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Abstract
We perform a number of measurements relevant to nuclear and particle physics by
using the tools of lattice QCD. We verify our lattice calculations by reproducing
published meson masses. We then study the light quark distribution in a meson with
one heavy quark. After improving our methods in the meson case, we conclude by
looking at the correlation between the two light quarks in a baryon. We find evidence
for these quarks binding into spatially extended diquarks.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong force. It postulates the

existence of quarks and gluons, and describes their dynamics and interactions.

As usual, we can use perturbative expansions to calculate the predictions of QCD.

Unfortunately, at the "low" energies that dominate life outside of particle accelerators,

these expansions diverge. Therefore, in order to extract useful predictions, we must

solve QCD with nonperturbative methods. Lattice QCD is the only known such

method that solves QCD exactly. Lattice QCD makes spacetime discrete and finite,

so the theory can now be solved numerically on powerful computers.

Lattice QCD can be used to calculate many of the fundamental properties of our

world from first principles. Two such calculations are depicted in Figure 1: the com-

plex structure of empty space, and the forces that bind two quarks into a meson.

We can also use lattice QCD to calculate experimentally accessible observables, such

as hadron masses [3] and lifetimes of unstable particles [17]. In recent years, preci-

sion lattice QCD has come to the forefront; for example, the world's most accurate

determination of the strong coupling constant as was performed on a lattice [26].

In this thesis, we use lattice QCD to explore the structure of diquarks in baryons.

Diquarks are pairs of quarks whose dynamics are strongly correlated. We study this

correlation in the case of a baryon with a heavy quark and two light quarks forming

a diquark. Our program is the following. First, we reproduce literature results on

meson masses to gain experience with lattice QCD and to construct the computer
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(a)

Figure 1-1: Visualizations of QCD phenomena (from [16]). (a) Action density of the
vacuum; (b) Reduction in action density (flux tube) caused by the presence of two
interacting heavy quarks (arrows depict gradient of action density deficit)

codes that we use in more complex calculations. Then we study in detail the light

quark distribution in a meson with one heavy quark. After improving our methods

in the meson case, we conclude by looking at the correlation between the two light

quarks in a baryon.

The structure of the following chapters is as follows. In Chapter 2, we discuss

the theoretical framework of lattice QCD and how it's derived from continuum QCD.

We also show how to calculate observables within this framework. In Chapter 3, we

discuss the statistical errors that dominate lattice results, and ways of reducing them.

Finally, in Chapter 4, we report the results of the physics program outlined above.

7

(b)



Chapter 2

Fundamentals of Lattice QCD

In this chapter, we give a brief summary of the general structure of lattice QCD, and

give pointers to the literature where these ideas are fully developed. An expanded

introduction to lattice QCD setup is given in [7]. The review article [21] covers many

of the technical steps in detail, and places the subject in a general framework. Finally,

these two works are well complemented by the Ph. D. thesis [25], which contains a

highly pedagogical exposition of lattice QCD using the Wilson action. Our discussion

closely follows this last reference.

Throughout, we use units where h = c = 1.

2.1 Path integrals

The theory describing quarks and their interactions, QCD, is a quantum field theory.

Consequently, any observable quantity can be expressed as a path integral of the

general form

Z :=J[Dq DqDA]eiS[qAl f [q,q , A]. (2.1)

The notation used is highly schematic. We begin by dissecting the various terms

of (2.1) below.

The label q represents a quark field: at every spacetime point x, we define a

complex vector with 12 entries, denoted by q(x). The upper index is a color index.
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The number of quark colors is known from experiment to be 3, so a ranges from

1 to 3. The lower index is a spin index. Quarks are spin-' particles, so their fields

have 4 spin components. Additionally, a spin of forces quarks to be fermions, so

quark fields anti-commute:

{q (x), q(y)} = 0.

This means quark fields must be represented as complex Grassmann variables.

The label q analogously represents an anti-quark field. As usual, q(x) = qt(x)-y°.

The label A represents a gluon field: at every spacetime point x, we define a real

vector with 32 entries, denoted by A'(x). For a fixed p and x, the A field determines

a unique element of the su(3), given by A b( = A(x) A(x)A a b . Here, Aab are the eight

3 x 3 Gellman matrices. We call c the color index of A, and , it's direction, one of

x, y, z, or t.

The action S is a functional of these three fields at every spacetime point. In the

standard continuum formulation (see [24, ch. 15]), S is given by the formula

S[q, q,A] := d4x L(q(x), 9q(x), q(x), q(x), A(x)),

where L denotes the QCD Lagrangian. We shorten the integrand to £(x). It's given

by the equation

£(x) = -F(x)Fap,(X) + q(x)[iy' D,(x) - m]q(x) (2.2)

where

Fav(x) := amAa(X) - avAa(x) + gf abcAb(x)A(x) (2.3)

and

D,.(x) = O,(x) - igA; (x)Aa. (2.4)

The integration measure [Dq Dq DA] integrates over all possible quark, anti-quark

and gluon configurations, with a normalization chosen such that Z = 1 when f = 1.

All the above elements are independent of the observable being calculated. In-
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deed, it is the term f[q, q, A] which encodes the observable that Z measures; the

fundamental relation is the following one:

(Ol f(j, (, A)10) = [Dq Dq DA]ei[qqA] f [q, q, A]. (2.5)

Here, the hatted quantities are Heisenberg creation and annihilation operators, and

T is the time-ordering operator. This correspondence is the thrust for using path

integrals in quantum field theory calculations. Its precise construction in the case

of scalar fields may be found in [4, ch. 1]; for an expanded discussion, the reader is

referred to [22, ch. 2].

2.2 Continuation to imaginary time

To obtain information about ground-state elements, we make an important change

to the standard path integrals: we continue to imaginary time. That is, we make the

replacement t - -it. The change has at least three important consequences:

1. It renders path integrals mathematically well-defined. A host of subtle con-

vergence issues are hidden by the [Dq] notation above; these are absent in the

imaginary time formulation.

2. The evolution operator exp(-iHt) becomes exp(-Ht). This change makes it

practical to compute matrix elements of hadronic ground states, as explained

below.

3. Spacetime becomes Euclidean. The metric for taking dot products of vectors

changes from g to 7,,, so space and time are on a truly identical footing. As a

practical consequence, raised and lowered spatial indices in tensorial quantities

become indistinguishable. By convention, we lower all spatial indices. Another

consequence is that the Dirac gamma matrices change, as described below.
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The Euclidean counterparts of equations (2.1), (2.2), (2.4) and (2.3) are developed

fully in [25, pp. 166-172], and are written down here:

ZE := [Dq Dq DA]e-S['qA]f[q, , q, A]; (2.6)

1
LE(X) := -F, (x)F,(x) + q(x)[yD,(x) + m]q(x); (2.7)

Fa (x) := Oa,A'(x) - OvAl(x) - fabcAb (x)Ac(x); (2.8)

D,A(x) := a,(x) + igA (x)A. (2.9)

Note that we've: (a) redefined Ao -- ia.; (b) extracted an overall minus sign from 

into the definition of ZE; and (c) redefined the spatial y matrices as yi -- iyi, leaving

y0 unchanged. This last redefinition is consistent with a Euclidean metric, which

requires that

2.3 Ground state observables

The Hamiltonian H will in general commute with a number of operators representing

conserved quantities, or quantum numbers, like charge and momentum. Thus H has

a block diagonal structure: the evolution operator doesn't mix states with different

quantum numbers. Index these blocks by K, and index the eigenstates of H within

each block by i. Denote the eigenstates by K, i) and their energies by EK,i. Order

the blocks such that E0,0 < El,0 < . With this notation, the unity operator can

be written as

f= ZJ' |K, i) (K, i. (2.10)
K,i

The most useful property of the continuation to imaginary time is the following:

the evolution operator can be used to construct the ground state for a given set of

quantum numbers. Suppose we have a state IA) satisfying (M, ilA) = 0 for all M < N
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and all i, but (N, OA) # 0. Then, by Equation (2.10),

e-HTIA) = E: -I7K, i)(K, iA),
K,i

= E IK, i)e-E-j ' (K, A)
K,i

= IN, )eEN, 0 OA) + Q(e-(E)T)

7° IN, O)e-NIo (N, OA).

Here, AE is the energy difference between N, 0) and the next lowest energy eigenstate

that overlaps A).

We can exploit this property of Euclidean time to calculate the ground state

matrix elements of any operator. Suppose we calculate the following matrix element:

X := (Tre-"T f(xf)Ox()0i(xi)I0)

Since the O's are Heisenberg operators, we can write them in terms of evolution

operators and Schr6dinger operators:

(, t) := eHt (6) e-Ht

This change results in the following expansion for X:

X = (Ole-H(Tf) Of(if) eH(tf -t) Oxy() e-H(t-ti) Oi( i) eHtilo).

The unique vacuum state I2), with energy E0, and the state 10) have the same

quantum numbers. Assuming they overlap, e-Ht 0) e- E° t IQ) as t --+ oc. Inserting

unities around 10) operators, we thus get

x = ~,-Eo(7'-tf) (lOf(f) IA)e-EA(tf-t)(A Ox(E)lIB)eEB(ti) (Bl0i(5) l )e-o.

+ terms of the form O(-AET).
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Here, the states IA) and B), with energies EA and EB, are the lowest energy eigen-

states overlapping t(xf)) Q) and Oi(x) Q).

Suppose now that A) = B). Then, rearranging the terms,

X = e-EA(t - ti) (AlOx (x) IA) e- ( -tf) (QjOf(pf)lA) (AlOi(x)lI)eEti

+ terms of the form ((-AET).

For any fixed operator Ox(x), such as ii, we see that -dX/dtf -- (EA - EO) as all

time separations grow. This fact is used to compute the rest mass of state A), for

example a pion or a proton, in Section 4.1.

