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Abstract
We consider geometrically thin accretion disks around millisecond X-ray pulsars. We
start with the Shakura-Sunyaev thin disk model as a basis and modify the disk equa-
tions with a magnetic torque from the central neutron star. Disk solutions are com-
puted for a range of neutron star magnetic fields. We also investigate the effect of
different equations of state and opacities on the disk solutions. We show that there
are indications of thermal instability in some of the disk solutions, especially for the
higher values of 3M. We also explain how the time evolution of the disk solutions can
be calculated.
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Chapter 1

Introduction

During the last thirty-five years there has been much theoretical and observational

research on all kinds of accretion phenomena. Although, most of the observations

preceded the theory, they are now evolving together in a complementary manner. By

now, the theory of accretion flows is involved in explaining and modeling protoplan-

etary disks, star formation processes, binary system evolution, and active galactic

nuclei (AGN) physics.

The work in this thesis deals in particular with geometrically thin accretion disks

in binary systems containing a neutron star accreter. Apart from considering the gas

dynamics of the disks (Chapter 4), we include magnetic fields from the neutron star,

as well (Chapter 5). We will first start with developing a notion for a thin accretion

disk, work our way through the Shakura-Sunyaev's accretion disk model (Shakura &

Sunyaev 1973) and the Rappaport, Fregeau, & Spruit (2004) magnetically modified

SS disk. We explore a wide range of equations of state and radiative opacities. Finally,

we discuss the time-dependent evolution of magnetically torqued thin disks in Chapter

6.

1.1 Accretion Luminosity: The Eddington Limit

Accretion is one of the most powerful processes in astrophysics. It is now believed

that the extraction of gravitational potential energy from material accreting onto
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the central object is the only process able to power X-ray binaries, luminous AGN,

and even /-ray bursts. This process made the study of black-hole and neutron-star

binaries much more realistic and explained numerous phenomena occurring with short

time-scales in AGN and quasars (Section 1.2).

We will first start with a small calculation in order to show how the accretion

onto a massive body is able to supply such an efficient energy source. Suppose mass

m is accreting onto an object with mass M and radius R,, and that it starts at

infinity with zero initial velocity. Then the energy released is simply the gravitational

potential energy:

AEacc (1.1)
R,

From (1.1) it is clear that the energy release is strongly dependent on the radius

of the object or its compactness, defined as M/R,.

A simple estimate shows that for a neutron star with mass equal to the mass of the

Sun and radius R, = 10 km, the accretion energy is about 102°erg for each accreted

gram. In comparison, the energy release from the nuclear burning of one gram of

hydrogen is about 6 x 1018 erg (Frank, King & Raine 2001).

The luminosity of an accreting object is given by.

La dEcc GM dM GM(1.2)
Lcc - dt R, dt R(1.2)

where M is called the accretion rate. From here we can estimate the surface temper-

ature of the accreting neutron star. We do this by equating the accretion luminosity

to the emission from an assumed black body,

47rR2aT4 - GMM (1.3)

Substituting R = 106 cm, M = 1.4MD, and M = 1016 g s-l we get T _ 7 x 106 K.

This is why when we consider more compact accreting objects, the energy emitted in

the form of electromagnetic radiation often peaks in the X-ray part of the spectrum.

There is a limit above which the accretion rate cannot be increased. This occurs
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when the luminosity becomes so great that the radiation force on the electrons be-

comes greater that the gravitational force on the ions, and matter is ejected from the

system. This limiting luminosity is called the Eddington luminosity. We can assume

that radiation exerts a force mainly on the free electrons through Thomson scattering.

The Eddington luminosity is calculated by equating the gravitational and radiation

forces, and is given by

4rGMc38 -1
LEdd = - 1.3 X 103m erg s , (1.4)

where n- = 0.4 cm2 g-1 is the opacity for hydrogen, corresponding to Thomson scat-

tering of electrons, and c is the speed of light, m is the mass of the central object rh

is in units of 1M®. If we assume that just a fraction i7 of the rest-mass energy of the

accreted material is radiated, then the accretion rate, corresponding to the Eddington

luminosity becomes

Edd 2.21 x 108m ( ) M e yr-1 = 1.39 x 101 m (J g s- (1.5)

Therefore, it is reasonable to carry out our calculations up to the Eddington limit

in the accretion rate.

1.2 Accretion processes in astrophysics

1.2.1 Accretion in Binary systems

As mentioned above, accretion is a very important process in interacting binary sys-

tems. It is most dramatic in X-ray binaries and AGNs, which are primarily the

systems that allow the observational study of accretion disks. At a certain moment

during the evolution of close binary systems, they undergo mass transfer and accretion

disks can be formed by the infalling matter. The main mechanisms for mass transfer

in close binary systems are the so called (i) Roche lobe overflow and (ii) stellar wind

accretion.
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Roche lobe overflow is the process whereby one of the stars in a binary system,

as a consequence of its evolution, fills its critical potential lobe and starts to transfer

matter to the other star. One reason might be the expansion of the star due to

nuclear evolution to the point that material can escape its gravitational field through

the inner Lagrange point Li. The other is shrinking of the orbit to the point where

the companion star atmosphere overfills its Roche lobe. The dynamics of the matter

is then dominated by the gravitational field of the accreting star. As we will explain

in Section 1.3 the matter flowing from L1 can form an accretion disk. This problem

assumes a circular Keplerian orbit for the binary, which indeed is very close to reality

in close binaries due to tidal circularization. In particular the Roche lobe potential

has the form:

GM, GM 2 1 r2 (1.6)
r) - r-l Ir- r2 l 2 

It is important to note that the above formula is to pertains the case where the center

of mass is the origin of the reference frame.

The other mechanism for accretion in a close binary system is due to Bondi-Hoyle

(Bondi & Hoyle 1944) accretion from the stellar wind of the companion (secondary)

star. There are known binary X-ray systems that can be assigned to this class, and

most of them consist of a neutron star or black hole together with an early type (O

or B) star. The stellar wind of such a star can be intense with loss rates of the order

of 10-6 - 10-5 M yr- 1 moving at supersonic speeds.

The velocity of the wind is of the order of the escape velocity:

(2GM, 1/2
v,(r) R ) ,' (1.7)

where where M. and R, are the mass and radius of the early type star. From here

we can calculate the accretion rate coming from the wind:

"'- (:)a' ) (1.8)

where MI is the mass of the neutron star, a is the orbital separation, M is the
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Figure 1-1: Roche equipotential surfaces in the orbital plane of the binary. L1 to L5
are the Lagrange points.

resulting accretion rate, and M, the mass loss from the wind. We have assumed here

that vw » vorbit. The wind capture mechanism is well explained by Bondi & Hoyle

(1944).

