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Abstract
The main result of this thesis is a novel semiclassical description of quantum chaos.
It is based on a field theoretic approach in the form of a supersymmetric nonlinear u-
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Chapter 1

Introduction

1.1 Background and Motivation

The problem of quantum description of classically chaotic systems has interested

researchers since the early days of quantum mechanics. It was Einstein [1] who first

pointed out the problems that arise in semiclassical quantization of nonintegrable

systems. He tried to obtain the analogue of the Born-Sommerfeld quantization rule

for multidimensional systems and realized that a straightforward generalization can

be done only in the integrable case.

A long time after his paper the interest in semiclassical approach to quantization

of chaotic systems was revived by Gutzwiller (for references see [63]). He recognized

the importance of periodic orbits as the "skeleton" of classical dynamics. The intu-

ition behind this is as follows [2]: eigenvalues of a quantum Hamiltonian correspond

to stationary states of the system and should, in turn, be related to the invariant

manifolds of the classical counterpart. The latter are defined as regions of the phase

space of the system, which remain invariant under classical evolution. In a nonin-

tegrable system there are only two types of invariant manifolds: the whole constant

energy surface and the periodic orbits of the sytems. This should be contrasted to

the integrable case, where due to the presence of invariant tori there is a whole spec-

trum invariant manifolds whose dimension ranges from unity (periodic orbits) to the

dimension of the constant energy shell.
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This is the main idea of the periodic orbit theory (POT) approach to quantum

chaos. This method is applied to the study of quantum spectra of chaotic systems

whose classical dynamics are very simple but nonetheless chaotic. The spectrum of a

quantum system is related to the periodic orbits of the underlying classical dynamics,

i.e. the density of states is expressed as an infinite sum over the periodic orbits of the

system. This method describes well the large scale structure of the spectrum which

corresponds to the short time dynamics, but is faced with problems when it is used

to study the small frequency behavior, for example for the probability to find two

levels close to each other. The difficulty arises from the exponential proliferation of

the number of orbits with their period.

A different approach to quantum chaotic systems was pioneered by Wigner [5]

who studied crossings of close levels in complex molecules. One of the manifestations

of quantum chaos is absence of degeneracies in the quantum spectrum. They usually

arise due to some symmetry transformations which leave the Hamiltonian invariant.

As was shown by Noeter [3] these symmetries lead to the existence of integrals of

motion. In the absence of integrals of motion the quantum Hamiltonian posesses no

continuous symmetries and is expected to have no degeneracies. This manifests itself

in level statistics through the suppressed probability of finding two levels next to

each other. Such a phenomenon is known as "level repulsion" and is the most sailient

characteristic of spectra of chaotic systems. The distribution of spacings between

nearest neighbours is described extremely accurately by the Wigner surmize (see for

example [7]).

Dyson [54] discovered that at small energy separations level statistics of chaotic

systems become unversal, i.e. independent of the details of the Hamiltonian. Most

of chaotic sytems are rather complex, e.g. big molecules, heavy nuclei etc, and our

knowledge of their dynamics is minimal. Dyson proposed to describe spectral statis-

tics of such systems by modeling their quantum Hamiltonians by an ensemble of

hermitean matrices whose entries are independently distributed random quantities.

Random matrix theory (RMT) description of quantum chaos applies to small energy

scales (of order of the mean level spacing in the system) and has proved remarcably
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successful. It has originally been applied to the study of spectra of nuclear resonances

[54]. Bohigas Giannoni and Schmit [87] proposed that RMT also should describe spec-

tral statistics of rather simple nonintegrable systems whose Hamilonians are very well

known (BGS conjecture), such as Sinai billiards or Rydberg atoms in a magnetic field.

Extensive numerical and experimental data [4] provide strong support for this con-

jecture. However, the theoretical understanding of the success of RMT in quantum

chaos has been lacking.

Recently RMT was used for the study of electron transport in mesoscopic disor-

dered conductors at low temperatures. In these systems the electron phase coher-

ence length can excede the size of the sample and quantum mechanical interference

becomes important. It gives rise to extreme sensitivity of transport coeffecients (or

energy levels if one speaks about a closed metallic grain) on the details of the disorder

potential, sample shape etc. Therefore the sample-to-sample variations of transport

coeffecients (energy levels) are surprisingly large and known as mesoscopic fluctu-

ations. One typically studies ensemble averaged properties of mesoscopic systems,

where averaging is performed over different realizations of the disorder potential.

The resistance in this regime can be expressed through the quantum transmission

matrix by use of the Landauer formula (see [26]). The ensemble averaged quantities

can be obtained by averaging over a random matrix ensemble of transmission matri-

ces. There is an extensive literature on the applications of RMT to quantum chaos

and mesoscopic transport (see for example [7], [65]), [26]).

The microscopic theory which describes ensemble averaged quantities is based on

the field theory in the form of the a-model. It was originally proposed by Wegner [6] in

the replica form. The supersymmetric version of it was developed by Efetov [20]. The

use of replicas or supersymmetry facilitates ensemble averaging in these approaches.

The supersymmetric nonlinear a-model [20] provides microscopic justification for the

existence of universal limit in spectral statistics when ensemble average is performed.

This technique is very useful whenever one is interested in computing quenched av-

erages and can also be applied to the study of various correlators of random matrix

ensembles [21].
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1.2 Organization of the material

The organization of the thesis is as follows:

In chapter 2 we apply RMT to the problem of coherent electron transport through

a mesoscopic quantum wire. To facilitate ensemble averaging we use a new form of

the supersymmetric nonlinear a-model developed in [12]. This u-model is now used

in the study of disordered mormal metal grains surrounded by superconductor [60].

In chapter 3 we generalize the supersymmetry method of Guhr [35] to compute

correlators of spectral determinants of systems with broken time reversal invariance

in the universal regime. We obtain algebraic expressions for spectral determinant

correlators of arbitrary order. As an application of the method we compute several

correlators of physical observables which arise in the study of problems of quantum

chaos.

In chapter 4 we present non-perturbative results [51] for the two-point density

of states correlator of disordered metallic grains. The results show that quantum

spectral statistics can be expressed through the spectral determinant of the classical

diffusion operator in the grain. We also obtain an expression for the spectral structure

factor close to the Heisenberg time. These results cannot be obtained by the usual

semeclassical methods and require the use of the a-model.

In chapter 5 we show how to generalize the results obtained in chapter 4 to a

general chaotic system [62]. The classical operator which plays the role of the diffusion

operator for a general system is identified with the Perron-Frobenius operator. The

latter describes the irreversible classical dynamics.

In chapter 6 we present a new semiclassical description of quantum chaos [74]

based on a field theory in the form of a nonlinear a-model. It relies only on energy

averaging and accounts for individual features of a given system. This approach is free

from the drawbacks of periodic orbit theory, it provides the theoretical justification for

the BGS conjecture [87] and the results presented in chapter 5. The main ingredients

of the theory are eigenmodes of the irreversible classical dynamics in the phase space

of the system rather than individual periodic orbits. It relates quantum spectral
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statistics to the Ruelle resonances [9] which characterize chaotic classical dynamics.

This theory is used to chtain new results for the two-point density of states correlator.
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Chapter 2

Supersymmetry Applied to the

Spectrum Edge of Random

Matrix Ensembles

A new matrix ensemble has recently been proposed to describe the transport proper-

ties in mesoscopic quantum wires. Both analytical and numerical studies have shown

that the ensemble of Laguerre or of chiral random matrices provides a good description

of scattering properties in this class of systems. Until now only conventional methods

of random matrix theory have been used to study statistical properties within this

ensemble. In this chapter we demonstrate that the supersymmetry method, already

employed in the study Dyson ensembles, can be extended to treat this class of ran-

dom matrix ensembles. We follow closely Ref. [12]. In developing this approach we

investigate both new, as well as verify known statistical measures. Although we focus

on ensembles in which T-invariance is violated this approach lays the foundation for

future studies of T-invariant systems. The supersymmetric treatment presented here

can be generalized to treat islands of normal metal imbedded in a superconductor

[13].
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2.1 Introduction

Recently Slevin and Nagao [10] proposed the existence of a new group structure as-

sociated with scattering in disordered mesoscopic quantum wires. Further numerical

investigation [11] verified the utility of this description. In the case of broken time-

reversal invariance the maximum entropy hypothesis for this new group gives rise to

the Laguerre unitary ensemble of random matrices (LUE). The same random matrix

ensemble appears in the context of QCD [14], and taking our notation from there, we

will refer to it as the chiral gaussian unitary ensemble (chGUE). The characteristic

feature of this ensemble which distinguishes it from conventional Dyson ensembles is

the presence of a "hard edge [15]" or boundary to the spectrum. This has a dramatic

effect on eigenvalue correlations in the vicinity of the edge which we will explorein

this paper.

Although there exist a variety of approaches directed towards the study of the

statistical properties of Dyson random matrix ensembles, so far only the "orthogonal

polynomial method [7]" has found success in describing the chGUE [10, 11, 14, 15,

16, 17, 18, 19]. At the same time, approaches based on the "supersymmetry method"

introduced by Efetov [20] have found considerable success in treating both spectral

and scattering properties [21, 22, 23] of mesoscopic quantum dots and compound nu-

clei. In this chapter we present the supersymmetry approach developed in [12] for

the study of parametric correlations of the chGUE in response to an external pertur-

bation. A first task will be to determine properties of eigenvalue correlations already

studied using orthogonal polynomials [11] and the Brownian motion method [24]. In

doing so we will reveal new types of Goldstone modes which are associated with the

structure of chGUE at the hard-edge. Later we will turn to a new characterization

based on matrix element correlations of the chGUE. Although we focus on the uni-

tary ensemble, we remark that the supersymmetry approach developed here seems at

present to be the only one capable of treating parametric correlations in T-invariant

orthogonal and symplectic ensembles.

To emphasize the validity of this ensemble in the problem of scattering and mo-
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tivate our calculation we begin with a brief review following the studies of Ref. [11].

Consider a scatterer S (which might be a quantum dot, a chaotic cavity, or a meso-

scopic quantum wire) connected to two identical ideal leads L and R (see Fig. 2-1

). Although the leads contain both propagating and evanescent modes, the latter

do not contribute to the total current and can be disregarded [11]. Normalizing the

propagating modes to unit flux and denoting the amplitudes of the incoming waves

in L and R respectively as i and i', and those of the outgoing waves in L and R as o

and o, the amplitudes o and o' can be uniquely expressed through i and i' with the

use of the scattering matrix S

( ( ° ( ) (2.1)
i/ Of t r'

where r (r'), t (t') are the N x N reflection and transmission matrices on the left

(right) hand side.

Equivalently, instead of using S, we can reexpress Eq. (2.1) using the transfer

matrix M which directly connects the amplitudes in the lead R with those in the lead

L M (') (2.2)

From the definitions in Eqs. (2.1,2.2) it is possible to determine the conductance

through the Landauer relation [25, 26],

2e2 2e 2 4G --~-tr ttt - tr (2.3)h - h MMt + (MMt)- + 2'(2.3)

where the factor of 2 takes account of the spin degeneracy of each channel. With

the chosen normalization of the wave functions in the leads the current conservation

implies the unitarity of the S-matrix and pseudo-unitarity of the transfer matrix M,

i. e.
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MEzMt = EzlN ( N , (2.4)
0 -IN

where Ei denotes the corresponding Pauli matrix. (Ey are defined analogously

below.)

To establish the connection to the chGUE, Slevin and Nagao introduced the matrix

Q = ln(MMt). As shown in Eqn. (2.3) this matrix contains enough information to

define the transmission properties, and the conductance can be expressed through

it as G = trcoh(2)+ Upon multiplying Eqn. (2.4) by M t on the left and by Mh cosh(n)±1-

on the right we arrive at E, exp(Q)Ez = exp(-Q). Using the fact that z = 1 we

immediately obtain EQZE, = -Q. In other words the matrix Q can be written as

Q= t 0 (2.5)

where w is an N x N arbitrary complex matrix. From now on we refer to Q as "chiral"

and to the blocks comprising it as "chiral" blocks (the name is borrowed from QCD

[14], where matrices of the same structure appear). The structure constrains the

eigenvalues of Q to appear in pairs of opposite sign, i.e., {vi,-vi}.

The matrices Q form a group under addition. The invariant measure for this

group is [11] dp(Q) = Il,ndIlmwm,ndRewm,n. The global maximum entropy hypothesis

(GMEH) introduced by Slevin and Nagao [10] proposes that only symmetry and the

variance of trQ 2 determine the statistical properties of the ensemble. This fixes the

support for the spectrum of Q to be Gaussian, and we obtain a probability distribution

defined by the Laguerre unitary ensemble (LUE),

P({vi}) (cx l v i e- cl? I tV _ - 12 (2.6)
i i<j

where c fixes the average density.

The validity of this ensemble for the study of mesoscopic quantum wires was

recently established both analytically and numerically in Ref. [11]. There results

16



were compared to alternative approaches based on the Local and Global Maximum

Entropy Hypotheses.

2.1.1 The Statistical Ensemble of Q.

The discussion above provides the motivation for the study of spectral properties of

chiral random matrices Q. Before determining explicit correlation functions, let us

first examine the features of the spectrum which are implied by the symmetry of the

matrix Q. For this purpose it is convenient to reparametrize Q making use of Pauli

matrices as a basis for the chiral blocks. We define,

0 W1 -iW2 
fQ 12 = -w- Z + W2Ey, (2.7)

W1 + iW2 0

where w1 and w2 denote N x N random hermitean matrices and the Pauli matrices

are defined by,

E0 = O
0 1

i 0(o=i?

~(:z~)

1

0 (
1 , A(2.8)

-1

To examine the structure of the spectrum it is helpful to perform a unitary rotation

of Q in the chiral block,

Q = Wx + W2 Y 2y ( . (2.9)
iw2 -W1

If Q contains only wl, the spectrum separates into two sets of eigenvalues which

differ only by a sign. Since there is no level repulsion between the blocks, accidental

degeneracies of levels from different sets are not excluded. The average eigenvalue

density, or density of states (DOS), is equivalent to that of two independent Gaus-

sian unitary ensembles. A finite w2 couples the two spectra and generates repulsion

17



between the levels of the two sets producing a vanishing DOS at the band center (

or hard edge [15] ). However the spectrum is still comprised of eigenvalue pail. u

opposite sign. Far from the band center, the distribution converges rapidly to that

the usual Dyson unitary ensemble. In this chapter, we will focus on the features of

the spectrum close to the center of the band where the behavior is both universal and

characteristic of chaotic quantum scattering.

Since the universal properties of random matrix ensembles are known to be in-

dependent of the support of the spectrum, therefore we are at liberty to consider a

Gaussian ensemble of chiral random matrices

P(Q) oc exp[-N2 trQ2] (2.10)

Our main task will be to determine the response of the eigenvalues of Q to an

arbitrary external perturbation,

Q(X) = Q0 + XE (2.11)

where Q0 is chosen randomly from chGUE of Eq. (2.10) and = E1SE + e2z is

some fixed matrix taken from the same ensemble. To prevent a drift of the spectrum

we impose the additional constraints that tr 1 = tr 0 2 = 0. For convenience we

also choose 61 and 0 2 to be orthogonal such that tr (102) = 0. Although it is

more natural to imagine applying the perturbation directly to the Hamiltonian of the

scatterer S in Fig. 2-1, it seems likely that the universal response of the transmission

eigenvalues will be reflected by the model above.

2.1.2 Universality

Previous studies of spectral correlations in random matrix ensembles revealed that

the response of the spectrum to arbitrary perturbations also displayed a large degree

of universality [27]. Starting from a random matrix model of the form defined by

Eq. (2.10) and (2.11), but with Q belonging to one of the usual Dyson ensembles,

18



spectral properties were shown to depend only on the mean-level spacing, A and the

mean-square gradient of the levels,

C(O) -( X (2.12)

where (...) denotes statistical averaging over a range of energy or X. In both cases A

and C(0) were assumed to be constant over the range of consideration. After rescaling

or "unfolding" the energy levels in the manner,

ei -i/A, x -X0(), (2.13)

properties of the entire random functions ei(x) become universal dependent only on

the symmetry of the Dyson ensemble. In that case, C(0) found a physical interpre-

tation through a "fluctuation-dissipation" theorem as the generalized conductance

defining the rate of energy dissipation in response to a time-dependent perturbation.

We will demonstrate that in the case of the chGUE the rescaling still applies every-

where, but A is taken to the mean level spacing in the bulk ( outside the vicinity of

the hard edge ).

2.1.3 Correlators

In this chapter we will be concerned with correlators of DOS,

p(E,X) = tr 6(E- Q(X)). (2.14)

Using a field theoretic approach based on the non-perturbative formalism introduced

by Efetov [20] and developed by Verbaarschot et al. [21] to treat random matrix

ensembles, we will determine both one and two-point correlators of DOS. This task

requires a substantial generalization of the existing approach to treat the chiral sym-

metry. Since such generalizations are of important pedagogical interest we will em-

phasize the aspects of our calculation which depart from the usual approach.

In section 2.2 we will determine the one-point function or average DOS, (p(E)).
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Although for usual Dyson ensembles this function is simply equal to the inverse

level spacing, taken to be constant, its calculation here is highly non-trivial. The

description near the hard-edge of the spectrum, where the DOS vanishes, requires

the introduction of additional degrees of freedom or "Goldstone modes".

In section 2.3 we will determine two types of parametric correlation functions.

The first is equal to the dimensionless autocorrelator of DOS fluctuations measured

both as a function of changing E, and of external perturbation, X,

k(,El, 2, x) = 2(p(,1, x - X/2) P(62 , t + X/2))

- A2(p(,El, - x/2))(p(E2, x + x/2))' (2.15)

the second determines the dimensionless response function [28],

n(El, 2, X) = h2(tr[ 6(- Q( - x/2)/A) 6(62 - Q(x + x/2)/A)] . (2.16)

We note that the former measures the correlation of the eigenvalues of the chiral

matrix while the second measures the correlation of matrix elements.

Finally, we remark that the method of determining eigenvalue correlations is not

unique. In fact, if we are interested just in eigenvalue correlations it is possible to ex-

ploit a one-dimensional Brownian motion or fermionic model in which the eigenvalues

describe the position of particles and the parameter of the perturbation is related to

time [29, 30]. Formally this connection can be made by mapping a one-dimensional

matrix field theory onto the same effective non-linear -model which controls the

spectral problem.

Importantly, for unitary ensembles, the quantum mechanical model describes non-

interacting fermions and can typically be solved exactly. For the case considered here,

results for the two-point correlator of DOS fluctuations have recently been obtained

by Macedo [24]. We remark that within this approach it does not seem possible to
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determine correlators of matrix elements such as n(el, e2, x). Since one of our aims is

to develop some new technology for the field theoretic approach we proceed from a

first principles calculation. We note that, as yet, this approach seems the only one

capable, in principle, of treating orthogonal and symplectic symmetry which both

translate to interacting models.

2.2 Average density of states.

To determine the spectral correlators of the transmission matrix we will make use of

the supersymmetry approach in which Green functions are expressed in the form of

integrals over supervectors. This method facilitates simple ensemble averaging. In

particular the DOS can be expressed through the Green function,

GR(E, X)-= [GA(E, X)]t = E+ 1- (2.17)

(E + E + iO) in the form

p(E, X) = -lIm tr GR(E, X). (2.18)

In fact the average DOS is independent of X since the perturbation is assumed to

be small so that Q(X) belongs to the same chGUE for any X. Therefore, for the

purpose of this section we omit the perturbation.

Instead of treating DOS explicitly, it is convenient to define a generating function

for GR(E). In this way, we can most readily adapt our formalism to study two-point

functions in the next section. Following the notation of Ref. [21] let us define the

following generator of one-point functions,

Z1 (E, J) = d[o] exp [- i W1aEzb-i W2EyO + it(E + + Jk)0]. (2.19)

where / is the 4 x N-component supervector
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, T = ((i [1], i[] [2], Xi[2]) (2.20)

with 4i[c] and Xi[c] denoting commuting (Bosonic) and Grassmann (Fermionic) ele-

ments respectively. The subscript i = 1,.- , N indexes the components of the chiral

matrix while c = 1, 2 references the chiral blocks of Q. the matrix J acts as a source

and is coupled to the supersymmetry breaking 2 x 2 matrix k, which in BF compo-

nents is given by

k ( ) (2.21)
0 -1

The matrices that act on b are taken to be 4N x 4N supermatrices where, for

concreteness, we specify the ordering of the "chiral" and BF block in the manner,

M M[11] M[12] M[12 MBB2] BF[12] (2.22)
VM[21] M[22] 9 VMFB[12] MFF[12] )

reflecting the order of the components in Eq. (2.20). The small imaginary part of E +

ensures the convergence of the Bosonic integration.

The utility of Z can be seen by taking derivatives with respect to the source J.

1 OZ 1

a=jij= = [GR(E)]ij. (2.23)

In this way we can express p(E) through the generating function Z1. We note that

the use of supervectors with equal numbers of commuting and anticommuting ele-

ments obviates the need for explicit normalization. This has the important virtue

of eliminating the need for replicas in treating ensemble averages [21] and greatly

simplifies the present calculation.