Moreover, consider the following matrix element:

Y := (OTe-HTOf(xf)Oi(xi)lO).

Through similar manipulations, we obtain

Y = e-EA(tf-ti)e-Eo(T-tf) (Qlf(f) IA) (AlOi(i)IQ)e-Eti+terms of the form O(-LAEr).

Thus, as time separations grow,

X
(AlOx(Y)IA). (2.11)

In this way, we can calculate ground state matrix elements of any operator.

2.4 Lattices and the Wilson action

To evaluate on a computer the infinite-dimensional functional integrals of Equa-

tion (2.6), we need to discretize spacetime, and all operators that depend on spacetime

continuity.

We discretize spacetime first. Consider a finite cuboidal region spacetime of vol-

umie La and time extent T. We impose a regular isotropic cubical grid with spacing
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a, taking both L and T to be multiples of a (see Figure 2-1). We call this grid the

lattice. Henceforth, we measure L and T in units of a, making them integers. For the

present, we ignore the boundaries and focus on the bulk.

L

+
L

Figure 2-1: A 3-D timeslice of a 4-D spacetime lattice

For the quark fields, we can easily discretize the functional integral: associate with

each lattice site x the 12 Grassman generators q(x) and their conjugates qa(x). The

integration measure [Dq Dq] is now a finite Grassman integral of dimension 24 x L3 xT,

which we can evaluate.

WVe could do the same assignment for the gauge fields A/l(x), but this leads to a

path integral whose terms are not gauge invariant: gauge invariance would hold only

in the continuum limit a --, 0.

Wilson [27] wrote down an alternate lattice discretization that conserves gauge

invariance at finite a. His idea was to use not the Aa(x)'s as the fundamental degrees

of freedom, but the link variables denoted by Ulb(x), defined as

Ub(x) = exp[ig Ac (r) Abdr]
P,,

Here, P,, is the straight line path from x + a to x. and P is the path-ordering

operator. Notice that while A (x)Acb su(3), the link variable U!,b(x) e SU(3). An

14
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important property of link variables is the following:

(ut)ab(X) = Uab (X + a). (2.12)

Link variables have well-known gauge transformation properties. A gauge trans-

form is specified by an SU(3) field gaa' (x) = exp[iacc(x)Ac]aa'. In the continuum, the

following mapping leaves the action unchanged:

qa(x) -t g"(z)qa'(x),

A ,(x) -* A,(x) + O2 a (x).
g

(The gauge coupling g and the gauge change field gaa'(x) should not be confused).

From these rules, it follows that,

Uab() _* gUa'(X)Ua'b' (x)(gt)b'(X + ali).

The a, in the transformation of Aa(x) is what makes the naive discretization of the

gluon fields lack gauge invariance. If, instead, we write the lattice action in terms of

only q's, q's and U's, we can make the lattice formulation gauge invariant.

Wilson discretized the gauge part of the Lagrangian,

I
LG(X) := F,(x)Fa(x) (continuum)

as follows:
1

LG(x) := Z/ (1 - N Re P,,) (lattice). (2.13)
tl<U

Here, the number of colors (3) is denoted by N,. The gauge-invariant plaquette P,,(x)

is given by (suppressing matrix indices)

P,,(x) := Tr [U,(x)U,.(x + v)U(x + /)U,(x)] , (2.14)
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and
2Nc
92

As a - 0, we can see that f d4x L£Gt(x) - Ex LCGn(x) + O(a 2 ). The essentials of

the proof can be seen when Nc = 1, where the algebra is a lot simpler because we're

dealing only with phase factors, and not unitary matrices. Following [21, pp.12-15],

we approximate

Ut(x) exp[-igaA,,(x + aft/2)]

Substituting this expansion into (2.14), we obtain

P,(x) exp[iga[-A,(x + ai'/2) - A,(x + az5 + aA/2)

+ A,(x + af + ai/2) + A,1(x + aft/2)],

exp[iga2[t,A,(x) - A,(x)],

= exp[iga2 Fj].

When Nc = 1, we have that P = 1: the factor of 2 arises from the relation Tr[AaAb] =9

2 6ab for the fundamental representation of su(N,); the convention for U(1) can be

changed to the standard convention by changing A, (x) - A(x)/v'2, which we avoid

here. Continuing,

LGt ,B( - cos(ga2F,,)),
/<V

JL<V

a4 : 2F4 29 2

.a4 El / 2,
aq 4 u.v

A more complete derivation that proves the O(a2) error of Equation (2.13) for the

general SU(N) case is found in the reference above.

It remains to discretize the fermionic part of the action. To this end. note that

16



D,(x) is given by, and sometimes defined by, the equation

D ab( := im U b(x)q(x + al2) - qa(x)D', (x)q := lima-0 a

By stopping the limiting process at a finite but small a, we arrive at the lattice

covariant derivative,

D, (x)q := -[Ub(x)q(x + ak) - q~(x)] + 0(a) (forward difference).

As in standard finite difference schemes, we actually obtain better accuracy by using

a center difference scheme:

ab b 1 [Uab(x)q(xa) ab
D~, (x)q~ -- [(x)q~(+a/)-Ut (-a)q (x-aAt)]+O(a2)Dt 2a (x~~~a~) A~x (center difference).

(2.15)

Now consider the standard fermionic Lagrangian part of (2.7),

£F(X) := q(x)[yD1,(x) + m]q(x).

Subtituting (2.15), we obtain

£F(X) = mq,(x)mq(x)

+ q(x) E 2aa [%.,,pUab (x)qb(x + a/) - y,,Ut , (x
=1

- a2)q'(x - at)].

We can reduce this expression by using (2.12) adopting the following two conventions:

_Y-,,a= = -Y,c4 and Utab (x) = U (x + al).

Then,

LF(X) = mq (xr)q(x) -
+4

E
1 tL-1

2a[qa(X)_,aYUt, (x - a)qb(x - a^)].

17

(2.16)



At this point we'd be done, except the Lagrangian above has a fatal problem

commonly called fermion doubling. The lattice can only represent field configurations

of momenta at least 7r/a. It can be shown that in each dimension, to each low

momentum mode there corresponds a high-momentum mode (near - r/a) with equal

energy. Because our methods for extracting matrix elements of operators crucially rely

on the properties of the energy spectrum (see Section 2.3), the problem is particularly

serious.

Fermion doubling is an artifact of the discretization, and appears in other simpler

contexts. For example, suppose we were solving the initial-value problem for the

Dirac equation (in Minkowski spacetime) on a 3D L3 grid:

iy°0 o (x) = (m - iyi&i)*(x).

If we discretize the a, with a center difference operator as we did with D,, then the

right hand side is the same for b(:, t = to) = exp(irx/(La))f(y, z) as for (,t =

to) = exp(irx(L - 1)/(La))f(y,z), leading to two solutions with wildly different

momenta that have the same energy. One solution here is to add a term involving

the second derivative of 0, which would raise the energy of the higher momentum

solution; if the term is proportional to a, it drops out in the continuum limit:

(iyO, + a,&"1 - m)ob(x) = O.

Adding an analogous second derivative term to Equation (2.16) leads to the Wilson

action. Concretely, we'll add a term of the form -(a/2)q(x)DDy (x)D,, (q(x) and

discretize D2 as a central-difference covariant Laplacian:

4

(D2 ) b(x)q,3(x) := 4 Z[U (x - aA )q(x - a) - 2q~(x) + USb(x)q~(x + aA)].

18



Finally, performing the modification to Equation (2.16) yields

LF(X) = (m - 4) .a x) l(x)½- [qa( (1 + YB)a Ut, (x-aA)q'(x-a)]. (2.17)
p=J1

The Wilson action has a unique property: the spin matrices linking quark fields at

adjacent sites are spin projectors. This fact is enormously useful. Most importantly,

it's essential to building a transfer matrix interpretation of path integrals; that is,

to show that Equation (2.5) holds exactly for the Wilson action at finite lattice

spacing [18]. It also allows the construction of good preconditioners (the so-called

even-odd preconditioners) used when numerically solving for propagators as described

below. It also finds use in the hopping parameter expansion described below as well.

One more step remains: to find the analog to [DAa(x)]. Since we've made the

link variables our primary objects, we would like to integrate over all their possible

values in some "uniform" manner. The desired integration measure is called the

group-invariant measure. We describe it here only in passing and refer the reader

to [7, ch. 8] for further details.

Essentially, we want to give meaning to the integral

dUf(U), U E SU(N).

When N = 1, an obvious candidate emerges:

dUf(U) N= 1 d f (e)

The integration is "uniform" in the sense that 1 f7r dO (1) = 1 and

1 j dO f(e) =1 dO f(e i (°+")) for any a E R.

That is, no 0-direction is privileged by the integral. The two properties can be

19



generalized to any compact group G as follows

dg 1 = 1 and Jdgf(g) = dgf(g'g) for all g' E G.

It can be shown these two properties define a unique integration measure. Concretely,

let G be a continuous group parametrized by N real parameters denoted by ai. We

can define a metric tensor Mij(a) as follows:

M j(o) = Tr[g-(0ig)g-l(0jg)],

where g = g(d) and i = aO/coi. The group-invariant integral is then given by

dg f(g) = K Jd I det M(5)1/2f(g()),

with K a normalization factor needed to obtain f dg 1 = 1.

In this manner, we can integrate over the value of the all link variables Ub(x). A

useful consequence is that the gauge integration is now over a compact domain (the pa-

rameters of the group elements), instead of over all of RN for some N large as is needed

in the continuum. In particular, the set of gauge configurations gauge-equivalent to

a given U,"b(x) field is also compact, so integrating over it doesn't produce infinite

answers. Indeed, there is no need to gauge fix in the lattice.

To conclude this section, let's summarize the essential results. We discretize space-

time into a finite, evenly spaced grid (spacing a) with L3 x T sites. To each site x,

we associate:

* The 12 Grassmann generators q(x);

* Their conjugate generators qa(x);

* An SU(3) 4-vector Ub(x).