1.2.2 Active galactic nuclei

As we already mentioned, accretion is powerful enough to supply the luminosity of

AGN. The term AGN encompasses several types of objects - quasars, Seyfert galaxies

and BL Lacerta objects. All of these are characterized by very small sizes on the sky

17



and huge brightness. It is thought that the process that is going on in the centers

of these objects is accretion onto a central supermassive black hole (106 - 109M®).

One piece of evidence that supports the idea that there is an accretion disk around

a supermassive central black hole is inferred by considering first the high luminosity

range we observe: 1044 - 104 7 erg/s. Such high luminosities require large central

masses of 106 - 109 ¥®0 to be consistent with the Eddington limit. Second, we have

the fact that one needs a large compactness factor M/IR to produce a reasonably high

energy conversion-efficiency. This supermassive black hole scenario is also supported

by the relatively short time scale of variability of the luminosity of these objects.

Numerous types of accretion disks have been considered in order to explain the

properties of the AGN. The final conclusion is that thin accretion disks are not grav-

itationally stable in the outer regions and hot disks are wind unstable. One of the

possibilities is a thick disk with a huge viscosity for a given scale height and sound

speed (see 3.4). Such disks are stable and can explain the observed physical properties

of AGN. On the other hand the accretion rates of AGN are highly sub-Eddington -

about 1% to 10% of MEdd. So, a thin disk may actually be another possibility. For a

more complete model of the central engine of AGN, one can see FKR.

1.3 Disk formation

Let us consider the formation of an accretion disk in a close binary system experienc-

ing Roche lobe overflow. As explained above, the mass transfer takes place through

the L1 point between the two stars. Since the system orbital period in most cases

is very short, (several hours or days) that means that the material flowing out of the

Lagrange point has a high specific angular momentum. This points to the fact that

the flow cannot be accreted directly onto the primary. Rather, it is driven in a circular

motion around the primary, as we will show next.

In the rotating frame, in which the stars are at rest, we can choose one of the axes

to point along the line connecting the two centers of the stars. vl and v are the

components of the stream velocity perpendicular and parallel to the center line. From
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the expression for the angular momentum, we find that in inertial space vl - bw,

where b is the distance from the center of the compact accretor to the Li point and

w = 2/P is the angular orbital velocity. To calculate bl we apply the Plavec and

Kratochvil formula (FKR):

- = 0.5 - 0.227 log q , (1.9)
a

where a is the semi-major axis and q = Mac,,/M is the mass ratio. We we can use

(1.9) to express v as a function of observables like the period P, the mass ratio q

and the mass of the primary in solar masses m.

vl N 100 m1/ 3(1 + q)1/3p-1/ 3 km s - 1 (1.10)

We also assume that vil < c, where c is the local speed of sound in the envelope

of the secondary, which cannot be more than about 10 km/s. But the perpendicular

speed is much larger, meaning that the flow through L1 is supersonic in the non-

rotating frame. This implies that when the stream is accelerated in the Roche lobe

of the primary, pressure forces can be neglected and it falls freely in the gravitational

potential of the primary.

Eventually, what we just derived means that we can consider the flow from the

L1 point as consisting of a set of test particles with given initial angular momentum,

falling in a gravitational field. Obviously, such a particle will start orbiting (approx-

imately in an ellipse) in the plane of the primary. Since a circular orbit is the orbit

with lowest energy for a given specific angular momentum, it will tend to circularize

by collisions, conserving the initial angular momentum rcirc(rcirc) bw, where rcirc

is the radius of the circular orbit and v(rcirc) = (GM/rcirci)1/2 . Combining the above

equations and expressing w = 2r/P, we get:

'circ 4r2 3 b- 
GM19P2 a
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which then can be written as:

cilc = (1 + q)(0.5 - 0.227 log q)4 (1.12)
a

The above expression is valid only for q 1. One can calculate (FKR) that the

so called circularization radius is typically 2-3 smaller that the Roche lobe of the

primary, which is an important result.

If all particles coming from L1 follow the same mechanism of settling into a cir-

cular orbit, it is clear that their paths will intersect. In general this leads to viscous

phenomena and shocks, which play an important role in the already formed disk.
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Chapter 2

Gas dynamics

The detailed study of interacting binary systems has revealed the importance of angu-

lar momentum transfer in the disk. In this chapter we will explore this phenomenon

starting from the basic equations of fluid dynamics. Here we will discuss the three

conservation laws (mass, momentum, and energy conservation) and the equation of

state. When we add boundary conditions to these equations we can describe the gas

flow.

Consider a gas flow with velocity field v and density p as functions of time and

space. Then the mass conservation equation is simply the continuity equation:

opt + V (pv)=O (2.1)at

The fluids of many objects in astrophysics can be treated as gases which obey the

ideal gas law:

P = pkT/pImH, (2.2)

where k is the Boltzmann constant, a is the dimensionless mean molecular weight,

which is about 1 for neutral hydrogen HI and 0.5 for HII, and mH is the hydrogen

mass. For a typical cosmic abundance, = 0.615.

Consider that there are some forces acting on the gas and/or there are some

gradients in the pressure. These enter the Euler equation for the conservation of
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linear momentum (Landau & Lifshitz, 1959) as:

a(pv) + V (pvv) = -VP + f (2.3)

The above equation is Newton's second law but written per volume element. Here P

is the pressure in the fluid and f is the force density. For a fluid in a gravitational

field f = pg, where g is the gravitational acceleration. The second term on the LHS

represents the transfer of momentum by velocity gradients. This equation can be

modified to represent angular momentum conservation:

a (pj) + V (pjv)=T (2.4)

where j is the specific angular momentum and T is the sum of all torques acting per

unit volume element.

The last equation in our discussion is the conservation of energy equation. The gas

has specific kinetic energy 1/2pv 2 , where v is the velocity, and internal thermal energy

Ep, where = 3kT/2,umH. Conservation of energy states that the rate of change of

the energy of the gas with time must equal the work of the external forces plus the

rate that energy is lost by emission (Frad), and by random conductive motions (q) of

the particles.

t (v +E +V. pv +pe+P) v =f.v-V.Frad-V.q (2.5)

Later in the thesis we will solve the problem of a thin magnetically torqued ac-

cretion disk for the steady state case. This means that at first we will set the partial

(Euler) time derivatives of the quantities above to zero.

