equations over the same interval but with a set

of much smaller time increments. The required point-kinetics parameters for the recalculation

are determined by the shape function at the end of time step. For example, if the unperturbed

adjoint is chosen as the weight function, reactivity is found from the equation

(to ) ([M(t)] -[L(t)])(t)2
p(t) = *AT (2.50)

(~;) [M (t)]~(t)
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where c(t) is assumed to vary linearly between its value at the beginning and at the end of the

large time step.

At the end of each large time step, nodal flux amplitudes and precursor concentrations are

corrected using the point kinetics results. For the next time interval, flux amplitudes and

precursor concentrations are extrapolated.

The time and space dependent cross sections and discontinuity factor ratios in the time-

dependent nodal and point kinetic equations are found from a higher order reference solution

as has already been discussed in previous sections. The various interpolation schemes permit

finding them at any instant of time during the transient solution.

2.7 Summary

In this chapter, we reviewed the nodal diffusion theory model taking into account transport

corrections. The components of that model were presented: First the steady-state finite

difference nodal equations were derived; then the use of the Monte Carlo and discrete ordinate

procedures to obtain the nodal parameters appearing in the nodal equations was discussed. In

the last section we outlined the various transient models.

The remaining question is "how accurate is the model for analyzing transients of interest

for tightly coupled reactors?". In Chapter 3, we shall develop a procedure which can be used

to validate transient models. Chapter 4 presents the application of that procedure for various

transients associated with the ANS. For almost all cases, thermal-hydraulic feedback changes

the development of transients significantly. In Chapter 5, we shall introduce a simple thermal-

hydraulic feedback model for the Advance Neutron Source Reactor and reevaluate the

transients in the presence of feedback comparing the various time dependent models.
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Chapter 3

A Validation Model

3.1 Introduction

This chapter is devoted to the development of a procedure to validate the few-group

diffusion theory nodal model based on cross sections and discontinuity factors found from

higher order reference solutions. First, pseudo-static equations will be derived starting from

time-dependent diffusion and time-dependent transport equations. Then calculational steps

will be presented. Finally, studies concerned with extrapolation schemes will be discussed in

detail.

3.2 The Pseudo-Static Eigenvalue Test

In the previous chapter we summarized a few-group, transient nodal method based on

few-group cross sections and corrected by discontinuity factors found from static, multigroup

transport calculations. In the absence of a transient multigroup transport code, a direct

theoretical determination of the accuracy of the transient few-group nodal method is not

possible. Accordingly, an indirect test has been developed based on the fact that at any stage

during a transient calculation, the transient equations can be converted to a static eigenvalue

problem by introducing instantaneous pointwise group-flux and delayed precursor

frequencies. These time constants can be edited at any time step from the transient analyzed.

A test of whether the nodal transient calculation would agree with a transient transport

calculation is then to see if the dynamic frequencies inserted into the time-dependent equation

(thereby converting it to static equation) will yield an eigenvalue of unity.

In the following subsections we derive the pseudo-static diffusion and transport equations

from their time-dependent forms and then describe how to edit and infer the dynamic

frequencies from the time-dependent solution.
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3.2.1 Pseudo-Static Diffusion Equations

At any stage during a transient calculation, by replacing the time derivatives of group-flux

and delayed precursor concentrations with "frequencies" multiplied into the quantities

themselves, the transient equations can be converted to pseudo-static equations. Thus we

write:

(r, t) = og(r,t)g (rt) (3.1)

a
;Cd(t)=Cd(r, t) Cd( C(r, t). (3.2)

Use of equations (3.1) and (3.2) in the transient model converts it to a pseudo-static model

at the instant t. In the case of the transient, multigroup diffusion equations for the flux and the

delayed precursor concentrations, equations (2.30) and (2.31) become,

COg (r,t)

gg g (r, t) -V Dg (r, t) VD (r, t) + g (r, t)g (r, t) (33)
G D
1 PD= IX (-|)vfg(rt)+lgg(rst) ]~g,(r,t)+ ZXd

g=1 PS g d=l

G

Od(rt)cd (r t ) = d Vfg(rt)g '(rt)-)dCd(£'t) (3.4)
g'=l

Equation (3.4) can be solved for cd and the result substituted in equation (3.3) to give

pseudo-static equation at time t:

-V. Dg (r, t) Vg (r, gt)+ tg'(r( t) (3.5)
9 .g'=1

G D d

w s IP d d gv, rd f tl et
the d=lati on ce

where e,,, the pseudo-static eigenvalue, is introduced for later mathematical convenience. It

can be seen that equation (3.5) has the same form as the steady state diffusion equation except
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that the total cross section and fission spectrum terms are modified by instantaneous omega

values.

Before deriving the transport form of the pseudo-static equations, some background

information about the flux and delayed precursor omegas will be given to understand the

nature of the problem.

3.2.2 Asymptotic Omega Modes

For transient analysis, co-modes, or so called period eigenfunctions are often used to

provide approximate solutions or to prove certain characteristics of the system. The simplest

form of omega modes can be derived by assuming that, with a constant value of reactivity,

delayed neutrons appear instantaneously, and the reactor without any external source is on an

asymptotic period. Thus the neutron density behaves in time as )e ° ' [H-l]. Notice that, the

omega, here, has neither space nor energy dependency. With that assumption the time-

dependent diffusion equation becomes the eigenvalue equation

l) (M-L)¢ = w) (o) (3.6)

where, for a reactor of finite size there will be a least negative, real eigenvalue and a

corresponding all-positive eigenfunctions such that the neutron flux will behave as %0 e .

For a critical case, solution of eq. (3.6) yields the eigenvalue oo = 0.

If delayed neutrons are not assumed to appear instantaneously (again for the constant

values of reactivity and when the source term is negligible in comparison with the fission

rate), they will also eventually behave as Cie " '. For this case the eigenvalue co is the most

positive root of the inhour equation [H-4]

Pico
p = coA+ i . (3.7)

Under these circumstances the stationary shape function 0 (r, E) is one of the solutions

of Equation (3.5) where the space and energy dependent frequencies are replaced by the

asymptotic value o0 . Constant values of co found from that simplified pseudo-static equation

are the same as the roots of Equation (3.7).
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Generally the omega modes divide into two classes [B-3]: (i) delayed modes characterized

by small values of co and (ii) rapidly decaying modes (prompt modes) characterized by large

values of omega. Except for the prompt critical situation, the most positive (least negative)

value of o is such that Ico/)gj << I,g, and the corresponding stationary solution is one associated

with a delayed neutron yield term differing from the equilibrium value. These o-values,

related to delayed neutrons, form clusters such that for every X i there corresponds a group of

oi's which are slightly smaller in magnitude than %h [G-1].

For rapidly varying modes corresponding to very large values of 101l, the stationary

solution is one corresponding to a change in the absorption cross section by an amount /vg

and the complete absence of any delayed neutrons.

Even for these asymptotic cases, the solution of Equation (3.5) for the eigenvalue co is not

mathematically straight forward.

3.2.3 Instantaneous Omega Modes

The flux and delayed precursor omegas appearing in Equation (3.5) differ from the

asymptotic omega values. They are not eigenvalues, but, rather are functions of space, energy

and time. Although they can not be found by solving Equation (3.5), values of the

instantaneous tOd's and og's can be edited from a space-time problem at the time in question.

Then if those values of group parameters are substituted into Equation (3.5), the resultant

"pseudo-static" eigenvalue, Aps, should have unity value. (Here it is assumed that before

starting the time dependent solution, the fission source is divided by the static eigenvalue, X, if

that value differs from unity.) The pseudo-static eigenvalue is determined by the omega

values. It seems reasonable to expect that only a correct prediction of the space-time behavior

of the flux and delayed precursor concentrations can yield an eigenvalue of unity. Therefore

deviation from unity can be used to measure the accuracy of the space-time model in question.

Moreover, for a given set of co values, there is a particular solution of pseudo-static flux 

corresponding to the largest value of ps and that pseudo-static flux shape should match the

transient flux shape at time, t. This pseudo-static flux shape test is important especially for

measuring the accuracy of time dependent models in which approximate shape functions are

used in calculations, such as the point kinetics and adiabatic models.

As was mentioned before, the accurate transient analysis of the tightly coupled reactors
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requires a multigroup, transport solution. Hence, the accuracy and the validity of the few

group diffusion theory model has to be tested against that solution. Thus the pseudo-static

eigenvalue and flux shape test must be extended to the discrete-ordinate transport model. In

the next section the pseudo-static transport equation will be derived.

3.2.4 The Pseudo-Static Transport Equation

The time dependent neutron transport equation is [H-4]

gag Tg (, , t) = V E -g(r, t) -tg (r, t) g (r, _, t) (3.8)

+|dn';[l(1-B)v (r, t) +£ (r, Q' Qtg9 (r, t) + XBhdcdtg ()
g' d.

d (Er, t) = d 'V~Eg. (r, t),g (r, Q',t)-dd (r,t) (3.9)
g

Delayed precursor and directional flux "frequencies" can be defined as,

1 a
cog (r, , t)= 'g ()r, Q, t) (3.10)

tod(r,t) = Cd( d(rt). (3.11)

Notice that, although the transport theory expression for the delayed neutron precursor

frequency is same as its diffusion theory counterpart, there is an additional directional

dependency for the flux frequency. Equations (3.10) and (3.11) can be used to eliminate the

time derivatives in equations (3.8) and (3.9), and then the pseudo-static transport equation is

obtained as:
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Q-VT r, Ig(r,_,t)+ c g( r,t) + T ]g(rQ,t) (3.12)

- dJQ':, g(r,n' , t) g, (r,Q',t)
g'

=ps gw [ g Ski+ h~r l)]vzg (, t) v)(ra', 
s g' d .d+ d t

For the discrete ordinate method a similar pseudo-static form can be obtained by replacing

the definition of the directional flux frequency in equation (3.10) with

co (r, fd t)1= - (r, Q d,t) d=l,..,D. (3.13)
-('d',,t))t

Provided that the flux and delayed precursor frequencies are known, the pseudo-static

transport equation, either in the form of equation (3.12) or the form that can be obtained

starting from the discrete ordinate equations, can be solved for the pseudo-critical eigenvalue,

,ps, and the pseudo-critical flux shapes using a static transport code.

By inferring the omega values required for the pseudo-static transport equations from the

time-dependent transient model in the question, the pseudo-static eigenvalue test described in

the previous section can be extended and used to measure the accuracy of the few-group nodal

transient solution.

3.3 Calculation Steps

Figure 2.1 shows the calculational path for the validation of the few-group nodal transient

model. The overall scheme is as follows:

1. Find few-group cross sections and discontinuity factors for various reactor conditions

anticipated during the transient of interest by editing multigroup transport solutions as

described in section 2.5.3.

2. Form interpolation tables for those few-group nodal parameters.

3. Analyze the transient of interest using the transient version of the few-group nodal

code.
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interpolation

Figure 3.1: Calculational steps for the pseudo-static test

4. At particular times during the transient edit cod's and few group cog's for the nodes

comprising the reactor.

5. Run the pseudo-static problem by using the nodal code itself and check the pseudo-

static eigenvalue and compare the pseudo-static fluxes with the transient fluxes. This step

although it is not sufficient to validate the few-group nodal transient solution, can be used for

sensitivity studies and to distinguish the accuracy of the point-kinetics and other approximate

methods.

6. By some extrapolation scheme, infer o's to be used for the pseudo-static, multigroup

transport problem.

7. Run that problem and see if its eigenvalue is 1 and if few-group nodal fluxes edited

from the results match the transient nodal fluxes at the time in question.

If this procedure is to provide a meaningful numerical test of the accuracy of a few-group

nodal model based on cross sections and discontinuity factor ratios found from static

multigroup transport solutions, a number of questions have to be addressed.
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The major question is how to infer the multigroup transport omegas from the few-group

transient results. There are also questions of convergence, accuracy vs. roundoff error and

sensitivity. One other issue is to find interpolation schemes that minimize interpolation errors

for the nodal parameters required by the transient model.

In the following sections these issues will be addressed, and the major components of the

validation model will be discussed in detail.

3.3.1 Interpolation Procedures

In the validation procedure in order to distinguish between accurate and erroneous results,

it is important to perform the pseudo-static eigenvalue problem as accurately as possible. In

this connection errors arising from the interpolation procedures used to determine

homogenized, two-group cross sections and discontinuity factor ratios for the r-z nodal code

ZAQ from eight-group, static, transport (TWODANT) results should be kept minimum. For

this investigation, tests were conducted to examine the behavior of nodal parameters as the

transient progresses. Two transients were analyzed for the three-element ANS core (core

description given in Appendix B): control rod withdrawal and light water ingress.

Control Rod Withdrawal

To analyze the behavior of nodal parameters throughout the transient, seven TWODANT

criticality problems corresponded to the tips of one of the central control rods located at

different positions in the node were run. Homogenized two-group cross sections and

discontinuity factor ratios for the node in question were edited from the TWODANT results.

Figure 3.2 shows the total cross section and discontinuity factor ratios for a node through

which the control rod is moving. Results from various interpolation schemes which use

reference values only for the rodded, half rodded, and unrodded or only for the rodded and

unrodded cases are compared with reference results corresponding to the other intermediate

rod positions.

The best match for total cross section (and all other cross sections) comes from an average

(suggested by Mohamed [M-1]) of a linear shape and a shape found from a prescription due to

Gehin [G-2]. Thus, if t is the fraction of the rod removed from the node, with superscripts r

and u indexing the rodded and unrodded portion of the node, the interpolation formula for the
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corrected cross section is given by

[(2-t) r+t ( 1- ( t)r+[(l+t)"u+ (-t)ft(3alt 2[t (-t)(3.14)
where the unrodded and rodded fluxes are approximated as the average of the flux in the

partially rodded node and its lower neighbor or upper neighbor respectively.

Examination of the radial discontinuity factor ratio behavior indicates that a second order

polynomial fit is quite accurate. For the axial discontinuity factor ratios a much more accurate

fit comes from a third order polynomial shape which uses three reference conditions, rodded,

half rodded and unrodded and the assumption of an extremum at te=0.4 for the factor at the

top surface of a node and te=0.6 for the factor at the bottom surface of a node [G-3].

Although changes in cross-sections and discontinuity factor ratios are greatest for a node

through which control rod is moving, that motion also affects those parameters in other nodes

throughout the reactor because of the tightly coupled characteristics of the reactor being

analyzed. Accordingly the following interpolation procedures were used to infer two-group,

nodal parameters from the static eight-group transport calculations:

For a node through which the rod tip is moving:

* cross sections interpolated using an average of a linear shape and shape from flux

weighted Gehin's formula,

* axial discontinuity factor ratios found using a third order interpolation procedure,

* radial discontinuity factor ratios found using a second order interpolation procedure,

For all other nodes:

* cross sections and discontinuity factor ratios found using a second order interpolation

procedure.