20



We then rewrite the integral (2.6) as follows:

Z fr [71 dUt,(x) YJ(dqa(x)ddq(x))] eS[" "qU]f(q, q, U) (no sum over a,a).
X Al a,a

(2.18)

The action we use is the Wilson action:

S[qq,U] := a [ 3(1 - Re P,)

1 . ab+ (m - )q , (x)q( - a [(X) (1 + ,),U x, -(X af)q,3(x - a,)]a a 2I'

The quark and gluon fields transform as follows under a gauge transform gaa' (x):

qa(x) gaa' (x)qa'(X);

qa(X) -+ qa(X)(g)a a(X);

Ub(x) -, gaa' (X)Ua'b' (x)(gt)b'b(x + at);

ut b(x) , (gt)aa'(X + a)UaIb/l(x)gb'b(x).

The grid spacing a functions as a regulator for the path integrals. As a - o, we

approach the physical continuum limit, where the results of our calculations should

match experiments.

At the beginning of the section, we glossed over the issue of boundary conditions.

We can now deal with it appropriately. In most cases, it is appropriate to use peri-

odic boundary conditions in space. This is much like solid-state physics, where you

simulate one unit cell of a crystal. In that case, it is desirable for a wavefunction and

its periodic images to interact, since that's the physics that you want to capture. In

QCD, periodic images are an artifact that must be corrected for by either (a) com-

puting in a volume L3 large enough that image effects are negligible; or (b) assuming

some form of the effect for images on matrix elements and compensating for it (see

Section 4.2). We can enforce periodic boundary conditions along the v axis by setting

U,,(x) = U,(x + L,). Antiperiodic boundary conditions, on the other hand, result
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from setting U,(x) = -U,(x + L>). Finally, hard-wall boundary conditions in time

faithfully correspond to taking the expectation value of the path integral integrand

with respect to 10). They are implemented in practice by setting Utt(, (T - 1)) = 0,

which has the equivalent effect of deleting all the terms in the action that link quark

and gluon fields at t = 0 to those at t = (T - 1).

2.5 Evaluating the path integral

2.5.1 Breaking down the path integral

To calculate matrix elements, we have to evaluate the immense, but finite, integral in

Equation (2.18). The strategy can be summarized as follows. The gauge integral can

be written as a regular integral over a finite domain, but the Grassmann integral over

the quark fields cannot. However, for a given gauge field, this quark field integral is a

Gaussian integral, so we can evaluate it analytically using Wick's theorem. We then

calculate the gauge integral with Monte Carlo techniques.

We now elaborate on this prescription. Equation (2.18) can be written as follows:

Z = DU e-Sc[I] dq dq e-SF[q] f (q q, U).

We've introduced condensed notation for the integration measures and split the action

into: (a) terms independent of q and , collected in SG, which stands for gauge action;

and (b) all other terms, collected in SF, which stands for fermion action.

Let's introduce some additional conventions and notations to simplify our expres-

sions further. We begin by using units of length in which a = 1, so we'll stop including

a's in our formulas. Next, for a given U field, we define the following so-called D-slash

operator:
+4

()q)a(x) := , (1 + ),,Ui, (x - al)q'(x - ak).
-=-1
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The ) operator can also be viewed as a matrix over color, spin and space, as follows:

±4

pab(xY) := A (1 + ,)BUtab(x- a)S6-ay, (2.19)/ z- -1 JIM

where is the Kronecher delta. Thus ()q)a(x) = y (x, y)qo (y).

The fermion action is given by the formula

SF[d, q, U] = (m + 4)q (x) q (x) q)

We now introduce the parameter IC := 1/(2m + 8). For reasons discussed below, we

call n, the hopping parameter. Next, change variables qa(x) - Vf qa(x) and qa(x) 

\/'q (x). This introduces an overall factor of n;2X3x4xL3 xT into the measure, which

we can redefine away, and changes the fermion action to

SF [, q, U] q aE (x) qa(x) - na(x) ()q)a (X).

Finally, we introduce the Wilson-Dirac matrix, denoted by M:

1Mb(X Y) := I
h,y- r (X),y / Y).

With this definition,

sF[q, q, U] = Eq (x)M(x, y)q(y).
x,y

Note that M depends implicitly on the U field through P. In more condensed matrix

notation, where q and q are a column vector and a row vector, both indexed by color,

spin and lattice site, the above formulas read

M = E - c@p, (2.20)
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and

SF = qjMq.

There are three main reasons for rewriting the fermion equations as we did above:

1. The fermion integral is now manifestly a Gaussian integral, which can be cal-

culated by Wick's theorem.

2. The 4) operator is used extensively in all lattice calculations: its evaluation

consumes the bulk of the computational time of lattice QCD codes. By isolating

it and writing all lattice expression in terms of .4, a concerted optimization

effort can be made once on a single P implementation, and the benefits follow

immediately to all dependent codes [19].

3. The compactness of formulas using P eases their manipulation. In particular,

the hopping parameter expansion described below can be derived immediately

from Equation (2.20).

In the present context, Wick's theorem reads:

qMq al - l N .qNdqdqe qg (x)q/l ( (Yl) q (XN)qN (YN)
(de aM)(2n)N 1--x)P( M-a P13

((det M)(2K)N Z( 1)P (M- )aj]OlP (Xl YP1) ... ( M - ) aN' P N (XNYPN). (2.21)alp Na;IPN,
P

Here, P is the set of all permutations of the integers 1,.. . N, and (-1)P denotes the

P's sign.

In the quenched approximation, the determinant (det M) is ignored, which sig-

nificantly reduces computation time. It can be shown [21] that this replacement is

equivalent to suppressing the effect of sea quarks, that is, virtual quark-antiquark

pairs that pop in and out of the vacuum. Empirically, observables calculated within

this approximation are 10-15% different from experiment [3]. Throughout this thesis,

we'll always work in the quenched approximation.
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Once Wick's theorem is applied, we must still do a gauge integral of the form

I := DUe-SG[g(u).

This we do by Monte Carlo integration: we generate a finite set of gauge fields U,

picked at random with a probability distribution exp(-SG[U]), then take the average

value of g with respect to them. The mechanics of generating such gauge fields will

not be described here; the interested reader may consult [7, 6] for further details. An

important aspect of Monte Carlo algorithms is that they are statistical in nature,

so the calculated integrals will have quantifiable errors associated with them. We

estimate these errors with the jackknife method, summarised in Section 2.7.

2.5.2 Propagators

As can be gleaned from Equation (2.21), the fundamental building blocks of any

lattice calculation are the entries of the matrix M- 1. If we computed all elements of

M -1, then the calculations would be unmanageable by present standards. The matrix

is square with 3 x 4 x L3 x T rows and columns of complex numbers. Moreover,

although M is sparse, its inverse is dense. Simply storing the result for a typical

lattice (163 x 32) would take up 4.6 TB of space; calculating it would be prohibitively

expensive. So instead of computing all of M - 1, we compute a few linear combinations

of its columns, which we refer to as propagators. In perturbative language, these

correspond to dressed quark propagators.

Essentially, we want to calculate the quantity P. (x) in the following expression:

pab() := EM l)ay (y),
Y

by solving the linear system

ZA, a (y, x)P,(x) = S(y) (2.22)
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The vector SCb(y) is called the source, and specifies a set of linear combination of

M-l's columns. For example, to get M- 1 for a fixed y = Y, we'd solve (2.22) with

Sj .(y) = 5,y. Section 3.1 discusses the use of nontrivial sources.

In practice, Equation (2.22) is solved piecewise. We run through all 12 possible

values of (b, 3) and fix them in turn in the equation. This results in 12 standard

matrix-vector linear system, which can be solved iteratively with a numerical method

such as conjugate gradient or minimum residue.

Before proceeding, let's examine M -1 further. Starting from (2.20), we can expand

M -1 in powers of nr as follows:

M-1 = 1 + P - K2p 2 + 3 3 .. (2.23)

This expansion is called the hopping parameter expansion, and has a beautiful graph-

ical interpretation.

Let P, := (1 + -y,) be the spin projection matrices along the direction (not to

be confused with the P vector in Equation (2.22)). Then, suppressing spin, color but

not space indices, equation (2.19) reads

±4

P(x, y) := E p,Ut,(x - )_,y

Square this operator to get

±4 ±4
2 (x, y) = E p(X, )p(Z, y) = E E PUt,(x - )PUt,(x - - ),

z tL=±lv=l

In general, let 1e,.. ., be a sequence of L directions, with ei E { , , , ±t}.

Then,
L

pL (xy) = E Ii[Pi ti(x- Ej<i j)],
paths i i=1

of length L
to x from y
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Substituting this expression into (2.23) we finally obtain the following:

M- (x, y) = ( )L i[Pi U (x- Ej<i ej)l] .x i, (2.24)
L=O paths i i=1

of length L

We note the following fact in passing. The P's and the U's commute with each

other, as they are spin and color matrices respectively. So we may rearrange each

term in (2.24) as a product of: L, a product of spin projectors and a product of

link variables. By virtue of P, being a projector, we have P, P_, = 0. Thus, we can

ignore all paths that go back on themselves.

We can "draw" (2.24) by drawing all the paths to x from y, and associating to it

the respective propagator matrix. This construction is shown in Figure 2-2. Recall

that M- ' results from Wick's theorem as follows:

(M-ab(X, y) = J ddqq e-qMqa(x)q(y).

This corresponds to creating a quark at y and annihilating it at x. The propagator

is literally the "sum over paths" of the accumulated color and spin rotations that the

quark undergoes as it travels from y to x, with heavier quarks (higher m) suppressing

longer paths (because they have a lower ri). We can represent full matrix elements

diagramatically by showing representative paths in their propagators.