Averaging over the ensemble of random matrices Q Eq. (2.10) leads to the follow-

ing expression for the generating function,
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2 2 )(Z (E, J)) = J d[O] exp [- -trg(A, + Ay) + it (E+ + k)], (2.24)

where trg denotes the graded trace [21] (trgM = trMBB - trMFF), and the 4 x 4

supermatrices A. and Ay are defined by,

i1_ &,/,trl/2
A = .Y / E.X tl2(2.25)

i

For the square roots of Pauli matrices we adopt the following conventions

/2 = (1)1/2(1 + iZ) , /2 = (1)1/2(1 + i ) (2.26)

The two interaction terms trg(A 2 ) and trg(A 2 ) generated by the ensemble averaging

are both invariant under an associated group of transformations U(1, 1/1, 1) [31].

Using the identity trg(Ay)2 - trg(AzEy) 2, and introducing the supermatrix A =

1(Az - EyAZEy) it is possible to rewrite the interaction as a single dyadic product

[32]

trg(A2 + A2) = trg(A 2). (2.27)

In this representation it is straightforward to decouple the interaction by means

of a Hubbard-Stratonivich transformation with the introduction of only a single 4 x

4 supermatrix, Q. The supermatrix introduced by the transformation is required

to have the same symmetry as A. Since A contains only those components which

anticommute with Ey, namely Ez and E, we impose the constraint,

[Q, E]+ = 0, (2.28)

and introduce the following decomposition,
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_N 2
(Z (E, J) = d[Q] d[] exp[- 2 trgQ - itrg(QA) + it(E+ + kJ)p]. (2.29)

The dependence of Z1 on 4 is now Gaussian and it is straightforward to perform the

integration which yields,

(Z1(E, J)) = [d[Q] exp [- 2trgQ2 - trgN In (E+, + kJEZ - v2AQ)], (2.30)
J L ~2

where trgN denotes a graded trace of a 4N x 4N supermatrix.

So far we have made no approximation and Eq. (2.30) provides an exact expression

for the ensemble average of the generating function. To proceed further we will take

advantage of large N and apply a saddle-point approximation, in which we are at

liberty to neglect the source term. The variation of the effective Lagrangian in Q

leads to the saddle-point equation,

Q(Q- Ev> ) 1 (2.31)

The appropriate solution depends on the part of the spectrum in which we are

interested. Firstly, if we are far from the center of the spectrum (E O(AN 0))

all modes are massive with a mass of order N and the saddle-point manifold (SPM)

consists only of the single point,

Q =E 2vXAi 18- (2.32)

A minus sign is chosen in front of the square root so that the deformation of the

integration contour be consistent with the sign of ImE + (see Ref. [21]). Physically,

Eq. (2.31) corresponds to the mean-field equation for Q and the sign is chosen to give

the correct form for the self-energy. In this case, the contribution from the massive

modes give a correction of order N - and can be neglected. Expanding Eq. (2.30)

24



in J and making use of Eq. (2.23) we obtain the following expression for the average

DOS
N

(p(E)) =- AIm trg(EzQk). (2.33)

Inserting the saddle-point solution for Q we find an average DOS that coincides

with that of the usual Dyson ensembles taking the form of a semi-circle. With the

average DOS in the vicinity of the center of the band equal to A = 7rA/v/2N we

obtain the final expression,

(p(E))= 1-(4qNA) (2.34)

In contrast, if we are concerned with the spectrum very close to the center of the

DOS distribution E - O(N°A), the saddle-point becomes degenerate and governed

by "Goldstone modes". To leading order in N, the saddle-point equation (2.31) then

reads

Q2 = -1. (2.35)

The solution is now described by a degenerate manifold with the energy E itself

playing the role of a symmetry breaking parameter. We remark that this contrasts

with the usual case of Dyson ensembles where the Goldstone modes are preserved by

changing energy.

Expanding the effective Lagrangian in Eq. (2.30) and retaining terms of order N O

we obtain

(p(E)) = 4- Im J d[Q] trg(EzkQ) exp [- -trg(EzQ)]. (2.36)

The degeneracy of the SPM is intimately related to the existence of a family

of transformations leaving both interaction terms in Eq. (2.24) invariant. As a

ubiquitous feature of transmission matrices it contrasts with the behavior of usual

Dyson ensembles and deserves some consideration.

The new class of Goldstone modes which characterize the SPM represent the
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main new feature of the problem and are present even in the average DOS. We

can gain a better understanding of their origin by examining a model describing

particles moving in a random, off-diagonal d-correlated potential. Although, perhaps

unphysical, we might consider a model of superconductivity in the presence of a

random order parameter, A(r) with (A(i)\*(r')) = J(F- r'). The Schr6dinger

equation for each of the "chiral" or spinor components can be written as a set of

Bogoliubov-de Gennes (BdG) equations in which the order parameter does not obey

a self-consistency condition (a form of self-consistency condition may be imposed on

the fluctuation of the order parameter i),

-2

2 E)u( + )v( -= .0

zx*(Mu( + 2 E)v(rl = (2.37)

This model possesses two types of gauge invariance: (i) u --+ u exp(iq), v --+ v exp(io).

(ii) u -+ uexp(i), v -+ vexp(-i), A\(r) -+ ZA(r)exp(i2q). Note that the gauge

invariance considered here is global as we do not wish to elongate derivatives in the

BdG equations. (r) enters the Hamiltonian as Re A(r)EZ - Im /A(r)Ey and the

second type of gauge invariance corresponds to rotations in the E- Ey subspace.

It is the second type of gauge invariance that gives rise to new Goldstone modes.

If we follow the method of Efetov [20] and construct a nonlinear a-model for this

problem, the zero mode is identical to the chiral random matrix ensemble that we are

considering. This closely parallels the equivalence of the random matrix theory with

the statistics of weakly disordered metallic grains demonstrated in Ref. [20].

Now let us turn to the parametrization of the SPM. To perform the integration

over Q it is necessary to analyze further the symmetry transformations l - Up,

which preserve both of the interaction terms in Eq. (2.24). The transformations U,

Uy preserving trg(A2), trg(Ay)2 obey

UtEz W= , UtY = y. (2.38)
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Writing the infinitesimal transformations in terms of the generators Uz = 1 + Gz and

Uy = 1 + Gy, we require that

(i) G + ZGZ = 0, (ii) G + YyGy = o, (2.39)

which implies

GZ = igoEo + gE + gYEY + igzz, (2.40)
Gy = igoEo + g9E. + igyEy + gzEz,

where gi} denote 2 x 2 hermitean supermatrices. From Eq. (2.40) we see that the

transformations U preserving both trg(A2) and trg(A2) are of the form,

U = exp(G) , G = igoEo + gZ,E (2.41)

which induce the following transformations on Az,

Az - TAzT - , T = El/2UE-1/2 (2.42)

The intersection of the two groups Uz and Uy contains transformations that change

the saddle-point (generators gx) This fact leads to the degeneracy of the saddle-point

manifold and to a new family of Goldstone modes. We note that were we to consider

the usual 2N x 2N GUE we could rewrite it in terms of E matrices as well. However

in this case we would have four interaction terms, four groups of transformations (U0 ,

U~, Uy, U) and their intersection would consist only of transformations that leave

the saddle-point invariant (generators go). As such, the saddle-point manifold would

be nondegenerate and the evaluation of the one-point function would be trivial. It is

this restrictedness of the chGUE that gives rise to the new Goldstone modes.

Continuing, it is necessary to ensure that both terms in A transform in the same

manner under the action of Eq. (2.41)

yAzZy -+ TyAzZyT - , (2.43)
T = yTy =/ ~l-/2 ZE.Ty = E = EY Z .-V Yv
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From Eq. (2.41) we see that U can be written as U = aE0 + bEZ, where a and b are

2 x 2 supermatrices. Then

T = E1/2(aEo + bEx)Ez1/2 = a 0 - bey, (2.44)

from which it follows that T = EyTE = T. Thus, both Az and EyAzZy are trans-

formed through the same matrices. A is therefore transformed as

A - TAT -', (2.45)

which, in turn, induces the transformations on the Q matrix as Q -+ T-1QT. How-

ever, since not all of these transformations change the saddle-point Q = -iEz, we

draw the distinction by separating T in the manner T = RTo. R contains the transfor-

mations that leave the saddle-point unchanged while To contains only the Goldstone

modes. The massive degrees of freedom reside in R-1QDR (QD is diagonal).

From the form of U in Eq. (2.41) it is clear that the parametrization of Q is

noncompact. This feature, while necessary for the BB block, is undesirable for the

FF block. So we have to compactify the transformation matrices To first. In the usual

square root parametrization (see for example Refs. [21, 31]) the compactified matrix

To is given by

T (1 + W2)1/2 MI~ )(.6
To = 1 +(2.46)

-iwl (1 + W2)1/2

where w1 is a 2 x 2 supermatrix given by

w1 = · ) (2.47)
oC3 iW1F

The compactification of the FF block is imposed by introducing the factor of i in front

of W1F. Herein lies an important difference from the usual ensembles that deserves

an explanation.

As we see the [12] and [21] blocks of To in Eq. (2.46) are identical. Following from
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the usual Dyson ensembles [31], it might seem sensible to compactify To as

(1 + w[12]w[21]) 1/ 2 iw[12]

-iw[21] (1 + w[21]w[12])1 /2 (2.48)

with

[12] = w[21] = W1B a1 (2.49)

Ka3 iWlF ia3 ZW1F

However, the condition that To contain only E0 and Ey is violated by this parametriza-

tion. For unitary ensembles (see Ref. [31]) the presence of two distinct matrices w[12]

and w[21] with a simple relation w[21] = k w[12]t between them allowed the intro-

duction of two "diagonalization" matrices u and v. Thus each matrix (u and v)

contained only half as many Grassmann variables as there were in the problem. In

addition their symmetry properties under hermitean conjugation were known. In the

present case wl is neither hermitean nor antihermitean and the relation between a*

and Ce3 is unknown. However if we assume that al and a3 are independent variables

wl can be diagonalized by a single matrix (unless its eigenvalues are equal to each

other, in which case it can be treated in the same manner as Dyson ensembles [21]).

Thus the behavior of the matrix under hermitean conjugation is actually irrelevant

to the question of its diagonalization. We write the diagonalization transformation

as

WI= u1p3u71;- (l ) = sinh(01/2);
0 iplF

01= ); ul = exp ) (2.50)
0 iOlF/2 6 0

The saddle-point equation (2.35) is invariant under the transformation Q -+ T o6 l QTo,

and consequently the SPM can be parametrized as
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Q = -iToTlZ(To.

Using Eqs. (2.46), (2.47), (2.50) and (2.51) we obtain the following expressions for

the effective Lagrangian in Eq. (2.36) and the invariant one-point function trg(EzQk)

that enter the definition of the average DOS,

trg(EzQ) = -2i(cosh OlB - cosS 01F), (2.52)

trg(EZQk) = -2i[ cosh 0B + COS 0 1F + 2l163(cosh 01B - COS 01F)].

The final step in the parametrization is to find the invariant measure on the SPM.

Since this follows a straightforward calculation, we present the final result and refer

to appendix A.1 for a more detailed discussion.

cosh 0 1B COS 0 1F -1 (
d(Q)= 2(cosh O1B - COS F)2 d dFdld (2.53)

All integrations over the saddle-point manifold can be performed after which we

obtain (see appendix A.2)

7r2E [o(r/)+J(r/)(p(E)) = [Jo(7rE/A) + J2(rE/A)] (2.54)

This expression, which clearly can not be obtained within perturbation theory, is

most relevant for energies which lie within a few average level spacings of the center

of the density of states distribution. It also coincides with results found previously

from random matrix theory [10, 11, 14, 15, 16, 17, 18, 19]. The dimensionless form of

the average DOS, A(p(e)) is shown as a function of the dimensionless energy e = E/A

in Fig. 2-2.

As discussed earlier, the chiral structure of the matrix gives rise to a vanishing

of the average density of states at the band center. The presence of the hard-edge

generates oscillations which decay into the bulk where the density of states is uniform.

For energies which are of order NA the expression for the average density of states
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shown in Eq. (2.34) becomes valid and we obtain the usual semi-circular distribution.

In the next section we generalize the approach developed here to examine the

fluctuation in the DOS.

2.3 Two-point correlation function.

2.3.1 Density Correlator.

Turning now to two-point correlation functions, we will examine the fluctuation in

DOS in response to a change in an external perturbation characterized by the param-

eter X. In particular our goal will be to find an expression for

K(E1, E2, X) = (p(El, X/2)p(E 2,-X/2)) - (p(El)) (p(E2)). (2.55)

Since the eigenvalues of Q arise in pairs of opposite sign, Im [tr GRA(E)] is an

even function of energy and Re [tr GR'A(E)] is odd. This implies a simple relation

between the traces of retarded and advanced Green functions which holds even before

averaging (E is assumed to be real ):

tr GA(E) =-tr GR(-E). (2.56)

Thus the average (tr GR(El)tr GR(E2)) contains all necessary information, contrary

to our experience with usual random matrix ensembles (see for example [20]). If we

determine

W(E 1, E2, X) = (tr GR(E1,X/2) tr GR(E2, -X/2)), (2.57)

and make use of Eq. (2.56) we can obtain K through the relation

K(E1 , E2, X) + (p(E1))(p(E2)) = - (2)2 [W(E1, E2, X) + W(-E1 , E2, X)

+ W(E1,-E 2, X) + W(-E1 ,-E2 , X)] (2.58)

Therefore, by obtaining an expression for W in the form of an integral over the saddle-
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point manifold and evaluating its even part (as a function of E1 and E2) we obtain

K. The complete function W can then, in principle, be obtained from K with the

aid of Kramers-Kronig relations.

As in the previous section, we proceed by defining the generating function for

two-point correlators of retarded Green functions,

Z2 (E1, E2, X) = d[T] exp [-i'tIwEZ - i4tw 2 Ey + iqt (E + kJ- 2 XeA)],

(2.59)

where I denotes the 8 x N-component supervector

IT= (R[1], Xi [1], j/[1], Xi [1], qR [2], Xi [2], DA[2 ], XA/[2]) (2.60)= ~ ~ ~ ~ ~ ~ ~ ~~~~~~ ~~~ (2.60)

Although Z2RR strictly generates two-point correlators of retarded Green functions

we find it convenient to refer to the block corresponding to energy E1 as RR and

that corresponding to E2 as AA. Then, as in Ref. [21] the matrix A breaks the

symmetry between the blocks corresponding to different energies (RA blocks), A =

diag(1,-1, 1,-1), E = diag(E+ , E2, E+, E+ ) and J represents the supersymmetry

breaking source.

The 8N x 8N component supermatrices that now act on supervectors T have the

following block structure; chiral, retarded-advanced (RA), BF.

M[11] M[12] / ;M[12]=( MRR [12] MRA [12] , (2.61)
M[21] MV[22] M/IAR[12] MIAA[12]

MRR [121 = BRBR [ 1 2 ]AIBRFR 1 2 (2.62)MRR[12] = ( M UBB[1 2] M~IFR[12] ) (262
#WFB [1 2] AIFF [1 2]

Differentiating Z2RR with respect to the source we obtain the following identity,

W(E1,E 2, X) = -tr (jRR) tr (aA)A IJO(2.63)
Proceeding as before, the ensemble average generates interactions which can be
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decoupled by a Hubbard-Stratonovich transformation. Integration over T gives the

effective theory,

(Z 2RR(El, E2 , X))

= f d[Q] exp[- 2 trgQ2

XE1/-2 ^ l/2-trgN in (EE, + kJE, - vrAQ- X I /)] (2.64)2.64)
where Q denote 8 x 8 supermatrices.

Just as with the average DOS, far from the center of the eigenvalue distribution,

statistical properties of Q coincide with usual Dyson ensembles and can be found

in Refs. [7]. We therefore restrict attention to fluctuations near the center of the

distribution. The appropriate saddle-point equation is found by setting E = 0, J = 0,

and X = 0. Doing so, we obtain the same condition as in Eq. (2.35) with the base

saddle-point still given by -iE,.

For X 2trO 2 O(N 2A 2) and E O(NzA) an expansion to leading order in N

around the saddle-point generates the effective non-linear supermatrix a-model,

W(E1 , E2, X) = (-)2 J d[Q]trg(QEZ(1 + A)k)trg(QEz(l- A)k)

)21
exp { - trg[Q2z] + 8(NX)2trgN[QA(O1 + i 2Ey)] }. (2.65)

Using the properties of O (see the paragraph below Eq. 2.11) and Eq. (2.28) we

take the trace over 61 and 02 and obtain

(7 2

W(E 1 , E2, X) = J- d[Q]trg(QZ (1 + A)k)trg(QZ (1 - A)k)

x exp(-C), (2.66)

L = Jtrg(QE~')- tr( 2)X2 trg(QA)2 (2.67)
2A (4A) 2

To proceed further it is necessary to find an appropriate parametrization for the

SPM. The inclusion of addition blocks to account for the two-point correlation requires
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further consideration. As before the Q matrices on the SPM can be parametrized as

Q = -iTlEzTo. The generators of the transformations preserving both interac(,,

terms and changing the base saddle-point (i.e. the Goldstone mode generators) can

be again written as To = 1 + t and

t 0 g, (2.68)/ 0

-ig 0

where g is a hermitean (before compactification) 4 x 4 supermatrix

w ) (2.69)

wW2

The compactification of these matrices can be done in the following way: w is

parametrized as before (Eq. (2.50)), and w2 is parametrized in the same manner,

- (~2 P23 
W = u2 p2u2 ; 0 ) = sinh(02/2);

0 iP2F

02/2 = ( ; u2 = exp (2.70)
0 i02F/2 4 0

Following Ref. [31] matrices w and wt are compactified as

( ~~~_ 0 -1I
w - W12 = U V- l , t - w 21 = V U - , (2.71)

0 iv2* 0 iv 2

where u and v are given by

u = exp , v = exp . (2.72)
o* 0 i:* 0

Note that wI and w2 correspond to "chiral transformations". That is they leave

the [RA] blocks invariant and transform the variables only between chiral blocks
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within each [RA] block. The generators wl2 and w21, on the other hand, transform

the variables between R and A. These transformations are present in the a-model for

the usual unitary ensemble and we call them "unitary".

Below we make use of a parametrization which is similar to that introduced by

Altland et al. [32], representing To as To = TTch, where T, and Teh respectively

correspond to the unitary and chiral transformations

(1 + W12 W 2 ) 1/ 2

0

0

-iw 21

0

(1 + W2 1W12 )1 / 2

-i 12

0

0

iW 21

(1 + w 12 w 2 1 )1/ 2

0

iW1 2

0

0

(1 -- W2 1W1 2 )1 / 2

(1 + w2)1/ 2

0

-0W 1

0

0

(1 + w2) 1/2

0

-iw 2

iWl

0

(1 + w2) 1 / 2

0

0

iW2

0

(1 + w2) 1/ 2

We introduce the eigenvalue parametrization as

cosh(Q/2)

0

-ie- i sinh(/2)

cosh(t1 /2)

0
TCh = UchTchTU = lch 

-i sinh( 1/2)

0

0

cosh(Qi/2)

-ie iz sinh(Q/2)

0

0 i

cosh(02 /2)

0

-i sinh(02/ 2)

0

ie- 4 sinh( Q/2)

cosh(Q/2)

0

sinh(01/2)

0

cosh(01/2)

0

ie4 sinh(Q/2)

0

0

cosh(Q/2)
(2.75)

0

i sinh(02/2) _-I
ch

0

cosh(02 /2)
(2.76)
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where

Q QB ° A ,,O, f XB 0 A (2.77)
0 iQF 0 OF

and are related to V12 in Eq. (2.71) as v1 = sinh(QB/2) exp(iqB), V2 = sin(QF/2) exp(-iF).

Finally, now that the parametrization of SPM has been established we can cal-

culate the invariant measure. This can be done following Altland et al. [32]. The

calculation is carried out in appendix A.3 and yields

d (Q) 4s1s2 (2r) 2 (cosh 01B COS01F- 1)
d(Q)-(1 + 82 )2 (1 - 82)2 2(cosh 0 1B - cos OF) 2

(cosh 02B COS 02F- 1 )(cosh 02B cos 0 2F - 1) dslds2dOlBdOlFdO2BdO2FDG (2.78)
2 (cosh 02B - COS 02F ) 2

where we used the notation s = cosh QB, 2 = cos QF, and DG denotes the differen-

tials of all Grassmann variables in the parametrization.

Using Eqs. (2.66), (2.67), together with the invariant measure shown in Eq.

(2.78), the parametrization of Eqs. (2.73),(2.74), (2.75), (2.76) and the integration

limits established in appendix A.4 we can obtain an exact analytical expression for

K(E1, E2, X). Although technical, the definite integration is straightforward and the

details are presented in appendix A.5. Here we present the result for the connected

part of the DOS correlator

7-4 1~ o r /71-X 2 2 21

K(E1 ,E2, X) = A4 ds,] ds2ElE2s1s2exp - 2N) tr(O2)(s2 - s2)

x JO(7rEs 1/A)Jo(irEs 2 /A)Jo(7rE 2 s/A)Jo(7rE 2s 2/A) (2 79)

which coincides with the result found by Mac6do [24] using the mapping to non-

interacting fermions. We remark that for X = 0 further integration is possible after

which we obtain the result found earlier by Verbaarschot and Zahed in the context

of QCD [14] from random matrix theory.