The Light Water Ingress Event

The light water ingress event is considered as an accident resulting in a mixture of light

and heavy water entering the reactor. (A complete description of the event will be given in

Chapter 4.) The mathematical modelling is the same as for the withdrawal of a control rod. As

was done for the rod ejection transient, sets of cross sections and discontinuity factor ratios for
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a node were edited from multigroup TWODANT results for various heavy water-light water

mixture front locations in a node. The mixture was assumed to be 95% D2 0 and 5% H20.

Figures 3.3 shows the behavior of some of the nodal parameters for a fueled node thorough

which the heavy water-light water mixture is rising. As can be seen from these figures, except

for the axial discontinuity factor ratio, all the nodal parameters change linearly. For the axial

discontinuity factor ratios a second order interpolation scheme is much more accurate. It was

also found that for all other nodes a linear interpolation scheme is sufficiently accurate for

both cross sections and discontinuity factors.

3.3.2 Omega Edits

A transient of interest can be run using the interpolation schemes discussed above to find

the nodal parameters required for the various transient models. The instantaneous flux and

delayed precursor frequencies at time step n are then calculated from the following

expressions:

cog A( : ( (r'n() (3.15)

I(Cd (r,t)
Cod(r, tn) =At Cd(7 C t,) (3.16)

Where g and Cd'S are the space time dependent flux and delayed precursor concentrations.

As will be recalled from the previous chapter, the point-kinetics model uses constant flux

shape throughout the whole transient. For this model the og and cOd'S vary in time, but are the

same for all nodes at a given time, and the group-one and group-two og's are equal at all

times.

For the adiabatic model, with the amplitude function T(t) during the transient computed by

the point kinetics equations and detailed flux shapes during the transient found by

interpolation of the static X-mode shapes, the space-time behavior of the group-fluxes during

the transient can be reconstructed. The flux omegas can then be edited from these

reconstructed group-fluxes.
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3.3.3 Extrapolation Procedures: Energy group expansion

To carry out the validation procedure described in the previous sections, it is necessary to

infer values of the co's for the multigroup discrete ordinate equations from the few-group

nodal transient results. This may be difficult to do, especially if the pseudo-critical value of Ups

for the discrete ordinate equations is sensitive to the inferred co values.

We first discuss the extrapolation of the flux and precursor omegas from few-group to

multigroup structure, leaving examination of angular dependency of the flux omegas for the

next section.

Tests were conducted for two different types of transients, control rod ejection and light

water ingress. For the control rod ejection two cases were examined, the first for the rod

withdrawn in 10 seconds, and the second for the rod withdrawn in 0.1 seconds. Since the

nature of the transients differ, in the subsequent sections extrapolation procedures and

sensitivity studies will be presented for each transient separately.

Figure 3.4 shows the simplified r-z geometry model of the three-element ANS design used

throughout our studies. Figure 3.5 shows the initial steady-state flux shapes for the fast and

thermal groups. The origin (1,1) is at the lower central node of the reactor, and the plots are for

19 mesh spacings in the radial direction and 48 mesh spacings in the axial direction. The

logarithmic plot makes it possible to see flux shape behavior outside the core region.

Control Rod Withdrawal Transients

The transients analyzed were the complete withdrawal of one of the central control rods

from its initial position with the tip at the plane between the upper and the lower reactor halves

in 10 seconds and in 0.1 seconds.

As a first step in investigating the extrapolation procedures, the nature of the o's inferred

when the transient is analyzed by the two-group nodal method was examined. Values

computed using the nodal code ZAQ for the thermal flux omegas, co2, and the ratio of thermal

to fast flux omega (= o 2/wl) at various times during the 10 second withdrawal are shown in

Figure 3.6. The positive blips along the central axis show the sudden increase in w2 in the

node from which the rod is being withdrawn. The corresponding fast group blips are smaller

since decreased fast capture is compensated by increased slowing down. The effects are small
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Figure 3.4: R-Z Model of the three-element ANS core
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Figure 3.6: Flux omegas for the 10 second rod withdrawal transient
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since the rod being removed is one of three and thus shielded by the two rods that do not

move. The much larger dip in thermal flux and very large dip in the thermal-to-fast o-ratio is

conceivably due to the insertion of the upper end of the control rod in the D20 region. There

the other two fixed rods are not present to shield the effect.

Figure 3.7 is analogous to the Figure 3.6 except that the rod is withdrawn in 0.1 seconds.

At t=0.05 seconds, the omega behavior is very similar to the slow rod removal except that the

magnitude of omegas are much larger. At t=0.2 seconds this part of the transient behavior has

smoothed out. (Recall that the control rod was fully withdrawn at 0.1 seconds.) The fact that

the o2's are not the same throughout the reactor illustrates the lag in flux shape due to the

relatively slow rate at which delayed neutron precursor concentrations change.

As can be seen from plots of the thermal-to-fast ratios of the instantaneous periods for

both transients, except for the nodes through which the control rod is moving, the ratios are

close to unity. This observation encouraged us to hope that an accurate procedure for inferring

multigroup to's from few-group values could be found.

Since there is no transient, multigroup, discrete ordinate code, the question of inferring

multigroup discrete ordinate wg's and cod's from few-group transient nodal results was

explored by comparing the co's generated by a two-group nodal model with those generated by

an eight-group nodal model, both simulations being run using the transient nodal code ZAQ.

For both the two- and eight-group simulations, group cross sections and discontinuity

factors were interpolated (vs. control rod position) from values found from static eight-group

discrete ordinate (TWODANT) calculations. Thus, the initial nodal (ZAQ) eight- and two-

group eigenvalue and the initial two-group ZAQ flux shapes match exactly those reduced

from the eight-group TWODANT calculations.

The two- and eight-group flux omegas were edited from the nodal transient solutions at

various times during the transient. Figure 3.8 shows eight-group o-values (solid lines) and

two-group o-values (dotted lines) for various nodes at time t=0.02 seconds for the rod

withdrawn in 0.1 seconds. The locations of the nodes are indicated on Figure 3.4.

The curves make qualitative sense. In node (1,24), from which, the control is moving, the

low energy fluxes are rising faster than the high energy fluxes. The opposite is true for node

(1,38) into which the control is moving. For fueled nodes all cog's - both eight-group and two-
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group - are almost the same.

The bottom two curves on Figure 3.8 are for nodes (15,19) and (15,24) out in the reflector.

Examination of these omega behaviors show that eight group flux omegas, in the nodes where

ratio is not unity, fall into two classes such that there is a fictitious thermal cutoff at energy

group 4. The two-group values, with thermal cutoff at energy group 5, do not match them very

well. This behavior is related to the fact that the thermal group of the two-group model is

composed of the last three groups (6,7 and 8) of the eight-group model. There is, however,

upscattering from group-6 to group-5 and from group-7 to group-5. Thus there is also

upscattering from the thermal to the fast group in the two-group model. The two-group model

puts upscattered neutrons into the entire fast group (groups 1-5 of the eight group scheme).

However, the eight-group upscattering puts neutrons into only group-5. This suggests that a

more accurate two-group model might be one for which the thermal group includes the lowest

four groups for the eight-group scheme. Accordingly, the transients were rerun with the fast

and thermal groups of the two-group scheme defined as the highest and lowest four groups of

the eight-group scheme. Figure 3.9 shows the results at t=0.02 seconds. It can be seen that the

eight-group omega values fall into two unique sets both in the reflector and in the nodes where

the rod is moving, and the two-group values match them much better.

This omega behavior suggests that using the fast, two-group value of w for the four fast

groups of an eight-group scheme and the thermal two-group value for the four lowest energy

groups should yield an eight group pseudo-static eigenvalue very close to 1.

This conclusion was confirmed by using this new thermal energy cut off for the rod

removal transient in 10 seconds. Figure 3.10 shows the eight- and two-group omega values at

t=2.0 seconds for this transient.

Examination of Equation (3.5) shows that the flux omegas are only part of the picture.

Values of the Od'S also affect the pseudo-static eigenvalue. In fact, for the 10-seconds rod

withdrawal transient, the cog's are so small (<2 sec l throughout the transient) that (og/g) is

almost negligible in comparison with tg. It is chiefly the delayed precursor cod's that

determine the pseudo-critical eigenvalue.

The two-group model yields a set of od(r,t)'s at all times during a transient, and these can

be compared directly to the corresponding tod'S from the eight-group model. (No extrapolation
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is required.)

For the 10-second rod withdrawal Figure 3.11 shows the values of cod'S for the six

precursors groups edited at 1.25 seconds into the transient from the eight-group (solid line)

and two-group (dotted line) calculations for various fueled nodes. The agreement is excellent

and suggests that two-group values of the cod's can be used as approximations to the eight-

group values.

Table 3.1 shows sensitivities of pseudo-static eigenvalues, 3ps, to cod and cog values for the

0.1 second rod withdrawal transient. Ideally ,ps should be 1 for the cases where the reference

cod'S and cog's are used. The second column of the table shows that for both the two-group and

eight-group models, the reference co's yield values of Xps differing from the unity by at most 4

pcm (1 pcm=10 5). This deviation is within the round off limits. The last three rows of the

second column (using two-group reference values of co's to represent eight-group values of

those quantities and inserting them into eight-group pseudo-static criticality equation) yield

the pseudo-static eigenvalue within the same convergence limits. Setting cog's to zero makes

little difference for this mild transient. As was described earlier, this slow rod removal

transient falls into the category characterized by the delayed omega modes. Setting cod values

to zero affects the pseudo-critical eigenvalue significantly. Numbers in parenthesis show the

differences in ps value with and without co's set to zero (the so called omega worth). The

close agreement in pseudo-static eigenvalues and delayed precursor omega worths between

two-group, eight-group, and eight-group extrapolated from two-group indicates that the

procedure we are using for inferring eight-group values of cod'S from two-group results is quite

accurate.

In the fast rod withdrawal transient, the pseudo-critical eigenvalue is governed by very

large values of the flux omegas. Table 3.2 shows the sensitivity of pseudo static eigenvalues to

these co-values for the fast rod removal transient. As happens with the slow rod withdrawal

transient, reference values of cog's and cod's result in pseudo-static eigenvalues were close to

unity for both the two- and eight-group as well as when the eight-group values are inferred

from the two-group results. The values of (,ps - 1) that result from setting og's to zero are two

orders of magnitude greater than when reference o-values are used. For this fast transient,

sensitivity to the cod's is less. Again the close agreement in the flux omega worths indicates the

accuracy of the extrapolation scheme for the flux omegas.
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Table 3.1: Sensitivity of pseudo-static eigenvalues to og's and Od's for the
10 second rod withdrawal transient

.ps ~s ~ps
Time (sec) i O c 0d g=O d

2 group calculation using 2 group omegas

0.9 1.00003 1.00024 (21)* 1.00123 (120)

1.8 1.00003 1.00030 (27) 1.00210 (207)

2.7 1.00004 1.00042 (38) 1.00301 (297)

8 group calculation using 8 group omegas

0.9 1.00003 1.00023 (20) 1.00123 (120)

1.8 1.00003 1.00029 (26) 1.00210 (207)

2.7 1.00003 1.00040 (37) 1.00302 (299)

8 group calculation using 2 group expanded omegas

0.9 1.00002 1.00023 (21) 1.00123 (121)

1.8 1.00004 1.00031 (27) 1.00211 (207)

2.7 1.00003 1.00041 (38) 1.00301 (298)

(*) Numbers in parenthesis are the difference in the eigenvalue in pcm with and without setting the o's to zero

Table 3.2: Sensitivity of pseudo-static eigenvalues to g's and Od'S for the
0.1 second rod withdrawal transient

Time (sec) I s d cog=0O °d

2 group calculation using 2 group omegas

0.009 0.99998 1.00128 (130)* 1.00008 (10)

0.018 1.00001 1.00207 (206) 1.00031 (30)

0.027 0.99996 1.00282 (286) 1.00053 (57)

8 group calculation using 8 group omegas

0.009 1.00001 1.00132 (131) 1.00012 (11)

0.018 1.00002 1.00207 (205) 1.00029 (27)

0.027 0.99999 1.00283 (284) 1.00055 (56)

8 group calculation using 2 group expanded omegas

0.009 0.99997 1.00130 (133) 1.00008 (11)

0.018 1.00005 1.00215 (210) 1.00033 (28)

0.027 0.99994 1.00284 (290) 1.00049 (55)

(*) Numbers in parenthesis are the difference in the eigenvalue in pcm with and without setting the m's to zero
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The Light Water Ingress

As was done for the control rod ejection transient, to investigate the question of how

multigroup omegas can be inferred from few-group results, the o's generated by the two-

group nodal model were compared to those generated by an eight-group model using the

nodal transient code ZAQ. Interpolation tables of nodal parameters as a function of heavy

water-light water mixture location in the core were generated from the static, eight-group

TWODANT calculations. Since change in the scattering cross section is the most important

contributor to this transient, the thermal group cutoff was changed to energy group 5 allowing

an upscattering from group 2 to group 1 in two-group scheme. Thus, groups 1-5 of the eight-

group scheme form the fast group of the two-group scheme and groups 6-8 of the eight-group

scheme form the thermal group of the two-group scheme. Omegas edited from eight-group

and two-group transient solutions were compared. Figure 3.12 shows that comparison for

various nodes in the core at 0.18 seconds. At that time, the heavy water-light water mixture

front reaches the top of the lower fuel element. (Figure 4.7 shows the mixture front location at

time 0.18 seconds.) The locations of the nodes can be seen in Figure 3.4.

In nodes that have already been occupied by the heavy water-light water mixture, low

energy fluxes are rising faster than the high energy fluxes. The figures show that, especially for

the last two energy groups, two-group omegas match the eight-group omegas very well. We

believe that those are the omegas that determine the pseudo-static eigenvalue. Since flux

omegas appear as og/tg in the pseudo-static equations, for higher energy groups which have

higher group speeds, wog/g terms are small compared to the corresponding group removal

cross sections. (For example, collision frequencies, DIg, for outer D20 reflector nodes from

the energy group-one to energy group-eight are 1.7x108, 6.2x107, 1.0x106, 2.4x105 , 1.5x105,

1.0x105, 5.6x103, 2.3x104 sec 1 respectively.) For the nodes in the reflector region and the

nodes which are not occupied by the mixture, all og's-both eight-group and two-group- are

almost same. Because of that observation, the fast two-group value of omegas was used for

the first five groups of eight-group scheme, and the thermal two-group value of omegas was

used for the lowest three energy groups. However, the omega behavior in the lower plenum

nodes, such as (10,20), suggests that a three-group scheme might there yield more accurate

results for this particular transient.

Figure 3.13 displays analogous results for the delayed precursor periods (od's) at 0.18
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seconds. As for the rod withdrawal transients, the agreement is excellent. At that time step,

because of the initial negative reactivity insertion (this will be explained in Section 4.4), the

delayed precursor periods are negative.