An important limit we use in this thesis is that of infinitely massive quarks, which

we call heavy quarks. In particular, note that as m -- oo, we get re -- O, so the

shortest paths from x to y dominate. We denote heavy quarks and their generators

by the subscript H. Physically, we know an infinitely heavy quark cannot move in

space, so (M')(, tf; y, ti) = 0 if #7 y. Assume tf > ti. Then it follows from the

hopping parameter expansion that:

-(tf-ti)(M l)(, t; Y, ti) = a1(1 + yo)Ut(, ti - 1) ... Utt(5, t) + O(). (2.25)

The factors of rK- (tf - t i) typically cancel in the ratios of path integrals we calculate
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Figure 2-2: Three representative paths in the hopping parameter expansion of M - 1(x, y).
Notice how paths can go backwards in time (quark-antiquark pairs) and how paths can
self-cross. The thick arrows denote link variables shared by two distinct paths.

(see Equation (2.11)).

There is one further crucial property of propagators, summarized by the formula

5y(M-l)t(x, y)'5 = (M- 1)(y,x), (2.26)

where 75 := 1 y273y74 That is, knowing M-l (x, y) (sometimes called a forward prop-

agator), we can compute M-l(y, x) (correspondingly called a backward propagator).

The importance of this trick is computational. The matrix elements we can compute

have either the source location (y) or the sink location (x) fixed. If we could only use

the linear system in (2.22) to calculate propagators, only the source location could

be fixed.

Equation (2.26) can be shown by directly computing y5 Mt(x, y) y5 = M(y, x) and

taking the inverse of both sides (since 575 = 1, we have y-51 = y5).
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2.6 Matrix elements evaluated in this thesis

In this thesis, we study the properties of heavy-light and heavy-light-light systems.

As model particles for both, we take a pseudoscalar kaon and a sigma. We need

operators J that act on the vacuum to annihilate states with the quantum numbers

of these particles; the operator J := Jyo can then be used to create such particles

from the vacuum.

Below, we used the symbols u and d to mean light quark fields (no contractions

between u and d quarks) and s to mean a heavy quark. These are the sources we've

used:

* For the meson case, we use a pseudoscalar kaon source J(x) = sa (x)Y 5,,>6abd(x).

In more condensed notation, this reads J = sy5d. The conjugate source is

* For the baryon case, we use a E source Jx(x) e (u(x)Fd(x))abcsx). We

used F = C5 = -yl1y3, corresponding to the "good" diquark sources of [1]. In

more condensed notation, this reads J = (uTCy 5d)s. The conjugate source is

J = -9(drC-y 5t). When evaluating baryon matrix elements, we project onto

the positive parity states only (Ja '- 1(1 + -y),,QJ,'), and average over both

spins.

In the continuum theory, the operator

jq (x) := q(x)y"q(x) (2.27)

is a N6ther conserved charge of the QCD Lagrangian. That is, Oj = 0, which is the

relativistic continuity equation encoding local charge conservation of quark type q.

In particular, j(x) is the density of quarks of type q at x. It is the closest object in

field theory to a probability density in ordinary quantum mechanics. We denote it

with a symbol of its own:

pq(X) := q(x)yOq(x).
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In the lattice, the current defined in (2.27) is not exactly conserved. Instead,

by applying Ndther's theorem to the Wilson action, we find the following point-split

current is conserved:

jPS(x) := q(x + ) 2(1 + y)U(x)q(x) q(x) (I - )U,(x)q(x + -)

In the continuum limit, the U factors tend to 1 while x + -- x, so we recover (2.27).

Analogously, the continuum current should be "almost" conserved on the lattice, with

deviations decreasing as a -- 0.

We experimented with both types of current during the course of this work, but

eventually settled on the continuum current: the computational effort involved is

substantially smaller and the continuum current is more useful when averaging a

density over many timeslices as discussed in section 3.4.

As an example of how these matrix elements were calculated, we derive the density

expectation for a meson in terms of propagators. The expression to calculate is:

(J(O, tsnk)p(, t)J(O, tsrc)) (2.28)

(J(O, tsnk)J(, tsrc))

Here, tsrc and tsnk are two arbitrary times both far enough from t that the ground

state of source J has been filtered out. Expanding J and p in terms of quark fields

we get the following expression for the numerator,

(J((, tsnk)P(:, t)J(6, tsrc))

=-(S,(O, tsnk)Y5,,/d 3(0, tsnk)dv(x, tt)ad(: , t tsrc))

Schematically, we can take the following two Wick contractions:

dd ) and rdd , dd
(s ddryoddyjs) and (~%ddaoddy5s)
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Figure 2-3: Visual representations of the two
meson density insertion (see (2.29)).
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possible contractions of a heavy-light

When all is said and done, we obtain the following expression for the numerator:

(J(6, tsnk)P(:, t)J(O, tsrc)) = (2.29)

y5E,1(]WHI)ea(O, tsrc; 6, tSnk)Y5, 3OP(M )a (o, tsnk; x t)TOy(M l)e(, t 0 t )

75,(MH )e (6O, tsrc; O, tsnk)Y5,a(M )( tk , tsrc) (M, t , )

This equation is shown diagrammatically in Figure 2.6.

The first term of (2.29) is now straightforward (if laborious) to compute using the

methods of the previous sections. The second term, usually called a loop diagram (see

Fig. 2.6(b)), is more problematic, because to compute it, we'd have to calculate prop-

agators with sources at every point in timeslice t of the lattice: such a computation

is prohibitively expensive. As a result, we simply ignore the contribution of this last

term to the probability amplitude. Physically, this corresponds to using a more com-

plex source whose loop diagrams all cancel; in this case, the source J = syd - sy 5

would achieve that goal.

The denominator of (2.28) poses no problem. Following the same logic as for the

numerator, we obtain the result

(J(6, tsnk)J(6, tsrc)) = 'Y5, (Ah ,) a ' ,src;, tnk)5 (M e tsnk; 6) tsrc)--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1( 'tC)snk)5,a/ /4)(, tsnk
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2.7 Jackknife error estimation

Any lattice QCD calculation that produces a numerical output must produce a cor-

responding measure of the error inherent to the lattice approximation. There are two

main sources of error in lattice calculations: statistical error, due to the Monte Carlo

integral over gauge field, and systematic error, due to the discretization of spacetime

and finite volume effects. Discretization errors are hard to quantify, but can usually

be dealt with by calculating the lattice result various a's and then extrapolating to

the continuum. Many finite volume effects, like images, can also be corrected for; for

details, see Section 4.2. As for statistical errors, we quantify these using the jackknife

method [9].

The main idea is the following. Suppose we have some distribution X with

p.d.f. p(x), from which we've sampled n values x1, ..., xn. Furthermore, we want to

estimate some function of the distribution by using the sampled values. For example,

suppose we wanted to calculate the expectation of some function f. The expectation

is defined as follows,

(f) := dxp(x) f (x),

and can be estimated from the sampled values by the formula

1

(f) n Xf(Xn)n
i=1

As n - oo, the approximation becomes exact. For n finite, we want to estimate the

difference between our estimated expectation and the exact expectation.

In bootstrap method, we take the sampled values xi as being the best available

approximation of p(x). That is, we assume

n

p(x) := (x-xi). (2.30)
i=1

Then we ask, "if we drew many samples of n values from this new delta distribution

and estimated (f) with them, how much would this estimate for f vary?" Mlore
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specifically, let

f: f (xi).f' n
i= 1

Denote by yk a set of n samples {y,... yk} drawn from (2.30), with 1 < k < M.

Essentially, yk is a selection with replacement of n elements from xi. Let

fk n
i=1

Then the error of our estimate to f is given by the standard deviation of the fk's, as

follows:

:= lim M ( (bootstrap estimate).
k--1

The jackknife method is an approximation to the bootstrap result which doesn't

require taking the limit M - oo. Instead, we calculate n estimates for (f) by omitting

each of the xi's in turn, then use the standard deviation of these estimates to quantify

the error on f. Specifically, let

1
f(k) - n -I f(xi),

i=l
ink

and
n

- I J(k)

k=l

(Note that f(.) = f here, but this coincidence doesn't generalize below). Then

Cn :=n ((k)- f()) (jackknife estimate).
k=1

The method can be generalized to arbitrary functionals of p(x) in the natural way.

Let O(x, r ... , n) be an estimator for some functional of p(x) based on n samples drawn
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from p. Generalizing the above definitions, we let

1 n
6 (k) = 6(X1,... ,k l ,Xk+l,... .,x) and 6(.) :=-E 9 (k).n k=l

Then (.) is our best estimate of the value of the functional, and the estimate of its

error is

:1= n (0(k)- 0( ) 2 (2.31)
k--1

All error bars in this thesis depict jackknifed statistical errors.

In Section 4.1, we need to fit a curve to a set of data points; the data points

have errors, so the fit parameters will have them too. The jackknife method provides

a clean, if expensive, way of estimating those errors. Suppose our fit function is

characterized by a single parameter . Then, to find 0, we do a X2 fit [20] to the

entire data set. Then, we can sequentially fit the function to all the data points not

in configuration c, with c ranging through the number of gauge configurations used:

this calculates values for 0(,). Finally, Equation (2.31) allows us to calculate an error

bar for . The procedure generalizes straight forwardly to multiple fit parameters.

2.8 Lattices used in this thesis

All results in this thesis were calculated on a lattice with the following properties:

1. Volume of 163, with 32 timeslices

2. Periodic boundary conditions in space, hard wall boundary conditions in time.

3. Gauge coupling of 6.0. By measuring the string tension [2], it can be deter-

mined that the lattice spacing a is then around 0.101 + 0.002 fm.

4. Total of 90 gauge configurations OSUQ60a, taken from the NERSC [23].

Most propagators were calculated at n = 0.153, which corresponds to a pion mass

rn, of 821 i 17 NleV, as shown in Section 4.1.