For problems where the area through which the fluid flows is a function of the

radial distance and time A = f(r, t), (2.1) becomes

A t (pA) + A (Apv,)= 0 (2.6)
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and (2.3) becomes:

I a a dP1nd 10(frdP(2.7)Aya(pAvr) + r(A ) f gp+ d(2.7)

Similarly, (2.4) is:

A a (pjA) + A (Apjvr) = T (2.8)

In all of the above A = 2rrH where H is the thickness of the accretion disk, which

depends on r and t. Substituting E = pH and the expression for A we find that (2.6)

yields:

aE + - (rEVr) = 0 (2.9)Ot r r

And the angular momentum conservation (2.8) becomes

(Qr2) + -a (rr2Qvr) = TH = (2.10)

where r is the torque per unit area. Combining (2.9) and (2.10) yields

1 a (Qr2) = T (2.11)
2wr r Or

where M id the mass transfer rate through radius r.
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Chapter 3

Viscosity

As we mentioned earlier, the transport of momentum via viscous phenomena is quite

important in accretion disks. The more we understand viscosity, the more realistic

we can make our descriptions of accretion disks.

To see how important viscosity is, one usually compares the viscous and pressure

force on a fluid cell. The pressure force scales with the pressure gradient P/ax for

a one dimensional fluid, and the viscous stress is given by the following expression

(FKR):
dvF, = - 2pcsAmfp x, (3.1)

where Amfp is the mean free path in the gas. The quantity Amfpc, is known as the

kinematic molecular viscosity Vmol. Based on the expressions for the mean free path

and the sound speed in a plasma, the expression for the molecular viscosity is given

by (Narayan, unpublished lecture notes):

v,ol - 5 x 108 T5/ 2 N-1cm 2 S- 1 , (3.2)

where T is the local temperature and N is the number density.

The approximate ratio between the two forces for a box of gas with x-dimension

L is:
Fv v Amfp (3.3)
Fp c L
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From (3.3) it becomes evident that the molecular viscosity may be dominant in

supersonic flows and can be neglected in flows with very small Amfp compared to the

size of the fluid box L.

For accretion disks, it is broadly considered that molecular viscosity is unim-

portant, but that turbulent viscosity may be quite significant. In the famous a-

prescription of Shakura & Sunyaev (1973), the turbulent viscosity is characterized

by:

Vturbulent - ocsH , (3.4)

where H is the scale height of the disk.
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Chapter 4

Shakura-Sunyaev disks

In this section we will consider the development of the most famous model of thin

accretion disks developed in 1973 by Shakura and Sunyaev (S&S 1973). In particu-

lar, they consider an accretion disk around a black hole in an attempt to characterize

the spectrum of the radiation from the disk. In their model, they divide the disk in

two regions depending on which pressure dominates - the gas or radiation pressure.

However, for the sake of showing how the derivation works, we divide the disk in

three regions. Later, we do not divide up the disk, but rather allow for different com-

binations of the two pressures and opacities. Finally, Shakura & Sunyaev developed

a system of equations which is conveniently solved analytically and yields the radial

dependence of the disk parameters P, p, T, H, etc. In the next section we will work

through their model.

4.1 Criteria for thin disks

First we should understand what is referred to as a geometrically thin accretion disk.

We start by equating the gravitational and pressure force on a volume element in the

disk. The gravitational force from the central object has a component that points

perpendicular to the disk (-e direction in cylindrical coordinates). Since we assume

that the thickness of the disk is very small compared with its radius this component

27



is -G" H. From the equation of hydrostatic equilibrium we have:

GMH 1 aP PC
r2 p z pcH' (4.1)

where OP/Oz is the pressure gradient in the z-direction, H is the thickness of the

disk, and Pc and Pc are the density and pressure in the midplane of the disk.

Using the expression for the Keplerian velocity VK and the fact that PC = pc2 we

can write the ratio PC/PC as:
2 H 2

P -Cs = VK 2 (4.2)Pc -- cs --
We can write the condition for a thin disk as:

H c,
- << 1. (4.3)r VK

This is achieved when vK > cs, meaning that we neglect sound waves in the disk.

For high accretion rates, near AMEdd, the assumption H/r < 1 breaks down.

4.2 Basic Equations

In this section we rewrite the basic equations of fluid dynamics, as discussed in Section

2 in order to derive the relevant disk equations. We follow the derivation of Narayan

(unpublished lecture notes). We have already obtained the equation for the vertical

structure of a steady disk above. We assume that the disk material everywhere orbits

with the Keplerian frequency.

Next, we utilize the continuity equation (the mass conservation equation). The

mass per unit time flowing through a circle of a given radius r is:

= rEvr, (4.4)
2w

where A! is the mass transfer through this annulus (i.e.the accretion rate), E - pH

is the surface density, and H is the disk thickness at r. Making use of the angular

modification of (2.3) and (4.4), the conservation of angular momentum in cylindrical
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coordinates is:

rvr, - (Qr2) = 0 (Qr2)= (4.5)rOr 27r r

Momentum is transferred outwards by the viscous torque, so that the material can

accrete onto the central object. The shear force per unit length is vErd(Q/dr). The

viscous torque around the entire circumference is therefore 27rvEr3 (d). Finally, the

net torque per unit disk area is:

M pr2) =I i (E3 d \rT-- 2 - r (4.6)
27rr r ) 2 rr Odr r3 (4.6)

The angular momentum flowing through the annulus per unit time due to 1M at radius

r is MAr2Q. Collecting equations (4.4) through (4.6), the angular momentum balance

equation, equating the momentum going out and in the annulus is

l d(r2) d Md(dQ) -d [v27rr3d] (4.7)
dr dr dr

Using the expression for the Keplerian angular velocity Q and integrating we get

vr 1/2 1= M r/2 + C (4.8)
37r

The integration constant is fixed by the boundary condition at the inner edge of

the disk r, where the shear stress vanishes (or the RHS of (4.6)). This gives us

3 | (r )/ ] (4.9)

For an accreting black hole r would be the innermost stable orbit.In the prob-

lem we are considering accretion is taking place onto a rapidly rotating magnetized

neutron star. Thus, we determine the inner edge of the disk, r,, to be given by the

magnetic field and spin of the neutron star. We will discuss this in Section 5.