The sensitivity of the pseudo-static eigenvalue to these flux and precursor omegas was

also examined. Table 3.3 shows, for the first half of the transient, the pseudo-static

eigenvalues calculated by using the omegas found from two-group and eight-group as well as

eight-group values inferred from two-group values.Again the extrapolation schemes yield

good results and the sensitivity of ps to o values is as expected.

Table 3.3: Sensitivity of pseudo-static eigenvalues to cog's

light water ingress event
and COd'S for the

xps xps xps
Time (sec) g Sd Xgg0 Cd=

2 group calculation using 2 group omegas

0.100 0.99995 0.99992 (-3)* 0.99999 (4)

0.167 0.99996 0.99961 (-35) 0.99971 (-25)

0.182 0.99998 1.00108 (110) 0.99988 (-10)

8 group calculation using 8 group omegas

0.100 1.00001 0.99998 (-3) 1.00000 (-1)

0.167 1.00000 0.99961 (-39) 0.99971 (-29)

0.182 1.00002 1.00112 (110) 0.99988 (-14)

8 group calculation using 2 group expanded omegas

0.100 0.99998 0.99996 (-2) 1.00001 (3)

0.167 0.99994 0.99958 (-36) 0.99969 (-25)

0.182 0.99996 1.00107 (111) 0.99985 (-11)

(*) Numbers in parenthesis are the difference in the eigenvalue in pcm with and without setting the o's to zero

3.3.4 Extrapolation Procedures: Flux Omega Angular Dependency

In the previous section we have shown that, with proper choice of the thermal group cut

off, flux omegas can be expanded from few-group to multigroup quite accurately.

Unfortunately, in the discrete ordinate form of the pseudo-static equations, for the flux omega

there is an additional directional dependency. From the diffusion theory approximation, no

such angular dependency information is available.
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For space dependent kinetics problems, according to Henry [H-5], co-modes can be found

from the solution of a generalized inhour equation. If oi's are the roots of the inhour equation,

the time dependent flux during any time can be written as the sum

' (r, Q,E,t) = ZAiP (r, ,E)em t (3.17)
i

where the T'I) (r, , E, t) 's are eigenfunctions (o-modes) corresponding to the coi's.

The o-modes corresponding to higher order energy and angular effects die out very

quickly so that the asymptotic time behavior of the flux and delayed precursors is determined

primarily by the seven roots and corresponding eigenfunctions of the standard inhour

equation. Of course asymptotic time behavior is not reached in the transients if the reactivity is

not constant. Hence, the situation is more complicated for the instantaneous flux and precursor

omegas which are used in our pseudo-static validation model. Nevertheless we believe that

adjustments in spectra and angular distribution following a perturbation occur very quickly so

that the (') 's in Equation (3.17) that persist all have the same angular dependence. Hence all

their spherical harmonic components behave as e . Thus we assume that there is no

directional dependency in the time behavior of the angular flux. For all directions the omega

value is the same for a given node and energy:

og (rl, = g(r,2,t) = D 2g =... = og (r, 9D t) = og (r,t)

Once this assumption is made, the scalar flux omegas found from the transient nodal

solution can be used for the directional flux omegas.

Moreover, a self sustaining reactor has a very short memory such that a neutron, while

creating its own chain, diffuses away from its birth place, and the distribution, a few scattering

mean free paths beyond its birth place, is independent of the initial condition imposed on it

[G-1]. This implies that perturbations are local and supports the assumption of direction

independent flux omega behavior.

In order to test the validity of this assumption, angular flux shapes found from static

transport solutions (8 energy group, S4, P1 approximation) for two different control rod

positions were compared. The first case corresponds to a fully inserted control rod position.

For the second case the control rod was 20% withdrawn from a node. Note that, when
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transient equations are solved, time steps are chosen so small that the fraction of the rod

removed is much less than 20% during a time step. Hence, no such severe changes are

expected during actual transient solutions. Other high order calculations (S10, P3) show that

the neutron distribution in the D20 reflector tank is isotropic [H-6]. In Figure 3.14, changes in

the angular flux shapes (= In (2/T,) , where WI is the angular flux shape for rod in and W2

is the angular flux shape for 20% withdrawn rod positions) for energy group-8 and for each

discrete directions (12 discrete directions for an S4 approximation) are plotted for various

regions in the core. In the calculations, both flux shapes were normalized to the same power

level. It was found that the isotropic distribution does not change with the transient variable

(e.g. control rod position) for the nodes in the reflector. Although, the neutron distribution is

not isotropic in the central fuel and control rod regions, other than for nodes in which, or near

which the perturbation is introduced, no strong directional time dependency of angular flux

was observed. Similar comparisons for other energy groups show the same trend.

6 8
Discrete direction #

10 12

Figure 3.14: Changes in angular flux shapes as a result of control
nodes can be seen in Figure 3.4)

rod removal (Location of

As has already been emphasized, flux omegas play an important role for the regions where

the absorption cross section is small. Even though the magnitude of the flux omegas is high in
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the nodes where a perturbation is introduced, because of the large absorption cross section, the

time variation of the angular fluxes is much smaller than the collision frequency uI;t. Hence

the use of scalar flux omegas for directional flux omegas does not affect the pseudo-static

eigenvalue test.

3.4 Summary

In this chapter, we introduced an indirect test for the validation of a few-group, time-

dependent nodal model for transient analysis of tightly coupled reactors. The crucial part of

this validation model is the expansion of the few-group omegas to multigroup omegas. Since

there is no theoretical basis for that expansion, calculational studies were conducted to

examine the nature of the group flux and delayed precursor omegas. It was found that for all

transients, few-group values of the delayed precursor omegas can be used for multigroup

values. By choosing properly the thermal group cut off for the two-group scheme, two-group

omegas can also be expanded to multigroup. It was also found that, flux omegas play a major

role:

* for the transients in which the rate of reactivity change is large,

* for the nodes where the absorption cross section is small,

* for the lower energy groups.

Finally we investigated the angular dependency of the flux omegas, and argued that they

do not play a significant role in the determination of the pseudo-static eigenvalue.

In the next chapter, we shall analyze various reactivity transients for the ANS reactor and

apply the indirect test to investigate the accuracy of the different transient models.
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Chapter 4

Application of the Validation Model to Transients of the

ANS Reactor

4.1 Introduction

In this chapter, results of the various reactivity transients of the Advanced Neutron Source

reactor will be presented. Before it was cancelled in early 1995, the preconceptual design of

the ANS reactor had been changed considerably. One of the major design changes was the

replacement of the two-element core with the three-element core in order to reduce the power

density because of safety concerns. The present validation studies were first started for the

two-element ANS core. The control rod withdrawal transients were analyzed and pseudo-

static tests were applied. Following the design changes, the latest three-element core [S-2] was

taken as a final model in our studies. In addition to the control rod withdrawal transients, a

light water ingress event has also been analyzed for the new core. Since the nature of the

transient is independent of the core configuration (either two- or three element core), we shall

here present the studies and results in detail for the three-element ANS core. Results of the

two-element ANS core control rod removal transients are given in Appendix A-2. In each

transient, indirect eigenvalue and flux shape tests have been applied to various transient

models. Some important parameters of interest were also compared.

4.2 The Three-Element ANS Core Transient Model

The model being considered for the transient analysis is the same one used in the previous

chapter (shown in Figure 3.4). The cross-section and discontinuity factor sets for various

conditions expected throughout transients were generated from eight-group TWODANT

calculations with S4, P1 approximations. Eight-group cross sections, which were processed

from the ANSL-V 99-group master cross section library using modules from the SCALE and

AMPX code systems [G-4], were provided by Oak Ridge National Laboratory for each

material comprising the reactor. In this eight-group cross section library two radial traces were
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used to account for the axially offset fuel elements. One trace included the data for the upper

fuel elements and the other included for the lower fuel element. For each of these traces, there

were two sets of data for a controlled and uncontrolled cases.

As to be expected, modelling of very thin zones (-5 mm) for full sized cores (-2-4 m)

requires a large amount of computer memory and computing time. Earlier attempts to use

variable mesh spacing for the discrete ordinate calculations have resulted in negative transport

fluxes. (It is known that the solution of discrete ordinate equations for situations such that AR/

AZ is very small or very large can result in negative fluxes.) Therefore, in order to reduce the

memory requirement and also the computer running time, instead of modelling each material

zone separately, small regions in the core were homogenized with neighboring zones. In these

calculations, a convergence criteria on the eigenvalue of 10-6 and on the group-fluxes of 10-5

was used. With these convergence criteria and 275x100 mesh spacings, each TWODANT (S4,

P1) calculation requires 7-8 hours on a SunSPARC Classic workstation.

Node-homogenized two-group cross sections and discontinuity factor ratios were edited

from static TWODANT calculations, and transients were run using the interpolation schemes.

In these calculations six delayed neutron precursor groups were used. Feedback effects were

not modelled. For static calculations, the eigenvalue and group-flux (for fueled nodes)

convergence criteria were set to 10-6 and 10-5 respectively. For transient calculations

convergence in the group-flux of 10-4 was used. For pseudo-static eigenvalue problems, for

both the nodal and the discrete ordinate calculations, static convergence criteria were kept the

same as for the static problems.

In the transient calculations, initially core averaged group velocities were used. However

comparison of two-group and eight-group transient solutions showed the importance of

computing node-dependent values of the two-group neutron velocities from the eight-group,

static reference solution. If this is not done, two-group, transient ZAQ calculation power

levels and the instantaneous values of the power periods (time derivatives of the logarithms of

total powers for the two core models) will differ from the eight-group reference ZAQ solution.

If on the other hand, node-dependent, two-group velocities derived from the eight-group

reference are employed, the differences reduce significantly. Accordingly node-dependent

values were used for the transient solutions.
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4.3 Control Rod Removal Transients

The transients analyzed were the complete withdrawal of one of the central control rods

from its initial position with the tip at the plane between the upper and the lower reactor halves

in 10 seconds (a slow transient) and in 0.1 seconds (a fast transient). Transients were

simulated by reducing the control rod Hafnium material density by one third of its original

value in the nodes where rod is being removed and adding the same amount to the nodes

where rod is being inserted. Figure 4.1 shows the control rod positions at the beginning and at

the end of the transient. As shown in the figure, at the end of the transient one control rod is

removed 60 cm from the core axial mid plane spanning seven axial nodes.

Beginning of transient

L

End of transient

427.1 cm

367.1 cm

287.1 cm

227.1 cm

O Fuel * 3 ControlRods * 2 ControlRods FO I ControlRod

Figure 4.1: Schematic of the rod removal transient

Tables of cross section and discontinuity factor ratios for the 15 control rod positions were

constructed from full core, static TWODANT calculations. Of the 15 rod positions, eight

correspond to node boundaries and seven correspond to positions half way out of a node. For

the adiabatic approximation control rod reactivity curves and tables for flux shape functions
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were tabulated for these 15 control rod positions, and at any intermediate step during the

transient their values were found by linear interpolation.

Various transient models were compared in terms of scram time, reactor power at the time

of scram and integrated power till scram. The time when the total flux reading in detector

nodes (shown in Figure 3.4) increases 15% over its full power nominal value was taken as the

scram-time. Although the scram time predictions by various models have been compared, it

was assumed that the control system failed to trip and cause control rod insertion. That

assumption allowed us to compare models beyond the scram time.

For all models (the space-time, point kinetics and adiabatic), the initial adjoint flux shape

was taken as the weight function for the calculation of the point-kinetics parameters. For the

point kinetics model the initial flux shapes were used throughout the transient.

4.3.1 The 10 second control rod removal (Slow Transient)

This slow control rod removal transient begins at 0.0 seconds utilizing a time step size of

0.05 seconds. Figure 4.2 shows a plot of reactivity vs. time for the three models. (The lower

portion is an expanded plot for the first second of the transient.) Notice that, with a Peff value

of 6.9x10 '3 the reactor becomes super-prompt critical at around 6.0 seconds and runs away.

The effect on the reactor power due to the transient is presented in Figure 4.3. Two power-vs.-

time curves are shown for the adiabatic approximation dependent upon whether the power is

reconstructed using the initial flux shape or those obtained from the criticality calculations

used to construct the table of reactivity vs. control rod position. The two curves are

indistinguishable in the upper portion of Figure 4.3 and barely distinguishable in its lower

portion. Figures 4.2, and 4.3 show that, for this transient, predictions of the adiabatic model

are very close to those of the (theoretically more accurate) ZAQ space-time model. The

expanded portion of Figure 4.2 (as well as Figure 4.3) suggests that a smoother fit of reactivity

vs. rod position might improve accuracy even further. Except for very early time into the

transient, the point kinetics approximation is (as expected) very inaccurate.

Table 4.1 shows the values of various quantities of interest for the four different

simulations. For the slow transient, in terms of scram time, reactor power etc., all

approximations are very close to the reference space-time solution. Since the scram occurs

very early in the transient the flux shape is close to the initial flux shape, the point kinetics and
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Figure 4.2: Reactivity vs. time for the 10 second rod withdrawal transient for the three-
element ANS core without feedback (eff=6.9x10O3)

73



1 2 3 4 5
Time (sec)

6 7 8 9 10

x 10

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

0.6 0.7 0.8 0.9 1

Figure 4.3: Power vs. time for the 10 second rod withdrawal transient for the three-
element ANS core without feedback
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Table 4.1: Predictions by various models of parameters of interest at the time of 15%
overpower scrams for the 10 second rod withdrawal transient without feedback

adiabatic approximations are acceptable.

In order to perform the pseudo-static validation test, flux and precursor omegas were

edited from time dependent solutions and inserted into the pseudo-static model. Table 4.2

shows the pseudo-static test results using the static mode of the nodal code ZAQ. The first

columns of the ZAQ results in this table are a measure of the sensitivity of the scheme. Since

the co's from the ZAQ solution at the times listed are inserted into the ZAQ equations, the

pseudo-static eigenvalue should all have a value of unity. The deviation from unity is in the

fifth decimal digit. We conclude that non-zero values for the fifth decimal digit in the Xps's are

due to round-off and convergence effects.

The required eight-group co's for the TWODANT pseudo-static problems were expanded

from the two-group values as was described in Chapter 3. The results are presented in Table

4.3. The first column of the TWODANT results is very close to unity which suggests that, if a

time dependent, eight-group TWODANT problem could be run, results for reactor power

level and distribution would be close to those predicted by the time dependent, two-group

ZAQ solution.