We wrote our codes using the QDP++ library [8].
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Chapter 3

Noise reduction techniques

In an ideal scenario, we could straightforwardly apply the techniques from Chapter 2

to calculate any ground state matrix element. Unfortunately, the gauge integration

is done with Monte Carlo techniques, so we can only estimate the matrix element

to within a certain accuracy. Let N denote the number of gauge fields used in the

Monte Carlo integration. As N increases, the error on the estimate decreases as

1/N. The computational cost per gauge field is nontrivial, so it's essential to find

ways of minimizing the error through methods other than increasing N.

The key idea behind many such noise-reduction methods is that we can use many

different sources J to measure the same ground state matrix element, given long

enough time separations. By picking intelligent J's, we can increase the overlap with

the ground state, as in Section 3.1. This technique allows us to measure operators at

closer time-separations than otherwise, where stochastic errors are less substantial. In

some cases, the form of the matrix element makes it easy to calculate large numbers

of related observables, which we can then average over to effectively increase N; these

methods are described in Sections 3.2, 3.4 and 3.5.

In general, the matrix elements will be complicated functions of the gauge fields U,(x).

When we construct better sources, we end up making J a function of the gauge fields,

which introduces stochastic noise. By "smearing" the gauge fields used to construct J,

we can reduce the amount of noise introduced. This smearing is described in Sec-

tion 3.3. Sometimes, however, we need to reduce the noise of the gauge links in
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the time direction; for example, when dealing with heavy quarks, the main source of

stochastic error comes from fluctuations in the gauge link line linking the source and

sink at two timeslices. In this case, we can modify the gauge links locally, averaging

gauge links not more than one lattice site away, such that fluctuations are reduced

by an order of magnitude, but the calculated matrix element still corresponds to the

desired continuum matrix element. This different smearing scheme is described in

Section 3.6.

3.1 Extended sources and Wuppertal smearing

The first direct improvement to the sources we can make is to give them some spatial

extent. A source such as J(x) = (x)-y5d(x) is infinitely localised at x, whereas

experimentally, a pseudoscalar pion (the ground state of J) has a charge radius of

around 0.67 fm [10].

The most general way to give a quark spatial extent whilst maintaining its gauge

transformation properties is to make the following replacement:

q.(x) Q() := ESaa(cx x) qa'

XI

Correspondingly,

-b( ) b -b b(d)(,7°St),°) /

yl

The matrix S is called the smearing matrix. To be able to interpret an extended quark

source in the language of states evolving over time, the smearing matrix must be 0

for sites at different time-slices. Furthermore, for Qa(x) and q(x) to have the same

gauge transformation law, the matrix S must have the following gauge transformation

law:

sax, X') gauge change g(z) gab(X)sbb, (X, X)(gt)ba (X).
This, x') is a product of spatial link variables forming a chain

This is only possible when (x, x') is a product of spatial link variables forming a chain
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from x' to x (perhaps multiplied by some external color matrix that's independent of

the U field), where the spin structure is unrestricted.

Consider the following path integral:

(FQQ) /(x,y) := J [DU DqDq]e -s Q(x)Q(y).

Expanding the definitions of Q and Q, we obtain the following equation:

(FQQ)a (x, y) = [DU D Dq]e - (x, x')qs (x ' (yO StY "pb (y I)
x ,yI

Splitting the gauge and fermion integrals and actions, and then factoring the S ma-

trices out, we finally learn that

(FQQ) (X y) =

[DU] e- S G E (S (x, x ) [(IDqq]e F a,(x)qO(y ) (Sl)(, y

Recall from Equation (2.21) that, in the quenched approximation, the quantity in

parentheses is equal to (M-l) (x', y'). Let Fqq := M- 1 to make notation consis-

tent. Further, define S'(y', y) := oyOSt(y, y')y. Suppressing all indices and regarding

S and Fqq as spacetime matrices, we see that

FQQ = SFqqS'.

The propagator Fqq is called a point-to-point propagator, whereas FQQ is called a

smeared-to-smeared propagator. A similar derivation shows FqQ := FqqS' = (qQ), and

so it's called a smeared-to-point propagator.

Following the derivation above, it's possible to show [25, App. L] a version of

Wick's theorem for extended quark sources Q: the only change is that point-to-point

propagators Fqq are replaced by smeared to smeared propagators FQQ.

In this thesis, we use Wuppertal smearing [12]. This scheme depends on two
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parameters, a and N. The smearing matrix S(x,x') has no spin structure, and

consists of a sum of all spatial gauge link paths of length I < N from x' to x,

weighted by a I . There exists a convenient iterative scheme to generate such an S for

a fixed x'. Let

S(o)y() = a6(y - x').

Then perform the following iteration N times:

i3(U' (y- ( y b (3.1)
$(i+1)(Y) =p l ++ ES(i -] (3.1)

Then set Saa, (xx') Saa 6a

The Wuppertal smearing matrix has an important property, which is obvious from

the sum over paths description:

S(x, x') = St(x', x). (3.2)

Because it also lacks spin structure, implying that S and yo commute, we conclude

that S' = S. Thus, the formulas for a smeared propagators simplify to:

FQQ = SFqqS and FqQ = FqqS.

In summary, to calculate a smeared-to-smeared propagator at a fixed source

point x', we'd calculate the smearing matrix S(x,x') as above, use it as a source

vector in (2.22) to obtain FqQ(X, '). Pre-multiplying this propagator by S corre-

sponds to applying the smearing procedure (3.1) on the x coordinate of FqQ(X, x').

Using the hopping parameter expansion, we can visualize a smeared-to-smeared

propagator as a chain of gauge links: see Figure 3-1.

The construction outlined above produces a smeared-to-smeared propagator from

a fixed point source to any sink point in the lattice. Using (2.26), we can produce an

38



Smeared-to-smeared propagator

Figure 3-1: Visualizing propagators (z dimension suppressed). The bottom line represents
one path in the hopping parameter expansion (2.24). The upper path represents one possible
path in a smeared-to-smeared propagator: the heavy lines are pure gauge link chains from
S weighted by a power of a, whereas the light line is a hopping path with spin structure,
weighted by a power of ,.

analogous fixed-sink propagator:

FQQ(X', x) = S(x', y)Fqq(y, z)S(z, x),
y,z

= Z S(x', y)Y5 Fqtq(z, y)y 5 S(z, x).
y,z

Noting that y5 and S commute and using (3.2), we see that

FQQ(', x) = y5S(x', y)F q(z, y)S(z, x)y5,
y,z

= 7Y5(St(z, x)Fqq(Z, y)St(x', y))t7 5,
y,z

= E 75(S(x, z)Fqq(z, y)S(y, x'))ty5

y,z

Therefore,

FQQ(X', x) = 5FQQ(x, x')y 5.

In other words, Equation (2.26) allows us to reverse the direction of both smeared

and unsmeared propagators.
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Source RMS vs Wuppertal smearing parameters

2.5
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Figure 3-2: RMS (in lattice units) of Wuppertal smeared sources as a function of Wuppertal
smearing parameters a and N (see Equation (3.3)).

To conclude, we calculate the spatial extent of smeared source as a and N are

varied. The calculations were done on the lattices described in Section 2.8. Regarding

the smearing matrix from x' to r as a kind color wavefunction of an extended quark

at x', it's reasonable to make the following definition:

I1( 12:= Tr[St(r, x')S(r, x')],

where the time components of t and t' are equal but otherwise irrelevant. We then

define the RMS of an extended source as follows:

R(a, N) := r r2lK(12] /2. (3.3)

The RMS has the virtue of having a physical interpretation, whereas smearing pa-

rameters like oa and N do not.

We calculate R for each gauge configuration to obtain a mean R with associated

error. When U = 1, smearing corresponds to exploring all walks of N steps or less
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from a given lattice point, so we'd expect I(ri12 to be roughly Gaussian, and R to

grow as v/. The gauge links act like complex rotations whose effects can partially

cancel; thus we expect the same qualitative behavior, but with lower absolute RMS

values.

Figure 3-2 shows a contour plot of source RMS as a and N are varied. This

establishes that R is a strong function of N, but not of a for a > 1. We decided

to use a = 3.0 throughout the rest of this work. Figure 3-3 plots source RMS as a

function of N at this value of a. The square root scaling behavior is evident.

Source RMS vs Wuppertal smearing parameters (alpha = 3.0)
4.5

4

3.5

3

,C)

0)

2.5

2

1.5

0.5

0
0 10 20 30 40 50

N
60

Figure 3-3: RMS (in lattice units) of Wuppertal smeared sources as a function of smearing
steps N, with a = 3.0 fixed (see Equation (3.3)).

3.2 Momentum projection for quark masses

The purpose of using extended sources is to improve the overlap between J and its

ground state. When calculating the mass of this ground state, there is an extra trick

that allows us to effectively increase N by orders of magnitude while simultaneously

increasing the energy gap between the ground state and the first excited state. Both

of these effects allow us to measure bound state masses with few gauge configurations
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at high accuracy. The trick is to analytically project the sink onto the zero momentum

subspace of states.

As discussed in Section 2.3, we can find the ground state energy of J's ground

state by calculating the following quantity:

C(, t; A, t') := (J(x, t)J(Y, t')).

As It - t'l - o, we get C(Y, t;', t') -- Aexp(-(EJ - Eo)lt - t'j), where E is the

energy of the vacuum (we can redefine E away by adding a constant shift in energy

to the action). By tracking the slope of log C(t - t'), we can extract EJ, which is the

ground state energy/mass.

As in the continuum theory, we can Fourier transform to define states of definite

momentum:

J(p, t) :-e eiyJ( t).

If we use a definite momentum sink and insert a complete set of states between it

and the source, we can see that only the states of the same momentum in the source

survive. In other words, projecting one of the source or sink automatically projects

the other one.