Next we discuss the energy balance in the disk. The viscous dissipation rate per

unit area in the disk equals the energy liberated from the system per unit area per
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unit time. The energy balance is then given by

/( dQ2 3GNAIM 1 1/2 (4.10)
dr j 47rr3 ( )

Note the right hand side is independent of the viscosity. In steady state, the

energy dissipation is balanced by radiative loss through the top and bottom surfaces

of the disk. The radiated flux coming from the surface of the accretion disk is given

by aT,ff, where is Stefan-Boltzmann constant, Teff is the effective temperature at

the surface of the disk and at R. Applying this and eq.(4.9) gives us

3GMM [i (*)1/2 )1/4 T( -3/4 [ 1/21 (4.11)

where T* is defined to be the characteristic surface temperature of the innermost

region of the accretion disk.

Now, let us consider the equation of state of the gas. On the LHS we have the

central pressure, which is the sum of the gas and radiation pressures.

P= + -- T4 (4.12)
M 3c 

where Tc is the temperature in the midplane of the disk.

The final equation we use is the radiative transport equation, which relates the

temperature gradient to the energy flux. In a simple "single zone" model, it gives the

relation between the temperature at the midplane of the dusk Tc and the effective

surface temperature Teff, that can carry the luminosity generated near the midplane

to the surface.

4T = T4 , (4.13)

where = EKR is the optical depth expressed by the surface density and the

Rosseland mean opacity R.

We need also a relationship between the v and a-viscosities. We know that in the

ar-prescription the viscous stress is given by caP and using v, it is -v(r )p = 2Qvp.--drrr2
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Equating both, we obtain the following relation:

2aP 2 C2v= -- -a (4.14)
3 p 3 

Collecting together all the equations, we obtain the following system of equations.

This system becomes solvable analytically if we apply the technique discussed in the

following section.

CsT3/2
H =: cr 2 (4.15)

(GM)1! 2

pkT, 4a 4P, + -T4 (4.16)
m, 3c C

U 4T4 4 = 3GMM h- ()1(4.17)
ff3 R 87rr3 r (417)

PH= 2 - - ](4.18)27ra )

= "es + EopT- 7/2 (4.19)

We also supplement these with the definition of the surface density E = Hp, and

the definition of sound speed c = PC/p,. Eq (4.15) rewrites the condition for a thin

disk, eq (4.3) and is called the vertical structure eqaution. Eq (4.16) is the equation

of state. Eq (4.17) results from the radiative transfer equation, and eq. (4.18) is

the angular momentum equation and comes directly from (28) applying the relation

between a and v (4.9). Eq (4.19) gives the radiative opacity.

4.3 Zonal solutions

The system of equations above is solvable analytically if we divide the disk into inner,

middle and outer zones, specified by which pressure and opacity dominates. For

convenience we define f - [1 - (r/r)1/2 ]1/4. Let's apply the following scalings: m =

MI/M, 7h =- AI/(1.39 x 1018 m g s- 1 ), where the factor 1.39 x 1018m g S- 1 corresponds

to the Eddington luminosity for mass accreted onto a lM) object accreting hydrogen-

rich material; r = r/(2.95 x 105m cm), where 2.95 x 105m cm is the Schwartzschild
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radius of the accretor: and h = H/(2.95 x 105m cm).

Outer disk assumptions: P9
> Prad =* the pressure in the midplane P, = Pg

and = the free-free Krarmers opacity dominates over the electron scattering opacity

(kR)ff > (kR)es. The solution for the outer disk in terms of the parameters, the

scale height H, the central pressure P, density Pc, and temperature TC (S&S 1973,

Narayan, unpublished lecture notes):

Z = 4.5 x 105C-4/51i7/1 0 m1/5r-3/ 4f 14/5g cm - 2 (4.20)

Tc= 1.8 x 108sa-1/5r3/ 10 m-1 /5r-3/4f6/ 5 K (4.21)

c, = 1.5 x 108a- 1/10mr3 /2 0m-1/1r- 3 /8 f3 /5 cm s-1 (4.22)

Pc= 4.7 x 1018C-9/1 0r1 7/20m-9/10 r-21/sf 1 7 /5dynes (4.23)

I = 7.2 x 10-3-l/l 0rh 3/ 20 m-1/10 r 9/8f3 / 5 (4.24)

Pc = 2.1 x 102a-7/1 0rh1 1/20 m- 7/10 r-15/f 11 /5g cm-3 (4.25)

Note that the expression for c is redundant. One actually needs only five param-

eters to fully describe the disk.

Middle disk: we still assume Pg > Prad, but the opacities go like kes >> kff.

The solutions for the different variables in this zone of the disk are:

E = 9.7 x 104a-4 /53/ 5 ml/5r-3/5f12/5 g cm- 2 (4.26)

Tc = 8.1 x 108a-1/5n2/ 5m- 1/5r-9/10 fs8 /K (4.27)

c, = 3.3 x 108c-1/ 10rh1/5m-1/10r- 9/2of 4/s m s-1 (4.28)

P = 2.3 x 1018a-9/10 ri4/ 5 m-9/10r--51 /2Of1 6/ 5dynes (4.29)

h = 1.6 x 10-2a-1/ 0mh1 l/5m-/ 0 r2 1/2 0 f4/5 (4.30)

Pc = 21a-7/10 r2/ 5m-7/or-33/2Of 8/ 5g cm-3 (4.31)

Inner disk: we neglect the gas pressure since Prad >> Pg and for the opacities we
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have k,, > kf.f. The solution is then given by:

E = 0.42c-'rh-1 ml/5r 3/2f- 4g cm- 2 (4.32)

T, = 3.7 x 107a -1/ 4m-1/4r-3/K (4.33)

Pc = 4.8 x 1015Ce-1m-1r-3/2dynes (4.34)

h = 7.5rmf4 (4.35)

pC = 1.9 x 10-7C(-1-2m-lr3/ 2f-8g cm -3 (4.36)

In general one gets the above solutions either by analytic manipulations of the

equations in the previous subsection, or simply by plugging them into Mathematica.

After introducing the effect of the magnetic field in the next section we discuss how

one solves for different equations of state and opacity combinations.
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Chapter 5

Magnetically modified SS disks

Many compact objects (white dwarfs and neutron stars) in astrophysics sometimes

have very considerable magnetic fields (_ 105 - 101 2G). So, it makes good sense to

consider accretion disks around central magnetized objects such as neutron stars. In

this section we again consider thin accretion disks but we modify the basic equations

by adding magnetic torques originating from the magnetic field of the central neutron

star. To do this we follow the derivation of Rappaport et al. (2004) to obtain the

disk solution as a function of the magnetic field, the accretion rate, and the mass of

the star.