We believe that the relatively large differences between ZAQ and TWODANT pseudo-

static eigenvalues at 1.25 and 2.5 seconds (at t=1.25 Xps(TWODANT)-Xps(ZAQ)=10 pcm and
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Reactor Power at the Integrated Power at Highest Powered
Method Scram Time time of scram the time of scram Node Energy

(sec) (MW) (M Accumulation
(MJ)

Few-Group
Nodal 0.60 384.35 213.13 19.86

(Space-Time)

Point Kinetics 0.60 380.93 212.26 19.78

Adiabatic with
Changing Flux 0.60 382.33 211.88 19.75

Shape

Adiabatic with
Initial Flux ) 0.60 381.74 211.70 19.73

Shape



Table 4.2: The two-group
withdrawal transient

ZAQ solution pseudo-static eigenvalues for the 10 seconds rod

(1) Adiabatic approximation with changing flux shapes
(2) Adiabatic approximation with initial flux shape

Table 4.3: The eight-group TWODANT solution pseudo-static eigenvalues for the 10
seconds rod withdrawal transient

Space-Time Point Adiabatic

Time (sec) Reference Od=0 Kinetics Ch. Flux'

0.50 1.00008 1.00079 1.00013 1.00015

1.25 1.00012 1.00173 1.00032 1.00016

2.50 1.00016 1.00299 1.00056 1.00022

5.00 0.99998 1.00508 1.00072 1.00010

7.50 1.00001 1.00590 1.00099 1.00010

10.00 1.00001 1.00610 1.00114 1.00010

(1) Adiabatic approximation with changing flux shapes

at t=2.5 Xps(TWODANT)-Aps(ZAQ)=14 pcm) come from interpolation errors. The similar

differences in the pseudo-static eigenvalue prediction by the adiabatic and point kinetics

models for the corresponding time steps (e.g. for the point kinetics approximation, differences

are 12 and 18 pcm respectively) support this conjecture. Other than these two time steps, both

ZAQ and TWODANT eigenvalues for all models agreed within roundoff. Recall from

Chapter 3 that, in the point kinetics models, the value of flux omegas are the same for all

energy groups and all nodes comprising the reactor. Therefore no extrapolation error takes
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Space Time Point Adiabatic Adiabatic Ini.

Time (sec) Reference (Qd=0 dg-0- Kinetics Ch. Flux1 Flux2

0.50 1.00004 1.00075 1.00097 1.00009 1.00011 1.00011

1.25 1.00002 1.00162 1.00182 1.00020 1.00004 1.00004

2.50 1.00002 1.00284 1.00319 1.00038 1.00004 1.00004

5.00 1.00002 1.00508 1.00598 1.00072 1.00006 1.00006

7.50 1.00001 1.00591 1.00775 1.00100 1.00010 1.00010

10.00 1.00000 1.00610 1.00841 1.00113 1.00011 1.00011



place while two-group omegas were expanded to eight-group. That implies that the difference

comes from errors in the interpolated nodal parameters used by the transient and pseudo-static

ZAQ models.

For both tables, the columns with og's and/or od's set to zero provide an example of Xps

values when incorrect values of the instantaneous periods are used for the pseudo-static

computations. Here the ps values generally differ from unity in the third (rather than the fifth)

decimal place. The close agreement in the eigenvalue difference (i.e. Xps(Cd=O)-

kps(reference)) between ZAQ and TWODANT calculation also indicates the accuracy of the

extrapolation scheme used for delayed neutron precursors.

When the point kinetics or adiabatic approximations are used, the solution of the point

kinetics equations combined with the appropriate shape functions provides the cog and cod

values. The results in Tables 4.2 and 4.3 suggest that the point kinetics approximations

provide an inaccurate simulation for this transient, whereas the adiabatic approximation

should be quite accurate.

Another way to test the accuracy of the adiabatic approximation is to compare its

predictions of flux shape with reference values. The two-group ZAQ results provide an

opportunity for this comparison. The comparisons of the pseudo-static flux shapes computed

with reference cog's and cod'S (using both ZAQ and two-group fluxes reduced from eight-group

TWODANT) match the reference space-time flux shapes to better than 1%.

For this slow transient, the flux shapes computed by the adiabatic model are also very

close to reference values except in regions where the flux is very low.

It should be noted that these and the other results presented in this chapter were obtained

primarily to show differences in the three models and to apply the pseudo-static test. Even if

the reactor failed to scram at 15% over full power, thermal feedback effects (neglected in these

calculations) would drastically alter the transients. (This will be discussed in the next chapter.)

In fact, if the 15% overpower scram is operated, the point kinetics approximation may be

acceptably accurate. Our primary purpose here is to provide a theoretical means of assuring

that accuracy.
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4.3.2 The 0.1 second control rod removal (Fast Transient)

The control rod removal transient described in the previous section were rerun on the time

scale two orders of magnitude faster than the previous one in order to investigate the effect of

the rate of introduction of reactivity on various transient models. This fast control rod

withdrawal transient was run using a time-step size of 5x10'4 seconds. The simulation time

was extended to 0.2 seconds.

Figure 4.4 shows the reactivity associated with the transient. Note that the reactivity curve

for the adiabatic model is the same for both fast and slow transients. (Reactivity stays constant

after t=0.1 seconds for the fast transient.) The figure indicates that the space-time model

reactivity is slightly higher than the adiabatic model prediction at time 0.1 seconds and then

decreases to its asymptotic value. The difference results from the changing shape function,

even though the control rod doesn't move. The shape function and consequently reactivity

reach asymptotic values only after the transient associated with the decay of the delayed-

neutron precursors ends. Specifically, the shape function decreases in the central core, where

the neutron importance is higher, and increases in the heavy-water reflector tank as neutrons

are redistributed. The effect on the reactor power is presented in Figure 4.5. Although, the

adiabatic approximation is not as accurate for the prediction of the reactor power as in the

slow transient (-5% error in the power at t=0.2 seconds) it is superior to the point-kinetics

approximation which underestimates the reference power at that time by approximately 20%.

The use of precalculated flux shapes makes a slightly better job compared to the use of initial

flux shape for the adiabatic model.

Table 4.4 shows the various quantities of interest under the assumption that the reactor

scrams when the flux level at a counter in the reflector increases by 15% of its nominal full

power value. For this fast transient, the adiabatic and point kinetics approximations fail to

predict scram time accurately. Because of the earlier scram time for these models, in which

shape function is approximated, reactor power and accumulated power are underestimated.

As was done for the 10 second rod withdrawal transient, flux and delayed precursor

omegas were edited from the transient solutions. First, these omegas were directly inserted

into the ZAQ pseudo-static nodal model and then values of the multigroup omegas required

by the discrete ordinate problem were inferred from the two-group results. The results of the
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Table 4.4: Predictions by various models of parameters of interest at the time of 15%
overpower scrams for the 0.1 second rod withdrawal transient without feedback

pseudo-static eigenvalue tests are given in Tables 4.5 and 4.6. As in the slow rod withdrawal

transient, both ZAQ and TWODANT pseudo-critical eigenvalues with reference cog and cod's

are very close to unity indicating the accuracy of the space-time solution. It should be

remembered that as the transient proceeds, since the interpolated ZAQ parameters are based

on static TWODANT eigenvalue calculations, an exact match is not expected. However, if the

eight-group expanded ZAQ co-values inserted into pseudo-critical TWODANT calculation

yield an eigenvalue close to unity (as has been observed here), we expect that the ZAQ

transient results would be close to those from a transient TWODANT calculation if such a

calculation were available.

For this fast transient sensitivity of the ps was tested setting cog to zero in both ZAQ and

TWODANT models. The agreement in the flux omega worths is within round-off and

convergence limits. Table 4.5 and 4.6 show that after the control rod reached its fully

withdrawn position at time 0.1 seconds, flux omegas start to die and the pseudo-static

eigenvalue is determined mostly by the delayed precursor omegas.

The deviation in the pseudo-static eigenvalue for the point kinetics model is again in the

fourth and third decimal digits. The pseudo-static eigenvalues for the adiabatic model differ

only slightly (20-50 pcm) from unity. Although this deviation is larger than the one observed

for the slow transient, it is not large enough to justify concluding that the adiabatic model is
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Reactor Power at the Integrated Power at Highest Powered
Method Scram Time time of scram the time of scram Node Energy

(see) ( (M (M) Accumulation
(MJ)

Few-Group

Nodal 0.0505 409.92 18.16 1.69
(Space-Time)

Point Kinetics 0.0460 379.67 16.00 1.49

Adiabatic with

Changing Flux 0.0420 380.12 14.64 1.36
Shape

Adiabatic with

Initial Flux 0.0435 380.33 15.14 1.41
Shape



Table 4.5: The two-group ZAQ solution pseudo-static eigenvalues for the 0.1 seconds rod
withdrawal transient

Space Time Point Adiabatic Adiabatic Ini.

Time (sec) Reference K rd=0 Kinetics Ch. Flux 1 Flux 2

0.005 1.00008 1.00097 1.00009 1.00012 1.00010 1.00024

0.0125 1.00003 1.00166 1.00020 1.00017 1.00030 1.00043

0.025 1.00009 1.00278 1.00049 1.00051 1.00039 1.00041

0.050 1.00008 1.00473 1.00133 1.00095 1.00041 1.00043

0.075 1.00003 1.00553 1.00226 1.00122 1.00046 1.00047

0.100 1.00002 1.00538 1.00304 1.00130 1.00045 1.00045

0.200 1.00002 1.00373 1.00466 1.00120 1.00023 1.00023

(1) Adiabatic approximation with changing flux shape
(2) Adiabatic approximation with initial flux shape

Table 4.6: The eight-group TWODANT solution pseudo-static
eigenvalues for the 0.1 second rod withdrawal transient

(1) Adiabatic approximation with changing flux shapes

deficient.

Examination of the pseudo-static flux shapes, however, does permit this conclusion. The

adiabatic flux shapes in the reflector differ significantly from the ZAQ reference values.

Figure 4.6 shows the flux shape differences between the adiabatic and reference pseudo-static

solution at 0.025 seconds and 0.1 seconds after the rod ejection. The errors indicated are for
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Space -Time Point Adiabatic

Time (sec) Reference O)gO Kinetics Ch. Flux 1

0.005 1.00010 1.00103 1.00017 1.00012

0.0125 1.00006 1.00176 1.00029 1.00043

0.025 1.00006 1.00289 1.00060 1.00045

0.050 0.99999 1.00477 1.00093 1.00039

0.075 1.00000 1.00553 1.00120 1.00052

0.100 1.00001 1.00537 1.00128 1.00050

0.200 0.99998 1.00372 1.00118 1.00022



normalized flux shapes and thus do not reflect the error in the power level. The differences in

the range of 4% to 8% for the thermal group are rather uniform throughout the reflector. They

are probably due to the fact that the (g/)g) terms (see Equation 3.5), present in the pseudo-

static shapes but not in the adiabatic shapes, add to the absorption cross section and are

significant compared to the very small absorption cross section for D20 in the reflector.

Because of the low flux level in the outer reflector tank, the values of o's in this region have

very little effect on the Aps of the pseudo-static problem. (For that reason pseudo-static

eigenvalues differ from unity by at most 50 pcm.) On the other hand, these errors in flux

shapes have small but measurable effects on the time-til-scram, since flux detectors are

located in this region. Figure 4.7 also shows that the flux shapes differ by up to 4% (mostly

around 2%) in the central core region because of the difference in the prompt and delayed

neutron source shapes.

The corresponding error bounds when the space-time flux shapes are compared with the

reference pseudo-static flux shapes found from the two-group ZAQ solutions are less than

0.3% at all points and all times throughout the transient. When two-group fluxes reduced from

the eight-group TWODANT calculations were used for the comparisons, differences were

found to be less than 1% in the central core region and around 2% in the outer core region

(specifically in the lower and upper plenum) where the flux level is very low.

As expected, similar comparisons performed for the point-kinetics model yield differences

in the flux shapes as much as 40% in the central core and even larger for the outer reflector

nodes.

4.4 The Light Water Ingress Event

One of the possible ANS light water ingress scenarios was simulated in accord with

information received from Oak Ridge [G4]. In that transient, H20 enters the cleanup system

(the only part of the ANS at low pressure) and then is pumped into the primary by the makeup

pump (approximately 100kg/sec). This dilutes the primary flow (approximately 2000kg/sec)

to give a 5% light water front which enters the core pressure boundary tube (CPBT) and flows

into the central hole and the three fuel elements with the velocities 2 m/sec in the central hole,

10 m/sec in the lower and upper plenum and 20 m/sec inside the fuel element.
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Most of the changes in reactor properties take place when the heavy water-light water

mixture is rising in the central core region. In order to reduce the computational expense for

nodal parameter generation, static TWODANT calculations for various heavy water-light

water mixture front positions were performed in detail for the central region of the reactor

core. Thus, cross section sets were generated for the mixture front at the upper and lower

boundary of each fueled node and the mixture front halfway into a node. To simulate the

mixture front in the lower and upper plenum, two sets for each case were generated, the

mixture front at the entrance of a plenum and at the exit of a plenum. For the water front

position between the plenum inlet and exit, all nodal parameters were interpolated linearly.

For all other water front positions, the interpolation schemes discussed in section 3.3.1 were

employed. Even with that simplification, 23 full core TWODANT calculations had to be

performed. As for the control rod removal transients, tables of reactivity and shape functions

as a function of the heavy water-light water mixture position in the core were precalculated for

these state points.

The transient began at time 0.0 second and ended at 0.408 seconds with the following time

steps:
Time Interval At

0.00 - 0.140 0.000500 sec

0.14 - 0.230 0.000425 sec

0.23 - 0.408 0.000500 sec

A front of heavy water-light water mixture was modelled as progressing from the bottom

of the reactor core through the core and central zones at different speeds. At the end of the

transient the mixture reached a position in the region between the inner Al-6061 pipe (see

Figure B.2) and the core pressure boundary tube corresponding to the top of the reactor vessel.

Figure 4.7 shows the position of the front of the mixture at various times during the transient.

Notice that for this transient the tips of the central control rods were located at the core mid

plane. As for the rod ejection transients, thermal-hydraulics feedback effects were neglected.

Figure 4.8 and 4.9 show the effect on the reactor power and the change in the reactivity

associated with this transient. When the mixture starts rising through the lower plenum,

increased absorption in the coolant causes negative reactivity insertion. At time=0.15 seconds

the water mixture front reaches the bottom of the lower fuel element. Reactivity is still
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Reactivity vs. time for the light water ingress event for the three-element
ANS core without feedback (eff=6.9x10- 3)
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Figure 4.9: Power vs. time for the light water ingress event for the three-element ANS
core without feedback
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negative at that time. But later, because of the better moderating capabilities of light water,

increased thermalization dominates over increased absorption in the coolant and fuel zones,

and therefore causes positive reactivity insertion. When the mixture rises in the zone

containing the lower fuel element upper boron endcap and upper fuel elements lower boron

endcaps, there is a small amount of negative reactivity inserted into core. At time 0.20 seconds

the mixture front starts to rise between the upper fuel elements and eventually within the fuel

elements. At that time a large amount of positive reactivity insertion makes the reactor super

prompt critical. At time 0.225 seconds the mixture front reaches the top of the upper fuel

element and starts to progress through the upper plenum. As happens for the initial phase of

the transient, the light water in the moderator acts as an absorber, and reactivity starts to

decrease. However that negative reactivity insertion is not sufficient to slow down the

transient. j

As can be seen in Figure 4.7, at time=0.4 second the mixture front rises only 80 cm from

the bottom of the reactor vessel in the central zone. When it rises further, additional negative

reactivity insertion results. In order to evaluate that effect, an additional static calculation for

the case with the central hole fully occupied by mixture was performed; the static eigenvalue

was found to be 1.00931. This indicates that from time 0.4 to 2.25 seconds (when the water

mixture reaches the top of the vessel in the central hole) there would be approximately -350

pcm reactivity insertion into core.