Suppose we project the sink onto zero momentum. Fixing x' and t', we can define

C(t - t') := EC(, t; , t').

This quantity converges faster towards the ground state: presumably, the first zero-

momentum excited state of J has a higher energy than the first non-zero momentum

excitation of the ground state, so we've increased the relevant energy gap dictating

converge rate. Moreover, the sum over all lattice sites x implies that Co averages

many more gauge link paths that does C(i, t; x', t) alone; effectively, this is equivalent

to increasing N by a factor of about L3, with the corresponding improvement in

statistics.

These techniques are used in Section 4.1 to determine the masses of the r and
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the p at various K values.

3.3 APE smearing of gauge fields

When smearing a source, the gauge links used introduce a certain amount of noise.

We can reduce this noise by smearing the gauge field: that is, replacing each gauge

link with an average of many nearby gauge paths. As long as the averaging is done in

a way that maintains the gauge transformation properties of each gauge link, using

this smeared gauge field to generate an extended quark source is just as valid as using

the original one, except stochastic fluctuations should be substantially reduced.

APE smearing [11] is a particularly simple iterative scheme of smearing gauge

fields. We define the staple of a link Ut(x) in a direction v as the gauge path that

begins at x, goes in the direction vP, then along , then along the -v direction again.

By construction, a staple has the same gauge transformation law as the original link.

Denote the stable defined above by T,t(x). It's given by the following formula:

T1,(x) := U (x + v + A)U (x + v)Ut(x).

One iteration of APE smearing replaces each link of the gauge field with a weighted

average of itself and its staples. We use a variant of APE smearing in which only

spatial links are averaged, and only spatial staples are considered; though not strictly

necessary, this restriction avoids mixing links involved in time evolution with those

used in source smearing. One iteration of this spatial APE smearing performs the

following replacement:

3
Ut,(x) -p [P(1 - c)Ut(x)+ c E Tt>(x) (p 4). (3.4)

The parameter c controls the weight of the averaging. Furthermore, since SU(3) is

not a vector space, we generally have to project the averaged gauge link back into
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SU(3) using the P operatorl which we now describe.

Projecting an arbitrary 3x 3 matrix V onto SU(3) is done by picking the U E SU(3)

that minimizes IU - V112 under some norm. The following matrix norm is widely

used:

lIMI12 := Tr[M t M]. (3.5)

Expressing the above formula in terms of the entries of M, we see

MII2 = E MbMab = E IMSbl2

a,b ab

Thus the norm (3.5) is the natural generalization of the standard vector norm to

matrices.

We can re-express this minimization more usefully by expanding IIU - V112 as

follows:

IIU - Vll2 = Tr[(U - V)t(U- V)],

= Tr[UtU - UtV - VtU + VV],

= Tr[] - 2 Re Tr[UtV] + Tr[Vt V].

The last line follows from U being unitary and Tr[Mt] = Tr[M]* for any matrix M.

Since V is fixed during the minimization, projecting V into SU(3) is equivalent to

picking a U E SU(3) that maximizes ReTr[UtV]. Cabibbo and Marinari [6] have

found an efficient algorithm, described in Section 3.3.1, to do this maximization.

We now prove an essential property of the P operator. Let g E SU(3). Then the

following two equalities hold:

P[gV] = gP[V]; (3.6a)

P[Vg] = P[V]g. (3.6b)

1We use the same symbol for the SU(3) projection operator and the path ordering operator; the
context usually makes the implied operation clear.
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Assume the U E SU(3) that maximizes ReTr[U t V] is unique2 . Set U' := P[gV],

so that U' maximizes ReTr[(U')t gV] = ReTr[(gtU')tV]. By uniqueness of U, we

conclude U = gtU'. In other words, we find U' = gU, which proves the first statement.

The proof of the second statement is analogous.

Equations (3.6a) and (3.6b) guarantee that both V and P[V] have the same gauge

transformation laws. Thus, APE-smeared gauge fields can be used in Wuppertal

smearing.

The order in which the replacements in (3.4) is done is important. Two natural

choices emerge: (a) perform all the replacements simultaneously; or (b) perform the

replacement at every lattice site sequentially. The difference is that in (b), Iteration i

at site makes use of the partial results of Iteration i and those of Iteration i- 1, whereas

in (a), Iteration i only makes use of the results of Iteration i-1. Empirically, D. Sigaev

has found3 that in scheme (a), the Cabibbo-Marinari algorithm fails to converge for

c > 1/3, whereas in scheme (b), this doesn't happen. For historical reasons, we've

used scheme (a) for this thesis.

In Figure 3-4, we calculate the effect of APE smearing with c = 1/3 on the source

RMS, for various numbers of APE smearing iterations. As expected, APE smearing

makes the gauge fields fluctuate less, so there are fewer cancellations along any gauge

path, which slightly increases the RMS of the extended quark source.

In Figure 3-5, we show the effect of APE smearing on stochastic fluctuations. To

do this, we calculate for each smeared quark source the following quantity:

S := Z11 (r 2

Denote by S the mean value of S across all gauge fields used, and by as its error.

We've plotted s/S for various sources, under various APE smearing conditions.

2 This need not be true in certain degenerate cases, for example V = O. However, we may expect
it to be true for "typical" V's generated by the APE prescription

3 Personal communication.
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Figure 3-4: Wuppertal-smeared (a 3.0) source RMS when gauge field is APE smeared
at c = 1/3. The lower curve corresponds to no APE smearing, with subsequently higher
curves corresponding to 1-50 APE smearing steps.

3.3.1 The Cabibbo-Marinari algorithm

In their paper [6], Cabibbo and Marinari provide a recipe for generating random

elements of SU(N) with the following Boltzmann distribution:

p(U) - exp(-P Re Tr[VfU]), (3.7)

where V is a fixed, arbitrary N x N matrix, when we know how to do this analytically

only for SU(2). By looking at the standard Wilson gauge action (2.13), we see this is

a crucial step in generating Boltzmann-distributed gauge fields U,(x) for use in the

gauge Monte Carlo integral; in that case, V is the sum of all the staples of a particular
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Figure 3-5: Relative error os/S (see text) in source as a function of source RMS and
number of APE smearing steps (a = 3.0, c = 1/3).

gauge link. When -+ oc, the probability of U maximizing Re Tr[tU] tends to 1.

Their algorithm thus provides a concrete way to project any matrix onto SU(N).

The main idea is to define a set F := {SU(2)1,..., SU(2)m) of m SU(2) subgroups

of SU(N). Denote by a some element of one of the subgroups of F. We require the set

F to be large enough that no element of SU(N) is invariant under left multiplication

by some a. For N = 3, the following three subgroups suffice:

al a 2 0 (aO 0 a2 1 0 0

SU(2)1 := a3 a4 0 , SU(2)2 :0 1 0 and SU2 := a a2

0 0 1 a3 0 a 4 ]k a 3 a 4
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where

a a E SU(2).
a3 a4 !

Let aci SU(2)i. Further, let U(°) := U and

U(k) := akak-1 ... aCU.

Suppose we chose al, then a 2, ... , then am, such that ai is distributed according to

p(ai) exp(-3 Re Tr[VtaiU(i-l)]) = exp(-/ Re Tr[(V(U(i-1))t)tai]). (3.8)

Cabibbo and Marinari's main result is that if U E SU(N) is distributed according

to (3.7), and the ai are picked as above, then

U' := U(m) = am cl1 U (3.9)

is also distributed according to (3.7). Thus, starting with any U (say U = 1), we can

generate a sequence of Boltzmann distributed elements of SU(N).

We're interested in the -, oo, in which choosing ai according to (3.8) is equiva-

lent to minimizing Re Tr[Mtai] . This operation we can do analytically. For simplicity,

we take M, a E SU(2), though the derivation extends trivially to aci E SU(2)i.

Any a E SU(2) can be written as the following linear combination:

a := E+ ,

where 3 E IR and p E I3, and, a being unitary, satisfy

/2 + p2 = 1. (3.10)

The vector consists of the three Pauli matrices. Recall that these matrices are

traceless and Hermitian, and that Tr[aiaj] = 2 ij. Furthermore, by using complex
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prefactors, we can represent any 2 x 2 matrix as follows:

M := NI+N a,

where

N = Tr[M] and NV Tr[MI].

Within this setup, we can see that

Re Tr[M toe] = Re[2N*f3 + 2N* . ].

The right hand side is maximized when (/, /) = k Re(N, IV), with k chosen to sat-

isfy (3.10).

The result derived in the previous two paragraphs allows us to pick ci matrices

distributed according to (3.8) as o. By applying the Cabibbo-Marinari re-

sult (3.9), we can maximize Re Tr[UtV] when U E SU(N), in particular when N = 3.

3.4 Averaging multiple timeslices

Another straightforward statistics improvement technique we can implement is to

average the values of some operator over as many timeslices as possible, rather than

just considering it at one timeslice. The limiting factor is the speed at which the

ground state is filtered out by J. For instance, consider the following matrix element:

p(~,t) = (J(, tsnk)P(, t)J(, tsrc)) (3.11)
(J(, tsnk)(, tsrc))

For tsrc < t < tsnk, we expect p(i, t) to be independent of t. Thus, averaging over

many such t is equivalent to multiplying the number of gauge fields by some small

factor.

In Section 4.2, we evaluate matrix elements with tsrc = 11 and tsnk = 20. After

showing reasonable convergence of the ground state at intermediate timeslices, we

average the calculated matrix element over t = 15 and t = 16, doubling our statistics.
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Figure 3-6: Schematic calculation of the density expectation at Y of the light quark in a
heavy-light meson, measured from the position of the heavy quark.

3.5 Multiple heavy lines for heavy quark matrix

elements

When calculating matrix elements of a source with heavy quarks, stochastic errors

are grossly larger than when dealing with light quarks alone. The origin of this

difference can be seen as follows. Figure 3-6 visualizes the propagation of quarks

that the numerator of (3.11) gives rise to when J is a heavy-light meson. The heavy

propagator, shown as a thick black line, is a chain of gauge links (see Equation (2.25)).