There is a characteristic radius in the vicinity of the neutron star where the mag-

netic ram pressure equals the gas pressure. The derivation starts by assuming that

the magnetic torques are much greater than the viscous torque near the inner edge

of the disk. so one can write the angular momentum equation as:

A d B2( M d (Qr2 ) TB ( -1 - (5.1)

Historically, the Q/w term was not considered, in which case one finds:

Md (r 2 ) = B2r (5.2)
dr
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Integrating (5.2) one obtains:

7,. ""' (G1)- 1'/7~71"/'~"/' = 35 km 1.4n ~ 10 -1/ ' -2/7/ 4/ 7Fm7 &'Tp =( ) km (14MNJ ) (1017gs 1 J 26.5 ()

(Rappaport et al. 2004), where M is the mass of the central neutron star, A is

the accretion rate, and = is the magnetic dipole moment of the neutron star.

Here we model a system with r, - 35 km, since a number of the millisecond X-ray

pulsars apparently have B - 108 G, which corresponds to u = Br 3 _ 3 x 1026G cm3

(Wijnands & van der Klis 1998, Chakrabarty & Morgan 1998, Galloway et al. 2002,

Markward et al. 2002, 2003a, 2003b).

The other characteristic radius associated with an X-ray pulsar is the corotation

radius where the local Keplerian angular velocity in the disk equals the angular ve-

locity of the neutron star:

r,=- cs = 31 km 03 (5.4)
C 2 m (0.003s (IM) /3

(Rappaport et al., 2004), where w 2 is the spin angular velocity of the neutron star

and P is its spin period. This expression has been normalized to a 3 ms spin period

which is close to those found for 5 transient X-ray pulsars (Wijnands & van der Klis

1998, Chakrabarty & Morgan 1998, Galloway et al. 2002, Markward et al. 2002

2003a 20031 2003c, Markward & Swank 2003). The time-averaged accretion rate,

driven by gravitational radiation, is about 1014.5 - 1017, determined by the following

formula (Galloway 2006):

AWI > 38 x lo-',( MC ) 2 ( MNS 2/3 Prb -8/3Xi ( 3.8 x 10-115)
0.1Mo K1.4I-MO 2hr (5.5)

where Mc is the mass of the companion star in units of the minimum mass of 0. 1M®,

A/INs is the mass of the neutron star in units of 1.4M, Porb is the orbital period in

units of 2 hr.

For more information on the parameters of these pulsars see Table 1.
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Table 5.1: Parameters of five accreting X-ray pulsars. The stared values for the B-field
come from our own estimate while the unstared come directly from the referenced
papers.

Name Spin Period [ms] Orbital Period [min] Magnetic field [G]
SAX J1808-3658 2.49 120 108 - 109

XTE J0929-314 5.41 43.6 109

XTE J1751-305 2.30 42 , 3 x 109

XTE J1807-294 5.24 40.1 3 x 10 7 - 2 x 109 *
XTE J1814-338 3.18 114 3 x 107 - 9 x 108 *

The two quantities rm and rc are very important because they determine how and

when the accretion disk terminates. We consider the case where the disk terminates

where the magnetospheric radius equals the corotation radius. This corresponds to an

intermediate rotator case. For slow rotating pulsars the magnetospheric radius lies

inside the corrotation radius, allowing for the classical accretion condition (Lamb,

Pethiah & Pines 1973, Chosh & Lamb 1979, etc.). If the magnetic radius is outside

the corrotation radius (fast rotator) that means that the material of the disk which

couples to the magnetic field is forced to rotate at a frequency higher than the local

Keplerian frequency and may be expelled from the system (Illarionov & Sunyaev

1975). However, Rappaport et al. (2004) suggest that rather than being expelled,

the material simply accumulates in the disk (i.e., piles up) until a new disk density

profile is created such that the viscous stress can overcome the repulsive nature of

the magnetic torque. At such a point when the disk penetrates into the corotation

radius accretion can commence.

5.1 Starting equations

In this section we add the effect of the magnetic torques on the disk which leads

to modifying the original Shakura-Sunyaev. We carry through the derivation in the

same way we did for the Shakura-Sunyaev model, so that the differences are obvious.

All of the following calculations are for the fast rotator case. In particular we

assume the limiting case when the inner of the disk coincides with the corotation

radius.
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The equation of conservation of angular momentum is given below. It corresponds

to equation of (4.5), but here we have added the magnetic torque term.

H d (MQr2 ) = T + TB (5.6)2irHr dr

where TB is the magnetic torque per unit volume and T, is the viscous torque per unit

volume, which in the standard SS a-prescription is given by.

Hrd(Pr2H) (5.7)

TB on the other hand is generally given by the following expression (Lamb, Pethick,

& Pines 1973):

rB- 2BBr (5.8)

Where B_ is the field in the 2-direction perpendicular to the plane of the disk (we take

the B-field of the star to be aligned with the rotation axis) and Bo is the azimuthal

field in the -direction in cylindrical coordinates. Here we do not attempt to carry out

careful magnetohydrodynamic calculations, but rather we take the azimuthal field to

be given by the following simple sensible prescription:

B B 1-- - (5.9)
Ws

for r > r,. Notice that when the Keplerian frequency Q in the disk equals the spin

frequency of the neutron star w,, i.e., at the corrotation radius, the magnetic torque

vanishes. Combining the above equations, (5.6) becomes:

1 d( r2) a d2H B2 (Q \
--r(Mgr)= -(Pr2H) + (5.10)27wHr dr Hr dr 27rH 1 0

The z-component of the pressure gradient equation or the vertical force balance equa-