Table 4.7 shows the values of various quantities of interest for the different calculation

schemes. The point-kinetics approximation is not capable of handling the transient accurately.

As can be seen from Figures 4.8 and 4.9 reactivity is overestimated resulting in an early scram

time and lower predicted energy accumulations. The adiabatic model with precalculated flux

shapes is much better than the point kinetics model. Especially for the first half of the

transient, the reactivity predicted by the adiabatic model is in good agreement with that

predicted by the reference space-time model. The initial portion of Figure 4.8 also indicates

that the use of more state points for the precalculated reactivity curve (as well as flux shape

functions) may increase the accuracy of the adiabatic model for that part of the transient. For

the second half of the transient, the super prompt critical part, differences between the

reference and precalculated adiabatic flux shapes affect the scram time and integrated power.

As a result of the earlier scram time, the reactor power is 17% underestimated and the
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Table 4.7: Predictions by various models of parameters of interest at the time of 15%
overpower scram for the light water ingress of three-element ANS core

integrated power is 5% underestimated.

Tables 4.8 and 4.9 show the pseudo-static eigenvalues found from ZAQ and TWODANT

throughout the transient for the various calculational procedures. The first columns display the

pseudo-critical eigenvalue for the reference space-time solution. With only few exceptions,

the ps differ from unity in the fifth decimal digit for both solutions. The up to 23 pcm

deviations from unity at times between 0.182 and 0.225 seconds come, we believe, from nodal

parameter interpolation errors. Notice that these are the time steps where the slope of the

reactivity curve is large, and small errors in the cross sections and discontinuity factors can

result in relatively large errors in reactivity and eigenvalue. Errors in nodal parameter

interpolations can be avoided by using smaller time steps. However the transient develops

very quickly, while the delayed precursor concentrations change very slowly. Because of the

single precision accuracy used in the nodal code ZAQ, further reduction in time-step size

causes round off error accumulation on the delayed precursor concentrations. As a result, in

terms of accuracy there is no advantage in using smaller time steps.

The second and third columns with cog's or od's set to zero show the sensitivity of the

pseudo-critical eigenvalue to these instantaneous periods. For that portion of the transient

during which the water mixture is rising in the central region, the flux omegas dominate,

whereas for the second half of the transient delayed precursor omegas are as important in the
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Reactor Power at the Integrated Power at Highest Powered
Method Scram-Time time of scram the time of scram Node Energy

(sec) (MW) (MJ) Accumulation
(MJ)

Few-Group

Nodal 0.227 489.30 76.38 7.14
(Space-Time)

Point Kinetics 0.212 382.03 70.10 6.54

Adiabatic with

Changing Flux 0.220 402.73 72.65 6.80
Shape

Adiabatic with

Initial Flux 0.220 380.22 72.02 6.72
Shape



Table 4.8: The two-group ZAQ solution pseudo-static eigenvalues for the light water ingress
event

(1) Adiabatic approximation with changing flux shape
(2) Adiabatic approximation with initial flux shape

Table 4.9: The eight-group TWODANT solution pseudo-static eigenvalues for the
light water ingress event

(1) Adiabatic approximation with changing flux shapes

determination of the Aps as their flux counterparts.

When the point kinetics or adiabatic approximations are used, the resultant Aps differ from

unity in the forth decimal place at the beginning of the transient, and in the third decimal place

for later phases. These suggest that the point kinetics model is not capable of modelling the

transient accurately. The adiabatic approximation appears to be more accurate, at least for the
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Space Time Point Adiabatic Adiabatic Ini.

Time (sec) Reference rg-=O rd=O Kinetics Ch. Flux1 Flux2

0.100 0.99995 0.99992 0.99999 0.99999 1.00033 1.00031

0.167 0.99996 0.99961 0.99971 0.99987 1.00023 1.00027

0.182 0.99998 1.00108 0.99988 0.99916 0.99988 1.00025

0.197 1.00003 1.00192 1.00021 0.99837 1.00035 1.00033

0.215 1.00017 1.00770 1.00127 0.99889 1.00116 1.00127

0.225 1.00013 1.01098 1.00212 0.99953 1.00220 1.00217

0.400 1.00002 1.00681 1.00619 0.99870 1.00111 1.00110

Space -Time Point Adiabatic

Time (sec) Reference - --O Ogd--d=O Kinetics Ch. Flux

0.100 0.99998 0.99993 1.00002 0.99999 1.00032

0.167 0.99992 0.99958 0.99960 0.99984 1.00028

0.182 0.99979 1.00089 0.99970 0.99897 0.99970

0.197 1.00014 1.00203 1.00027 0.99843 1.00040

0.215 1.00015 1.00767 1.00129 0.99890 1.00115

0.225 1.00023 1.01105 1.00222 0.99963 1.00225

0.400 0.99999 1.00670 1.00616 0.99868 1.00107



portion of the transient that is not super-prompt critical.

As a final test, transient flux shapes were compared to the flux shapes found from the

TWODANT pseudo-static solution using the reference cog and cod values. Table 4.10 gives the

maximum relative differences in normalized nodal flux shapes (normalized to unity) in the

central core region for the three different models. The pointwise error bounds for the space-

time and adiabatic models at 0.215 seconds are presented in Figure 4.10. For the space-time

model, as observed with the fast rod removal transient, flux shapes differ slightly in the outer

reflector region, especially for the fast group. (Figure 3.5 shows that the fast group flux is very

low in the outer reflector region.) However, the error in the flux shapes for the adiabatic

approximation is much larger in the reflector. In addition to that, there are some other

differences in the central core region.

Table 4.10: Maximum relative differences in the flux shapes between the
reference pseudo-static (TWODANT) and various transient models for the light
water ingress event for the central core (fuel elements and their nearest neighbors)

(*) Error(%)=(Shape(Model)-Shape(Reference))/Shape(Reference)x 100

4.5 Discussion and Summary

In this chapter the pseudo-static eigenvalue and flux shape tests were applied to several

reactivity transients of the three-element ANS core. Results of the control rod withdrawal
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Maximum Error in the flux shape (%)*

Space -Time Adiabatic Point Kinetics

Time Fast Thermal Fast Thermal Fast Thermal
(sec) Group Group Group Group Group Group

0.100 0.3 0.3 0.9 0.8 0.1 0.4

0.167 0.3 0.4 0.3 1.1 8.1 10.5

0.182 0.2 0.6 1.1 2.1 9.2 17.7

0.197 0.2 0.5 1.0 1.4 10.9 21.2

0.215 0.1 0.6 4.3 4.0 11.5 29.7

0.225 0.2 0.6 6.3 5.9 13.8 34.5

0.400 0.3 0.3 4.3 4.0 14.5 33.8
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transients for the two-element core are given in Appendix A-2. Several conclusions were

drawn from these results.

It was found that, for all transients, regardless of the magnitude and the speed of

introduction of reactivity, the pseudo-static eigenvalues for the few-group nodal model have a

unity value within roundoff. It was also found that the space-time transient flux shapes match

both the diffusion and transport theory pseudo-static flux shapes very closely. We conclude

that, if a time dependent, multigroup transport problem could be run, results for the prediction

of kinetic behavior of the reactor would be close to those predicted by the transient, few-group

nodal model.

Comparisons of reactivity and power level predictions by the point reactor model with

those found from the space-time solution, as well as the results of pseudo-static test, indicated

that the point kinetics model is a poor approximation for all transients analyzed other than the

very early time in transients where the flux shape doesn't change much.

On the other hand, an adiabatic model was found to be superior to the point kinetics model

especially for slow transients. For the fast control rod removal transient, although the pseudo-

static eigenvalue test results were not sufficient to reach any conclusion, the pseudo-static flux

shape tests showed that the adiabatic approximation may not be accurate enough. Finally,

examination of a light water ingress event, which is a super-prompt critical transient, indicated

that the adiabatic model becomes poorer as the transient becomes faster. In this transient, the

pseudo-static test indicated significant differences in both eigenvalue and flux shapes.

Since the results presented in this chapter was obtained without any feedback effects, they

are unrealistic from a physical point of view. However, this lack of feedback permits applying

the indirect validation procedure and, therefore, distinguishing between situations where the

space-time model description is intrinsically accurate and where the approximate methods are

poor.

In the next chapter, for more realistic simulations, we shall incorporate a simple feedback

model for the ANS transients and then reevaluate the transients with feedback.
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Chapter 5

Transients with Temperature Feedback

5.1 Introduction

In the previous chapter, various reactivity transients for the three-element ANS core were

analyzed and indirect pseudo-static tests were applied to test the accuracy of different transient

models. Since no temperature feedback was included in these analyses, the results obtained

for the behavior of the ANS were not realistic. In this chapter, a simple thermal feedback

model will be introduced for transient analysis. It should be noted that, as with its neutronic

characteristics, thermal-hydraulic characteristics of the ANS differ from those of other

operating reactors. Accurate analysis requires thermal-hydraulic and feedback models with

different emphases. On the other hand, since our primary purpose is to compare various

transient models rather than to perform design or safety studies of the ANS reactor, no further

feedback model development was undertaken.

One other issue related to feedback is the extension of the pseudo-static test to the

multigroup transport solution. Although, theoretically this extension is possible, in practice it

is impractical. If a thermal feedback model was incorporated into the analysis, temperature

distributions in the core would not be uniform. Almost every fuel and coolant node would

have different temperatures. For the pseudo-static transport problems, microscopic cross

sections for a given temperature would have to be supplied. Generation of these microscopic

cross sections at different temperatures is not possible practically. For this reason pseudo-

static tests were applied using only the pseudo-static diffusion model. The fact that, the values

of pseudo-static eigenvalues presented in the previous chapter for both the nodal and transport

models agreed with each other justifies testing the validity of the point and adiabatic models

using the nodal code alone.

In the subsequent sections, first, the thermal-hydraulic features of the ANS reactor will be

summarized, then, the feedback model used in the analysis will be outlined. Finally, transients

discussed in the previous chapter will be reevaluated in the presence of the temperature

feedback.
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5.2 Thermal-Hydraulic Features of the ANS Reactor

In this section, we summarize the very basic features of the ANS thermal-hydraulics. For

design details, the reader is advised to consult references [R-1, Y-2].

As mentioned before, the ANS reactor is designed to provide experimental capability over

in a wide range of conditions. To achieve that objective, the reactor design uses highly

subcooled heavy water as both coolant and moderator. The three-split core of 79.3 L total

volume operates at an average power density of -4.0 MW/L. This power density is well above

that of typical LWR reactors. (For PWRs, the power density is around 100 kW/L.) The coolant

flows upward through the core at 20 m/sec. Operating pressure is 2.7 MPa at the core inlet

with a 0.9 MPa pressure drop through the core region. The coolant core inlet temperature is

45°C. The bulk outlet coolant temperature of 80°C is maintained below 100°C to avoid steam

flashing in the event of rapid core depressurization. The ANS reactor core is constructed with

a series of involute fuel plates. A fuel plate is illustrated in Figure 5.1 along with the simple

model used in our calculations. The thin fuel is 1.27 mm thick and consists of 0.254 mm thick

Aluminum 6061 cladding material sandwiching a 0.762 mm mixture of uranium silicide fuel

(U3Si2) and aluminum. Each coolant gap is 1.27 mm in thickness and 77.65, 63.95 and 55.41

mm (the inner, middle and outer fuel elements respectively) in width. In spite of the high

mm

uel (U3Si2 )

Cladding (Al-6061) 60

Coolant Channel

54 mm

(a) (b)

Figure .1: Involute fuel plate of the ANS
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power density, the use of thin fuel plates and fuel and cladding materials having high thermal

conductivities allows safe operation below the fuel temperature limit (400°C).

5.3 The Thermal Feedback Model

In this section, we describe the thermal feedback model and then summarize the

assumptions made in calculations.

5.3.1 The WIGL Model

The thermal feedback model of the nodal code ZAQ was developed primarily for gas

cooled, graphite moderated reactors [B-2]. The heat transfer mechanism of the ANS, being

close to that of a water moderated and cooled system, differs significantly from that of gas

cooled reactors. For that reason, a different, simple model was incorporated for the ANS

transient analysis. A lumped heat capacity model, the WIGL model [V-1], has been used in

many codes to simulate the thermal feedback effects [G-2, S-l]. Accordingly, in this study, it

was implemented in ZAQ. In this model, the material properties are assumed to be constant.

The primary quantities of interest in the WIGL model are the average fuel temperature, the

average coolant temperature, and the average coolant density in a node. The following

equations are obtained by performing a time dependent energy balance on the fuel and the

coolant in node (i,k) with the assumption that no boiling occurs and mass flow rate is constant

ik

1kd 7 , iklk 'k 1 I i
pf ffdt = (1-r)(q ) Vf + [AU+A-] o (5.1)

( f~ )! dt fl Uo (5.2ik (

+2grr Cc ,T~ Tc J+r(q l) kV~T;=T~k-PH - + (5.2)c t f A AHh e f ck k 2k q iky'k

k ik c

b C b

where, subscripts f c and b indexing the fuel, coolant and coolant inlet respectively, and
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7 k = average temperature in node (i,k),

p = density,

C = specific heat,

r = fraction of fission power deposited directly into the coolant,

(q,,) k = volumetric energy generation rate in node (i,k),

V = volume,

Ah = total heat transfer area/coolant volume within a node,

ho = convective heat transfer coefficient at initial flow rate,

Wik = coolant mass flow rate in node (i,k),

U = fuel element heat transfer coefficient,

(pcH )=energy required to raise the temperature of a unit volume of coolant one

temperature unit.

For the ANS applications, the equations given above are solved only for the central core

region (fuel elements and coolant channels between the fuel elements) using a fully implicit

time integration method with the same time step that is used for the neutronic calculations.

Following the calculation of the average fuel and coolant temperatures, the coolant density is

found using steam tables.

As shown in Figure 5.1, the fuel plate consists of two regions, a fuel meat and clad. It was

lumped into one element using the steady-state temperature distributions to determine the

average plate temperature at the advanced time [M-3]. Details of this model and other

correlations used for the heat transfer coefficients are given in Appendix-C.

5.3.2 Cross Section Feedback Model

Two feedback mechanisms due to fuel temperature (Doppler) and coolant density changes

have been considered for the ANS transient analysis.