The fluctuations in this one path completely dominate the error in the matrix element.

The solution to the heavy-line problem is to average over many "equivalent" heavy

lines. We've explored two ways of implementing this solution: averaging over several

displaced heavy line and smearing the links that make up the heavy line. Here we

discuss the former method; Section 3.6 is devoted to the latter.

The choice of position h of the heavy line on the lattice is completely arbitrary,

as long as the position x of the light-quark density operator is measured from h.

With this insight, we may displace the heavy line a few lattice units away from O

and calculate a new value of p(r, effectively increasing the number of lattices in the
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Monte Carlo gauge integration by about one order of magnitude. We need a way to

connect the displaced heavy line to the origin of the light quark propagator to make

the entire matrix element gauge invariant: the Wuppertal smearing matrix S(h, ),

with a low number of Wuppertal smears, provides one such connection. Schematically,

the averaging looks as follows:

+ +

The dashed arrow represents x. Each term is a copy of (3.11), not just its numerator.

Notice that, at the measurement timeslice, all the terms in the above sum look like

shifts of each other; thus, by translational invariance, they should be equal.

An alternative way to understand these heavy line shifts is to regard the heavy-

line as fixed and the above sum as averaging many copies (3.11) with displaced light

quarks. This perspective highlights an important fact: displacing the heavy line by

too much distance is unhelpful, because the overlap of the sources with the heavy-light

meson ground state becomes negligible.

In Section 4.2, we compare the results of computing a matrix element with a single

heavy line and with many displaced heavy lines.

3.6 HYP smearing of heavy quark lines

Averaging over heavy lines as described above is a clever way of averaging many

equivalent observables together to lower statistical fluctuations. Nevertheless, it's

a faithful rendition of a heavy-light meson: the heavy quark produces a single line

of gauge links. A complementary approach, used by [1], is to apply so-called HYP

smearing to the time links. This scheme replaces each time link with a weighted

average of paths close to the link, resulting in an order of magnitude reduction in

51

,



errors. However, the heavy quark interpretation of the calculation is then only valid

in the a -+ 0 limit.

HYP smearing, shorthand for hypercubic smearing, was first introduced in [13].

The prescription to follow is given symbolically below:

No P.- +a 2 n + 3 7

where P is the SU3 projector defined in Section 3.3. The idea is similar in spirit to

APE smearing, but using only links less than 2 lattice units away to smear. Thus,

the smoothing is much more localized. More formally, we have

t(X) - 7I1U (X) + C2 U ( + )U ( + )U (x)
VOM

t3 E U v(X + p)U?(X + )Ut(x + + )Ut(x + )Ut(x)].
r7IOA,V

The parameters ci are chosen to minimize fluctuations, in some sense. We use

the values al = 0.75, a 2 = 0.60 and a 3 = 0.30; these were found in [13] to minimize

fluctuations in the average plaquette.
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Chapter 4

Measurements

In this chapter we summarize a number of lattice measurements. First, to confirm

the implementation of the methods described in Chapters 2 and 3, we reproduce

published results on the masses of the r and the p, in the a regime of heavy up

and down quarks. We then proceed to measure the density correlator in a heavy-

light meson system; we show a progression of results as various smoothing techniques

and corrections are applied, culminating with an especially clean measurement of the

density operator shown in Figure 4-11. Finally, we extend our measurements to the

case of a density-density correlator in a heavy-heavy-light baryon. This last result is

compared to the recent literature, and then its possible interpretation is discussed.

Throughout, we use the lattices described in Section 2.8.

4.1 Lattice Mass Measurements

To measure the mass of a source J, we calculate the following correlation function:

C(t) := (J(y, t)J(x, tsrc))

Here, x and tsrc are fixed. As explained in Section 3.2, the sum projects J onto zero

momentum, increasing the energy gap between the ground and first excited state,

as well as massively improving the statistics of the measurement by averaging over
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many more gauge paths than if y were fixed.

In the region where the ground state has been filtered out, we expect

C(t) = A exp[-(EJ - Eo)(t - tsrc)]. (4.1)

By shifting Eo to 0, we can eliminate any reference to it. We can then define the

following quantity, called an effective mass:

C(t+)meff(t) = log (t)
c(t)

In the time regime where (4.1) holds, a graph of meff vs. t looks flat; we say it

"plateaus." By fitting the measured meff to a flat line in this region, we can extract E.

Outside this region, on the other hand, the speed at which meff tends to a flat line

indicates the size of the energy gap between the ground and first excited states.

We calculated E for a two sources: a pseudoscalar r, with J = qy5q; and a p,

which has J = ?-yq (all four iu's are equivalent, we've used / = 1). All quarks

had the same mass: we set n, to 0.135, 0.153, 0.155 and 0.1558. As shown below,

these values correspond to pion masses of 2.37 GeV, 821 MeV, 577 MeV and 454

MeV, respectively; the physical pion mass is 135 MeV [10]. Choosing these particular

values for K allowed us to numerically compare our results with [3]. Our sources were

Wuppertal smeared, with a = 2.5 and N = 40, and were placed at (, tsrc) (0,6).

This increases the amount of time during which (4.1) holds while decreasing the effect

of images induced by the hard-wall boundary in the time dimension.

In Figures 4-1 and 4-2, we show a few representative plots of meff vs. t. The onset

of plateaus is evident. Also shown are the fits to straight lines used to extract source

masses. We chose to fit meff(t) to a straight line in the range of 11-24. Empirically,

this looked separated enough away from tsrc = 6 for the ground state to have filtered

out, and far enough away from the hard wall at t = 32 that image effects are negligible.

Table 4.1 shows our results for the mass measurements, compared to the literature

results from [3]. In particular, taking a = 0.101 ± 0.002fm as in [2], we see that at

= 0.153, the pion has a mass of 821 i 17 MeV.
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Figure 4-1: Effective mass plots for r at = 0.135 (top) and = 0.1558 (bottom). Best
fits to flat lines in range t = 11-24 are also shown.

4.2 Density Correlators in Heavy-Light Mesons

One of the primary objectives of this thesis was to calculate the following observable

for a heavy-light meson source:

p() :=
(J(0, tsnk)P(:V, t)J((0, tsrc))

(J(0, tsnk)J(0, tsrc))
(4.2)

7rI

Thesis
1.2175 ± 0.0025
0.4245 ± 0.0031
0.2989 + 0.0043
0.2377 ± 0.0051

Gupta et al.
1.217 ± 0.001
0.421 ± 0.000
0.296 ± 0.001
0.233 ± 0.001

P
Thesis

1.2294 + 0.0027
0.5075 ± 0.0059

0.426 i 0.010
0.396 ± 0.014

Gupta et al.
1.229 ± 0.001
0.504 i 0.001
0.422 ± 0.002
0.386 ± 0.003

Table 4.1: Mass measurements of 7r and p at various K. All results are in lattice units
(la = 0.101fm = 1.95GeV).
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Figure 4-2: Effective mass plots for p at = 0.135 (top) and = 0.1558 (bottom). Best
fits to flat lines in range t = 11-24 are also shown.

The details of the calculation are described in Section 2.6. For the light quark, we

use K = 0.153. Since we need to calculate new sets of propagators for different values

of tsrc and tsnk, we've arbitrarily fixed trc = 11.

There is considerable latitude in choosing the arbitrary parameters of the above

matrix element:

1. Where to place t with respect to tsrc and tsnk: so as to not priviledge either

source or sink, we want t 1 (tsrc + tsnk) When this average is not an integer,

there are two symmetric t values: by averaging p on these two middle timeslices,

we can double our statistics without inducing large systematic errors.

2. How far away to place tsnk from tsrc: Ideally, we'd place them as far away as

possible while still staying away from the time walls of the lattice (to avoid image

effects). In practice, the error bars on the measured p's explode as tsnk - tsrc

grows. Thus, we need a compromise: we want tsnk - tsrc as small as possible,

while still ensuring that the ground state has been filtered out by time t.
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3. How to smear the sources: The purpose is two-fold. First, we want to maximize

the overlap between J and the ground state; that way we can keep tsnk - tsrc

low. Secondly, by smearing we are sampling over many similar lattice paths; up

to a certain point, this sampling will reduce error bars on sample points.

Figure 4-3 shows the result of a naive evaluation of (4.2). For this case, we've used

tsnk = 18. The light quarks were smeared with Wuppertal smearing at a = 3.0 for

N = 8 times with an APE-smeared gauge field (c = 1/3, N = 10), which corresponds

to a source RMS of 2.0. Each point on the graph shows a particular value of p(i),

with r := l]], at t = 14. The error bars have been suppressed for clarity: they are of

the same general size as the spread in the data values.
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Figure 4-3: Naive evaluation of density correlator; see text.

With this calculation complete, we then aimed at using the techniques described

in Chapter 3 to reduce the errors on the estimate of p as much as possible. Figure 4-4

shows the same calculation after a step in the direction of reducing errors. In this
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figure, we average the data points about the two central timeslices t = 14 and t = 15,

as described in Section 3.4.

HL pion density, r^2 <rho(r)>
APE smeared sources, wupp smeared N=8, "RMS"=2.0

src_t=l 1, snkt=18, measure_t=14+15, continuum current
Heavy line at (0,0,0)
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Figure 4-4: Density correlator, averaged over two central timeslices; see text.

The next obvious step is to average over many heavy lines, as described in Sec-

tion 3.5. Figure 4-5 shows the same plot as Figure 4-4, but averaged over 7 heavy

lines: (0, 0, 0) and all lines exactly 1 unit away from the origin. The improvement

is evident. We start seeing convergence towards a single curve. Strong image effects

that were previously masked by statistical noise are now becoming evident, as seen

by the peak at r = 8 (halfway between the source and its nearest periodic image).