K(E1, E2, X = 0) = (E1 - E2) irE1 [J0 (7rEul//A) + J2(El/A)]
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w 2EIE 2
-,2(E2 - E2)2 [El Jo (FEl /'\) J (rE2 / A)

-E2Jo(7rE2/A)J(rEl/A)]2 (2.80)

From Eq. (2.79) we can extract the level velocity distribution function P(V, E) =

(6(V - E-/EX))(E - Ei)/(p(E)) using the formula (Ref. [33])

P(V, E) = im p(E)) K(E, E + VX, X). (2.81)
x-40 p(E))

A straightforward calculation yields the result

1 (V~_tr(e 2)P(V,E) = k p ( 2C()(O) x= tr((2 ) (2.82)
2w0 __(0) 2C(O) 2N2A2

Thus, as with usual Dyson ensembles, the velocity distribution is Gaussian every-

where, even in the vicinity of the hard edge. Applying the rescaling of Eq. (2.13)

we obtain the dimensionless two-point density correlation function k = A2K in the

form,

[ 00 72X2
k( 2,EX) = 

4 dsl ds2e61e2 ls2 exp(- 2[s21 - s2])

J ( 1 1 )Jo (7rE1 s2)Jo (rE 2s1 ) Jo (r 2 S2 ) (2.83)

Equation (2.83) depends in a non-trivial way on the dimensionless parameters, el,

e2 and x and provides a signature of quantum chaotic scattering. We remark that for

e1, 2 large the Bessel functions can be expanded and we obtain the results found for

usual Dyson ensembles [27].

2.3.2 Response Function

Let us now turn to the second type of correlation function which can be presented in

terms of the Green functions in the form
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N(E1 , E2, X) = - (2 )2 (tr{[GR(El, X/2) - GA(E1, X/2)]

x [GR(E2, -X/2) - GA(E2,-X/2)]}). (2.84)

Its evaluation requires the calculation of the following quantities

FR*(E1, E2, X) = (tr [GR(E1 , X/2)G*(E 2,-X/2)])

1 2Z2R ( E, E2, X )= -tr - 2 A (E17E2 x, (2.85)
4 o JRAO JAR J=0

where * denotes A or R, Z 2 RR(E1 , E2, X) is given by Eq. (2.59) and Z2RA(E1, E2, X)

is the generating function for the product of retarded and advanced Green functions

and will be defined in Eq. (2.87) below. To calculate F2R(E, E 2, X) we can use

the parametrization introduced in the previous subsection for the two-point density

correlator. Using Eq. (2.85) we find

FRR(E, E2, X) = -J d[Q]trg(QSz(1 + A)kQ(1 - A)k)exp(-£), (2.86)

where L is given in Eq. (2.67).

For F2RA(E1, E2 , X) some basic formulas change. We adopt the same block hier-

archy Eqs. (2.60), (2.62) that was used for K. Then the generating function becomes

ZRA(El, E2, X)

= f d[I] exp [ iiwlEAT - iotw 2EyAT + it(E + J - XE))], (2.87)

and now E = diag(E+, -E2, E+, -E2)

From Eqs. (2.85), (2.87) after the ensemble averaging and the Hubbard-Stratonovich

transformation we obtain the following expression

FRA(E1, E2, X) = (8) d[Q]trg(QDz(1 + A)kQE(1 - A)k) exp[-LZRA] (2.88)
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where 7ZA is the corresponding effective Lagrangian, which we now discuss. We

make a change of basis in which we permute columns 2 and 4, and of rows 2 and 4 of

matrices. We will distinguish the matrices in this representation by the addition of a

tilde. It straightforward to show that,

K = EYA; E = zA; A = A; E = E. (2.89)

Then in this new basis the Lagrangian £2 nA simply coincides with that in Eq. (2.67)

if we change the sign of E2. Moreover, the prefactor in Eq. (2.88) keeps the

same form, but with change of sign. Thus, we conclude that FRA (E 1, E2, X) =

-FRR(E 1, -E 2, X), and to find N(E 1 , E1, X) we can take the expression for FRR(E 1 , E2, X)

and take its even part in E1 and E2. The corresponding intermediate formulas are

more cumbersome than those for K and, for brevity we omit many intermediate

steps in the derivation. However we emphasize that the calculation proceeds in a

completely analogous manner. After collecting the terms which are nonvanishing af-

ter Grassmann integration and performing the Grassmann integrals we obtain the

expression for N(E1, E1, X) in the form of an integral over 81sl, s2 and O's. We deform

the integration contours for O's as explained in appendix A.2 ( see Fig. 2-3 ) and note

that only legs 2 and 2' of the integral contribute to the even part of FRR(E1 , E2, X).

These steps bring us to the following expression

/1\ i2 00d,18 48182 __x__7X 2t (2 S 2
N(E 1, E2, X) -- j ds1 ds2 (s- s2)2 exp [ (2N) 

x {(s2 - )B 2 (E1, 1, s2 )B2 (E2 , SI, 82) + ( - s2)B(El, s1, s2)Bi(E 2 , Si, S2)} (2.90)

where

Bi(2) (E1 , $1, 82) = cos(7rE(8 2 - )/A)

+-7 J d0iB J dOlF exp [ (sl cos 0 1B - 2 COS 01F)
4i r 7r

(COS(01B) COS(01F) 1) 1 +irE 1 [Sl-S2 COS(0F(l)) (2.91)
(COS(0B) - COS(01F)) A
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Parentheses in the subscripts in the last equation mean that it holds for both choices

of the index. We note that Bj(El, sl, s2) (j = 1, 2) can be expressed through the

function L(E1 , sl, s2 ) in Eq. (A.36) as

Bj (El, s1 ,s 2 ) = L(E1 ,sI,s 2)- i4 j dalB dlF4A ir 7

exp , [sl cos(01s) - s2 cos(01F)]) x (Cos(01B) cos(01F) - 1) (2.92)
A~~~~~

With the substitution of E 2, 02 for E1 , 01 Eqs. (2.91), (2.92) hold for Bj(E 2 , s1, s2).

Equation (2.92) enables us to take the integrals over O's and to write the final answer

in the form of an integral over s1 and s2 only. Making use of Eq. (2.16) and rescaling

(2.13) we obtain

4 S1S2EV2 [r2x2
n(fl,62,X) = ds dS2s2e 2 2 exp(- s2 _S221)

2

x [(s2 + S2 - )Jo(1rEsl)Jo(7r6El 2)Jo(7r62 5)Jo(76 2S2 )

+ J1(7rElSl)Jl(7r6lS2 )Jl(E2Sl)Jl(7r6 2 S2 )

+SlS 2 {JO(7r6ls)Jo(7r6ls 2)Jl(7r6 281)Jl(7r6 252 )

+ ( -+ 62) }] (2.93)

In contrast to k(El, 2, x), the correlator n(El, 2, x) measures fluctuations in the

matrix elements. As with k(cE, E2, x), for 61,62 >> 1, the expression for n(El, E2, X)

coincides with the result found for usual Dyson ensembles [28].

2.4 Discussion and Conclusion

In this chapter we have examined statistical correlations of the chiral unitary en-

semble.In determining the average level density and the two-point density correlation

functions we have utilized some new technology for the supersymmetry method devel-

oped in [12]. In both cases we have obtained results which coincide with the findings

of the orthogonal polynomial method [10, 11, 14, 15, 16. 17, 18, 19]. and the Brownian

motion model [24]. These results demonstrate that the universal rescaling introduced
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in Ref. [27] applies equally well to the ensemble of chiral random matrices. In ad-

dition to the DOS correlators we have obtained a second type of two-point function

describing the correlation of matrix elements in response to the action of some exter-

nal perturbation, a result which does not seem to be accessible from the Brownian

motion model. We believe that, in contrast to other methods, this approach can

be generalized to treat matrices which belong to chiral orthogonal and symplectic

ensembles.

From a technical point of view the new feature of the calculation is the inclusion

of Goldstone modes related to the chiral transformations in addition to the usual

unitary transformations. The method presented in this chapter proved useful in the

study of disordered Andreev billiards [13]. These billiards are comprised of a piece of

normal metal imbedded in a superconductor.

The description of Macedo, shows that the chGUE corresponds to a gas of non-

interacting one-dimensional Fermions whose wave functions are Bessel functions Jo(kr)

[24]. In this interpretation the average over the chGUE is equivalent to the average

over the ground state corresponding to the filled Fermi sea. Eq. (2.79) can be recog-

nized as the irreducible part of time dependent density-density correlation function of

the Fermi gas with the parameter of the perturbation related to the Euclidean time,

T through the relation x2 = 2. The integration can be interpreted as a sum over

the particle-hole excitations, with the eigenvalues of the "unitary" rotations, s and

s2 corresponding to the momenta of holes and particles. Integration over the "chiral"

variables 0 generates the wave functions.

We remark that this class of matrices has a wider application encompassing the

spectral properties of the Dirac operator of QCD [14]. In the QCD partition func-

tion, the eigenvalues show fluctuations over the ensemble of gauge field configurations.

As such, the microscopic correlations are universal and can be described by random

matrix theory. The symmetries of the QCD Dirac operator dictate chiral random

matrix ensembles. In particular, if the topological charge and the number of flavors

are zero, the results presented above for the average and fluctuation of the density

of states can be compared with expressions from Ref. [14]. Whether the matrix ele-

41



ment correlations embodied in the response function n(el 6E2, x), or in the parametric

dependencies can find application in the field of QCD is left for the subject of future

investigation.
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L S R

Figure 2-1: A schematic representation of the scattering system: two identical ideal
leads L and R are connected to the scatterer S.

0 0.5 f1 1.5 2 
= E/A

).5 3 3.5 4

Figure 2-2: The dimensionless average DOS A(p(e)) is plotted versus the dimension-
less energy e = E/A.
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exponential and b) for the second exponential in Eqn. (A.12).
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Chapter 3

Correlators of Spectral

Determinants in Quantum Chaos

In this chapter we present the generalization [34] of the recently introduced approach

[35] and use it to study arbitrary correlators of spectral determinants in quantum

chaotic systems with broken T-invariance. The utility of this method for obtaining

generating functions for a variety of universal correlators is illustrated with several

applications.

Despite the success of the supersymmetry approach [20] in describing the universal

properties that characterize the phenomena of quantum chaos, its application is still

at present restricted to a subset of correlators that involve at most two-points. More

traditional methods of random matrix theory [7] provide a complementary approach,

although their application again brings some restrictions. In this chapter we will

generalize a third approach, originally introduced by Guhr [35], to study a whole

class of universal correlation functions applicable to quantum chaotic systems with

broken T-invariance (unitary symmetry). We closely follow Ref. [34]. The virtue of

this approach, which relies on a superalgebraic construction, lies in its straightforward

application. Since, in contrast to Efetov's supersymmetry method, final expressions

are not presented in terms of an integration over a restricted saddle-point manifold

(the non-linear u-model), this technique draws no distinction between two and higher-

point functions. All are equally tractable.
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The function that we consider involves the general many-point correlation of spec-

tral determinants

W({U; V}) = aim Hi 1det -H) (3.1)KH=1 det(Uj - H)

where the normalization a = (I det HIl-m ) ensures that W remains finite as the

number of levels N -+ o. We will restrict attention to even values of I + m where the

correlation function becomes universal on scales of {U} and {V} comparable to the

average level spacing. In the same limit the correlator for I + m odd is vanishingly

small.

Apart from its role as a generating function for density of states (DoS) fluctua-

tions [35], W is related to a number of distribution functions. One example involves

the curvature distribution derived in Ref. [36]. A straightforward generalization leads

to the following expression for the generating function of the joint curvature distri-

bution

K(s, ) = [ 6(e)()

2 3 3

= 3- W(is; OOO, w, w), (3.2)
3 w- is

where v(e) = Tr 6(e-H//A) denotes the dimensionless operator for DoS. Here we have

introduced e = E,,/Al with A = (E+l- E), and x = X /C(O) which parametrizes

an arbitrary external perturbation with C(0) = ((Ocg/OX) 2 ) [37, 271. A second

example concerns the generating function for the joint distribution of local DoS

L(s, w) = exp 2isy 127)1] u(w))

2 + -2

w2 +c 2 W(ia -i- iv, -i, w, w), (3.3)

where ao2 = 2 _ is?, Re a > 0, and b,,(7) denotes the -th wavefunction at site r.

Eqs. (3.2) and (3.3) are both straightforwardly obtained by exploiting the statistical

independence of the spectra and wavefunctions and making use of the Porter-Thomas

distribution [38].
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Without the additional correlation to the DoS, both have been examined in the

recent literature. The curvature distribution has been used as the first indicator of

universality in statistics that depend on an external parameter [36, 37, 39], while the

distribution of local DoS, measured through NMR, has been studied as a signature

of chaotic behavior in mesoscopic metallic grains [40, 41].

Although Eq. (3.1) seems amenable to traditional orthogonal polynomial meth-

ods of random matrix theory [7] such as that used by Ref. [41], the theory rapidly

becomes intractable as the number of points in the correlator increases. At the same

time, as will become clear, the disparity of the order of the determinants in the nu-

merator and denominator rules out conventional supersymmetry approaches. We will

show that for unitary symmetry a third approach, which generalizes a method intro-

duced by Guhr [35], yields the following exact expression involving the dimensionless

parameters ui = Ui/z\ and vi Vi/ ,

W({U;V}) = AN Z Fim({u;v}) e i7rEi-=l + i-Er=1 S= +1

P[{v}]

flr=i f=+(U- Vr) l- 1 H=m*+i(Ui - Vs)
Fim~ ,. u, m (3.4)

Fm{u;Iv}-) H=1 +1(Ui - Uj) Hrl=l H1=m*+1(Vr - V)

AN denotes a normalization constant, and for convenience, we have made the or-

dering such that {ul,'' ul. } represent the 1, parameters for which Im ui > 0 while

{ul.*+1,. -ul} denote those elements with Im ui < 0. With m, = * + (m -)/2,

the summation is performed over the mCm. = m!/m*!(m- m*)! permutations which

interchange elements Vr and v between the two summations in the exponential. Our

goal will be to obtain this expression using a Gaussian distribution of Hermitian

random matrices with unitary symmetry, and to demonstrate its utility by obtaining

explicit expressions for K(s, w) and L(s, w). A more detailed discussion of this general

approach together with some applications can be found in a longer paper [42]. The

coincidence of the statistical properties of random matrix ensembles with the univer-

sal properties of quantum chaos is well studied in the literature (see, for example,

Refs. [43]), and we will not discuss it further here.
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The starting point, which is common to the supersymmetry method, involves

constructing an expression for W in the form of a Gaussian integral,

W({U; V}) = alm(- 1)Nl*(27ri)N(m- ) / d[O] (e-So-1)

So = -itgZ, Si = itgHb, (3.5)

where Z = diag(U, ... , U, Vi, ... , VM), and V)T = (S1 ... , S , m) denotes the

(1 + m) x N component fields with complex bosonic S and fermionic - variables [44].

Formally, the convergence of Eq. (3.5) is assured by the inclusion of the metric g =

diag(lI.,-lm+,_,.) [21].

The ensemble average over the Gaussian distribution of H

P(H) dH = CN exp [-2N2 TrH2] dH, (3.6)

where CN is the normalization constant [7], leads to an effective action,

NA2S~ i2g/%u ® u 3
(e -S 1 ) = eSeff, Seff =- 2 STr ig" 2 b 0 t/] 2 (3.7)

The trace or supertrace operation for supermatrices follows the convention STrM =

TrM1BB- TrMFF, where MBB and MFF respectively denote the boson-boson and

fermion-fermion block of M. The quartic interaction of the fields can be decoupled

by the Hubbard-Stratonovich transformation

eSeff -= Alm / d[Q]exp [-NSTrQ 2 +iNAtg1/2Qg1/2 , (3.8)

where Q denote (1 + m) x ( + m) supermatrices with a block structure reflecting that

of %b ( 4't, and Alm = 2-(1+m)/2(N/r)(I-m)2/2. Combining Eq. (3.8) with Eq. (3.5),

integrating over h, and shifting the integration variables Q -- Q - 7ri/N, we obtain

W({U;V}) = almAim / d[Q]exp [-2STr (Q- N)2 -NSTr ln ( Q) j

(3.9)
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where = Z/A.

Thus far, the method departs from the conventional supersymmetry approach [20,

21, 32] only in that it allows for a different number of bosonic and fermionic variables.

At this stage, however, instead of forming the usual expansion around the saddle-

point of Eq. (3.9) to obtain a non-linear u-model, we will exploit the fact that the

expression is of the form of an Itzykson-Zuber integral [45] over the full pseudounitary

supergroup that diagonalizes the supermatrices Q. This approach was introduced by

Guhr [35] who used equal number of bosonic and fermionic variables to examine the

high-point correlator of DoS fluctuations in unitary ensembles (see also Ref. [46]).

The interaction Seff in Eq. (3.7) is invariant under the action of the pseudounitary

supergroup SU(l,, - 1,/m) [21]. This is reflected in the structure of the Hubbard-

Stratonovich field Q. The supermatrix Q can be diagonalized by a matrix T E

SU(, 1- l,/m) such that Q = T- ST, where S = diag(bl,... b1, if1,.. i if,) denotes

the matrix of eigenvalues with bi and fi taking values on the range -oo to oo. The

integration measure is then given by

d[Q] = Const. B2m(S)d[S]dtl[T],

= Hr,<s(br - b) Hp<q(ifp - ifq)RIm (S)= s-~ H P1(<- f (3.10)

Previous studies have demonstrated the extension of the Itzykson-Zuber integral

to the superunitary group SU(I/m) [47, 48]. Similar considerations suggest a further

extension to the pseudounitary supergroup SU(, - /m). However, since these

arguments are somewhat technically involved we will reserve their discussion to a

longer paper [42] and make use of several applications of Eq. (3.4) to justify the

validity of this approach. The result of the psuedounitary integration closely parallels

that of superunitary group and leads to the expression [47, 48]

Jd[T] e[STr(T1STz)] - Const. x Bl(S)S () (3.11)

Combining Eqs. (3.9), (3.10), and (3.11), and shifting back the integration variables
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S - S + 7r/N, we obtain

W({U; V}) = Const. x f d[S] Bt(S + ri/N)
Bim(;2)

xexp - NSTrS2- NSTrln NA + ) . (3.12)

The problem of evaluating the correlator of spectral determinants has been re-

duced to a set of + m real integrations over the eigenvalues of S. It is at this

stage that we make use of large N to estimate the integral by means of the saddle-

point approximation as described in Ref. [35]. For problems of physical interest

the dimensionless source is of order unity and does not affect the saddle-points:

So = diag(bol,... bol, ifol,..., iform) where the elements {boi} and {ifoi}, in principle,

take values of ±i. However, the saddle-point values of the bosonic variables boi = i

lie off the real axis, and a deformation of the integration contour is required to reach

them. This has to be done in such a way that singularities of the integrand are

not crossed. In particular, the signs of the eigenvalues, Im bio must be chosen to be

consistent with those of Im ui. This implies that [SO]BB = igBB. Conversely, the

saddle-points associated with the fermionic degrees of freedom foi lie on the real axis,

and must all be taken into account.

The leading order contribution to the integral comes from the value of the inte-

grand at the saddle-points. Fluctuations give corrections which are small as 1/N [35].

As a result, we obtain

W({U; V}) = Const. (1) N( m '- t'+( t- m )/ 2)

z Birn(S~ ~ ~ 1 U -+ wM.i/N)EM 
x E Bm(So + 7r/N) ei(El; ui-E=l.+l uJ-Er 1Vr+ES= m + Vs) (3.13)

{So} Bim(2 e

where m. is the number of +i's in the fermionic block of So, and {sO} denotes the

sum over all possible saddle-points. This involves the interchange of all possible signs

of ifoi in the fermionic sector of So. However, although the number of such terms is

2 m, not all of them are of the same order. Some are small as 1/N significantly reducing

the number of terms that must be taken into account. This can be seen by considering
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a typical factor arising from the numerator of the integrand: (ifoi + ryi/N - ifoj -

7ryj/N). If ifoi = ifoj this factor is proportional to 1/N, while if if0i = -ifoj, yi and

yj can be neglected and it becomes of order unity. If there are l terms which take

the value of i in the bosonic sector of S0, and m* in the fermionic sector, there is

a relative factor of N(m-l -m*+l*)(m*-l*) multiplying the contribution of this point to

Eq. (3.13). The maximum of this factor is achieved when m* = 1* + (m - )/2. Then

only mCm saddle-points have to be taken into account. Applying this condition we

arrive at the expression shown in Eq. (3.4).

Eq. (3.4) represents the central result of this chapter. As a generating function,

the correlator of spectral determinants allows access to a number of useful correlation

functions. To conclude, we will apply Eq. (3.13) to determine algebraic expressions

for several examples. As a simple application we begin by considering the generating

function for local DoS

P(s) = /exp [2is E 2 /2])
IL f + ' 2

= W(ic, -ia; i, -iy), (3.14)

where the notation is taken from Eq. (3.3). As a supersymmetric combination,

this average can be compared with the known result first obtained by Efetov and

Prigodin [40]. Adopting the approach above, = 1, m, = 1, and we need con-

sider saddle-point contributions from 2C1 = 2 terms: So = diag(i,-i; i, -i) and

So = diag(i,-i;-i, i). Applying Eq. (3.4) we obtain

P(s) = Pl(a,7), Pi(a, )) - ( 'a-)2 r(a ) (3.15)

This result coincides with that obtained in Ref. [40] (see also Ref. [41]).