F
The fuel temperature coefficient, oa., and cross section derivatives with respect to fuel

temperature (a;,,/aTf) for each fueled node were found by running full core TWODANT

cases using cross section libraries at fuel temperatures of 350 and 550K (kef=l.0 8 2 8 8 at
FTfue=350K and kefffl.08024 at Tpfel=550K yield aT=-1.225 pcm/K).

The coolant density feedback coefficient, ad, and the density derivatives of the cross
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sections ( a/ad ) were found by changing the coolant density in central core region to its

95% nominal value and using the cross section libraries at fuel temperature of 350K for both

cases (kefl1.08288 at 100% Pc and keg=1.07627 at 95% Pc)- For these calculations the tips of

the central control rods were located at the core mid plane.

For the space-time and point kinetics models, cross section sets were modified by

assuming that all cross sections and inverse diffusion coefficients are linear functions of the

node average fuel temperature and coolant density. Thus, for a given fuel temperature, Tf, and

coolant density, dc, cross sections are found from

aIea ay-a
(Tpdc) = z (o dc) -(T¢T)+-d (d¢-do) (54)

where Tf and dco are the reference fuel temperature and coolant density.

For the adiabatic model, feedback reactivity was calculated using the flux-weighted core-

average temperatures, coolant density and the reactivity temperature coefficients. Thus, the

feedback reactivity, Ap, is,

F~~
Ap = 4(7-Tffl) +Od(tC-CO) (5.5)

5.3.3 Assumptions

The assumptions made in the feedback model can be summarized as follows:

* Since the feedback effects from coolant temperature changes at constant density are

smaller than the density effects at constant temperature, only density feedback effects were

modelled.

* It has been assumed that, throughout all transients, no boiling takes place in the coolant.

As has been noted, the reactor is designed to operate in a highly subcooled region. However

during transients, the cladding wall temperature may exceed the coolant saturation tempera-

ture and subcooled boiling may take place. Notice that, there is also a large pressure drop in

the core that should be taken into account. The heat transfer mechanisms at high heat flux con-

ditions are being investigated by various research groups including the ANS design team. For

actual design calculations more accurate models that include those features should be used.
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* Although it may be important for the super-prompt critical cases, core expansions were

neglected.

* The gamma heating and energy transfer to the D2 0 reflector tank was neglected. During

the normal operation 5% of the heat generated in the core is transferred in to the reflector tank.

Because of the large heat capacity of the reflector tank, for fast transients, temperature changes

are negligible.

* It was assumed that 3% of the fission power is liberated in the central core coolant

region.

* For all transients, fresh core and normal (nonsegregated) fuel properties were used.

(Most of the fuel and cladding thermal properties change with burnup significantly.)

* For the adiabatic model, flux shapes were calculated without feedback, and transients

were run by using these precalculated flux shapes assuming that those shapes are not affected

by the temperature profile.

5.4 Reactivity Transients with Thermal Feedback

In this section, results of the previously described three transients, slow and fast rod

removals and a light water ingress event, are presented.

5.4.1 The 10 second control rod withdrawal transient

In this slow transient, one of the three central control rods is withdrawn in 10.0 seconds.

The same time step size of 0.05 seconds has been used. Figures 5.2 and 5.3 show the resultant

power level and reactivity behavior. Since the transient is slow, with the temperature feedback

power increment is limited significantly (see Figure 4.3 for the case without feedback). As can

be seen from the reactivity plot, after 5 seconds, reactivity starts to decrease before reaching

its super-prompt critical value. The power and reactivity predictions by the adiabatic model

are again very close to those of the space-time model. The use of core average (flux-weighted)

temperatures with reactivity coefficients to calculate the feedback reactivity seems to work

well for the adiabatic model. (The use of other weighted temperatures, such as volume-

weighted or power-weighted, may increase the accuracy further.)

The results of the pseudo-static test presented in Table 5.1 are very similar to those
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obtained for the non-feedback case. For both the space-time and adiabatic models the pseudo-

static eigenvalues deviate from unity in the fifth decimal digit whereas for the point kinetics

model deviations are as much as 100 pcm.

Table 5.1: The two-group ZAQ solution pseudo-static eigenvalues
for the 10 seconds rod withdrawal transient with thermal feedback

-- (1) Adiabatic approximation with changing flux shapes

5.4.2 The 0.1 second control rod withdrawal transient

Figures 5.4 and 5.5 are analogous to 5.2 and 5.3 respectively. For this 0.1 second rod

withdrawal transient, in order to see the effect of thermal feedback, simulation time was

extended to 10 seconds. To reduce the running time, after 1.0 second into the transient, 0.05

second time steps were employed. In terms of reactivity prediction the adiabatic model gives

excellent results. The prediction of the core (volume) average fuel and coolant temperatures

by the three different models are given in Figure 5.6. Notice that as a result of large heat

transfer coefficient and high thermal conductivities of both the fuel and cladding (resulting in

a time constant of -0.02 sec. for the fuel plate) there is a significant amount of energy

transferred to the coolant within a short time. Hence in addition to the Doppler feedback, the

coolant density changes also slows down the transient. In terms of core average temperatures,

the adiabatic approximation is much better than the point kinetics model.

Table 5.2 gives the results of the pseudo-static test. It is interesting to note that with the

thermal feedback adiabatic approximation results seem to be improved, especially for the later

100

Space Point Adiabatic

Time (sec) Time Kinetics Approximation1

0.50 1.00002 1.00008 1.00006

1.25 1.00001 1.00020 1.00003

2.50 1.00001 1.00038 1.00005

5.00 1.00000 1.00070 1.00001

7.50 1.00000 1.00094 0.99998

10.00 1.00000 1.00106 0.99998
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Figure 5.4: Reactivity vs. time for the 0.1 second rod withdrawal transient with thermal
feedback
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Figure 5.6: Core average fuel and coolant temperatures vs. time for the 0.1 seconds rod
withdrawal transient

Table 5.2: The two-group ZAQ solution pseudo-static eigenvalues
for the 0. 1 seconds rod withdrawal transient with thermal feedback

(1) Adiabatic approximation with changing flux shapes
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Space Point Adiabatic

Time (sec) Time Kinetics Approximation'

0.0050 1.00009 1.00011 1.00011

0.0125 1.00001 1.00020 1.00011

0.0250 1.00002 1.00050 1.00037

0.0500 1.00014 1.00088 1.00041

0.0750 1.00002 1.00115 1.00036

0.1000 1.00001 1.00128 1.00032

0.2000 0.99999 1.00115 1.00018

7.0000 1.00000 0.99985 1.00002



phases of the transient. As has already been stated, for the adiabatic model both simulations

with and without feedback use the same shape functions to reconstruct the time dependent

fluxes. In Figure 5.7, the adiabatic flux shape at time 0.2 second is compared with those found

from the space-time solution with and without feedback. (Although control rod reached its

fully withdrawn position at 0.1 seconds, the space-time flux shape has not yet reached its

asymptotic shape.) An examination of these results reveals that the adiabatic flux shape

matches the space-time flux shape with feedback closely. As the core heats up, because of

reduced thermalization in the coolant/moderator and increased resonance capture in the fuel,

the flux level in the central core decreases relative to that in the D20 reflector tank. As a result

of this new flux shape, the adiabatic approximation accuracy improves and the pseudo-static

test yields eigenvalues close to unity.

5.4.3 The light water ingress event

Figures 5.8 and 5.9 show the effect of the reactor power and change in reactivity for the

light water ingress event. During that phase of the transient when the heavy water-light water

mixture is rising between the upper fuel elements, positive reactivity insertion takes place in a

step fashion so that the reactor first becomes super-prompt critical. Then the Doppler and the

coolant density feedbacks slow down the reactor runaway. In the point kinetics models initial

reactivity is overestimated. The power then increases rapidly resulting a large increase in the

temperatures which, in turn, gives a low value for the reactivity for later phases. The

underpredicted reactivity by the adiabatic model at around 0.2 seconds approaches the space-

time model prediction as the transients progresses. Figure 5.9 indicates that the adiabatic

model is not as good in the prediction of power as in the previous cases. But the comparison of

nonfeedback (see Figure 4.9) and feedback cases shows that the error (-25% adiabatic vs.

space-time) in the reactor power at 0.4 seconds reduces to -7%.

Table 5.3 summarizes the results from the pseudo-static tests. Again, the use of omega

values found from the reference space-time solution yields pseudo-static eigenvalues close to

unity within uncertainty. The results for the point kinetics and adiabatic models show trends

similar to the non-feedback cases except that as the core temperature increases, the pseudo-

static eigenvalue of the adiabatic approximation gets closer to unity, as was observed in the

fast rod removal transient.
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Figure 5.8: Reactivity vs. time for the light water ingress event with thermal feedback
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Figure 5.9: Power vs. time for the light water ingress event with thermal feedback
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Table 5.3: The two-group ZAQ solution pseudo-static eigenvalues
for the light water ingress event with thermal feedback

(1) Adiabatic approximation with changing flux shapes

5.5 Summary

In this chapter, we introduced a simple feedback model for the transient analysis of the

ANS reactor. Using that model, previously described reactivity transients were analyzed.

Generally, the same trends were observed. In all transients the point-kinetics model seems to

be a poor approximation. When feedback effects are included in a model, they make the

transients less severe since the amount and the speed of reactivity insertion is limited. Results

show that the flux shapes found from the static X-modes represent the true space-time shape

much better. This does not imply that for every transient the accuracy of the adiabatic

approximation improves. However, pseudo-static test methods can be applied to measure that

accuracy. It is also apparent that as the time scale of the transient gets smaller a space-time

model may be needed for accurate simulations.

Although, the results presented in this chapter are more realistic than those given in the

previous chapter (non-feedback cases), actual safety and design calculations may require the

use of more elaborate models. In addition to improvements in the heat transfer model

(resolution of spatial temperature profile in a fuel element, two-phase heat transfer etc.), a

hydraulic model should be included in simulations. Also instead of using one or two cross

section modification sets for temperature feedback, a table look-up or polynomial fitting

procedures should be used to obtain a more accurate cross section representation.
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Time Space Point Adiabatic

(sec) Time Kinetics Approimation 1

0.100 1.00000 1.00001 1.00014

0.167 1.00005 0.99986 0.99994

0.182 0.99995 0.99908 1.00023

0.197 1.00002 0.99822 1.00022

0.215 1.00020 0.99875 1.00062

0.225 1.00012 0.99949 1.00229

0.400 1.00000 0.99786 1.00011



Chapter 6

Conclusions and Recommendations

6.1 Overview of the Investigation and Conclusions

The objective of this study was the development of a procedure which can be used to

validate a space-time nodal model as well as any other approximate method for the transient

analysis of tightly coupled reactors.

In Chapter 2, the nodal diffusion theory model taking into account transport corrections

was reviewed. The components of that model were presented: First the steady-state finite

difference equations were derived; then the use of the Monte Carlo and discrete ordinate

procedures to obtain the nodal parameters appearing in the nodal equations was discussed.

Finally three different transient models (point-kinetics, adiabatic and space-time) used in the

remaining portion of the dissertation were outlined.

In Chapter 3, an indirect test for the validation of a few-group, time-dependent nodal

model for transient analysis of tightly coupled reactors was developed. First, pseudo-static

equations were derived starting from the time-dependent diffusion and time-dependent

transport equations. Next calculational steps were presented. The validation is based on the

fact that at any stage during a transient calculation, the transient equations can be converted to

a static eigenvalue problem by introducing group-flux and delayed precursor "frequencies".

These time constants can be edited at any time-step from the transient analyzed. A test of

whether the nodal transient calculation would agree with a transient transport calculation is

then to see if the dynamic frequencies when inserted into the time-dependent equation will

yield an eigenvalue of unity. The crucial part of the validation procedure is the expansion of

the few-group omegas to multigroup omegas. Since there is no theoretical basis for that

expansion, numerical studies were conducted to examine the nature of the flux and delayed

precursor omegas. It was found that for all transients analyzed, few-group values of the

delayed precursor omegas can be used for multigroup values. It was also shown that by

choosing properly the thermal cut off of the two-group scheme, two-group values can be

expanded to multigroup quite accurately. In addition to the energy-group expansion, we
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investigated the angular dependency of the flux omegas, and argued that they do not play a

significant role in the determination of the pseudo-static eigenvalue. Finally, for each case

analyzed, the sensitivity of the pseudo-static eigenvalue to flux and delayed precursor omegas

was examined.

Applications of the indirect validation test were presented in Chapter 4. Various reactivity

transients for the three-element ANS core were analyzed by the three different transient

models without feedback. (Similar tests were also performed for the two-element core control

rod withdrawal transients.) The lack of feedback in the model permitted applying the indirect

validation procedure and distinguishing between situations where the space-time model is

accurate and where the approximate methods are poor. For all transients analyzed, regardless

of the magnitude and the rate of introduction of reactivity, it was found that the pseudo-static

eigenvalue of the space-time model had a value of unity within roundoff and that the space-

time flux shapes matched both the diffusion and transport model pseudo-static flux shapes

very closely. We concluded that, if a time-dependent, multigroup transport problem could be

run, results for the prediction of the kinetic behavior of the reactor would be close to those

predicted by the transient, few-group nodal model.

When the pseudo-static problems were run using the group-flux and delayed precursor

omegas found from the point-kinetics solution, the pseudo-static eigenvalue deviated from

unity (depending on the rate and magnitude of the reactivity) by up to the third decimal digit,

and transient flux shapes differed from the pseudo-static flux shapes significantly. When

similar tests were applied to the adiabatic approximation, for some cases the pseudo-static

eigenvalue test itself was not sufficient to reach any definite conclusion (resulting in a

deviation from unity of only 40-50 pcm). However pseudo-flux shape tests enabled us to

evaluate the accuracy of the model. These results without feedback showed that the point

kinetics approximation is poor except at very early times into transients whereas the adiabatic

model is quite accurate, especially for the transients which are slow (rate of reactivity

insertion is small) and the amount of reactivity insertion is limited (below super prompt

critical).

Tests also indicated that for accurate prediction of the kinetic behavior of the ANS reactor

by a few-group model, space-dependent group velocities, reduced from multigroup values

using the associated spectrum, rather than the core-averaged ones should be used. That
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conclusion is expected for all reactors in which energy spectrums changes dramatically with

position.

In Chapter 5, to provide more realistic simulations, a simple thermal feedback model was

introduced for the ANS reactor. The transients examined in Chapter 4 were reevaluated in the

presence of temperature feedback. The pseudo-static eigenvalue and flux shapes were also

applied to the transients to measure the accuracy of the various models. Results showed that,

since the feedback reactivity slows the transient (true if the reactor has negative reactivity

coefficients), the accuracy of the adiabatic approximation improves.

By using the validation procedure introduced in this study, the accuracy of any neutronic

model for which time-dependent detailed group-flux and delayed precursor distribution

information is available, can be tested. Its application is not limited to tightly coupled reactors.