tion is given by:
GMpH2

~~~~~P - = ~~(5.11)
r3
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where P is the pressure in the disk, M is the mass of the star, p is the density in the

disk, H is the vertical scale hight or thickness of the disk, and r is the radial distance.

Next we need an equation of state, which includes both the radiation and the gas

pressure terms. In this part of the work we treat both Prad and Pg,, rather than

considering only one of these pressures in each different region of the disk.

pkT 4aT4
P- - + (5.12)

mp 3c

The energy transfer equation is given below - again we include the effect of both

opacities - the electron scattering and the free-free Kramers opacities instead of ne-

glecting one with respect to the other in different parts of the disk as we did in the

Shakura-Sunyaev model.

T4 (-Nes + T3 pHT (5.13)

Here Tc is the temperature in the midplane in the disk, re,, is the electron scattering

opacity, o is the constant coefficient of the Kramers gray opacity and Te is the

effective temperature at the surface of the disk. In general the Kramers opacity is

evaluated at the disk midplane and is given by , _ 6 x 1022pT- 3 5 cm2 gm- 1 .

The heat dissipation per unit surface area from both viscous and magnetic torques

is given by:

aHPQ + QB(r) = aT4 (5.14)

where Q is Keplerian velocity in the disk, QB(r) is the heat dissipated from the

interaction of the magnetic field with the matter in the disk.

B()~ ()- ()2 2)- (2
QB(r) = ()( - ) = (5.15)

27w 27rr5 W,

Here (see (5.8)) jp is the magnetic moment of the star, Q is the Keplerian frequency

at r and w, is the spin frequency of the neutron star.

The final equation we find by integrating (5.10) over r starting from, r, as the
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inner boundary of the dusk. Then we solve for PH and we get:

PH= ~ IQ c -(+ 9 1- (- + 2 (?h) /] F(r) (5.16)

See Rappaport et al. 2004. Where r /r, and M is the steady state accretion

rate.

5.2 Cases

For the case of only gas pressure in (5.12) and Kramers opacity in (5.13), the above

system of equations can be solved analytically and the result is (Rappaport et al.

2004):

P 2 x 105a-9/10 17 /2 0 r -21/8F 17/20 dynes cm-2 (5.17)
.6 (5.17)

H 1 x 18-1/10 '3/20 9/8 F3/2O cm (5.18)-1/5 /3104,-1/5' 31-3/4 3/
T ~ 2 x 04.-1/5M6 /lo /4 F3/L1 K (5.19)

p " 7 x 10-8a-7/10 A 1/20 r- 1 5/8 F11/20g cm-3 (5.20)p -- 7 6 .... ~ CM 516 '10

where M1 6 is the mass accretion rate in units of 1016g s-l, rlo is the radial distance

in units of 101°0 cm, and F = 1- x/~ as opposed to Shakura & Sunyaev's f =

[1- r 1/ l

We also explore solutions for different equations of state and combinations of opac-

ities. The most complicated case takes into account both pressures, both opacities

and magnetic heating (plots of these cases are given in next section). In Table 2 we

summarize the three distinct cases: Case I is the same for which the solution is given

above (i.e, only gas pressure and Kramers opacity); Case II has both pressures and

both opacities, but no magnetic heating; Case III again has both radiation and gas

pressure, both opacities, and it also has the magnetic heating term added.
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Table 5.2: Parameters used for three cases of disk solutions.
MlIodel I Model II Model III
p_ GmpH2 p GmpH2 p_ Grmph2

r - r3 r3

PH = F(7) PH = F(r) PH = F(r)
p = pkT p pkT + 4aT4 p pkT 4T4

m2 m/_ 3c ml 3c
T4 = op2 HT T4 (Ks + )pHT T4 = (s + T5fF)HTeT3 5 T3.5_ _ p_ T3.5V4 0
caHPQ = T4= oT4 aHPQ + QB = T4

5.3 Solutions

As mentioned above, Case I is solvable analytically, but the other two cases are not,

because of the additive natures of the terms in the second and third equations. In

these cases, in order to find the steady state solutions I wrote an IDL procedure using

the Newton-Raphson globally convergent method to solve the system of non-linear

equations. We start with a guess solution identical to the non-modified Shakura-

Sunyaev disk at a very large radius, since the biggest effect of the additional terms

will occur in the inner parts of the disk. Then the code iterates from the outermost

radii inward. The set of equations is solved at each radius, stepping inward, using

the solution from the previous radial distance as an initial guess for the current radial

distance. We calculate the disk solutions for the different models listed in Table 5.2

from r out to 1000 r,.

The curves in Fig. 5.1 are the solutions to the SS outer disk, i.e., no radiation

pressure, no electron scattering opacity, and no magnetic field. These are shown only

for reference. The solutions are given for different accretion rates - from 1015 g s- 1 to

1018 g s- 1. Note that all the curves are parallel to each other, which is not the case

for Figures 5.2, 5.3, and 5.4.

The solutions for Case I (Table 5.2) are plotted in Fig. 5.2. This is the same case

as Rappaport et al. consider in their paper. Here we have switched on the magnetic

field but this case, in a sense, still depicts an "outer disk solution" since we do not

consider radiation pressure and electron scattering opacity even for smaller radii. In

this case the curves are no longer parallel in the inner region of the disk, where the

magnetic field has the largest effect. Notice the damming effect of the magnetic field
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on the curves as we go lower in accretion rate - the lower the ML the more the solution

curves pile up. Again this effect is most prominent in the very inner regions of the

disk. Note that, even though we go as low as 1015 g s- 1, we still consider the disk

to terminate at the corotation radius even though this would clearly be considered a

"fast pulsar".

Case II is represented in Fig. 5.3. Here we have added radiation pressure and the

effects of electron scattering opacity. One can notice that while the outer parts of the

disk solutions remain relatively unchanged with respect to the two previous cases,

the inner parts change dramatically. There the radiation pressure plays a huge role

in "puffing up" the disk. This is best seen on the plot for H where the curves rise

sharply near re, and on the plot for E where the curves dip down in the inner region,

i.e., the density is decreased when the disk is inflated by the radiation pressure. An

important feature of these solutions, which we do not see in the previous cases, is

that the curves for the different accretion rates cross, which may be indicative of a

thermal instability in the disk (see Section 5.4).

The solutions for Case III are shown in Fig. 5.4. Here the effect on Z and H is

even larger than for Case II. Here, the effect of the radiation pressure adds to the

magnetic heating in the inner part of the disk, which causes even bigger deviations

from the SS solutions. In this case the solution curves cross more than once and

the first crossing appears at smaller r than for Case II. In the next Section we will

investigate the stability implications of these curve crossings.