Having verified this approach with a known example, let us consider the two

generating functions defined previously in Eqs. (3.2) and (3.3). Both cases require the

application of a non-supersymmetric construction. Beginning with the joint curvature
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distribution, applying Eq. (3.4) to the case where s > 0, we obtain2 R2(w) iss! - sinwZ'sK(s,w) = [(s -R2(w)- + -7risin()

W - s[ o2 W r

+w2 (w(i + w) + s(2 - iw))] (3.16)

where R2 (w) = 1- sin2 (7rw)/(7rw)2 denotes the two-point correlator of DoS [7]. (An

expression for values of s < 0 can be found by complex conjugation of Eq. (3.16).)

The validity of Eq. (3.16) can be tested by considering two limiting cases. Firstly,

for s = 0, K(0, cw) describes the two-point correlator of DoS fluctuations [7]. Sec-

ondly, as w - o, the generating function should collapse to the disconnected average

involving the average DoS and the Fourier transform of the known curvature distribu-

tion [39, 36]. An inspection confirms that both limits are realised by Eq. (3.16). We

remark that, in the limit of w - 0, K(s, ) = R2(W) W/(w-is). Its Fourier transform

implies a joint curvature distribution which vanishes for w 026/Ox 2 > 0 and decays

exponentially at a rate proportional to w for w 02E/Ox 2 < 0. This contrasts with

the power law decay of the uncorrelated curvature distribution ( - oc).

Turning to the second generating function, Eq. (3.4) implies

72 - a2 1 7rw2 + ra 2 + a w2 + a2
L(s,w) = irw 2 P2(a,iw) + - PI(cZ,'t) -(C2 

2 w) =2 Ur2 + 7(^2 + )2 P2(7

(3.17)

where P1,2 are defined in Eq. (3.15). In this case, the validity of Eq. (3.17) can also

be checked in the same limits. For s = 0 (a = y), L(0, w) corresponds to the average

DoS, which is independent of w. On the other hand, as w -+ o the decoupling of

the average recovers the generating function for the local DoS already obtained in

Eq. (3.15). Again, both limits bare inspection.

Eqs. (3.16) and (3.17) represent just two examples of where the average W can

be exploited. Further examples include generalisations of the distribution of reso-

nance conductance peaks in quantum dots [49] as well as the sensitivity of chaotic

wavefunction intensities to changes in an external perturbation [50]. The extension

of this approach to orthogonal and symplectic symmetry relies on the construction
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of the appropriate Itzykson-Zuber integral corresponding to Eq. (3.11). However, to

our knowledge, for the pseudoorthogonal and pseudosymplectic supergroup, such a

generalisation has yet to be found.

To conclude, in this chapter we have obtained an exact analytical expression for

a whole class of correlators that characterize quantum chaos for systems without T-

invariance. The utility of this approach has been demonstrated with the derivation

of two distribution functions.
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Chapter 4

Spectral Statistics Beyond

Random Matrix Theory.

In this chapter we follow Ref. [51]. Using a nonperturbative approach we examine

the large frequency asymptotics of the two-point level density correlator in weakly

disordered metallic grains. We find that the singularities of the structure factor at

the Heisenberg time (present for random matrix ensembles) are washed out when

conductance is finite. The results are nonuniversal (they depend on the shape of the

grain and on its conductance), though they suggest a generalization for any system

with finite Heisenberg time.

A great variety of physical systems are known to exhibit quantum chaos. The

common examples are atomic nuclei, Rydberg atoms in a strong magnetic field, elec-

trons in disordered metals, etc [52]. Chaotic behavior manifests itself in the energy

level statistics. It was a remarkable discovery of Wigner and Dyson, that these statis-

tics in a particular system can be approximated by those of an ensemble of random

matrices (RM). Here we consider deviations from the RM theory taking an ensemble

of weakly disordered metallic grains with a finite conductance g as an example. The

results seem to be extendible to general chaotic systems.

There are two characteristic energy scales associated with a particular system:

a classical one E and a quantum one. The quantum energy scale is the mean level

spacing A. In a chaotic billiard, for example, E, is set by the frequency of the shortest
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periodic orbit. Well developed chaotic behavior can take place only if Ec > A.

In a disordered metallic grain the classical energy is the Thouless energy Ec =

D/L 2 , where D is the diffusion constant, and L is the system size. For a weakly

disordered grain the two scales are separated by the dimensionless conductance g =

Er/A > 1 [53]. For frequencies w < E, the behavior of the system becomes universal

(independent of particular parameters of the system ). In this regime in the zeroth

approximation the level statistics depend only on the symmetry of the system and

are described by one of the RM ensembles: unitary, orthogonal or symplectic [7].

One of the conventional statistical spectral characteristics is the two-point level

density correlator

K(w, x) = (p( w, + H + x6H)p(6, H)) - A-2 , (4.1)

where ft is the Hamiltonian of the system, /H is a perturbation, x is the dimension-

less perturbation strength and p(e, Hft + xHft) = Trd(e - Hf - x5H) is the x-dependent

density of states at energy e. It is convenient to introduce the dimensionless frequency

s = cw/A and the dimensionless correlator R(s,x) = A2K(w,x). Dyson [54] deter-

mined R(s, x = 0) for RM. For example, R(s, o) in the unitary case plotted in the

insert in Fig. 4-1 equals to

R(s, ) = 8(s) - sin2(Irs)/(rs)2. (4.2)

Perhaps the most striking signature of the Wigner-Dyson statistics is the rigidity

of the energy spectrum [43]. Among the major consequences of this phenomenon

are: a) the probability to find two levels separated by w < A vanishes as w --+ 0;

b) the level number variance in an energy strip of width NA is proportional to ln N

rather than N; and c) oscillations in the correlator R(s, 0) in Eq. (4.2) decay only

algebraically.

In the two level structure factor [55] S(r, x) = o ds exp(iTs)R(s, x) the reduced

fluctuations of the level number manifest themselves in the vanishing of S(r, 0) at

T = 0, and the algebraic decay of the oscillations in R(s, 0) leads to the singularity
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in S(-r,0) at the Heisenberg time = 27r. In the unitary case, e. g. S(r, 0) =

min{ll/(27r), 1}. At < 2r this Dyson result was obtained by Berry [56] for a

generic chaotic system by use of a semiclassical approximation. To the best of our

knowledge nobody succeeded in analyzing the behavior of S(T, 0) around = 27r

using this formalism.

Wigner-Dyson statistics become exact in the limit g = E,/A - oc. We consider

corrections to these statistics for finite g. One of the better understood systems in

this respect is a weakly disordered metallic grain. For frequencies much smaller than

EC the statistics are close to universal ones, the corrections being small as (/g) 2 [57].

At s > 1 the monotonic part of R(s, x) can be obtained perturbatively [58]

Rp(s, x) = R Z [22(-is + X2 + 6)2]-1 (4.3)

where e, are eigenvalues (in units of A) of the diffusion equation in the grain, = 2

for the unitary ensemble and a = 1 for the orthogonal and symplectic ensembles [59].

At this point we can define

E = giA/72, g = e/7r 2 (4.4)

where e1 is the smallest nonzero eigenvalue. Perturbation theory allows one to deter-

mine S(r, 0) at small times T < 1. Since the oscillatory part of R(s, x) is non-analytic

in 1/s it can not be obtained perturbatively.

In this chapter we obtain the leading s > 1 asymptotics of R(s, x) retaining the

oscillatory terms [60] and monitor how the singularity in S(r, 0) at the Heisenberg

time is modified by the finite conductance g. We make use of the nonterturbative

approach [20] that is valid for arbitrary relation between s and g. The oscillatory

part Rosc(s, x) R(s, x) - Rp(s, x) for the unitary (u), orthogonal (o) and symplectic

(s) cases equals to
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Roc(S, X) = (2rs)2 P(, x), (4.5)

Roc(sx) = cos(2lrS)p2 (S ) (4.6)
0S'_ (' X) 7r4ly 14 

R (SX) = cos(lrs) P(sx) - cos(27r)2(sx) (4.7)
2 1y 2w4Iy1 4

where y = x2 is, and P(s, x) is the spectral determinant of the diffusion operator

P(s,x)= I [()+ (1+ ) (4.8)

Note that Eq. (4.3) expresses Rp(s, x) through the Green function of this operator.

Thus, regardless of the spectrum , Rp(s, x) and RoSc(s, x) are related:

1 1 0 2 1 ln[P(s,x)]
Rp (, x) = ___ - 2o~72 (4.9)

oair2 y 2 2a~r2 182

It follows from Eq. (4.8) that P(s, x) decays exponentially at s > g. As a result,

the singularity in S(r, 0) at the Heisenberg time is washed out: S(r, 0) becomes

analytic around T = 2r. The scale of smoothening of the singularity is 1/EC ( see

Fig. 4-1). At < s << g the sums of Eqs. (4.5), (4.6) or (4.7) and Eq. (4.3) give the

leading high frequency asymptotics of the universal results, for s > g they coincide

with the perturbative result Rp(s, x) of Ref. [58].

In a closed (Dirichlet boundary conditions) d-dimensional cubic sample =

g7r2n2, where n = (ni, . . . ,nd) and ni are non-negative integers. For s > g and

d < 4 we have P(s, O) exp{-7(s/7rg)d/ 2 /[r(d/2)dsin(7d/4)]}. At 1 < s << g

R(s,) sin 2(rs) sin 2 rs) 1 (4.10)+ Z(ii)'(4.10)(irs)2 w2g2 (7222

This result was shown in Ref. [57] to be valid even for s < 1. One can assume that

the sum of Eq. (4.5) and Eq. (4.3) gives the correct g 1 asymptotics at arbitrary

frequency for the unitary ensemble. Recall that the lowest order of perturbation
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theory for T- < 2r gives the exact result S(r, 0) oc r.

Now we sketch the derivation of our results. Consider a quantum particle moving

in a random potential V(r. The perturbation acting on the system is a change in the

potential 5V(r. Both V(r and 6V(r) are taken to be white noise random potentials

with variances (V(ir-V(r')) = (F-r;)/2irv and (V(i)V(f)) = x2AJ(i-r;)/(4rv),

/Ar << 1, (V(rdV(i)) = 0, where () denotes ensemble averaging and v is the density

of states per unit volume. The dimensionless perturbation strength x2 is assumed to

be of order unity.

We use the supersymmetric nonlinear a-model introduced by Efetov [20], and fol-

low his notations everywhere. One can show that for the system under consideration

the a-model expression for K(w, x) is given by

K(w,x) =- 2R02 DQexp{-Fj(A)} (4.11)
72 J2 fJ=

The 8 x 8 supermatrix Q(J obeys the constraint Q2 = 1 and takes on its values on

a symmetric space H = G/K, where G and K are groups [21]. In the unitary case

H = U(1, 1/2)/U(1/1) 0 U(1/1) [31]. The integration measure for Q in Eq. (4.11)

is the invariant measure on H and

Fj(A) = dr-STr D(VQ) 2 + 2iwAQ + iJAkQ- 2 (AQ)2 . (4.12)
8 2

The hierarchy of blocks of supermatrices is as follows: advanced-retarded (A-R)

blocks, fermion-boson (F-B) blocks, and blocks corresponding to time-reversal. A =

diag{1, 1, 1,1, -1,-1,-1,-11} is the matrix breaking the symmetry in the advanced-

retarded (A-R) space, k = diag{ 1, 1,-1, -1, 1, -1,-1} is the symmetry breaking

matrix in the Fermion-Boson ( F-B ) space.

The large frequency asymptotics of K(w, x) can be obtained from Eq. (4.11) by

use of the stationary phase method. Perturbation theory corresponds to integrating

over the small fluctuations of Q around A [20],
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Q =A( +iP)(l-iP)-l P =(O B) (4.13)
B 0

where the matrix P describes these small fluctuations.

Q = A is not the only stationary point on H. This fact to the best of our knowledge

was not appreciated in the literature. The existence of other stationary points makes

the basis for our main results.

It is possible to parameterize fluctuations around a point Qo in the form Q =

Qo(1 + iPo)(1 - iPo) - '. Expanding the Free Energy Fj in Eq. (4.12) in Po we would

obtain the stationarity condition &Fj/OPo = 0. This route however is inconvenient

because the parametrization of Po will depend on Q0. Instead we perform a global

coordinate transformation on H that maps Q to A, Q - TQoTo = A. We

note that the matrices A and -Ak belong to H, and the corresponding terms in

Eq. (4.12) can be viewed as symmetry breaking sources. This transformation changes

the sources, but allows us to keep the parametrization of Eq. (4.13) and preserves the

invariant measure. Introducing the notation QA = TolATo and QAk = TolAkTo we

write K(w, x) in the form of Eq. (4.11) if Fj(A) is substituted by FJ(QA) given by

FJ(QA) = r drSTr {D(VQ)2 + 2iwQAQ + iJQAkQ- x2 (QAQ)2}(4.14)
8 2

The stationarity condition OFJ(QA)/0P1p=o = 0 implies that all the elements of QA

in the AR and RA blocks should vanish (this can be seen from Eq. (4.13)).

Here we discuss in detail only the calculation for the unitary ensemble. The calcu-

lation for the other cases proceeds analogously, and we just point out the important

differences from the unitary case.

In the unitary case the only matrix besides A that satisfies the stationarity con-

dition is QA = -kA = A. In this case QAk = -A. All other matrices from H contain

nonzero elements in the AR and RA blocks. Both stationary points contribute sub-

stantially to K(w, x).

Consider the contribution of QA = A to K(w, x) first. We substitute QA = -kA
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and QAk = -A into Eq. (4.14), expand F(QA) to the second order in B and B and

substitute it in Eq. (4.11). Expanding B(F) in the eigenfunctions of the diffusion

operator: B(0r = 0, u(lB. we obtain

Roc(Sx) = fJ vB(Z A)2

x exp(-27r{-is + Z[EA t + y*lBl[l2 + y[B3 2]}), (4.15)
/Z

where y = x2 - i s , y* = 2 + is and Au = STr(B B)/2. We have to keep x 2

finite to avoid the divergence of the integral over B"' caused by the presence of the

infinitesimal imaginary part in s. One can take the x2 -+ 0 limit only after the integral

in Eq. (4.15) is evaluated.

Since the Free Energy in Eq. (4.15) contains no Grassmann variables in the zero

mode they have to come from the pre-exponent. Therefore out of the whole square of

the sum in the pre-exponent only the terms containing all four zero mode Grassmann

variables contribute. In these terms the prefactor does not contain any variables from

non-zero modes. Thus, the evaluation of the Gaussian integrals over non-zero modes

yields the superdeterminant of the quadratic form in the exponent. Supersymmetry

around A is broken by s, therefore this superdeterminant differs from unity and is

given by P(s, x) of Eq. (4.8). Evaluating the integral we arrive at Eq. (4.5).

In quasi-lD for closed boundary conditions and x = 0 the spectral determinant

P(s, 0) can be evaluated exactly, and from Eq. (4.5) we obtain

R U'0SC (sO0) = s cos(2irs) (4.16)2r 5 sinh2(/ ) + sin2( )(4.16)

For QA = A the same procedure as used above leads to Eq. (4.3), which coincides

with the result of Ref. [58].

The behavior of S(r, 0) at r = 0 and r = 27r is associated respectively with Rp(s, 0)

(Eq. (4.3)) and Rosc(s, 0) (Eq. (4.5)). In other words the singularity at the Heisenberg

time is determined by the contribution to R(s, 0) from A. It is clear that the cusp in

S(T, 0) at r = 27r will be rounded off because Rosc(s, 0) decays exponentially at large
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s. The scale of the smoothening is of order 1/g.

The Fourier transform of Eq. (4.16) ( see Fig. 4-1 ) is

SD (2 7r + t, 0)A = E (1)g exp( -r2 n2gt) (4.17)
IDl 7w2 gn sinh(7rn) 4w(1

Even though SD( 27r + t, 0), appears to be a function of Itl, it is regular at t = 0.

We can also estimate SU(27r, 0)x in any dimension. It is proportional to 1/g of

Eq. (4.4) and is given by

2-1

4r4g oo+il z2 ( [E1 

Consider now T-invariant systems. For the orthogonal ensemble there are still

only two stationary points on H: A and A. To determine the contribution of the

A-point we use the formula Eq. (4.14) with Q = A and QkA = -A and Efetov's

parametrization for the perturbation theory [20]. The calculations are analogous to

those for the unitary ensemble and lead to Eq. (4.6). The contribution of QA = A

gives Eq. (4.3). At = 2r the third derivative of S(r, 0) for the orthogonal ensemble

has a jump. This singularity also disappears at finite g.

In the symplectic case there are three types of stationary points which correspond

to singularities in the structure factor S(-, 0) at T- = 0, 7r, 2r [7]. The - = 2 singular-

ity corresponds to QA = A, and its contribution to R(s, x), given by the second term in

Eq. (4.7), is exactly the same as R°s c(s,x). The stationary point QA = A corresponds

to the = 0 singularity in S(T, 0) and leads to Eq. (4.3). The = 7r singularity cor-

responds to a degenerate manifold of matrices QA on H QA = diag(Tf, 12, -T, -12),

QkA =-kQ^, where 12 is a 2 x 2 unit matrix, T(,) = (m, n)T + (m, n)yTy, rm2 1,
2 1 and -x,y are Pauli matrices in the time-reversal block. The calculation pro-

ceeds as before and leads to the first term in Eq. (4.7). In quasi-lD we can obtain

the leading contribution to the structure factor S(r, 0) around = 7r

Ss(t + r, ) = o -4sin 2(gltlz)dz + ln(1.9g) + 0(1/g). (4.18)
o sinh 2 V5z + sin 2 9/
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The result is plotted in Fig. 4-2. In all dimensions the logarithmic divergence in the

zero mode result is now cut off by finite g, and SS(r, 0) oc in g.

In conclusion we mention several points about our results. 1) Equations (4.5),

(4.6) and (4.7) together with (4.3) describe the deviation of the level statistics of a

weakly disordered chaotic grain from the universal ones. This deviation is controlled

by the diffusion operator. This operator is purely classical. It seems plausible that

the nonuniversal part of spectral statistics of any chaotic system can be expressed

through a spectral determinant of some classical system-specific operator. If so, the

relation Eq. (4.9) should be universally correct!

2) The formalism used here should be applicable even to the systems weakly

coupled to the outside world (say through tunnel contacts). As long as the level

broadening F (w = Rw + i) is smaller than A\x2 the integration over the zero mode

variables in Eq. (4.15) is convergent. The integral over the other modes is always

convergent provided < E. Thus, the presence of a perturbation can effectively

"close" a weakly coupled system. Under these conditions Eqs. (4.5), (4.6) and (4.7)

remain valid after the substitution cos(2rs) -+ exp(-27rF/A) cos(27rs) and x2

x2 - F/A.
3) The classification of physical systems into the three universality classes (unitary,

orthogonal and symplectic) may be an oversimplification. A system subjected to a

magnetic field remains orthogonal for short times and has the unitary long time

behavior. The crossover time is set by the strength of the magnetic field. For a

disordered metallic grain in a magnetic field this characteristic time is hc/(eHD).

For > DeH/(hc) the system effectively becomes orthogonal. This implies that

even if we neglect the spatially nonuniform fluctuations of the Q-matrix the cusp in

S(-r, 0) at = 2r will be washed out on the scale of A hc/(eHD) (the jump in the third

derivative of S(r, 0) will still remain). For the system to behave as unitary at w Ec

the magnetic length hc/(eH) has to be shorter than the size of the system. Spin-

orbit interaction that causes the orthogonal-to-symplectic crossover can be considered

analogously.

4) The rounding off of the singularity in S(27r, 0) is also present in the RM model
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with preferred basis [61]. Our results differ from those in Ref. [61] substantially.

Thus, finite g is not equivalent to finite temperature for the corresponding Calogero-

Sutherland model [29].
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Figure 4-1: Structure factor in quasi-lD case for unitary symmetry (solid line) and the
universal structure factor (dashed line). Inset: the two level correlator as a function
of level separation.
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Figure 4-2: The structure factor for the symplectic case in quasi-lD (solid line) and
the universal result (dashed line). Inset: the universal stucture factor.
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Chapter 5

Spectral Statistics: From

Disordered to Chaotic Systems

In this chapter the relation between disordered and chaotic systems is investigated.

It is obtained by identifying the diffusion operator of the disordered systems with the

Perron-Frobenius operator in the general case. This association enables us to extend

results obtained in the diffusive regime to general chaotic systems. In particular, the

two-point level density correlator and the structure factor for general chaotic systems

are calculated and characterized. The behavior of the structure factor around the

Heisenberg time is quantitatively described in terms of short periodic orbits. \We

closely follow Ref. [62] here.