However, a conclusion about the absolute accuracy of the transient model of interest can be

drawn only if errors due to input data are known. If a certain level of accuracy due to these

errors is acceptable, a comparable error due to use of an approximate method may also be

acceptable.

6.2 Recommendations for Future Work

It is recommended, for future research, that the following areas be investigated.

6.2.1 Effect of Higher Order Omega Modes in Transients

In Chapter 3, while we were investigating the angular dependency of the flux omegas, it

was assumed that there is no directional dependency in the time behavior of the angular fluxes.

Our assumption was based on the fact that the higher order energy and angular effects die out

very quickly. Intuitively, this is a very reasonable approximation for most transients. However

for extremely rapid transients, these neglected higher order terms may start to affect the time

behavior.

In the diffusion theory model, the angular distribution of the neutrons is assumed to be, at

most, linearly anisotropic. For time-dependent problems except for the P term, time

derivatives are neglected (aJ/at = 0). A transient model, in which time derivatives of these

higher order terms were not neglected might allow evaluation of the effect of the higher order
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omega modes. Because of the complexity of developing a time-dependent transport code, a

simple one dimensional Pn model (easier to develop than a transient Sn, model) in which, for

example, time derivatives up to the P2 term were kept could be used to examine the

importance of the higher order omega modes for transient problems.

6.2.2 An Improved Reference Transport Solution

It has been mentioned several times that the interpolated nodal parameters (cross sections

and discontinuity factors) are based on static transport eigenvalue calculations. The time-

dependent flux and current energy spectra differ from the corresponding static spectrum used

to generate the few-group nodal parameters. Even if there is no energy-group collapsing,

spatial angular flux shapes and hence scalar flux and current shapes change with transients

because of the presence of delayed neutrons. Hence the cross section and discontinuity factor

sets found from the static solutions are only approximations. The difference between the

approximate and actual sets is very small for most transients. However, for severe transients,

where these effects may start to be important, a more accurate reference space-time transport

solution could be obtained by iterating between the static transport and time dependent-

diffusion codes. Figure 6.1 illustrates how to employ the idea. The iterative procedure

described below is an extension of the pseudo-static test developed in this thesis.

The iteration starts with the generation of the cross section and discontinuity factor sets for

a small portion of the transient of interest from the static transport calculations. (For example,

if the transient is a control rod withdrawal, nodal parameter sets are generated for different

control positions in the only first node.) That part of the transient for which nodal parameters

have been generated is run by the diffusion transient code using smaller time steps and by

table interpolation. (For the accuracy the use of higher order interpolation procedures is

recommended. The time step size for both the transport and diffusion calculations can be

taken as the same; however that procedure would be extremely expensive.) The flux and

precursor omegas are edited from transient results. Next, theoretically more accurate,

"corrected" nodal parameters are generated from the pseudo-static transport calculations.

Then the transient problem is rerun with these "corrected" nodal parameter sets. The iteration

is repeated until some convergence criteria is achieved for the transport and/or diffusion

fluxes. The same iteration is performed for consecutive portions of the transient (control rod in
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Figure 6.1: Steps for the improved reference transport solution

the second node, and so on). For these portions of the transient, flux and precursor omegas can

be expanded from the previous time steps.

Although the procedure described above, should converge to the time-dependent transport

solution, because of the nonlinear nature of the iteration, convergence is not guaranteed.

Therefore, for such a test problem, a reactor model simpler than the ANS should be chosen.

Also the use of same number of energy-groups for both the transport and diffusion problems

would prevent uncertainties that might arise from extrapolation of flux omegas if different

numbers of energy-groups were used.

To get a preliminary idea for the applicability of iterative procedure, the initial portion of

the 0.1 second control rod removal was run using eight energy groups. Table 6.1 shows the

transport flux convergence at two different time steps through the transient. Results are

promising.

111



Table 6.1: The Root Mean Square Error in TWODANT transport fluxes between two
consecutive iteration steps

6.2.3 Application to the Other Reactors

The few-group transient nodal model taking into account the transport corrections and the

validation procedure developed for tightly coupled reactors were applied only to the ANS

reactor. There is a tendency for other tightly coupled reactors to use Monte Carlo methods for

the static analysis and the point-kinetics approximation for transient analysis. It would be

extremely interesting to test the accuracy of the few-group nodal transient model as well as the

other approximate methods which are used for these reactors.

6.2.4 A More Advanced Thermal-Hydraulic Model

For ANS reactor applications, a very simple thermal-hydraulic feedback model was

incorporated to test the general feedback response of the transient methods. A more detailed

model should be employed for design and safety studies.
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Iteration RMS Error (%) RMS Error (%)

# at t=- 0.007 sec at tW0.014 sec

1 0.890% 1.391%

2 0.082% 0.018%

3 0.020% 0.015%



References

[A- 1I] Y. Y. Azmy, F.C. Difilippo, "Comparison of the Diffusion and Transport Calculations for

the Advanced Neutron Source Reactor," Proc. Int. Reactor Physics Conf, Vol. 11, 183

(1988).

[A-2] Y Y Azmy, "Accuracy of Transport Calculations for the Advanced Neutron Source

Reactor," Tran. of Am. Nuc. Soc., 57, 293 (1988).

[A-3] R. E. Alcoufe et al., "User's Guide for TWODANT: A Code Package for Two-

Dimensional, Diffusion Accelerated, Neutral-Particle Transport," LA-10049-M, revised

(February 1990).

[B-1] J. F. Breismeister (Editor), "MCNP - A General Monte Carlo Code for Neutron and

Photon Transport, Version 3A," LA-7396-M, Rev. 2, September 1986, revised (April

1991).

[B-2] M. E. Byers, "A Transient Nodal Method for Reactor Models in R-Z Geometry,", Ph.D.

Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology

(September 1992).

[B-3] G. I. Bell and S. Glasstone, "Nuclear Reactor Theory," Robert E. Kriger Publishing

Company, NY (1979).

[D-1] F. C. Difilippo, M. Abu-Shehadeh, R. B. Perez, "Two-Point and Two-Energy Group

Kinetics Model of the ANS Reactor," Tran. ofAm. Nuc. Soc., 59, 347 (1989).

[G-i] V. T. Gozani, '"The Concept of Reactivity and its Application to Kinetics

Measurements," Nukleonik, 5, 55 (1963).

[G-2] Jess C. Gehin, "A Quasi-Static Polynomial Nodal Method for Nuclear Reactor

Analysis," Ph.D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of

Technology (August 1992).

[G-3] J. Gherchanoc, "Supernodal Procedures for Transient Analysis," Report, Department of

Nuclear Engineering, Massachusetts Institute of Technology (December 1994).

[G-4] Jess C. Gehin, Oak Ridge National Laboratory, Personal communications (January

1995).

[H- ] A. F. Henry, "Nuclear Reactor Analysis,", MIT Press, Cambridge, MA (1975).

113



[H-2] A. F. Henry, "Derivation of Nodal Equations Having the Finite-Difference Form,"

Course Notes, 22.313, Massachusetts Institute of Technology, (Fall 1992).

[H-3]Pavel Hejzlar, "Conceptual Design of a Large, Passive, Pressure Tube Light Water

Reactor," Sc.D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of

Technology (May 1994).

[H-4] A. F. Henry, "The Application of Reactor Kinetics to the Analysis of Experiments,"

Nucl. Sci. Eng., 3, 52 (1958).

[H-5] A. F. Henry, "The Application of Inhour Modes to the Description of Nonseparable

Reactor Transients," Nucl. Sci. Eng., 20, 338 (1964).

[H-6] M. Hayashi et al., "Calculated Energy and Angular Dependence of Particle Fluxes at the

Exit of the Advaniced Neutron Source Radial and Tangential Beam Tubes," Nucl. Sci.

Eng., 109, 391 (1991).

[L-1] E.E. Lewis, W. F. Miller Jr., "Computational Methods of Neutron Transport," A Wiley-

Interscience Publication (1984).

[K-1] M. H. Kim, "The Use of Bilinearly Weighted Cross Sections for Few-Group Transient

Analysis," Ph.D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of

Technology (June 1988).

[M-l ]Amr S. G. Mohamed, "A Transient Nodal Method Accounting for Multigroup Transport

Effects," Sc.D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of

Technology (February 1994).

[M-2]J. Mika, "The Effect of Delayed Neutrons on the Spectrum of the Transport Operator",

Nukleonik, 9,46 (1967).

[M-3]J.E. Meyer, "Some Physical and Numerical Considerations for the SSC-S Code," BNL-

NUREG-50913 (1978).

[0-1] K. O. Ott, D. A. Meneley, "Accuracy of the Quasistatic Treatment of Spatial Reactor

Kinetics," Nucl. Sci. Eng., 36,402 (1969).

[0-2] K. O. Ott, R. J. Neuhlod, "Nuclear Reactor Dynamics," American Nuclear Society, IL

(1985).

[R-1]J. M. Ryskamp et al. "Reactor Design of the Advanced Neutron Source," Nuclear

Technology, 93, 330 (1991).

114



[R-2] J. M. Ryskamp, F. C. Difilippo, R. T. Primm III, "Reactor Physiscs Methods for the

Preconceptual Design of the Advanced Neutron Source," Tran. of Am. Nuc. Soc., 57,

290 (1988).

[R-3] E. L. Redmond, "Monte Carlo Methods, Models, and Application for the Advanced

Neutron Source," M.S. Thesis, Department of Nuclear Engineering, Massachusetts

Institute of Technology (June 1990).

[R-4] E. L. Redmond and A. F. Henry, "The Accuracy of Point Kinetics in Transient Analysis

of the Advanced Neutron Source," Report, Department of Nuclear Engineering,

Massachusetts Institute of Technology (September 1991).

[S-1] K. S. Smith, "An Analytical Nodal Method for Solving the Two-Group,

Multidimensional, Static and Transient Neutron Diffusion Equations," M.S. and NE

Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology

(March 1979).

[S-2] D. L. Selby, R. M. Hamington, P. B. Thompson, "Advanced Neutron Source (ANS)

Project Progress Report FY 1994," ORNL-6821 (January 1995).

[T-1] H. Trosman, "Computer Simulation for Transient Analysis of MITR Loop

Components," M.S. Thesis, Department of Nuclear Engineering, Massachusetts

Institute of Technology (May 1994).

[V-1 ] A. V. Vota, N. J. Curlee, Jr. and A. F. Henry, "WIGL3-A Program for the Steady-State and

Transient Solution of the One-Dimensional, Two-Group, Space-Time Diffusion Equations

Accounting for Temperature, Xenon and Control Feedback," WAPD-TM-788 (February

1969).

[Y-1] J. B. Yasinsky and A. F. Henry, "Some Numerical Experiments Concerning Space-Time

Reactor Kinetics Behavior," Nucl. Sci. Eng., 22, 171 (1965).

[Y-2] G. L. Yoder et al., "Steady-State Thermal Hydraulic Design Analysis of the Advanced

Neutron Source Reactor," ORNL/TM-12398 (May 1994).

115



Appendix A

The Two-Element ANS Core
In this appendix, we give a description of the two-element ANS core and the results of the

control-rod removal transients for this core.

A.1 Core Characteristics

The information given here is summarized from reference [R-1I.

The Advanced Neutron Source Reactor with a peak unperturbed thermal flux of

-8.5 x 1019 m2.s-1 was designed by Oak Ridge National Laboratory for condensed matter

physics, material science, isotope production, and fundamental physics research. To meet the

requirement of extremely high thermal flux over a large accessible volume, highly enriched

fuel in a small core with heavy water moderator in the reflector was chosen. Heavy water was

selected because it has the highest moderating to absorption ratio and permits greater

flexibility for the orientation of the beam tubes as compared to solid moderators. An extremely

high thermal flux cannot be obtained without high power density. To keep the total power as

low as possible, small core volumes are desirable. Unfortunately, the required high power

density results in high heat fluxes, presenting a major challenge to core cooling. This

challenge was met by using thin fuel plates to produce a large heat transfer area per unit

volume, a high coolant flow velocity, short heated lengths, and efficient hydraulic geometries.

To allow the same low coolant inlet temperature for each fuel element, they were designed to

be radially offset. The fuel elements were axially offset to create greater neutron leakage,

which increases the reflector volume containing a high thermal neutron flux.

The characteristics of the reference two-element core are presented in Table A. 1. Figure

A. 1 shows the core configuration. Figure A.2 illustrates how this two-element core was

modelled by the r-z geometry nodal code ZAQ. Steady-state flux profiles found from a ZAQ

solution are given in Figure A.3. As with the three element core, the origin (1,1) is at the lower

central node of the reflector, and the plots are for 19 mesh spacings in the radial direction, and

48 mesh spacings in the axial direction.
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Table A.1: Design characteristics of the two-element ANS core
model (Taken from reference [R-1])

Quantity and unit/item

Heat deposited in fuel, MW

Fission power, end of cycle, MW(f)

Fission power, 1 day into cycle, MW

Peak reflector thermal flux, neutrons/(m2 /sec)
Beginning-of-cycle
End-of-cycle

Core life, days

Core active volume, L

Fuel form

Fuel enrichment,%

Fuel matrix

Volume % of fuel in fuel meat

Number of fuel plates in upper element

Number of fuel plates in lower element

Mass of 10B, gm (beginning of cycle)

Fuel plate thickness, mm

Aluminum clad thickness, mm

Coolant channel gap, mm

Fuel span between side plates
Upper element, mm
Lower element, mm

Fuel volume fraction in core

Coolant volume fraction in core

Cladding volume fraction in core

Coolant

Heated length, mm

Coolant velocity in core, m/s

Inlet pressure (in plenum), MPa

Core pressure drop, MPa

Core inlet temperature, °C

Core bulk outlet temperature, °C

Average surface heat flux, MW(core)/m2

Average power density in fuel meat, MW(core)/L

Baseline
value/material

303

330

332

7.95x1019

8.57x10 1 9

17

67.6

U3 Si2

93

Al

11.2

432

252

13

1.27

0.254

1.27

78.4
87.4

0.3

0.5

0.2

D20

507

25

3.2

1.5

45

83

6.27

16.44
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Figure A.1: Two-element ANS core configuration (dimensions are given in mm)
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Figure A.2: Simplified R-Z geometry model of the two-element ANS core
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Figure A.3: Steady-state flux plots for the two-element ANS core
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A.2 Results for the Two-Element ANS Core Transient Analysis

In this section results of the 10 second and 0.1 second control rod withdrawal transients

are presented for the two-element ANS core. Feedback effects were not modelled.

The cross sections and discontinuity factor ratios required for the two-group ZAQ model

were generated for 15 control rod positions from eight-group TWODANT calculations with

Po, S4 approximations. That time at which the total flux reading in the outer H2 0 detector

nodes increases 15% over its full power nominal value was taken as the scram time.