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Figure 5-1: Disk solutions for different parameters for the Shakura-Sunyaev outer
disk case (only gas pressure and Kramers' grey opacity, no magnetic field). The light
blue curve corresponds to AM 1018 g s-1 and the lowest pink curve corresponds to
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5.4 Stability Analysis

In the last section we discussed the "fast pulsar" disk solutions for different combi-

nations of pressures, opacities, and magnetic heating. It is evident from Figures 5.3

and 5.4 that the solutions for the higher accretion rates intersect each other. It has

been proposed that the crossing of solutions is an indicator of disk instability. Here

we explore different diagnostics of the solutions and we consider thermal instability

as a possibility for explaining the behavior of the solutions.

The first test we make is to plot the surface density at a fixed radius as a function

of the temperature for different accretion rates - Fig. 5.5. The particular radial

distance is chosen to be on the inner side of the first intersection of the E curves (Fig.

5.3) - at 2.8rc. Here we are guided by the prediction that we may find the famous

S-curve (FKR), indicating stable and unstable solutions. Indeed, we find something

similar to it, including a region with negative slope for values of the accretion rate

greater than about 1016 5g s-1 . Thus, we conclude that for all 1018 > > 1016.5 g

s-1 these disks are subject to a thermal instability.

For comparison we make the same test farther out in the disk. As can be seen

from Fig. 5.6 the slope is always positive meaning that the disk is stable in its outer

regions for all accretion rates.

WVe also plot the logarithm of the surface density vs. log M/MEdd as proposed

by FKR (Fig. 5.6). They suggest that a negative slope on such a plot indicates a

thermal instability (Pringle 1976, S&S 1974) and indeed this is what we observe in

Fig. 5.7. Consequently, a thermal instability is indicated.

Above we have shown that disks that exhibit crossing solutions are in fact unstable.

It has been known for a long time (Lightman & Eardly 1974) that even simple SS

disks with l > 0.1MEdd are subject to a thermal instability, so it is not surprising

that when we add magnetic "damming" the effect is even larger.

Having shown that the disk is likely to be thermally unstable, one can go further

and calculate which wavelengths in the disk are stable and which are not. Here I will

just give the most basic equations.
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Figure 5-5: A local surface density vs. temperature plot for radial distance of 2.8 r.

The disk is stable to all modes if A > p, where in the standard disk model

d ln Q+ d In Q-
I- dlnT and d- (5.21)dlnT ad=dlnT

Here Q+ is the energy deposited in the disk by accretion and Q- is the energy dissi-

pated by radiative cooling. These two quantities are given by the following equations:

Q+= 4 3 [1-(T)/ ] and (5.22)

8 c,mp T4Q_ 8 (5.23)
3 k,, 

All variables are as defined before.

If we have the opposite situation: p > A, only the modes with wavelength A >

_ H 2_ are unstable. For a more thorough discussion of disk instabilities see Pringle

(1976).
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Chapter 6

Time-dependent disks

We just solved he full set of steady-state disk equations including both magnetic and

viscous torques and gas and radiation pressure for the whole (out to 1000 r) disk.

We derived how pressure, temperature, density, thickness vary with radius. Now, we

are interested in putting time-dependence into the equations so we can see how the

disk evolves in time. We do this by expressing the surface density as a function of

time and position in the conservation of momentum equation.

6.1 Time-dependent Equations

We start with conservation of mass, which we already wrote in the steady-state case

-(4.5).
&Z 10

+ (rEv) (6.1)at r Or

The time-dependent version of the conservation of angular momentum is:

1 a (rvRr2) + (r2) = + rB (6.2)
r ar at

where E = pH is surface density, ,r is radial velocity in the disk, Q is the Keplerian

angular frequency, and Tv and TB are the viscous and magnetic torques per unit area.
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As we did before the above two equations can be combined to yield:

at
+ a

a+ (Qr 2 ) = v + B

0

So, (6.3) simplifies to:
Ia

rECvr (fQr2) = Tv + TBr a d

We can express Q as r3G/2 and take the derivative in (6.4).We can exp~~~res3~a -- T/2

Qr 1 G/G-M vr -1/2 (6.5)

Substituting this term in (6.4) and get

1
rVr- 7r- 1/ 2 = Tv + TB

2r
(6.6)

Rearranging terms we obtain:

r3 /2

rVr = 2(7T + TB) GM (6.7)

Notice that r3/2 = i On the other hand 2 rrZvr = -M is the amount of mass

flowing through a circular element with radius r for a unit time. Thus we obtain the

following relation:
rE - 2( (r, + B) -M

Q 27r
(6.8)

We rewrite the mass conservation in the form

20(r a + B aE+ =0at (6.9)

For steady-state, = 0, and hence 'v-B constant with radius. Now, we will have

to find expressions for the viscous and magnetic torques.

The derivation of the viscous torque goes like this. Define the viscous stress in
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=0 from mass conserv.
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terms of the dimensioned viscous coefficient v

dQ 3
(r) = -v(r)prd -YvpQ (6.10)

For Keplerian motion, we can use the expression for Q and take its derivative with

respect to 7'.
3 1 3 1 3v=vpr- MG 5/2 = Vp G =2 vPQ (6.11)
2 r5 /2 r3 /2

The viscous torque per unit area between two adjacent layers of the disk with thickness

H and radii r1 and r2 is then given by:

T (027rrHr) 2 - (2rrHr),r (6.12)
27r(r2 - rl)r

where 27rrH is the area of the contact surface. Then substituting the expression for

X we found in (6.11) we get

3 [(pvQ27rHr2)12 - (pvQ27rHr2)rl] (6.13)
v = - (6.13)

2 27r(r2 - r)r

We use that Hp = E and we define r2 - r1 = Ar then (6.13) becomes

= A [(EQr 2v)r 2 - (Qr 2V)r11 = a (Er3 d) (6.14)2 rAr rOr dr /

Notice the finite difference in the above equation. Thus we can write the derivative of

the quantity EQr2 with respect to r in spherical coordinates and obtain an expression

for %r

Tv = 3 a ( r2v) (6.15)
2 r Or

Then we plug this result in (6.9) and get the following expression: F

9 E= 3 [10 9 2) + 2a ( TB (6.16)
Ot- r r rQ (Er +)

) (6.16)r r
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Again use the expression for 2 and rewrite (6.16) as

OE 3 [ r1/2 (Er'12)] + ( (6.17)

Next we find an expression for TB. If we assume that the magnetic field rotates with

the same angular velocity as the neutron star (w,) then the magnetic torque will

generally depend on the relative velocities of the disk element (layer) and the neutron

star. In addition, use the approximation that the magnetic field in the azimuthal

direction is related to the field in the z-direction as (Livio & Pringle 1992)

B = -Bz w) (6.18)

Then the magnetic torque per unit area of the disk becomes

B2r (1- Q/w*) x 2r x 2 x Ar Bzr (1 Q9

B 47 27rrr 2 (6.19)W

The above takes into account that the magnetic stress is applied to both surfaces of