The statistical description of the quantum spectra of systems which exhibit chaotic

dynamics in their classical limit, has been conducted mainly along two routes. One

is to study an ensemble of similar systems, such as disordered metallic grains, where

electrons experience scattering by a random potential. In this approach, ensemble

averaging is a crucial step done at an early stage of the calculation. The results of

such a calculation apply to an individual member of the ensemble, provided the time

of observation is long enough. The second route is to characterize the properties of

individual systems by means of the periodic orbit theory [63]. This is possible for a

system with chaotic dynamics governed by a Hamiltonian that is simple enough, so

that the parameters of the periodic orbits needed for semiclassical spectral analysis
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can be calculated explicitly. Averaging in this case is usually done over an energy

interval which consists of many energy levels [56]. This approach is very powerful

in describing the short time behavior of the system, but is faced with significant

problems when applied to times of order or bigger than the Heisenberg time TH = h/A

or to energies much smaller than the mean level spacing A [64]. Despite the obvious

differences between the two approaches it is believed that to a large extent both

describe the same physics. In this chapter we are applying results of the first approach

in order to extend the periodic orbit theory to times close to TH.

The relation between ensembles of metallic grains and ensembles of random ma-

trices (RM) [7] is now well understood. The supersymmetric non-linear model [20],

actually, provides a microscopic justification for the use of RM theory in order to

describe the universal features of these systems. This formalism offers a routine way

of calculation of a variety of universal correlation functions for all Dyson pure sym-

metry RM ensembles and for crossovers between them [65]. In view of the growing

interest in applying the supersymmetry approach to the investigation of deviations

from universality [57, 51, 66], it becomes important to understand the connection

between the two approaches described above.

The object that we analyse is the dimensionless two-point level density correlator,

R(s) = A2(p(E)p(E + sA)) - 1. (5.1)

Here p(E) is the density of states at energy E, A is the mean level spacing, and

(.. ) represents ensemble averaging in the case of disordered systems, or averaging

over some interval of energy E if an individual chaotic system is considered. The

universal form of R(s) is especially simple in the unitary case. It is the sum of smooth

and oscillating parts [7]: R(s) = (s)- [1 -cos(27rs)]/(21r 2s 2 ). The conventional

perturbation theory for disordered metals [67] can provide only the smooth part of

R(s) [58]. The s > 1 asymptotics of R(s) in which the oscillatory term, non-analytic

in 1/s, is retained was recently evaluated in Ref. [51]. This result (for s $ 0) can be
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still presented as a sum,

R(s) = Rp(s) + R0 sc(s), (5.2)

of a perturbative term Rp(s) and oscillatory one Ros(s). We rewrite the expression

for Rp (s) (see Ref. [58]) as

1 &2

Rp(s) =-2ar 2 as2 ln[D(s)], (5.3)

where a - 2 for the unitary ensemble and a = 1 for T-invariant ensembles. D(s) is

the spectral determinant of a classical operator, namely the diffusion operator:

Df(s) H A(,E) (S2 + 2) (5.4)

Here are eigenvalues (in units of A) of the diffusion equation in the grain, and

A(E) is a regularization factor which equals E2 for E 0 and unity otherwise [68].

Surprisingly the oscillatory term Ros(s), which cannot be obtained by a perturbative

calculation, is also governed by the same classical spectral determinant D(s). E. g.,

in the unitary case it has the form

ROSC~s = ,(27r Ds) (5 5)
2w 2

Since f)(s) is purely classical, it is plausible that for any chaotic system there exists

a classical operator whose spectral determinant can be identified with D(s). In what

follows we shall identify this operator for general chaotic systems by a semiclassical

analysis of relation (5.3). For the sake of simplicity we shall consider a two dimensional

system which belongs to the unitary ensemble.

The semiclassical analysis begins with Gutzwiller's trace formula [63], which ex-

presses the density of states p(E) as a sum over the classical periodic orbits

1 _1 ekSp(E)r-iipr
we p e r Z t d1tbI - I)1l/2 (5.6)

where p labels a primitive orbit that is characterized by a period Tp, action Sp(E),
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and Maslov phase vp; r stands for the number of the repetitions of this orbit. Mp

is the monodromy matrix associated with the linearized dynamics on the Poincare

section perpendicular to the orbit. From here on, energy and time will be measured

in units of A ( = E/A), and h/A respectively. One can substitute (5.6) into (5.1)

and represent R(s) in the form of a double sum over the periodic orbits. Rp(s) is

given by the diagonal part of this sum. Expanding Sp(e + s) up to the linear order in

s: Sp(e + s) _ Sp(e) + Tps, we obtain

2 °° eisTpr
Rp (s) = R T ~~~~~~~~~~~(5.7)2p(s) = 2r 2 r=1 I [ det(Mpr - I)(

The traditional way to deal with the above sum is to approximate it by an integral:

f(T ) t f(t) (5.8)-4 - f W ~~~~~~(5.s)
p det(Mp -1 I l

for any sufficiently smooth function f (t). This approximation, known as the Hannay

and Ozorio de Almeida (H&OA) sum rule, holds in the limit t -+ oc where long

periodic orbits which explore the whole energy shell uniformly are considered. In

employing it for the calculation of Rp(s), the time t should be restricted to the

regime where it is much larger than the shortest periodic orbits but still smaller than

the Heisenberg time TH. The result associated with it is therefore the universal one

Rp(s) = -1/27r2s 2 which holds as long as s > 1 [56]. Below we present a more

careful treatment of the sum (5.7) that keeps the non-universal part of Rp(s).

Let A be the eigenvalue (Ap > 1) of the monodromy matrix Mp. The area

preserving property of the latter implies that the second eigenvalue of Mp is 1/Ap.

Hence,

00

I det(Mr - I)l-1 = Apl- r (k + 1)A -rk, (5.9)
k=O

and we can rewrite (5.7) in the form of a triple sum

-1 2 00 Eftp~s) = -19 + 1) iT _(5.10)
(s) = 27r2 s-2 - yk + =1 r2 pk,
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where

tpk = Apl-1A-keisTP. (5.11)

Using the relation (5.3) we can determine the spectral determinant D(s) up to a

normalization constant:

7(s) = IJZ(is)j2. (5.12)

Upon evaluation of the sum over the repetitions in Eq. (5.10), the expression for Z(is)

takes the form
00

1/Z(is) = II II exp [(k + 1)0(tpk)], (5.13)
P k=O

where (x) = f t- 1 ln(1 - t)dt. Notice that the normalization constant X plays no

role in the perturbative part of the two-point correlator. We therefore postpone its

determination.

Suppose now that all the periodic orbits are very unstable, namely ApI > 1 for

all p-s. In this case tpk -+ 0, (tpk) -- tpk and Z(z) reduces to the dynamical zeta

function [9],

kO ( lez ) k+(5.14)
1/Z(z) =f _ l I I (514)

P k=0 lplp

This function is the spectral determinant associated with the Perron-Frobenius (PF)

operator Lt (also known as Ruelle-Araki or the transfer operator) [70]. /t is the

classical evolution operator which propagates phase space density for a time t > 0.

Its kernel is therefore given by

( ) = 6[ - U(x; t)], (5.15)

where and are phase space vectors representing coordinates and momenta, and

u(x; t) is the point in phase space to which a particle that starts its motion at 

arrives after time t. The eigenvalues of the PF operator are of the form e - It. They

are associated with the decaying modes of a disturbance in the density of classical

particles exhibiting chaotic dynamics, analogous to the diffusion modes of disordered

system. Yet, the difference is that, unlike in the latter case, here -y,-s can appear
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also in complex conjugate pairs -y--' i± iy" where y' > 0. The leading eigenvalue of

the PF operator, yo - 0, corresponds to the conservation of the number of particles.

The dynamical zeta function (5.14) is the spectral determinant associated with the

eigenvalues %y. Up to a normalization constant it is given by the product

1/Z(z) II B, (z - ,), (5.16)

where B. are regularization factors introduced to make the product converge.

Unlike the periodic orbit theory in quantum mechanics which gives only the lead-

ing asymptotics in the limit h - 0, the periodic orbit expansion (5.14) of (5.16) is

exact. It is however proper to comment that, in its present form, Z(z) cannot be used

to determine the eigenvalues %. For this purpose a resummed formula is required.

It can be obtained by expanding the infinite product over the periodic orbits and

ordering the various terms in a way that leads to maximal cancelation among them.

This so called cycle expansion [71] exploits the property that the dynamics of chaotic

systems in phase space is coded by a skeleton of few periodic orbits. In particular,

the long periodic orbits may be approximated by linear combinations of few short

ones.

From (5.16) and (5.3) it follows that

Rp l 2 _ (5.17)

in complete analogy with the result of Ref. [58] for diffusive systems. The universal

part of Rp(s), that was obtained using H&OA sum rule, thus corresponds to the first

term in the sum (5.17) (o = 0). The rest of the sum is apparently system-specific.

We turn now to the determination of the normalization constant A' introduced in

(5.12). We shall assume that the leading eigenvalue 7o is of unit multiplicity (this is

the case when the system is ergodic). Comparison of Eqs. (5.12) and (5.4) gives the

normalization factor:

A/-~ - lim zZ(z). (5.18)
z-+0

71



It is customary to express the semiclassical density of states as the logarithmic

derivative of the Selberg zeta function. The latter is defined as the spectral de-

terminant associated with the semiclassical energy spectrum of the system under

consideration:

()= I bj( = - eisp( Aidp (5.19)
JA f/2A~k

where bj are regularization factors, and ej are the semiclassical energy levels of the

system. The second equality above holds for two dimensional systems. One can show

that the spectral determinant Z(is), satisfies the relation

Z(is) = exp{ (ln[(s(e + s)3 ln[((6)])d}. (5.20)

where (..)d represents an averaging which retains only the diagonal elements in the

double sum. Since A\p(e) = 1 - (/re)Q In (s(e + i), the two-point correlator can

be written as

R(s) = 22 (Q nC (e + s) Iln (E)) . (5.21)

The diagonal approximation gives the perturbative term

_02
Rp(s) = 202 ( ln ( ( + s) Q ln ( ())d (5.22)

The difference between Eqs. (5.21) and (5.22) can be also expressed through the

diagonal average. Using Eqs. (5.20) and (5.12) it is easy to see that RoSC(s) is given

by Eq. (5.5) with

D(s) = / 2 exp {2R (n C ( + s) n s (e))d} * (5.23)

It is convenient to present the result in terms of the Fourier transform of the

two-point level density correlator, S(r) = f dseisTR(s), known as the structure or the

form factor. RM theory predicts that for the unitary ensemble S(T) = min(ljlj/27r, 1)
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(see the light line in Fig. 1). In the general case

S(T) = Sp(T) + I [Sosc(T + 27r) + SOs(T - 27r)], (5.24)
2

where Sp and So0 are respectively associated with the perturbative (5.3) and the non-

perturbative (5.5) parts of the two-point correlator. Assuming that the multiplicity

of all the eigenvalues y, is one,

Sp(T) = I e -7JII (5.25)
27r

Again the universal part of Sp(T) associated with H&OA sum rule comes from the

leading eigenvalue 7y0 = 0. The higher eigenvalues will contribute corrections which

are in general oscillatory and decrease exponentially. For instance, the complex pair

y iy7' will contribute the term lTle-l'lM cos(y'T-)/wT. The oscillatory part of the

structure factor can be written as,

SI'C(T) E- - , (/yp)elT, (5.26)
se F) 27r 27ry,'

/z40

where D,(s) is given by

Dg(s) = 1 4) s2D(s). (5.27)

For example, in the case of quasi one dimensional diffusive system, where the eigen-

values are of the form fy=Dn 2 one can show that Dn(iDn 2)= -4n(-1)n/sinh(7rn),

while for equally spaced eigenvalues -yn =vn it is ZDn(ivn) = 2rn/sinh(7rn). In general

it is expected that the contribution will come only from the lowest eigenvalues of the

PF operator.

In what follows it will be assumed that the non-universal behaviour is dominated

by one eigenvalue (or possibly a conjugate pair) yit, i.e. / > ' for all x> 1.

In characterizing S(T), five domains of the parameter T, drawn schematically in Fig

1, are identified: (I) - T where T% is of order of the period of the shortest periodic

orbit. Here S(r) is composed of several 6-function peaks located at the periods of the
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Figure 5-1: A schematic drawing of the structure factor of chaotic system belonging
to the unitary ensemble. The light line represents the universal RM theory result.
For the sake of clarity, the non-universal features have been exaggerated.

short orbits and weighted according to their instability. (II) c < < 1/1'. Deviations

from universality associated with (5.25) may be noticeable also in this interval. Their

period of oscillation 1/7y' is of the order of -r. (III) /y? <T r<2r- 1/y', the universal

perturbative regime where S(r) = r/27r. This is the domain where H&OA sum rule

holds. (IV) 2r - 1/y < < 27r + 1/1-, the vicinity of the Heisenberg time r 27r.

The non-universal features here are in the form of exponentially decreasing oscillations

very similar to those existing in (II). Yet their amplitude and phase may be different.

In general, the RM singularity at the Heisenberg time (the light line in Fig. 1) will be

smeared out by them. (V) r > 2r + l/-y. Here again the universal result S(r) 1

holds.

These results can be generalized straightforwardly to orthogonal and symplectic

chaotic systems: instead of Eq. (5.5) one should use Eq. (5) of Ref. [51] with P(s) =

s2D(s).

The behavior of the structure factor in the vicinity of the Heisenberg time is a

manifestation of a striking property of the periodic orbit sum (5.6). Namely, that

the tail of the Gutzwiller's series (the long periodic orbit) encodes its head (short

periodic orbit). As a result, S(T-) in the vicinity of the Heisenberg time is determined

by the same short periodic orbits as at small . The argument [56] is that the long
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periodic orbits determine the position of the energy levels. Therefore through the

long range correlation of these levels they encode the information about the short

periodic orbits. In fact, Berry and Keating resummation method [72] of the periodic

orbit sum associated with the quantum spectral determinant of chaotic systems is

based on the bootstrapping of long periodic orbits with periods near the Heisenberg

time Tr 2r to the short ones near Tr. The behavior of S(T) near the Heisenberg

time reflect this sort of symmetry in the sense that it is determined by the short time

dynamics of the classical system.

To summarize, we identified the diffusion operator in disordered grains with the

Perron-Frobenius operator in the general case. This relates the spectral determinant

associated with the diffusion equation in the grain to the dynamical zeta function

which can be expressed in terms of the classical periodic orbits. We used these

relations to extend the theory of the structure factor of disordered grains to general

chaotic systems. It would be interesting and important to derive these relations for

generic chaotic systems. In this respect the recently proposed -model-like approach

for ballistic systems [73] looks promising.

75



Chapter 6

A Semiclassical Field Theory

Approach to Quantum Chaos

6.1 Introduction

The quantum behavior of systems which are chaotic in their classical limit has no

simple correspondence to the underlying classical evolution. More than a decade

ago, it was conjectured that, over a certain energy interval, chaotic systems exhibit

universal behavior [87, 56, 65] that is described by the theory of random matrices [7].

Extensive numerical simulations performed since support this conjecture, but the

origin of the success of the universal description based on random matrix theory

(RMT) remained obscure. The intuition behind this phenomena comes from the

following argument: A classical probability density of a particle in a chaotic system

relaxes, after some time Tr, to the ergodic distribution which is uniform over the

energy shell in phase space. At this ergodic stationary state, the classical behavior

of all chaotic systems is similar and can be characterized statistically. The volume

of the energy shell is, however, specific for a given system. It fixes the mean level

spacing A of the corresponding quantum system. This picture suggests that when

energy is rescaled by A, the spectral statistics of quantum chaotic systems is universal

over energy scales smaller than h/-r. However, on time scales smaller than T, chaos

is still not fully developed. Therefore, over the large scale structure of the quantum
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spectrum, one expects to observe "clean features" associated with deviations from

universality. These should be related to the specific manner in which the system

relaxes into its ergodic state.

The study of the universal and non-universal statistical properties of quantum

chaotic systems has largely been conducted along two lines: The first has relied on a

semiclassical approach based on Gutzwiller's trace formula in which the semiclassical

density of states (DoS) is expressed as a sum over the classical periodic orbits [8]. This

approach focuses on the behavior of individual systems, and statistical properties are

based implicitly on energy averaging. This approach has proved to be a powerful tool

in describing non-universal properties associated with short time behavior. However,

its success in reproducing universal long time properties associated with RMT has

been limited [56]. In particular, it fails to account for the correct behavior at times

in excess of the inverse level spacing or Heisenberg time H - h/A.

The second approach involves the study of an ensemble of similar systems, such as

weakly disordered metallic grains in which electrons experience scattering by a ran-

dom potential. Here, ensemble averaging is a crucial step exploited at an early stage

of calculation. In this framework, the relation between disordered systems and RMT

is firmly established. In fact, the supersymmetric nonlinear sigma model provides a

microscopic justification for the RMT description of universal long-time properties

of such systems. However, such an approach suffers from two disadvantages: Firstly,

it relies on the very existence of an ensemble. Very often we are concerned with

non-stochastic chaotic systems, such as a Rydberg atom in a magnetic field, where

the notion of an ensemble is absent. Secondly, this type of averaging tends to erase

information about individual features of a system.

The goal of this chapter is to develop a common framework in which both dis-

ordered and general chaotic systems can be treated on the same footing. For this

purpose we shall derive a general semiclassical field theoretic description of quantum

chaotic systems which relies only on energy averaging. This method offers a novel

semiclassical approach for the study of the statistical quantum properties of indi-

vidual chaotic systems, which accounts both for universal as well as non-universal
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features. The basic ingredients of the underlying classical dynamics are no longer the

individual periodic orbits, but general properties of the classical flow in phase space.

Before introducing the main conclusions of this study, we begin by identifying the

questions which will be of most concern. To do so it is convenient to draw on the

insight offered by the study of the dynamics of a particle moving in a background

of weak randomly distributed scattering impurities. Amenable to the method of

ensemble averaging, properties of this chaotic quantum mechanical problem are well

understood.

What is the quantum evolution of a wave packet in a background of impurities?

According to the time of evolution, the dynamics of the wave packet is character-

ized by several quite distinct regimes. On time scales t in excess of the mean free

scattering time T, the initial ballistic evolution of the wave packet becomes diffusive.

At longer times the interference of different semiclassical paths induces a quantum

renormalization of the bare diffusion constant D = vr/d. This leads to the phe-

nomena of "weak localization" and is responsible for the quantum coherence effects

observed in transport properties of mesoscopic metallic conductors. If the impurity

potential is not strong enough to localize the wave packet altogether, the wave packet

continues to spread. After a time rc = L2 /D, the typical transport or diffusion time,

the wave packet is spread approximately uniformly throughout the system. Further

evolution of the wave packet is therefore said to be ergodic. Beyond the ergodic time

t > rc the evolution of the wave packet becomes universal, independent of the indi-

vidual features of the system. Finally, the spectral rigidity characteristic of quantum

chaotic systems, leads to an approximately coherent superposition or "echo" of the

wave packet at t = -rH before the wave packet relaxes to a uniform distribution.

One can now ask about the quantum evolution of a wave packet introduced into,

say, an irregular cavity (quantum billiard) without impurities. In such systems it is

widely believed that there too exists some ergodic time Tc after which properties of the

system become universal. However, at shorter time scales, how is the unstable nature

of the classical dynamics reflected in the quantum evolution? Is there an analogue of

quantum renormalization? What, in general, plays the role of the diffusion operator
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in describing the low energy degrees of freedom?

In a recent study by three of us [62], a comparison of results taken from the leading

order of diagrammatic perturbation theory for disordered metals within the diagonal

approximation in periodic orbit theory led to the conjecture that, for general chaotic

systems, the role of the diffusion operator is, in general, played by the classical evolu-

tion (or Perron-Frobenius) operator, et. If p(x, 0) is an initial smooth probability

density distribution defined as a function of phase space variables x - (q, p), where

q and p are the vectors of coordinates and momenta respectively, the density at a

later time t is given by

p(x, t) e-tp(x, 0) / dy 6[x - ut(y)] p(y, 0), (6.1)

where u(y) is the solution of classical equations of motion with initial conditions

y at t = 0, and F covers the region of available phase space. The eigenvalues of

the Perron-Frobenius operator are of the form c art. They are associated with the

decaying modes in which a smooth distribution relaxes into the ergodic state and are

analogous to the diffusion modes of disordered system.

The conjecture of Ref. [62] will be confirmed in this chapter. Furthermore, the

efficiency of the field theory approach will be demonstrated by showing that all the

statistical spectral properties of the quantum system, in the semiclassical limit, de-

pend only on the analytic properties of the corresponding classical zeta function

1/Z(z) det(z- L) [9]. In particular, by considering only its zero at the origin

one exactly reproduces RMT, while by taking into account its analytic structure one

is able to characterize the deviations from the universality. The point of contact of

the conventional periodic orbit theory with our approach appears in the exact pe-

riodic orbit representation of 1/Z(z). Yet, the field theoretic approach provides, in

principle, a systematic way to study the quantum corrections which lie beyond the

diagonal approximations typically employed in the periodic orbit theory. This will be

demonstrated by considering the example of the two-point correlation function.

The range of energy scales in which the approach presented here is valid is set out
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Figure 6-1: A schematic picture of the various energy scales, and the domains of
validity of RMT and the field theory which is constructed in this chapter.

in Fig. 6-1. Energy averaging will be performed over a wide energy band of width W

centered at E0, where E0 > W. Furthermore, we will require that W is much larger

than the energy scale set by the first nonzero eigenvalue of C, 'y. This is to ensure that

the time scale h/W is fine enough to resolve the behavior of the classical dynamics

over a time interval smaller than the ergodic time r - h/yl. It will be also assumed

that the finest energy scale, the mean level spacing A, is much smaller than -y. Thus,

in this work we will focus on a range of energy scales where A < y i< W << Eo. The

universal regime described by RMT corresponds to energies of order of A or smaller.