A.2.1 Control Rod Removal in 10 seconds

In this slow transient one of the central control rods reaches the fully withdrawn position

in 10 seconds. Figures A.4 and A.5 show the reactivity and power associated with this

transient. Table A.2 presents the values of various quantities of interest at the time of scram

for four different models. The results of the pseudo-static eigenvalue tests from the nodal and

transport theory models are given in Tables A.3 and A.4 respectively.

.)
a:

Time (sec)

Figure A.4: Reactivity vs. time for the 10 second rod withdrawal transient for the two-element
core
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Figure A.S: Power vs. time for the 10 second rod withdrawal transient for the two-element core

Table A.2: Predictions by various models of parameters of interest
overpower scram for the 10 second rod withdrawal transient

at the time of 15%
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- Space Time
- - Point Kinetics
.- - Adiabatic (w/precalculated flux shapes)
..... Adiabatic (w/initial flux shape)

Reactor Power at the Integrated Power at Highest Powered
Method Scram Time time of scram the time of scram Node Energy

(sec) (MW) (MJ) Accumulation

Few-Group
Nodal 0.650 402.17 245.87 14.89

(Space-Time)

Point Kinetics 0.750 404.11 284.92 17.16

Adiabatic with
Changing Flux 0.725 401.61 270.68 16.39

Shape

Adiabatic with
Initial Flux 0.760 402.77 284.05 17.11

Shape

I I I I 

I ,·:
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Table A.3: The two-group pseudo-static ZAQ eigenvalues for the 10 second rod withdrawal
transient for the two-element ANS core

(1) Adiabatic approximation with changing flux shapes
(2) Adiabatic approximation with initial flux shape

Table A.4: The eight-group pseudo-static TWODANT eigenvalues for the
10 second rod withdrawal transient for the two-element ANS core

(1) Adiabatic approximation with changing flux shapes
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Space Time Point Adiabatic Adiabatic Ini.

Time (sec) Reference rOd=O _ d=0g=0 Kinetics Ch. Flux I Flux 2

0.60 1.00002 1.00072 1.00075 1.00006 1.00014 1.00014

0.90 1.00002 1.00093 1.00095 1.00009 1.00003 1.00003

1.50 1.00001 1.00119 1.00121 1.00014 1.00003 1.00003

2.50 1.00000 1.00147 1.00147 1.00021 1.00001 1.00001

5.10 1.00000 1.00181 1.00182 1.00030 1.00000 1.00000

7.00 1.00000 1.00193 1.00194 1.00034 1.00000 1.00000

10.00 1.00000 1.00198 1.00199 1.00036 1.00000 1.00000

Space Time Point Adiabatic

Time (sec) Reference Od=O Kinetics Ch. Flux

0.60 1.00005 1.00076 1.00010 1.00017

0.90 1.00003 1.00095 1.00011 1.00005

1.50 1.00002 1.00121 1.00016 1.00006

2.50 1.00001 1.00147 1.00022 1.00002

5.10 1.00002 1.00184 1.00033 1.00003

7.00 1.00002 1.00195 1.00036 1.00002

10.00 1.00003 1.00200 1.00038 1.00002



A.2.2 Control Rod Removal in 0.1 seconds

Figures A.6 and A.7 show the reactivity and power vs. time for a transient during which

one of the three central control rods is completely withdrawn in 0.1 seconds. Notice that for

both the slow and fast transients of the two-element ANS core, since the magnitude of the

positive reactivity inserted is less than 3eff, the reactor newer becomes super-prompt critical.

The control rod worth seems to be too low. These calculations allow us to examine the model

for transients that are mild compared to the three-element core transients. In Table A.5 various

parameters of the transients at the time of scram are compared. The pseudo-static test results

are presented in Tables A.6 and A.7.

2
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1.2
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C0.
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0.4

0.2

o
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (sec)

Figure A.6: Reactivity vs. time for the 0.1 second rod withdrawal transient for the two-element
core
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Figure A.7: Power vs. time for the 0.1 second rod withdrawal transient for the two-element
core

Table A.5: Predictions by various models of parameters of interest
overpower scram for the 0.1 second rod withdrawal transient

at the time of 15%
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(MJ)

Few-Group
Nodal 0.0285 410.93 10.78 0.66

(Space-Time)

Point Kinetics 0.0305 402.87 11.45 0.68

Adiabatic with
Changing Flux 0.0240 401.65 8.94 0.54

Shape
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Table A.6: The two-group pseudo-static ZAQ eigenvalues for the 0.1 second rod withdrawal
transient for the two-element ANS core

(I) Adiabatic approximation with changing flux shapes
(2) Adiabatic approximation with initial flux shape

Table A.7: The eight-group pseudo-static TWODANT eigenvalues for the
0.1 second rod withdrawal transient for the two-element ANS core

(1) Adiabatic approximation with changing flux shapes
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Space Time Point Adiabatic Adiabatic Ini.

Time (sec) Reference --O Od=O Kinetics Ch. Flux 1 Flux 2

0.006 1.00002 1.00061 1.00015 1.00002 1.00004 1.00007

0.009 1.00006 1.00075 1.00026 1.00012 0.99996 0.99999

0.015 0.99987 1.00058 1.00050 1.00020 1.00007 1.00008

0.025 1.00005 1.00067 1.00086 1.00027 1.00007 1.00009

0.051 1.00001 1.00037 1.00147 1.00029 1.00004 1.00005

0.070 1.00002 1.00026 1.00171 1.00037 1.00000 1.00002

0.100 1.00005 1.00014 1.00189 1.00035 1.00011 1.00011

0.200 0.99999 1.00002 1.00197 1.00040 1.00008 1.00008

Space Time Point Adiabatic

Time (sec) Reference og=OKinetics Ch. Flux'

0.006 1.00008 1.00065 1.00009 1.00012

0.009 1.00013 1.00078 1.00019 1.00005

0.015 0.99994 1.00060 1.00025 1.00013

0.025 1.00009 1.00067 1.00031 1.00012

0.051 1.00006 1.00039 1.00033 1.00008

0.070 1.00005 1.00027 1.00039 1.00004

0.100 1.00007 1.00016 1.00038 1.00014



Appendix B

The Three-Element ANS Core

In this appendix, we give the description of the three-element ANS core, and present the

details of the reactor model used in our calculations.

B.1 Core Characteristics

In the most recent ANS studies, three-element core configurations were considered as a

means of increasing the core volume to allow the use of lower enriched fuel. By holding the

core power constant and operating at a lower power density, an increase in the core volume

allowed the use of lower enriched fuels (enrichment reduced from 93% to 50%) while

simultaneously permitting an increase in the cycle length (from 17 days for the two-element

core to 30 days for the three-element core) [S-2]. Various arrangements of the three elements

onto a single core were examined by the ANS project. The design in which the two upper

elements overlapped 100% was selected for further neutronic analysis and design studies

since it has the best neutronic performance. However, as a result of increased core volume, the

thermal flux in the reflector vessel decreases. So the thermal flux for the three-element core is

lower than that for the two-element configuration.

Table B.1 shows the basic core characteristics of this design. The core configuration is

given in Figure B. and B.2.
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Table B.1: Design characteristics of the three-element ANS core
model (Taken from [G-4])

Quantity and unit/item

Heat deposited in fuel, MW

Fission power, end of cycle, MW(f)

Fission power, 1 day into cycle, MW

Peak reflector thermal flux, neutrons/(m2/sec)

Beginning-of-cyclel

Core life, days

Core active volume, L

Fuel form

Fuel enrichment,%

Fuel matrix

Volume% of fuel in fuel meat

Number of fuel plates in upper element

Number of fuel plates in center element

Number of fuel plates in lower element

Mass of l°B, gm (beginning of cycle)

Fuel plate thickness, mm

Aluminum clad thickness, mm

Coolant channel gap, mm

Fuel span between side plates
Inner, mm
Middle, mm
Outer, mm

Coolant

Heated length, mm

Coolant velocity in core, mn/s

Inlet pressure (in plenum), MPa

Core pressure drop, MPa

Core inlet temperature, °C

(1) From the two-group ZAQ calculation

Baseline
value/material

303

-330

-330

4.72x1019

31

79.6

u3 si2

50

Al

11.2

571

252

418

13

1.27

0.254

1.27

77.65
63.95
55.41

D20

418

20

2.7

0.9

45
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Figure B.1: The three-element ANS core configuration (dimensions are given in mm)
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Figure B.2: Cross section of the three-element ANS core
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B.2 The three-element ANS core ZAQ model

Geometry:

z (cm) i

~g-OAX7~~~~~~~O =A
4/1/.4

454.9

347.1

278.1
269.6

dog = O
dr

235.6
227.1
218.6

184.4
174.5

22.6

0.0

,6 j 6 ,,X m 0 r (cm)
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Material Properties:

Because each node (19x48) in the model has its own cross section and discontinuity factor

ratio sets, they are not given.

Energv Group Structure:

XI = 1.0

X2 = 0.0

Two-group speeds are reduced from eight-group using space dependent spectrum

Delayed Neutron Data:
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Group Upper Energy Lower Energy
g (eV) (eV) lg (cmls) Xg

1 2.00x10 7 9.00xlO1 2.0186x10 9 0.731

2 9.00xlO 5 1.00x10 5 6.7937x10 8 0.255

3 1.00x105 1.00x102 4.9264x107 0.014

4 1.00x102 3.00x 10 5.9128x106 0.000

5 3.00x10° 6.25x10'1 1.7003x106 0.000

6 6.25x10-1 2.70x10-1 8.8095x10l 0.000

2.70x 10 '1 1.00x10'2 4.1009x105 0.000

8 LOOXI O1. 00x 105 1.0157x10 5 0.000

Family, d Xd (s')

1 2.64470x10O4 0.0133

2 1.32845x10' 3 0.0325

3 1.13600x10-3 0.1219

4 2.37677x10'3 0.3169

5 1.20761x10-3 0.9886

6 6.16701x10O4 2.9544



Thermal-Hydraulic Parameters:

Cf = 199.0 + 0.104T (T in °C) J/kg/K

Cclad = 1,051.0 J/kg/K

Ccoolant = 4,300.0 J/kg/K

pf = 1.20 x 104 kg/m3

Pcad = 2.71 x 103 kg/m 3

kf = 170.0 W/m-K

kciad = 180.7 W/m-K

W = 547.04, 746.48, 884.10 kg/m2 (Inner, Middle, Outer Fuel Elements)

h = 100,000 J/m2/s

r =0.03

Pressure = 2.4 MPa

Coolant Inlet Temperature = 45°C

Initial Power = 330.0 MWth
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Appendix C

Thermal-Hydraulic Model

C.1 Fuel Heat Transfer Model

The model described here was developed by Meyer [M-1]. Recently it has been used in

MIT Research Reactor Simulation by Trosman [T-1]. The following derivation is taken from

the second reference.

The heat conduction equation for the fuel plate illustrated in Figure 5. 1.b is given by

dT
(mCp) p- = q"- Up (Tp-Tb) (C.1)

where

Tb = bulk coolant temperature,

Tp = average plate temperature,

Up = plate overall heat transfer coefficient,

q" = plate surface heat flux

The plate mass per unit surface area, mp, and the average heat capacity of the fuel plate,

(Cp)p, are defined as fallows:

Afuel Aclad
Mp P Pfuel+* Pclad (C.2)

T T

(mC) ul+(mC,)ca(C ) = Cdfuel P (MCdclad (C.3)

where A is cross sectional surface area of the fuel and clad, PT is the total outside perimeter of

the fuel plate, and p is density.

Assuming the steady-state arithmetic average temperature can be used to represent the

energy storage, and that the thermal conductivities and capacities are uniform in the plate, the

average fuel plate temperature is calculated by using:
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(mC~~d(T+T) +(MC) (Tenr + Tf)
T (MCp)clad (Tf+ TC)fuel+ (CP fuel(Tenter+Tf) (C)
P 2(mC)C.4)

P p

where

Tf= fuel meat surface temperature

Tc = clad surface temperature

Tcenter = fuel meat centerline temperature.

Two temperature ratios,fp andhf are defined as fallows:

PT -T (C.5)
fP center TC

and

T-T
fl T - Tc (C.6)

center c

Substituting Equation (C-5) and (C-6) into (C-4) results in the following expression

(mCp)JJ + (mCp)f (C.7)
P 2 (mCp)

P

Making the steady-state assumption, and expressing the fuel surface heat flux for the fuel,

the clad and the entire plate, and doing some algebraic manipulations yield the temperature

ratios and the overall heat transfer coefficient:

UT
UcTad (C.8)
Uclad

1 Ifp
I Ihm UT (C.9)

where hp is the film heat transfer coefficient and

I1 1 1 t d
- + = + 

UT Uclad Utuet k 2kdT = th cfue l kcad kfuel

d = the fuel meat thickness,
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t = clad thickness.

Once the heat transfer parameters are defined, the heat conduction equation (C.1) can be

solved and average fuel plate temperature, f-, at any time step can be found. Finally, the plate

surface temperature is related to the average plate temperature as follows:

7:= 7 [(q ) (.](C.10)

The model described above was used to modify the heat transfer coefficient appearing in

Equations (5.1) and (5.2). (Notice that, because of a difference in notation, the term replaced

by Up is 1/U+li/h o0 in these equations and Tfin Equations (5.1) and (5.2) is used for Tp.)

In Figure C.1, for 100% step increase in the core power, the lumped model is compared

against a two-region (fuel and clad) model. The core average fuel temperatures from the two

different calculation are 5 to 6 degree apart. Notice also that the asymptotic temperatures are

attained in -0.1 seconds.

1

1

1

E1E I
a
El1
a,

Time (sec)

Figure C.1: Core average fuel and coolant temperatures response to 100% step
increase in the core power

C.2 Single-Phase Forced-Convection Heat Transfer Coefficient

The single phase-heat transfer coefficient, hp, in Equation (C.9) is determined by the
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Petukhov and Popov correlation with some modifications for variable physical properties and

rectangular channels [Y-2]. The coefficient is determined as follows:

kb (f/8 )RebPr b(tb/gw) 0.11

e(I+3.4fd)+ 11.7+

Prb ] Va rb

where

hp = forced-convection heat transfer coefficient (kW/m2.K)

kb = bulk coolant thermal conductivity (kW/m.K)

De = equivalent channel diameter (m),

fd = Darcy friction factor,

Reb = bulk coolant Reynolds number,

Prb = bulk coolant Prandtl number,

ab= bulk coolant dynamic viscosity (Pa.s),

gw = wall dynamic viscosity (Pa.s);

with the Filenenko correlation used for the Darcy friction factor:

[1.0875-0.1125(b/s)] (C.12)
2 ' ~~~~~~~~~~~~(C. 12)

(1.8 2logloReb- 1.64)

where

b = gap of a rectangular channel or annulus (m),

s = span of a rectangular channel (m).
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