the disk. So, we can express the derivative of TB which appears in (6.17) as

2 (TB) 2 B2r ( Q r3/ 2 1 1 1 [B2r5/2)]rr Q r r 2w* 2)i7 WIr Lr z *

(6.20)

Now, we substitute (6.20) in (6.17) to find the differential equation for E.

- 3== -- r/2 (Zrl/2v)l + ---rB2r5/2 1-- (6.21)
At r ar aOr J -x\/ r Or z z *

Use that the z-component of the magnetic field depends on r like Ik, where = BoRs

is a constant.

0E 30 [ a 1 1 [a 2 ( Q
At r-r (Er / 'v)j frrr7/2 t-- ) (6.22)
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The second term on the RHS of (6.22) now depends only on r, so from now on we

designate it, with f(r).

f(r)= / r r [r-1 )] (6.23)

6.2 Solutions

For the purposes of expressing the differential equation for E in a suitable form for a

computational code we have to rewrite (6.22) in terms of finite differences.

First we redefine variables as x r1/2 and Er1/2 = Zx - a. Then, we rewrite

(6.5) in terms of the new variables.

a = 3r x (ua) + f(x) (6.24)

We use that dx- =1 /2 dr and express the derivative with respect to r as

d dxd I i d l d
(6.25)dr dr dx 2r1/2dx 2xdx 

This then becomes:

da _ 3 1 1 (x v)+ ff(x) (6.26)
At x 2x Ax 2x x

and
ao 3 d(v) + f(x) (6.27)

at 4X2 dX2

Now we name the redefined surface density in the disk a at a given position in

the disk to be a, its value in the next position (after 1 spatial step) a(n+1 and so on.

We also state that au is the value of a at a given time t and a,o is at t + At. Then the

derivative with respect to time can be written as Ati, where At is the time step.

The second derivative with respect to x is +1l+-2n+- So (6.30) becom

oan - a, 3 (l'In+l 1- 2ann + an(vn.l)
At 4x+ A - f) (6.28)

n n~·
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Move everything to the RHS and express Co

3At
4- - = x (3'n+lVn+1 - 2nVn -+ on-n1lV1) + f(x)At - n
4 'n 'l

(6.29)

WVe define ct, = 3t and then rewrite (6.32) in terms of itWe defi~4ne a--2

= - nOnn+lVn+l + (2 2v l)9n - nn n-in-nl) - f(x)At (6.30)

We need to know the time evolution of aU so it is convenient to express aC at time

t + At through an at time t.

-anun+lvn+l + (2vnvn + 1)0n - enu(n-l'n-1 = cn + f(x)/At (6.31)

However, (6.33) does not hold true for the first and last zones since we have terms in

,n-1 and ,n+l. We need boundary conditions to write the finite difference equations

for al and N.

The outer boundary condition exploits the fact that4 + -
(Tv + TB) = -M (6.32)

We use the form of -r, we got in (6.15) and express Q to obtain

47r 47r 3 1 0 4r 12 a
- = TB + 2- -- (-r2 ) = 7-B +67rr1 /2 (Erl/2g)

9W2

(6.33)

The term 47r/QTB we designate with g(x) since it depends only on r. We make the

change of variables again.

-MA = g(x) + 67rx- 1 (av)
2x Ox

and

-Al = g(x) +
Ox

(6.34)

(6.35)
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This gives us a differential equation for a, which is

O)(cv) -Ml g(x) (6.36)
Ox 3wr 3r

Or in finite difference form of (6.39) is

N+iVN+1 -- NVYN - (M - g(x)) (6.37)
Ax 3r

We need to obtain an expression for av in the outermost N-th zone UNVN

-Ax(
UN+I VN+ = 3 (M + g(x)) + UNVN (6.38)

Then we plug this in the general equation for the time evolution of an (6.40), substi-

tute with a,v and get

Ax
(2aNvN+ l)N -aNONN-lVN-1 = +f(x)At- -caN(M + g(X)) + aNUNVN (6.39)

OtNrN+lVN+1

(arNVA + 1)N - NN-1VN- 1 = c + f(x)At - 3aN(M + g(X)) (6.40)
3w

For the first zone we simply take the inner boundary condition to be a,-l = ao = 0

and substituting in (6.34) we get

-ae1 U2V2 + (2Oavl + 1)rl - 0 = a* + f(xl)\At (6.41)

There was an initial attempt to solve these finite difference equations. I wrote an

implicit partial differential equation solver in IDL. As a starting exercise I solved the

equations in the absence of the magnetic torques - contained in f(x). We utilized

both a constant viscosity and one with a prescription where v oc x, to best match

the a-viscosity prescription. We arbitrarily start with an initial disk surface density

profile that is a Gaussian in shape. We then evolve the solution forward in time. The

result is shown on Fig. 6.1. Each curve represents the density profile at different
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times. As can be seen from the figure the initial peak profile diffuse and eventually

leads to the expected steady-state disk solution.

0

0.

O.

0.

A'U '

2 4 6 8 10

X

Figure 6-1: Diffusion evolution of a gaussian initial density profile. The evolution is
given by solving a version of (6.26) with an IDL PDE solver as explained in the text.
Different curves represent the state of the system at different times.
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Chapter 7

Conclusion

In this work we deal with geometrically thin accretion disks, more specifically disks

around millisecond pulsars. The motivation behind the above consideration is sum-

marized in Table 1, where we collected the characteristics of five accretion powered

millisecond pulsars. This work was aimed at describing how such a system accretes

via an accretion disk. In the case of low mass X-ray binaries (which these systems

are) mass transfer takes place via Roche lobe overflow and disk accretion.

WVe used the Shakura-Sunyaev thin disk model as a staring point for our work.

From there we considered different combinations of the pressures and opacities and

eventually we added magnetic torque in addition to the viscous one. We show that

when solutions are plotted for different accretion rates the higher M curves cross.

After performing some tests on the solutions we show that when the surface density

is plotted versus temperature at a given radius we get negative slope (Fig. 5.5 and Fig.

5.6), which according to Lightman & Eardley (1974) and Pringle (1976) is indicative

of thermal instability. We also noticed that the disk is most unstable in the inner

regions where the magnetic field and the radiation pressure have most effect.

Then we decided to extend the problem to the time-dependent evolution of the

disk. This we did in the last section by writing a time-dependent equation for the

surface density. Eventually we arrived at an equation for (see eq. 6.26), which was

very similar to a diffusion equation with a driving term. In order to be in suitable

form for a numerical calculation we transformed the differential equation for a into a
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finite difference equation, which reduces to a tridiagonal matrix equation to be solved

in IDL. We carried out the calculations for a few simplified cases but not for the full

magnetically torqued disk problem.

Here the future work starts. After writing the code, one check that can be run

of the method is to start with the steady state solution and see whether the solution

remains there as time advances. Then one can start changing the input hM in some

manner and observe the behavior of the solutions. If the method works one can

eventually infer time scales of the instabilities and compare with the observations of

transient millisecond X-ray pulsars.
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