The field theory which will be developed here also properly describes energies which

are much larger than A. However, to avoid non-universal features associated with

the finite band width W, it will be always assumed that all correlators involve energy

differences much smaller than W. In this way only the non-universal features that

emerge from the underlying classical dynamics (and not the finite band width) will

be described.
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6.2 The Nonlinear a-Model

To present the derivation of the effective field theory describing spectral correlations

of quantum chaotic systems, we will focus on the problem of a single particle confined

by an irregular potential described by the Hamiltonian

2

H=2 +V(q). (6.2)
2m

The classical counterpart of the quantum Hamiltonian is assumed to be chaotic and to

have no discrete symmetries. We confine attention to closed systems so that classical

motion inhabits a finite region of the 2d-dimensional phase space. We will assume

that all classical orbits are unstable and, in particular, exclude (KAM) systems where

the phase space contains islands of regular motion. Later in the discussion we will

return to consider whether this restriction is crucial.

We will concentrate on statistical properties defined on an energy band of width

W centered at an energy E0 . To discuss meaningful averages it is necessary to assume

that the average DoS, specified by the Weyl formula

v(E) = Jdx [E- H(x)], (6.3)

is approximately constant within this interval. Taking as an example a particle in

a random impurity potential, the accuracy of this approximation is of order W/Eo,

and can be made arbitrarily small by going into the semiclassical limit E0 -+ oc. On

the other hand, the bandwidth is assumed to be sufficiently large that the number

of levels, N = v(Eo)W > 1 can be employed as an expansion parameter- final

expressions will be expressed in the zeroth order approximation in 1/N. Henceforth

we will express energy in units of the mean level spacing, A = 1/v(Eo) and denote

such energies by = E/A. For simplicity, it is convenient to employ Gaussian

averaging
[ E de_____ (e - 60)21( .4(. lEO = (27rN2)l/ 2 exp 2N 2 (6.4)

A general n-point correlator of physical operators, such as the local or global DoS
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or current densities, can be obtained from a generating function which depends on

appropriate external sources. Here we focus on two-point correlators. Expressed as a

field integral, the generating function for two-point correlators takes the form

Z(J) = zJD' exp [-iJdq't(q)L (G((e)- JkA) T(q)] , (6.5)

where (e) = - s+A/2- H denotes the matrix Green function with energy

difference s between retarded (R) and advanced (A) blocks, JkA represents the source,

and the constant z is included to enforce the correct normalization.' By expressing

the functional integral in terms of 8-component superfields

pd Fg xd Ed
~I(q) - - -R = Xg (6 7)

\ gp/d( ~d Ixd*F ' 1 A2,p =

where x(q) and S(q) respectively denote fermionic (F) and bosonic (B) components,

the generating function is normalized, Z(0) = 1. (The introduction of equal numbers

of bosonic and fermionic fields is a standard trick which obviates the need to introduce

replicas.) Matrices

A = 1 0 19 lp, k = d ( 0 )I p, (6.8)

break the symmetry between the advanced/retarded and graded components respec-

tively, and we have chosen a convention which introduces the supermatrix

{1 0
L ( k d® lp. (6.9)

0kd

'Energy averaging of the generating functional (6.5) induces a quartic interaction of the form
(iJtLx) 2 among the supervector fields. The matrix L serves as a metric tensor. In Ref. [21] it was
shown that the appropriate group of transformations preserving the interactions in the fermionic
sector is compact while in the bosonic sector it must be chosen non-compact. This fixes the definition
of L (see Eq. (6.9). With this definition, the constant

z = exp STrqln(AL)] ,(6.6)

accounts for the correct normalization.
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The operations of complex conjugation, and transposition of supervectors are de-

fined following Efetov [20], and STrq denotes the trace operation for supermatrices,

STrM = TrMFF - TrMBB, with a subscript q used to denote a further extension of

the trace to include the coordinate integration.

The inclusion of complex conjugated fields effectively doubles the number of fields

and implies the relation

Tt(q) = 1(q)TCT (6.10)

where
-iT2 °

C -l ® , (6.11)
0 7-~ g

denotes the "charge conjugation" matrix and

Ti( ) T2( ) -T ( ) (6.12)
1 0 i 0 0 -1

represent Pauli matrices which act inside time-reversal blocks. This convention differs

slightly from that discussed by Ref. [20].

As an application, Eq. (6.5) can be used to represent the two-point correlator of

DoS fluctuations

R2(s) = ((e + s/2)P(e - s/2)) - 1, (6.13)

where (e) = Tr 6(e-H) defines the DoS. If we choose the source J(q, q') = J6(q-q'),

then
1 0 2

R2(s) =162 J2 (Z(J))EJ=O (6.14)

If the energy difference s is chosen to be much narrower than the width of the

energy band N, correlators become independent of N and of the particular shape

of the band (whether it is Gaussian or Lorentzian, etc). Performing the Gaussian

integral in Eq. (6.4) we obtain

(Z), = z f D [-i f dqt(q)L (-l(eo) - JkA) T(q)- Sint[I] , (6.15)

83



N2 2

Sint = 2 ( dqFt(q)L@I(q)) (6.16)

So, in contrast to an impurity averaging, energy averaging induces a nonlocal in-

teraction of I, and represents a departure from the usual consideration of random

Hamiltonians.

The next step involves the decoupling of the interaction induced by the averaging

by means of a Hubbard-Stratonovich transformation involving the introduction of

8 x 8 component nonlocal supermatrices Q(q1 , q 2)

e-Sint[] = DQexp [- STrq Q2 - iNIItLQ)] (6.17)

Eq. 6.10 implies that the dyadic product A(q, q') = T(q) ®lt(q')L obeys the symme-

try property A(q, q') = CTLAT(q', q)LC. This induces the corresponding symmetry

Q = CTLQTLC, (6.18)

where the transposition should be understood in the operator sense.

Substituting Eq. (6.17) into Eq. (6.15) and integrating over we obtain the

following expression for the averaged generating functional

(Z(J))o = DQ exp [-2STrqQ2

- 1STrqln ( -'(( -+ Jk)A)] (619)2 ((2 ))
-(Q) = 0 - H- N.NQ (6.20)

Thus far no approximations have been made. The next step is to identify the low

energy degrees of freedom and obtain an effective action. To do so, we will employ

a saddle-point approximation and find the matrix Q0 which minimizes the action in

Eq. (6.19). The effective field theory is described by the expansion of the action in

fluctuations of Q around the saddle-point. These fluctuations are strongly anisotropic

and can be classified into massive and massless modes. The integral over the former
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can be safely evaluated within the saddle-point approximation to leading order in

1/N (see Appendix A.6). The integral over the remaining massless modes, which

arise from the underlying symmetry of the action (6.15) must be evaluated exactly.

The resulting field theory has the form of a nonlinear a-model.

6.2.1 Saddle-point approximation and the a-model

Varying the action in Eq. (6.19) with respect to Q, and neglecting the terms of order

s and J, we find minima at Qo0 which satisfy the equation

Qo 5-'(QO) N, (6.21)

where QO must be thought of as an operator. The saddle-point solution which is

diagonal in superspace is given by

EoH 2N + [ () 2N 2A. ](6.22)

Note that NQ0 plays the role of the self-energy in the average Green function g(Q0 ).

The saddle-point solution in Eq. (6.22) is not unique but is in fact one member

of a degenerate manifold of solutions. Their existence follows from the underlying

symmetry of the action of Eq. (6.15). The interaction term Sint[T] is invariant under

the group of transformations - UI such that

UtLU = L, (6.23)

where U is an operator in Hilbert space. Terms that break the symmetry of the total

action in Eq. (6.15) are sA, JkA and the commutator [H, U]. The property At =

4 TCT should be invariant under - UI, which induces an additional constraint

on

Ut CUT CT . (6.24)

,From Eq. (6.17) it follows that these transformations induce the following transfor-
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mations on the Hubbard-Stratonovich field Q: - U-lQU.

The saddle-point solution in Eq. (6.22) is not invariant under this group of trans-

formations. Therefore the low energy modes of the action are of the form =

U-LQo(J. However, not all of these transformations should be taken into account.

The group of transformations (6.23) contains a subgroup of matrices which commute

with the Hamiltonian. The matrix Q( remains diagonal in Hilbert space in the basis

of eigenstates of the Hamiltonian. In Appendix A.6 we show that the massive mode

integration gives rise to the fact that such fluctuations of Q are suppressed by large

N. The only matrix U commuting with H which "survives" the N - o limit is the

one proportional to the unit matrix in Hilbert space. Admitting matrices Q of such

form into Eq. (6.19) we obtain

(Z()) o = J DQ exp (-Seff[Q]), (6.25)

where

Seff[Q] = STrqln 1() -( + Jk) A
2_ 1

= 2STrql n [- (Q)- ( + Jk) A- - U[H U] (6.26)

The last three terms under the logarithm in Eq. (6.26) are small as compared to the

first, and we can expand in them. Each order in this expansion brings an additional

power of 1/N, and suggests the inclusion of just the leading order term:

1 1
s[Q] - 2N STrq [ (2A + JAU H U)] (6.27)

This approximation is justified only if s << N and the commutator [H, U] is not

anomalously large. The validity of this approximation must be considered individually

for each system. In section 6.5 we will discuss an example where this is not the case,

and one has to keep the second order expansion of the logarithm in Eq. (6.26).
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6.2.2 Semi-classical approximation

In the limit co - oc, the configurations of the Q-matrix that contribute substantially

to the functional integral in Eq. (6.15) can be described within the semi-classical

approximation. It is therefore convenient to re-express all operators in the Wigner

representation. Given an operator 0 as a set of matrix elements O(q1 , q2) between

two position states at q1 and q2, its Wigner representation is a function of the phase

space variables x = (q, p) defined by

0(x) = ddq' exp(ipq'/h) O(q + q'/2, q - q'/2). (6.28)

We will use the fact that, in the semiclassical limit, the Wigner transform of a product

of operators is equal the product of the Wigner transformed operators, (O2)(x) -+

Ol (x) (92(x), where (901,2 (x) are smooth slowly varying functions on quantum scale

[75]. In this approximation Eq. (6.23) becomes

Ut(x)LU(x) = L, (6.29)

and implies that the matrices U(x) belong to the pseudounitary supergroup U(2, 2/4).

Expressed in the Wigner representation, the constraint in Eq. (6.24)

U*(q, p) = CU(q,-p)CT (6.30)

shows that the matrices U(x) at different x are not independent.

The massless modes in the Wigner representation are generated by those matrices

U(x) that do not commute with A. Such matrices, denoted by T(x), belong to the

coset space H = G/K = U(2, 2/4)/ [U(2/2) U(2/2)] and, as follows from Eq. (6.30).

satisfy the following symmetry relation

T*(q, p) = CT(q,-p)CT. (6.31)

As was mentioned below Eq. (6.24) the matrices U commuting with the Hamiltonian
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are suppressed by massive modes (see Appendix A.6). In the semiclassical limit it

amounts to only considering those matrices T(x) which are independent of the energy.

The massless modes are then given by

Q(x) = T-'(xllj)Qo(H)T(xll), (6.32)

where x1l denotes a phase space coordinate on the energy shell e0 = H(x).

Substituting T for U in Eq. (6.27), and applying the semiclassical approximation,

in which the commutator with the Hamiltonian becomes the Liouville operator ,

[H, T] - -ihLT(xll) = -ih {T(xll), H}, (6.33)

where

{A, B} = E - aq, Op i aZ, ] (6.34)1A, B[ OA OB OB OA ]634

denotes the Poisson bracket of A and B, we obtain

Seff[Q] = -2N J h STr Q(x) 2A + JkA + ihT- T)] . (6.35)

Since the only dependence on the coordinate x_-= H(x) normal to the energy shell

enters through Qo(H) the integral over this variable can be performed. Introducing

the notation

Q(xl) = dH T 1 (xll)Qo(H)T(xll) = T-1(xl)AT(xll) (6.36)

we obtain the final expression

Seff[Q] = 2 I hd STr[Q (s+A A + ihT T)]. (6.37)

Here and henceforth when the arguments of Q and T are omitted they should be

understood as functions of x11.
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The matrix Q(xll) introduced in Eq. (6.36) satisfies the constraints

Q(xi) 2 = 1 Q(q, p) = CTLQT(q, -p)LC. (6.38)

It seems that the expression (6.37) does not correspond to a a-model since it

expressed through the matrices T rather than through Q = T- 1AT. A general

property of a-models is the invariance of the action under gauge transformations

T - RT, where R commutes with A. Using the fact that L = ;]x (where il is

the phase space velocity) is a first order differential operator it is easy to show that

under a gauge transformation the change of the action (6.37) is given by

~Seff[Q] -~J Sr[AR12R = f2 STr [AtInR] = 0. (6.39)2 hd 2 ~~~~~hd

To arrive at the last equality we used the fact that the flow in phase space is incom-

pressible: x9,:X1 = 0.

The kinetic part of the action in Eq. (6.37) is equivalent to that introduced by

Muzykantskii and Khmel'nitskii [73], where it is written in the form of the Wess-

Zumino-Witten action

Swzw[Q] = J2 j f0 duSTr Q['2Q]) (6.40)

where Q is a smooth function of u and x1[, such that Q(xl, 1) = Q(x1i) and Q(x[l, 0) =

A.

6.2.3 Range of validity of the a-model

To clarify the domain of applicability of the non-linear a-model in Eq. (6.37) let us

review the main steps involved in its derivation. The construction of the effective gen-

erating functional in Eq. (6.19) involved purely formal manipulations which involved

no approximation. To proceed beyond this expression we invoked a saddle-point ap-

proximation in which the fluctuations of the massive modes were neglected. The
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parameter which controlled this approximation was the inverse bandwidth 1/N.

The second approximation involved the replacement of quantum mechanical com-

mutators by the semi-classical Poisson bracket. Such an approximation is justified at

high energies where the shortest length scale is set by the wavelength of the parti-

cle. Finally, in treating fluctuations of the massless modes around the saddle-point,

we treat only the leading order term in the expansion. Formally, if the commutator

[Hf, T] is not anomalously large, this approximation is also justified by large N. Since

characteristic configurations of T are assumed semi-classical this assumption can be

violated only if fH contains some non-semiclassical contributions.

The validity of this semi-classical approximation is discussed in more detail later

in section 6.5 when we return to consider scattering from quantum impurities and

the relation of the ballistic a-model to the conventional diffusive non-linear a-model.

The symmetry breaking terms in the action place additional constraints on the

range of validity. The expansion around the saddle-point relies on characteristic

frequencies (or energy scales arising from the Poisson bracket in the action (6.37))

being much smaller than the bandwidth N.

The derivation of the a-model of Eq. (6.37) relies solely on the presence of energy

averaging which allows us to neglect the contribution of massive modes in the func-

tional integral. Indeed, energy averaging is crucial in the ballistic limit even in the

presence of disorder. This was emphasized in the study of Altland and Gefen [85] of

spectral statistics of ballistic metallic grains. There it was pointed out that ensemble

averages of spectral correlators differ from averages performed over both ensemble and

energy. In the semiclassical language of periodic orbit theory this difference emerges

from trajectories which are not scattered by impurities [86] which give rise to "clean

features" in the quantum spectrum. The neglect of interference terms among dif-

ferent trajectories (namely the diagonal approximation) is allowed only upon energy

averaging over a wide band. Otherwise, the interference among these trajectories is

substantial. In section 6.5 we show that without energy averaging only the diffusive

a-model of Efetov [20] can strictly be justified. In this case, the large parameter

which suppresses the fluctuations of the massive modes is (A) - 1 .
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6.3 Regularization of the Functional Integral

The functional integral in Eq. (6.25) with the action (6.37) suffers from ultraviolet

divergences and needs to be regularized. This ultraviolet divergence is not an ar-

tifact of the approximations made to derive Eq. (6.37) and is present even in the

original expression (6.5). Indeed, Eq. (6.5) represents a ratio of quantum spectral

determinants Det(e- H). Supersymmetry in Eq. (6.5) improves the ultraviolet prop-

erties if the functional integral but in higher dimensions is not sufficient to make it

converge. Therefore an ultraviolet regulator needs to be introduced. This regulariza-

tion induces the corresponding regularization on the functional integral in Eq. (6.25)

with the action given by Eq. (6.37). The Lagrangian in (6.37) can be presented as

STr[QT-1 x1 x,11T], where -11 is the classical the phase space velocity. This action is

only sensitive to the variations of the Q-matrix along the classical trajectories, there-

fore nothing prevents the Q-field from fluctuating in the directions transverse to '4.

These short scale fluctuations lead the to divergence of the functional integral. The

ultraviolet divergences are independent of the classical dynamics and of the shape

of the constant energy surface and are unphysical. The diverging contribution to

the functional integral needs to be extracted. This is achieved by a regularization

procedure. The problem of ultraviolet regularization of functional integrals is a long

studied problem in field theory (see for example [83]). One can introduce the following

regulator into the action (6.37)

6 SR = m f dllSTr(9x., Q)2. (6.41)

This term suppresses strong fluctuations of Q in the directions transversal to X11 and

favors the smooth physical functions Q(xll). Depending on the dimensionality of the

phase space this may not be sufficient to make the integral convergent and additional

regularization procedures should be invoked. To discuss this question we will consider

the functional integral which arises from the lowest order perturbative expansion of

the action (6.37).

In this case we can represent T = 1 + 5T and Expand the action (6.37) with
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the regulator (regulator) to second order in T. The resulting functional integral

becomes Gaussian and amounts to evaluation of the determinant of the operator

is-LR = is-~,-m2l which is elliptic. Elliptic operators are operators whose highest

rank in derivatives is positive definite. The problem of regularization the determinants

of such operators is discussed in [83]. One method involves the construction of a zeta

function of the operator defined as

((is-IeRIz) = E(is-Ai) - = r(z) t- ZldtTrexp[-(is - CR)t]. (6.42)
i

Here Ai denote the eigenvalues of CR, and we assume that s is such that the operator

is- R has no zero modes. Then the integral in the right hand side converges at

the upper limit. At the lower limit t - 0 it can diverge depending on the value of z.

This divergence has ultraviolet nature and can be removed by taking the integral at

sufficiently large positive z. The expression can then be analytically continued to the

rest of the complex plane. A regularized spectral determinant is expressed through

the derivative of the zeta function (6.42)

lnDet(is - R) = -'(is- RZ)Lz= (6.43)

This regularized spectral determinant Det(is- CR) is a function of s. It has zeroes

at the positions of eigenvalues of CR and nowhere else on the complex plane. One

then has to take the limit m -4 0 to obtain the result which is independent of the

regulator (6.41)

1/Z(is) = Det(is- C) = lim Det(is- R) (6.44)
m-+0

This limit is very different for integrable and chaotic systems. One might expect

that due to antihermiticity of C in the m -+ 0 limit the zeroes of the regularized

determinant Det(is- C) will lie on the imaginary axis of is. This however is incorrect

for chaotic systems [76, 77].

To understand the subtleties of this limit which arise for nonintegrable systems

consider the classical evolution. Let us form an initially nonuniform probability den-
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sity distribution p(x1ll) in the phase space. The classical dynamics involves stretching

along the unstable manifold and contraction along the stable one. Thus, any nonuni-

form initial distribution will evolve into a highly singular function along the stable

manifold. The regularization term (6.41) in the classical evolution can be ignored

for short times but eventually, when contractions along the stable manifold make

the phase space gradients sufficiently big, it becomes relevant2. Therefore the lim-

its time-to-infinity and m -+ 0 do not commute. To find the spectrum one has to

take the time-to-infinity limit first and then set the regulator to zero. In this limit

the eigenvalues -y of 12 have finite real parts corresponding to relaxation rates into

the equilibrium distribution. These physical eigenvalues which reflect intrinsic irre-

versible properties of the purely classical dynamics are known as Ruelle resonances or

the Perron-Frobenius spectrum [76, 77].

There are several ways of calculating the Perron-Frobenius spectrum other than

diagonalizing LR and taking the "zero noise limit" m -+ 0 [78]. These employ, for

instance, symbolic dynamics [9], course graining of the flow dynamics in phase space

[79], and analytic continuation [80].

An exact formal expression for the dynamical zeta function 1/Z(z) = rI,(z- -)

is given in terms of the classical periodic orbits of the system. For two dimensional

systems it is of the form [70]

1/Z(z) = -HApA (6.45)
P k=O Y

where Tp is the period of the p-th primitive orbit and A is the eigenvalue of the

monodromy matrix (which is the linearized map on the Poincare surface of section

in the vicinity of the orbit) with absolute value larger than one. In its present form,

2 An analogous situation arises in the theory of turbulence [84]. In the inertial range viscosity can
be ignored and turbulence can be considered as dissipationless. However for sufficiently small scales
velocity gradients become large and viscosity becomes relevant. In this picture the energy which is
pumped into the system at large spatial scales is transfered without dissipation in the inertial range
to smaller spatial scales and is eventually absorbed at microscopic scales determined by viscosity.
The latter can be viewed as an ultraviolet regulator, which is eventually set to zero but has a finite
effect on the velocity correlators since it is necessary to produce a stationary solution.
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1/Z(z) cannot be used to determine the eigenvalues -y. For this purpose a re-summed

formula is required. It can be obtained by expanding the infinite product over the

periodic orbits and ordering the various terms in a way that leads to maximal can-

celation among them. This method known as the cycle expansion [71] exploits the

property that the dynamics of chaotic systems in phase space is coded by a skeleton of

a small number of periodic orbit called fundamental orbits. Namely, the long periodic

orbits may be viewed as linear combinations of the fundamental orbits.

6.4 Applications

To interpret the findings of the previous sections we will apply the generalized non-

linear -model to the region of long-time or low energy scales. This will establish

a firm connection of level statistics with RMT. Corrections to RMT will be studied

within the framework of a perturbation theory involving the modes of the Perron-

Frobenius operator. These results indicate a close correspondence between spectral

correlations of the classical and quantum operators which we discuss.

6.4.1 Random Matrix Theory

It is widely believed that the statistical quantum properties of systems with a small

number of degrees of freedom can be described, at least over some range of energy

scales, by RMT. To interpret this, various approaches has been developed largely

along two parallel lines. The first approach concerned the study of ensembles of

random systems such as disordered metallic grains [82, 58, 20]. Randomness in this

case is introduced on the level of the Hamiltonian itself usually as a consequence of

some unknown impurity configuration. The second approach involves the study of

non-stochastic systems which are chaotic in their classical limit such as the Sinai or

the stadium billiards [87]. In this case "randomness" is generated by the underlying

deterministic classical dynamics itself. Nevertheless, it has been conjectured [87]

that spectral fluctuations of strongly chaotic quantum systems are described by level

statistics of random matrix ensembles.
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Despite being supported by extensive numerical studies, the origin of the success of

RMT as well as its domain of validity are still not completely resolved. Below we will

show that, in the semiclassical limit, this conjecture is indeed valid for chaotic systems

without any discrete symmetries, and which are characterized by an exponential decay

of classical correlation functions in time.

If we define by {} the set of the eigenvalues of the Perron-Frobenius operator,

L, the lowest eigenvalue in ergodic systems y70 = 0. This eigenvalue is non-degenerate,

and manifests the conservation of probability density. Any initial density eventually

relaxes to the state associated with o70. If, in addition, this relaxation is exponential

in time, then the Perron-Frobenius spectrum has a gap associated with the slowest

decay rate. Thus, for the first nonzero eigenvalue Y71 we have y1 Re(-yl1) > 0. This

gap sets the ergodic time scale, = 1/71 over which the classical dynamics relaxes to

equilibrium. In the case of disordered metallic grains, it coincides with the Thouless

time, while in ballistic systems or billiards it is of order of the time of flight across

the system.

In the limit s << 7y, or equivalently at times which are much longer than Tc,

the dominant contribution to Eq. (6.25) with the effective action of Eq. (6.37) comes

from the ergodic classical distribution, the zero-mode LT0 = 0. With this contribution

alone the functional integral (6.25) becomes definite,

(Z(J))eo = dQo exp [-i STr ([s+ + 2Jk] AQo)] (6.46)

where Q0 = To6lATo. This expression coincides with that obtained from RMT and

implies Wigner-Dyson level statistics [20, 21]. A straightforward generalization to in-

clude other statistical correlators confirms the correspondence between the zero-mode

an RMT (see for example Ref. [21]). The quantum statistics of chaotic systems with

exponential classical relaxation are therefore described by RMT at energies smaller

than al.

The RMT description is expected to hold even for certain chaotic systems where

the Perron-Frobenius spectrum is gapless [87] such as the stadium or the Sinai billiards
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where classical correlation functions decay algebraically in time [81]. The resolvent

(z-) -1, in this case, is expected to have cuts which reach the az axis. Nevertheless,

we expect the RMT description to hold whenever the spectral weight of the resolvent

inside the strip 0 < Rz < 1 (which excludes the pole at the origin, however) is much

smaller than unity.

6.4.2 Beyond universality

To proceed, let us make use of the -model to examine how corrections to RMT

appear at larger energy scales. Again, focusing of the two-point correlator of DoS

fluctuations, the generating function leads to the expression

R 2(s) = lim 1 R DQ (/dxllSTr[AkQ(xji)]) exp [-Seff (s)] (6.47)

where

Seff(S) = 2 J(dxjll)STr [i-AQ- u 2 (AQ)2 + QT-1/T] (6.48)
2 2

Here we have introduced into the action an additional term -u 2 (AQ)2 . It is in-

troduced as a regulator to control the stationary point evaluation of the functional

integral and should ultimately be sent to zero.

In the limit of high frequencies s, the two-point correlator takes the asymptotic

form

R2(s) = Rp(s) + RNP(s), (6.49)

where both the non-perturbative term RNP(s) and the perturbative one Rp(s) are

expressed through the classical spectral determinant D(s) as

RNP(s) cos(27rs) 1 2 (6.50)(2r4 /(s), Rp(s) = s2 ln[tD(s)]. (650)
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fl(s) can itself be expressed in terms of determinants of the Perron-Frobenius operator

l(s) -R Det'(L)4 (6.51)Det2 [(is - £)(-is -)]

where Det should be understood as a regularized determinant as explained in section

6.3, and the prime on the determinant denotes the exclusion of the zero eigenvalue.

We can express (s) in terms eigenvalues -,, of L, the Ruelle resonances

])(s) = H A2(%) (2 + s2)-2 (6.52)

Here A(yo = 0) = 1 (there is always such an eigenvalue zeta function, it corresponds

to the state which s uniform on the constant energy shell), and A(,) = 2 for % 0.

Eq. (6.52) is written assuming that the product converges. If the product diverges

then D(s) should be understood as the regularized determinant (6.44).

The derivation of the results in Eqs. (6.50) and (6.51) closely parallels that of

Ref. [51] 3.

At high frequency the integrand in Eq. (6.48) becomes highly oscillatory, and we

can use the stationary phase method to evaluate the integral. There are two such

points: Q = A and Q = -Ak. The presence of the term u2 (AQ)2 in the action makes

both stationary points stable. We can expand the integrand in small fluctuations

of Q-matrix around A and -Ak to obtain the leading high-frequency asymptotics of

R2 (s).

We first consider the expansion around Q = A. This corresponds to the usual

perturbation expansion in the theory of disordered conductors [20, 58]. We begin

with the parametrization

T = 1 + iP, P = , (6.53)

3 Note that the sign in the right hand side of Eq. (5b) in this paper is incorrect.
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where, from Eq. (6.31), it follows that P satisfies the condition

P(q, p)* = -CP(q, -p)CT. (6.54)

Next we substitute Eq. (6.53) into Eq. (6.47) and expand the integrals in the

pre-exponential factor and the free energy (6.48) to second order in P. Due to the

presence of the infinitesimal imaginary part in s+, the stationary point Q = A is

stable and we can safely set u = 0 in the free energy (6.48). To second order in B

and B we have

STr(AkQ)

STr(AkQ)2

STr(AQ)

8- 2STr(kBB + kBB),

-8STr(kBkB + BB),

_ -4STr(BB).

Using these relations we obtain the following expression for the perturbative part of

R2(s)

Rp(s) = RJDJ[B,/B (/dxll[1 - STr(kBB + kBB)I) exp[-Seff(s)] (6.57)2~ ~ ~~~~~-e~s](.7
where

Seff(s) = ir j(dxjl) STr [-sBB - iLB] + O(B 4 ) (6.58)

In order to perform the integration over B and B it is convenient to represent

these matrices as
3

B = EBiTi,
i=O

As follows from Eq. (6.29) the matrices

B = kBt, which implies

3

B = BTiri. (6.59)
i=o

B and B in Eq. (6.53) obey the relation

(6.60)
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In this notation, Eq. (6.58) becomes

SeffP(S) = -if J(dxll ) STr [ (3i(s + i)Bi)] (6.61)

Each matrix Bi can be parametrized as

B=( ai ) (6.62)
77 ibi

The parametrization for Bi can be obtained from Eq. (6.60). To evaluate the integral

(6.57) over the variables (6.62) one can use Wick's theorem. It is necessary to take

into account Eq. (6.54) which reduces the number of independent integration variables

by a factor of two. As a result we obtain the second part in Eq. (6.50).

Now let us turn to the other stationary point Q = -kA. Consider the functional

integral (6.47). The Q-integration goes over the symmetric space H = G/K. If we

perform a global coordinate transformation Q -+ UoylQUo, where U0 E H, the inte-

gral will remain invariant. The integrand, however, will change because it contains

matrices A and -kA that break the symmetry in the coset space. Such a coordinate

transformation maps A - UoAUo1 and -kA -X -UokAUo 1. There exists a transfor-

mation U0 such that A -+ UoAUo-1 = -kA and -kA -+ -UokAUo 1 = A. Therefore

Eq. (6.47) can be rewritten as

R2 (s) = uim 64R DQ dxllSTr[AQ(xlli)] exp [-Seff (s)], (6.63)
7 U2 ~~)2

Seff(S, u) = J(dxll)STr [-is+kAQ - u2(AQ)2 + QT-1T]. (6.64)

We now expand Eq. (6.63) in powers of P using Eq. (6.53). This expansion is equiva-

lent to expanding the Q-matrix around -kA in Eq. (6.47). Expanding the free energy

(6.64) to second order in P we use Eq. (6.55). Note that with the parametrization of

Eq. (6.62)

3

STr (kf3B + kBB3) = -4E(ai| 2 - bi 2), (6.65)
i=O
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3

STr (kPkB + PB) = -4 (aiI2 + Ibi2). (6.66)
i=O

Therefore the Grassmann variables in the parametrization (6.62) do not couple to

s and u2. As follows from (6.65) the ordinary variables ai and bi couple to s with

opposite signs. Due to the presence of the infinitesimal imaginary part in s the integral

over a (the zero mode variable) would diverge at u = 0. Equation (6.66) shows that

the term STr(kAQ)2 makes the integration over a convergent. Ve therefore have to

keep u finite during the evaluation of the functional integral and take the limit u - 0

only in the final expressions. The quadratic approximation to the free energy (6.64)

becomes

Seff(s) = -27ris + 27r (dxii)STr (a (-is + - u 2 + L)ai

+ b (is+ - u2 + £)bj + a, ui + 7rLji)] (6.67)

The zero mode Grassmann variables r7° and a9 do not appear in the quadratic expan-

sion of the free energy (6.67). For the integral (6.63) not to vanish they have to come

from the pre-exponential factor. While evaluating the integral we have to take into

account the symmetry (6.54) which reduces the number of independent integration

variables by factor of two. Therefore there are eight independent Grassmann variables

in the zero mode. Thus, in order to obtain a non-zero result we should expand the

pre-exponential factor to eighth order in P. Then in the eighth order expansion of

the prefactor we should keep only the zero mode terms. This renders the integration

over the zero mode variables nonvanishing, whereas the integration over the ordinary

zero mode variables yields a factor (S2 + u4 )- 2. The integral over the nonzero modes

yields the superdeterminant of the operator (6.67). After we perform the integration

we take the u -+ 0 limit to obtain equation (6.51).
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6.5 Beyond the Semi-Classical Approximation

The derivation of the non-linear a-model in Eq. (6.37) relied on the use of the semi-

classical approximation. However, often we are concerned with quantum chaotic

systems which can not be treated straightforwardly within the framework of semi-

classics. A familiar example involves the quantum mechanical scattering of particles

from a weak random impurity potential. In such cases, a formal justification of the

ballistic non-linear a-model in Eq. (6.37) does not seem possible. However, if the

quantum Hamiltonian can be resolved into a part that can be treated within semi-

classics and a part which can not, when the latter is small, a perturbation treatment

may still be possible.

Consider a general Hamiltonian H with matrix elements

H = Hcl1 + Hqu, (6.68)

where H 1 represents the contribution which can be treated within a semi-classical

approximation, and Hqu determines the part which can not.

If the matrix elements of ftqu are small as compared to the band width N (a more

precise criterion can be formulated for a specific operator Hqu, see below) their effect

can be treated within the a-model approach. In this case the saddle-point is governed

by H 1cl, and we can use Eq. (6.22) with H replaced by HC, The contribution of Hqu

to the effective action can be found by expanding Eq. (6.26),

Seff[Q] = 2STrql n [- O(Qo)--qu- ( + Jk AU-1-[,L - 1], (6.69)

where the supermatrix Green function involves only Hf1. Expanding to second order

in Hfqu we obtain

+

Se~[(~] 2N 2SefflQ] = -- STrq (2A + JkA + Hqu - u-[cl, U

+ 2N (6.70)
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Finally, representing the Q-matrices in the WVigner representation the second order

correction to the action takes the form

1 4 2 dpi (ql-q2)/2h-ip2(q3-q4)/2h-4f2 STrq (Qfqu) =-2N 2 II dqi II -- 4N2 i1 i- hd
xHqu(q 2,q 3)Hqu(q4 , q)STr[Q (Pl, (ql +q 2)/2) Q ( 2 , (q3 +q4)/2)], (6.71)

where Hqu(q, q') = (qHquIq').

Random impurities and the restoration of the diffusive non-linear a-model

A physical example concerns the case of a background of weakly scattering impurities.

If the Q matrices vary on a scale that is long as compared to the scattering length e =

wT, particle dynamics becomes diffusive and we should recover the supersymmetric

non-linear a-model introduced by Efetov [20]. In the opposite limit, the impurities

generate a new term in the action which takes the form of a collision integral.

The problem of dilute scattering impurities in an otherwise ballistic system has

been discussed previously. A description within the framework of diagrammatic per-

turbation theory was investigated by Altland and Gefen [85]. More recently, in a

substantial development Muzykantskii and Khmel'nitskii [73] introduced an effective

field theory to extend the diffusive a-model into the ballistic regime.

For simplicity, let us consider a -correlated white noise impurity potential

Hqu(q, q') = V(q)6d(q - q'), (6.72)

where the dimensionless mean free time r is defined by the second moment

£2
(6V(q))v = 0, (6V(q)6V(q')) v = 6d(q - q'), (6.73)

where Q is the volume of the system.

In this case, the expansion of the action around the saddle-point of the Hamilto-

nian H 1 is justified in the limit 1/r < N. The same condition allows the truncation

of the perturbation series at second order. Once again, performing the energy shell
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integration we obtain the effective action

Seff[Q] = J Str[( -A + JkA -ihT- {HcT}) Q]

-7rQ dX dXl d (q - q')STr [Q(xll)Q(xll)] (6.74)
2T .Jhd hdII 

Although this action is precisely of the form of that introduced in Ref. [73], its deriva-

tion and the domain of validity seems far removed from that proposed in this earlier

work. The sigma model description of the ballistic regime holds only if the frequencies

of interest (or, equivalently the characteristic gradient energies) are small as compared

with the width of the band NA. In the absence of energy averaging the validity range

of such description is restricted to the diffusive regime, where it coincides with the

diffusive a-model [73]. At higher energies the massive modes have to be taken into ac-

count, and the a-model description fails. The distinction drawn by energy averaging

has been emphasized by Altland and Gefen [85]. Physically the difference comes from

those orbits whose period is shorter than but longer than the inverse band width

(NA)- 1 . Technically the energy averaging suppresses the massive mode fluctuations

and facilitates the a-model description.

From Eq. (6.74) it is straightforward to establish the relation between the ballistic

a-model and the conventional diffusive counterpart. This is achieved by separating the

supermatrix fields into fast degrees of freedom corresponding to momentum relaxation

and slow ones corresponding to density relaxation [73]. Upon the integration over the

fast degrees of freedom one recovers the diffusive a-model [20].
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Appendix A

Appendix

A.1 Invariant measure for the average DOS

In this appendix we will determine the invariant measure used in calculation of av-

erage DOS in section 2.2. To do so we use parameters of To[12] and R- 1 QDR as

independent variables. Following the method of Ref. [21] it is straightforward to

show that the invariant measure at the saddle-point is again given by d(Q) =

detg(6TO[12]/6[p, ])dplBidplFdld~3, where 6To = oToT-1, and the variables p and

were introduced in Eq. (2.50).

We want to express the invariant measure through dB, dF, d, d 3. We

evaluate the Berezinian of this transformation using the chain rule:

detg 6(, = detg 6r )x detg (6 )) xdetg( 6.0 ) (A.1)

As in the usual case we have to evaluate du((6ToTol')[12]). Following Ref. [21],

to calculate the invariant measure we introduce a "rational" parametrization; w1 =

2(1 - T 2 )- 1 T, when

T (1+r2)(1-2)- i) (A.2)

2i(1 - T2)-r (1 + T2)(1 T2)-lT0 (1 T)(1- 2)1 -2(1 T )(A2
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For (6TO)[12] = (ToT-1)[12] we obtain

(sT5O)[12] - -2(1 - )-1(-7 _ )(1 _ 72)- (A.3)

It is clear that r is diagonalized by the same matrix ul as wl. We use the following

eigenvalue parametrization

T =-- U1u 1 - 1

(

0 0 ° A- 1

0 i0=
(A.4)

The eigenvalues of w1 and of T are related by

PlB = 1~ P1F = 22.

Using this we obtain the following relation

u11 (To)[12]u1 -2i(1 - 2)-l (u -l6Ul- 9U-16TU1 l9)(1 - 2)- .

(A.5)

(A.6)

Now we observe that detg (()[12]) detg ( [12) Explicitly writing

down the components of u6 15-u1, u1'-(6T0)[12]u and relations between them that

follow from Eq. (A.6) we obtain

de (T [12 ) (A.7)(1-02 )(1 + 2)
(1 -- i 2)2

We use Eq. (A.4) to calculate the second Berezinian in the product Eq. (A.1). A

straightforward calculation gives

detg (6a9 ))
1

(t9 1 - )2
(A.8)

In the last Berezinian in Eq. (A.1) 's are the same since T and w are diagonalized

by the same matrix u, and the relation between the eigenvalues is given by Eq. (A.5),

which yields
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detg k-(,1,) } 4(1 + 02)(1 - 02) (A.9)(5(0,~) )4(1 - 92) (I _ 092)

Combining all these expressions we obtain the invariant measure

d_(- (1 -_ 92)3(1 + _92)3 dplBdplFdldf3
d(Q) =4(1 - 2)( - i092)2 (1 + t92)2(1 -92) 2 (A.10)

Expressing the differentials of p's through O's we find

[(1 02)(01 2) - 40102 + 2i01t92(1 + 09)(1 - 02)]dO1BdOlFdld 3

,u(Q) = (cosh(O1B/2) + 1)2(Cos(O1F/2) + 1)2(1 + d22)2(02 + 02)2

(A.11)

Since the effective Lagrangian and the invariant one-point function of Eq. (2.52)

are functions only of cosh(0) and thus even functions of 0, the last term in the numer-

ator gives no contribution to the integrals and can be neglected. After some algebra

the last expression can be reduced to the more compact one shown in Eq. (2.53).

A.2 Integration over the Saddle-Point Manifold

for the Average DOS

In this appendix we calculate the integrals over the saddle-point manifold to determine

the average DOS. It is straightforward to show that the integrals over the variables

in R-1QDR are equal to unity, and we only have to integrate over the Goldstone

modes. The Berezinian of Eq. (2.53) is singular at 0 = 0, and the integral contains

two contributions: the first from the ordinary part of the invariant one-point function

and the second from the part containing Grassmann variables. The former is equal

to the the value of the one-point function at the origin (Ref. [21, 31]). Using Eqs.

(2.36), (2.52) and (2.53) and performing the integration over the Grassmann variables

we can obtain the following expression for the average DOS

1 z d ~ O cosh01OcS 01Fl
(p(E) = + - dO1B _ dlF COSSF- 1((E)) A -+ o -7r cosh 1B- cos O1F
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x exp[ I (osh 01B COS 01F)A (cs~ cs IF)

+ exp [ iE (cosh 01B -COS 01F)} (A.12)

Next we assume that E is positive and deform the integration contour for the

variable 01B in the first exponential as shown in Fig. 2-3 a), and that for the second

exponential as in Fig. 2-3 b). Such a deformation ensures the convergence of the

integrals for positive E and we do not need to keep the imaginary part of E any

more. The integrals over legs 1 and 1' cancel each other, as do the integrals over legs

3 and 3'. The integrals over legs 2 and 2' yield for (p(E))

(p(E)) : -+8- Im d1B d1F exp [ (CO1Bcos O1F- 01B r-COSE01F)A -F 7 COS 0 1B - COS 0 1F O1B-coS 1
(A.13)

Taking the derivative of the last expression with respect to energy we obtain,

d(p(E)) = A2 [Jo2(7E/A) - J(E/A)]. (A.14)
dE 2A2

By integrating the last expression we find

(p(E)) 22 (J2(rE/A) + J( 7 E/A)) (A. 15)

where the integration constant is zero, since at E 0 the DOS should vanish. Thus

we obtain Eq. (2.54), which coincides with the result of Ref. [14, 16, 17].

A.3 Invariant Measure for the Two-Point Func-

tion

In this appendix we calculate the invariant measure for the two point function. We

follow closely the method of Ref. [32]. The invariant measure is again given by

6To[12], where 8T = ToTo' = 6TT' - + T6TchTTf - . Equations(2.73) and (2.74)
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3T~[12] a h tutrsuggest that the matrix of partial derivatives (T [12],T' h[12]) has the structure

ST' [12] Th[12]

6T RR[12] 0 *

6TIAA[2T AA[12] 0 * (A.16)

TORA [12] 1 *

6T AR[12] 1 *

where * denotes nonvanishing terms. Thus, our Berezinian is simply equal to

(6 (6[T')2[12], )[12]]
J = detg T[12] T[12]) = detg j[(Tc, l)R[12]) (T)AA[12]] . (A.17)

6 T. [1 ] Th 12)(5[(Tch)RR[12], (Tch4412]

Using Eq. (2.76) we obtain

6(TI)RR[12] = TRR[11]6(Tch)RR[12](T-1)RR[22] + TRA[12]6(T h)AA 21](Tj-)A12]

= u[cosh(Q/2)u-16(Th)RR[12]u cosh(Q/2)-

sinh(Q/2) exp(i)v-16(T, )AA[12]V sinh(Q/2) exp(-iq)]u - 1.
(A.18)

The matrices u and v do not affect the value of the superdeterminant, and after a

simple calculation we find

4 cosh QB cos QF

(cosh QB + cos QF) 2 (A.19)

The invariant measure dp(Tu) is just the usual measure for the unitary ensemble equal

(2t)2 d(cosh B)d(cosfF)ddo*d/dI* where the variables B and OF have been integratedto ~~(cosh B--COS OF )2 ' '

over since nothing depends on them. The invariant measure for T'h is given by

Eq. (2.53). Combining everything and introducing the variables s = cosh QB and

s2 = cosQF we arrive at Eq. (2.78) for the invariant measure.
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A.4 Integration limits

In this appendix we establish the integration limits for the variables for the two-

point function. To do this it is sufficient to consider only the transformations not

containing the Grassmann variables. In the BB block all the variables range from

-oc to +oo, and we have to establish the integration limits for the variables in the FF

block only. The FF block can be parametrized as Q[FF] =-iEZ cos(a) + ix sin(a),

where is a hermitean matrix. It suffices to consider the Q[FF]12 block only. Then

Q[FF]1 2 = i sin(a), but i sin(a) is just an antihermitean part of a U(2) matrix exp(ia),

which can be parametrized as

(

where c [0, /2],

then

cos 0 exp(i(yo + 71)) sin X exp(i(yo + 72)) (A.20)

-sin exp(i(yo - 7Y2)) cos exp(i( - i)) 

7yo [0, 2X], %y [0, 2], 7Y2 [0, 2r]. Its antihermitean part is

(In our notation,
In our notation,

i cos 0 sin(yo + Y1) sin cos yo exp(i7 2)

-sin cos yo exp(-iY 2 ) i cos q sin (yo - 1)

in the absence of Grassmann variables, this

. (A.21)

block is given by

( i cos QF sin(01F)

i sin QF cos(12 ) exp(-iOF)

i sin QF cos(° 1F+ 02 ) exp(iF)

i cos QF sin( 0 2F)
(A.22)

Comparing the last two expressions we identify the variables as follows:

QF = C [0, /2], 01F = 70 + 71, 0 2F = '0 - 71, F = (72 - /2) [0, 2].

(A.23)

Q is periodic with respect to yo and 'y} with period 2w and, thus forms a 2D lattice.

The integration region is the lattice unit cell whose orientation we are free to choose,

provided we preserve the total area. One possibility is 01F [0, 4r], 0 2F [0, 2F].
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This choice preserves the area of the unit cell. Although the expression for Q contains

01F/2 and 0 2F/2 it is still periodic in O's. The elementary translation periods, however,

are directed at an angle to the 0 axes.

A.5 SPM integration for the two-point function

In this section we obtain the explicit expressions for the effective Lagrangian and the

invariant two-point function in Eqs. (2.66), (2.67) and perform the integration over

the saddle-point manifold. Using the parametrizations of section 2.3 we obtain,

trg(QA) 2

trg(Q/Ez)

trg(QEzk(1 + A))

trg(QEk(1 - A))

= trg(TU1QDtuA) 2 (A.24)

= -2i[Eltrg(ulucosh()u-lul cosh(01))

+E 2trg(u2 1 v cosh(Q)v- 1 u 2 cosh(0 2))] (A.25)

= -4itrg(ui-lucosh(Q)u-lul[cosh(9l/2)u-jkul cosh(01/2)]

+ sinh(91/2)u-l 1 kul sinh(0 1/2)]) (A.26)

= -4itrg(u v cosh(Q)v- 1u2[cosh(62/2)u2-1ku2 cosh(02/2)

+sinh(O2/2)u-lku 2 sinh(02/2)]) (A.27)

which after expansion gives

trg(QA)2 =-8(s 2 - s2), (A.28)

trg(QEE ) = -2iEl[sl cosh 01B -S2 COSO1F + (Sl - 2)6 1(U3 - c*a- - Ce)]

-2iE 2[s1 cosh 02B -S2 cos 02F + (S1 - S2)62(~2~4 + *- -i-i 4 )] (A.29)

trg(QEzk(1 + A)) = -4i[s 1 cosh 01B + s2 cos O1F + U1l3[(Sl + S2)61 + 2(S1 - S2)1]

-a*o(sl - s 2)(cosh 01B + cos 01F) - 2a*aU (sl - 82)1

-(Og3 + "10*) (S1 - 2)ZE1 (A.30)

trg(QEk(1 - A)) = -4i[s1 cosh 02B + S2 cos 02F + ~2~4[(Sl + 2)62 + 2(s1 -S2)2]

+p*/(sl - 82)(cosh02B + COS 02F) + 23*k 2 4(s1 - 2)62

-(i/03 + il3*)( 1S - s2)w2, (A.31)
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here we have used the notation s = cosh QB, 2 = cos QF, 61 cosh 0 1B -COS 0 r.

62 = cosh 02B - COS 0 2 F, w7 = cosh 01B + COS 01F - 2 cosh([01B + iO1F]/2) and w2 =

cosh 02 B + Cos 2F - 2 cosh([02B + i02F]/2).

We note that the integrand is a product of a function of E1 and a function of E2.

We proceed by expanding the effective Lagrangian in the Grassmann variables. Since

((3,- a*c - 4a*6- 43)2 = ((2(4+5'/5 -(2'-//54) 2 - 0 it is necessary to expand the
exponential in each factor of the integrand only to first order in Grassmann variables.

We classify all terms in the integrand according to the number of Grassmann variables

they contain as F., where i is the number of Grassmann variables from Ch (1, 3), j

the number of 2 or 4 and k is the number of Grassmann variables from the "unitary"

blocks. Applying "Zirnbauer's theorem" [31] it is clear that the only nonvanishing

contributions to the integrals come from F 0 , F, F ° F,/, 0, F42 and F,42.0,0:i 2,0' 0,2 ) 2,2:i 0,0:i 2,0 0,2 2,2'

The calculations are further simplified due to the factorization of the integral into a

product of variables in blocks RR and AA. Using the invariant measure of Eq. (2.78)

we arrive at the following expression for the two-point function

W(E1 , E2, X)

x exp -

oo [1 (4ir) 2 sls 2
dsj ds2
as1j as2 (s 1 + s 2 ) 2 (s 1 - S2)2

7TX -2N8 s-2)] '112,

I1 =j dO1B dOlF exp (A [sl cosh01B - s2 cosOlF) A

0X {1 13(l(s -52)[1

+ 4163e61 (i + [Si cosh 01B - S2 COS OlFI)] }dtd 3dada*,

12 = J dO2B dO2F exp ( [sl cosh 02B - 2 cos 02F]) 

X {1 + ~1661 - a33*(51 - 82) [I

+ d2O422( + A [S cosh 0 2B - S2 COS 02 )] }d2C 4dd F,7r ~~~~~~~~~~2
i ~2W 2 *8 2

cosh 01B cos 01F - 1)

(cosh 0B - cos 0F) 2

(A.33)

cosh 0 2B cos 0 2F - 1)

(cosh 0 2B - COS 02F) 2

(A.34)
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Just as with the one-point function of DOS we require only the part even in both

E1 and E2. We use Eq. (A.32) to obtain the expression for K(E 1 , E2, X). In these

expressions terms not containing the "unitary" Grassmann variables should be taken

at sl = s2 = 1, and from Eq. (A.12) they can be recognized as the disconnected part

of the DOS correlator. The terms containing ca*,3,* generate the connected part.

Performing the Grassmann integrations and deforming the integration contours

for 9B'S as in appendix A.2 we obtain the following expression for the connected part

of DOS correlation function

K(/?iE2, X) -1o fo 1$ 182L(El, s1,2)L(/E2,$81,$2)K(E1 , E2, X) = A2 dsl ds2 ss 2 ( 1, s 82 )(E 2 , 1, 2)

x exp [_7r2X 2tr(E 2) (s2 -s2)], (.35)
X ex 1_4N2 A2 ] 8(A3

where

L(E, s,82) = cos[ (sl- s2)] + dOl dOlFe[ a (slcosOlB-s2coslF)]A 47r~~~~~ 7ri

1 (31COS 01B - 82COS 01F) (A.36)
COS 01B -COS 01F 1 (slcosB-S2 OF)] (A36)

The integrand in the last equation factorizes into a product of two terms, one depend-

ing only on E1 while the other depends only on E2. If we differentiate L(E1 , Sl, s2)

in Eq. (A.36) with respect to A- ( + -2) (and analogously for L(E 2, sl, s2) ) we

remove the denominators which come from the measure. Then the integrals for the

derivative of Eq. (A.36) can be taken and give

-i7r (2Jo(irElsl/A)Jo(7rEls 2/A) - El(Sl+S 2 )

x[Jo(7rElsl/i-)J1 (7rEls2/Z\) + Jl(7rElsl/Z\)Jo(?rElsl1 A)]) = (A.37)

-ixr A ( a + a ) (rE(s1+S2) J0(Elsl/)J0(rElS2/A))

together with an analogous expression for L(E 2 , sl, s 2). Since this expression is a

derivative of Ei(s+s) Jo(7rElsl/ZA)Jo(7rEls2/A) with respect to rEl(sl+s 2 ) we knowA A e no

L(El, sl, 82) up to an additive function of (rEl($ 1 -s 2 ))2 (the integrand of Eq. (A.36), ' h~~~~~~~
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is obviously a symmetric function of sl and 2). Let us proceed by assuming that

this function vanishes and use the consistency of the result as justification. Then we

obtain

K(El, E2, X), (A) j ds o ds2 sls2E1E2 exp - 2 tr( 2 )(s1- s)

x Jo(7rEisi/A)Jo(7rEs 2/A)Jo(-rE 2s1/A)Jo(7rE 2s 2/A) (A.38)

which coincides with the result found by Macado [24].

A.6 Saddle-Point Approximation: Identifying the

Massive Modes

In this section we examine the fluctuations around the solution (6.22) of the saddle-

point equations Eq. (6.21) to identify the massive modes in the effective theory of

Eq. (6.20). To be specific we consider the orthogonal case studied in the main text,

but the general conclusions of this appendix hold for all ensembles.

To identify the massive modes it is convenient to work in the eigenbasis {} of

the quantum Hamiltonian, where Eq. (6.22) takes the form

[Qo] = I ,fftQV =(-v ( E2N + A . (A.39)
2N 2-1 , -/

Massive modes appear as fluctuations Q that commute with Q0 in superspace.

Expanding the action in Eq. (6.20) around the saddle-point to second order in Q

and neglecting s (and using the fact that Q0 is diagonal in the Hilbert space indices)

we obtain

6S2 -2 E Str (Qp6Q,Q,6Q,1 + Q1,3Q,). (A.40)
The mass of these modes is not apparently large but is of order one. However, if we

The mass of these modes is not apparently large but is of order one. However, if we
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consider their contribution to a local observable such as the local DoS v(q) we find

1
(<J/(ql)JV(q2))massive = (4rN) 2 E (ql) V (qj)~ ;(q2) W (q2)

x (STr(AkJQ/,) STr(AkdQv,))Q, (A.41)

where (...)Q denotes the average over supermatrices Q with respect to the action in

Eq. (6.19). The contribution from both the diagonal ( = v) and off-diagonal terms

is small: The former is of order N - ', while the latter involves N2 terms each of which

is of order N - 2. However, since the the phases of wave functions at different point are

almost uncorrelated so the off-diagonal terms arise with random phases. This implies

a contribution of the off-diagonal terms which is also of order N - '. This consideration

enables us to neglect the massive modes.

The integration measure in Eq. (6.19) is invariant under the group of transforma-

tions Q -+ U-QU, where U is an operator satisfying Eq. (6.23) with indices both

in the Hilbert space U,, and in superspace. The action Eq. (6.20) is also invariant

under such transformations, provided that U commutes with H. We will denote such

transformations by U0 This symmetry leads to the existence of a degenerate manifold

of saddle-point solutions (at s = 0). All matrices of the form

Q= 0lQo(Jo, (A.42)

where [o, HI = 0 satisfy Eq. (6.21). In the basis of the eigenstates of the Hamil-

tonian such matrices are of the form U0 , = 61,vUo,, with U0,M E UOSP(2,2/4)[21].

We assume the absence of degeneracies due to non-integrability. All such matrices

generate zero-modes.

It is shown below that the integration over the massive modes strongly favors the

ground state configurations of Q which correspond to identical Qj's. This happens be-

cause the grond state in which Qj,'s are different breaks supersymmetry of the action

for the massive modes. This leads to a rapid decay (as a function of inhomogeneity of

Q,,) of the superdeterminant which arises from the integration over the massive modes.
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Therefore the integration over the massive modes gives a nonvanishing contribution

into the effective action which depends on Q~'s. This contribution can be interpreted

as an effective interaction between Q4's which favors configurations with identical

Q,'s. Hence, it can be thought of as "ferromagnetic" interaction of "spins" Qt, which

reside on the nonlinear manifold UOSP(2, 2/4)/[UOSP(2/2)OUOSP(2/2)]. This in-

teraction is long range (all "spins" within the band interact with approximately equal

strength) and therefore in the thermodynamic limit N - o leads to a ferromagnetic

ground state. The fluctuations of "spins" from the the ground state configurations

are small as 1/N and can be neglected.

To see how the supersymmetry breaking for the massive modes arises let us con-

sider one term in the sum (A.40) corresponding to particular and . The matrix

Q, has the same symmetries as the Q-matrix in Efetov's non-linear a-model and can

be parametrized as

Q1 = ( QE()1 (,
0 v( 0 ) (

~QE(e) = cos(6) ) sin , diag(e,e,i e + ,iOV). (A.43)
-i sin(e,)) -cos(e1 ) '

Here we deviate from Efetov's original parametrization by introducing the angles +

and e- which can be expressed through the angles appearing in Ref. [20], a1 and 2

as e+ - 1 + ( 2 and e- = O1- e2. The particular form of the matrices u and v is

not important for what follows and will be left unspecified.

If the angles eI and , coincide then the massive modes line up with e,. In

other words we can make a global rotation to bring (> to zero, and in this coordinate

frame the massive fluctuations correspond to 6Qfs and 6QnA. If the angles A and

hat 0, differ by a small amount, we can go to the "center of mass" coordinate where

(3 -, In this frame the massive modes will still correspond to QRR and 6QAA= -oQ/-IV
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The contribution of 6QA to the effective action is

STr (QE(O,)u,6Qf, UVQE(b)1VAQ U + -QI A ) (A.44)

Instead integration variables QAA and 5QAA it is more convenient to use JQAA =

QAAuv and AA = QAAu. Since the super Jacobian of such transformationuAd~~ AV Va n VA uvQl Since the super Jacobian of such transformation

is equal to unity,
f (6QAA, 6QA') 

Sdet , AQV )
ka(6QAA -QAA) O(.IV, ,LIM,)

the invariant measure is preserved.

With the parametrization involving ordinary variables ai, bi, and Grassmann vari-

ables ai, oi,

a1 a2 ija1 io 2

-a* a* -io* * -i**
-2 a1 -2 -C1

03 0'4 ibl ib2

0.~ c3 ib* ib*

~AA -
(~QtV -

-a2 -0 3 -- 4

a1 0.4 (3 ,

-i0. 2 ib* ib2

-i. ib2 ibl

(A.46)

which obey the symmetry relations

QAA = CT (QAA) TC, jQ&A = k(Q& ) t (A.47)

integration over massive modes can be performed and yields

[2 + cos E(cosh E+ + cosh e-)]4

(2 + cosh2 ( + + cosh 2 (E-)(2 + 2 cosh E+ cosh E-)(2 + 2 cos 2 e)2 (A.48)

For small , writing cos = 1 - a, cosh + = 1 + +, and cosh - = 1 + -, I,

can be expanded to second order,

IA, v 1 - (2a + p + -)2/8 exp(-(2a + + + /+-)2/8). (A.49)

If all O, are small, then we obtain a model equivalent to spins with infinite range
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interactions. In the thermodynamic limit of such a model the mean field approxima-

tion becomes exact. The fluctuations of , + and 3- become small as 1/N and can

be neglected. This forces us to consider the matrices Q0 which are of the form of

Eq. (A.39). Then the relevant (massless) fluctuations of the Q-matrix are those that

anticommute with A in superspace.

A.7 The Inverted Harmonic Oscillator

In this appendix problems associated with the spectral decomposition of are illus-

trated. Consider the problem of the inverted harmonic oscillator described by the

Hamiltonian = (p2 _ q2 )/2. Although this system is not chaotic, it displays an

exponential dependence on the initial conditions. Expressed in terms of the canonical

variables ~0 = (p + q)/2 and j = q - p, the equations of motion

__j = (1)i jj 0, (A.50)at

generate the solutions j(t) = j(0) exp{(-1)jt}. Thus the evolution of the classical

distribution in phase space involves stretching along the unstable manifold p = q and

contraction along the stable manifold p =-q. The evolution of a density in phase

space satisfies the equation

p(v0 1; t) f d 1od 3(jo - ~oet)6(I - et)po(o, )

: / dje-tpo(roe-t, 1)6( - e-t), (A.51)

where po({o, 1) is the initial particle distribution which evolves into p(rqo, r 1; t) after

time t. In order to identify the spectral decomposition of /2 one would like to express

p(rjo, r 1 ; t) in the form

p(vo , w; t) = c"e*¢il(vo, w) (A.52)
n
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where -y and dOn are, respectively the eigenvalues and the (right) eigenfunctions of ,

namely

ZCkq(q0, 71) = 7qb(7o, qr) (A.53)

Expanding Eq. (A.51) in powers of qoe-t and (et one obtains the expansion

00o oo00 no

p(oVl;t) = E E e-(no+nl+l)tCnoni -° (_l)6(nl)() (A.54)
no=O nl=O O

where, using the notation (n)(() = dnj6()/d< ' , the expansion coefficients Cno,,n are

given by

Cno,n = f dodfpo(o, ,)(-1)n°(n°)( ni /nl! (A.55)= ~ ~ ~ ~ ~ ~~~~~ ~~(A.55)
LFrom this we can draw the following conclusions: (i) the spectrum of 4,

no,n = -(1 + no + n,), (A.56)

is discrete and negative; (ii) its right eigenfunctions,

no

XOnl (710, 771) = 26 (l)njj(n)(,) (.7

are analytic monomials along the unstable manifold and derivatives of Dirac distri-

butions along the stable manifold; (iii) the left eigenfunctions are

&no,n1(7o 77i) = ?-(-)no(no)( 7 0 ) (A.58)

Notice that the largest eigenvalue (corresponding to n o = n = 0) is finite and

negative. This reflects the scattering nature of the system in which the particle

eventually escapes to infinity. Another important point is that the left (and right)

eigenfunctions are not orthogonal. Nevertheless they form a complete biorthonormal

set,

(,no,ni | rmo,mi) = 6 no,mocnI,mI (A.59)
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E COn ( $no , ) = - (A.60)
no ,nli

It is instructive to consider the solution for the L eigenmodes in the presence of

noise. In this case, the equations of motion (A.50) are modified by the addition of

a noise term Wj(t) at the right hand side. We shall assume that Wj(t) describes

-correlated white Gaussian noise with zero mean, (Wj(t)) - 0 and (W(t)Wj(t')) -

2D6ijj(t-t'). From these properties one can show that the evolution of the averaged

classical probability density, p(G0, ~l; t) satisfies the equation

Ep F 2p _(__p)
a E __a -(-1)'($) . (A.61)

In Ref. [?] it is shown that the equation above can be mapped onto the Shcr6dinger

equation of harmonic oscillator. The resulting spectrum is identical to that obtained

without the noise (A.56), and therefore is independent of the noise. However, it is a

special case, and in generic problems the spectrum does depend on the noise via Dw.

The results for the right eigenfunctions are:

nOl (70 71I) = Nno,nHno(a?7Oo)Hn ('t) exp -2Dj) (A.62)

where Nn0,on is a normalization constant, Hn(7) is the Hermite polynomial of n-th

order, and 1//2D. The left eigenfunctions can be obtained from the formula

above by exchanging the roles of r70 and rm. Notice that the noise smoothes out the

singular behavior of (A.58) and (A.60) and replace it by oscillations along the stable

manifold. One can easily show that in the limit D -+ 0 (or a -+ o), OD, - non

Finally, in contrast to the example above, in generic chaotic systems the stable

and unstable manifolds of some periodic orbits intersect at an infinite number of

points thereby forming the extremely complicated pattern known as the homoclinic

tangle. These manifold are dense in phase space, thus, the eigenmodes of ergodic

chaotic systems are, in general, much more complicated than those considered here.

An exception is the zeroth eigenmode. It is simply the invariant density corresponding
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to a uniform distribution on the energy shell.
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