A question that arises naturally at this point is whether or not tsnk = 18 is high

enough for the ground state to have filtered out. If the ground state were filtered out

by t = 14, the shape of the p should be relatively independent of the source used.

We evaluated p for three sources of varying sizes: they were Wuppertal smeared 8,

19 and 35 times, to make their RMSs 2.0, 3.0 and 4.0 lattice units, respectively.
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HL pion density, r2 <rho(r)>
APE smeared sources, wupp smeared N=8, "RMS"=2.0

src_t=1 1, snkt=18, measure_t=14+15, continuum current
Heavy line at (0,0,0) & (+-1,+-1,+-1) averaged with equal weights

2 4 6 8 10

Figure 4-5: Averaging over many heavy lines.

The resulting plot sequence is shown in Figure 4-6; it is evident the curves are not

independent of the source shape.
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HL pion density, r2 <rho(r)>
APE smeared sources. wupp smeared N=8, "RMS"=4.0

srct=1 1, tkt=18. measureJ=14+15, continuum current
Heavy line at (0.0.0) & (+-1.+-1,+-1) averaged with equal weights
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Figure 4-6: A value for tsnk - tsrc of 7 is not high enough: the calculated matrix elements
depend on the shape of the source, not just its quantum numbers. The sources used have
different RMS (Wuppertal smearing iterations): (a) 2.0 (8); (b) 3.0 (19); and (c) 4.0 (35).
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Though not shown explicitly here, we explored using tsnk = 20 and tsnk = 22.

At the larger value, error bars started becoming unmanageable, whereas those for

tsnk = 20 weren't much worse than in the tsnk = 18 case. Thus, we decided to

select tnk = 20 and continue with the exploration of observables; that this source-

separation distance suffices will be shown at the end of the section. From now on,

the two timeslices that are averaged are t = 15 and t = 16. Because we also want a

source that matches the actual meson ground state as closely as possible, we decided

to use the N = 19 source, with an RMS of 3.0 (an RMS of 4.0 would have been more

appropriate, but the increased error bars of that source far outweighed the benefit of

better source/ground-state overlap).

We can improve our statistics for free by averaging p(Y) over cubically equivalent

lattice sites. For example, because of cubical symmetry, we know p(O, 0, 1), p(O, 1, 0)

and p(1,0, 0) are relatively independent statistical samples of the same mean value.

An arbitrary point will in general be in a family of 8 x 6 = 48 cubically equivalent

points. We call these sibling points of the original point. The siblings of a point

correspond to all straight angle rotations and axis reflections that preserve a cubic

lattice; for some special points, some sibling points are equal. By averaging over

cubically equivalent points, we can increase the effective number of lattices used by

a factor of 48. We perform this average from now on.

There is one more complementary technique that we can use to lower errors: HYP

smearing of the heavy quark links. As described in Section 3.6, the calculation with

smeared heavy quark links becomes equivalent to the calculation with unsmeared

links in the continuum limit. We applied HYP smearing without averaging over

many heavy lines at first; the dramatic contrast between HYP smearing and no HYP

smearing is evidenced in Figure 4-7.
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HL pion density, r2 <rho(r)>
APE smeared sources, wupp smeared N=19, "RMS"=3.0

src_t=l 1, snk_t=20, measure_t=15+16, continuum current
Heavy line at (1,0,0)

.N
a

(a) °

A
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HL pion density, r2 <rho(r)>
APE smeared sources, wupp smeared N=19, "RMS"=3.0
src_t=l 1, snk_t=20, measure_t=15+16, continuum current
Heavy line at (1,0,0) (HYP smearing of heavy time links)
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Figure 4-7: Density correlate
timeslices averaged; sources at
links are HYP smeared.

2 4 6 8 10 12 14

r source at tsrc = 11 and sink at tsnk = 20, central two
RMS= 3.0. (a) No HYP smearing of time links; (b) Time
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Combining HYP smearing and heavy-line averaging, we get an extremely accurate

measurement of p(V) on the lattice, as shown in Figure 4-8. The two most serious

artifacts that remain are due to the lattice. At high r, we have the periodic images of

the sources contributing to the measurement of p. At low r, "Cartesian" paths along a

single direction to certain lattice points unduly favor quark propagation among them;

the small outliers in this region, in fact, reflect the breaking of rotational symmetry

at distances on the scale of the lattice spacing. Both artifacts are addressed below.

HL pion density, r2 <rho(r)>
APE smeared sources, wupp smeared N=19, "RMS"=3.0
src_t=l 1, snk_t=20, measure_t=15+16, continuum current

All heavy lines at most 1 step away (HYP smearing of heavy time links)
U.UZb

0.02

V

0.015

E 0.01t

0.005

0 
0 2 4 6 8 10 12 14

Figure 4-8: Density correlator source at tsrc = 11 and sink at tsnk = 20, central two
timeslices averaged; sources at RMS= 3.0, HYP smearing of time links; averaged over
7 heavy lines. No image correction.

Before proceeding, however, we want to verify that having tnk = 20 indeed is

large enough to ensure that the ground state has been filtered out. To this end, we

calculated p with t = 14 & 17 and with t = 13 & 18. In particular, we should see the

plot of p stabilize as t is brought further away from the source or sink. This is exactly

what is shown in Figure 4-9.
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HL pion density, r
0

2 <aho(r)>
APE smeared sources, wupp smeared N=19. "RMS"=3.0
src_t11. snk_t=20. measure t=13+18, continuum current

All heavy lines at most 1 step away (HYP smearing of heavy time links)
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00 5i

0.015 _

~O~ ~ ~~~ ,

0 2 4 8 8 10 12

HL pion density, r02 <rho(r)>
APE smeared sources, wupp smeared N=19, "RMS"=3.0
srct=11, snk t=20, measure_t=14+17, continuum current

All heavy lines at most 1 step away (HYP smearing of heavy time links)
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HL pion density, r2 aho(r),
APE smeared sources, wupp smeared N=19, "RMS"=3.0
src_t=11 snk t=20 measuret=1516. continuum current

All heavy lines at most 1 step away (HYP smearing of heavy time links)
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Figure 4-9: With tsnk - tsrc set to 9, we see the calculated matrix elements become almost
independent of the shape of the source, as they should be if we've allowed enough time
between the source/sink and the density operator for excited states to have been filtered
out. The density insertions are (a) 2, (b) 3 and (c) 4 timeslices from the source.
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Image effects [5] are easy to understand in theory, but harder to correct for in

practice. The principle is shown in Figure 4-10 for the 1-dimensional case. In gauge

theories, the density of a periodic source and its image is equal to the sum of the

two individual densities (in essence, the cross-term is an infinite Polyakov line, with

infinite energy; see [5] for the details).

4- -

Periodic image's quark density Periodic image's quark density

Figure 4-10: Principle behind image effects and their correction.

The contribution of periodic images to the density at a particular point is usually

at a region far away from the image's source location. It is known that p(Y) decays

exponentially as l - oo. By assuming this limit is valid for some region Q within

the lattice whose points have high r (for example, r > 8), we can calculate what p(y)

with y'E Q should look like. Then by varying the parameters such as the decay rate

of p(r) at large r, we can fit the data in Q to a phenomenological model. Finally, we

can use that model to calculate the effect on density of periodic images throughout

the lattice, and subtract that effect in a post-processing step.

This exact strategy is implemented below on the lattice, with p(,r = A exp(-mor)

assumed for r > 8. After correcting for the images found with this procedure, we get

our final measurement of p(i), shown in Figure 4-11.

The progression from Figure 4-3 to Figure 4-11 shows the cumulative effect of

the calculational improvements introduced in this work. These improvements make

possible the measurement of diquark correlations in the next section.
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HL pion density, r2 <rho(r)>
APE smeared sources, wupp smeared N=19, "RMS"=3.0
srcj=1 1, snk_t=20, measuret=15+16, continuum current

All heavy lines at most 1 step away (HYP smearing of heavy time links)
Image correction and (O,x,x),(x,O,x),(x,x,0) locations omitted
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Figure 4-11: Final measurement of p(r). Source at tsrc = 11 and sink at tsnk = 20, central
two timeslices averaged; sources at RMS= 3.0, HYP smearing of time links; averaged over
7 heavy lines; Cartesian paths close to origin omitted; image corrected.

4.3 Density-density correlator in heavy-light-light

baryon

4.3.1 Diquarks in theory

Within larger hadrons, we call diquarks any pairs of quarks that interact strongly.

An extended discussion on diquarks can be found in [14]. In gross terms, the most

attractive channel for two-quark interactions, after those that induce confinement and

chiral symmetry breaking, is thought to be the color 3, flavor antisymmetric, spin

zero channel; this phenomenon is observed in the gluon exchange diagram between

two heavy quarks, for instance, and in interactions mediated by instantons. Thus, we

expect the two quarks in the diquark (qC-y5q) to interact, but the interaction can't
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be calculated analytically.

A simplification used by Jaffe and Wilczek [15] is to treat the diquark as nearly

point-like, so that it behaves like an antiquark. They then use ideas from spectroscopy

models of meson based on flux tubes, and apply them to hadrons, treating them as

quark-antiquark (diquark) pairs. Of course, diquarks are not pointlike objects. Here,

we look at exactly how correlated the two quarks in a diquark really are.

4.3.2 Diquarks in practice

In this section, we finally calculate one of the matrix elements that tell us about

diquarks: the density-density correlator. We'll define it as follows:

(J(, tsnk)p(, t)pd(, t)J(, tsrc))
(J(0, tsnk)J(6, tsrc))

For this initial exploration, we've used a single source, namely J = (uC-y5d)s; the

diquark in parenthesis is commonly known as the "good" diquark, in opposition to

the "bad" diquark (uC-yd). Although we were unaware of it when we began this

work, Alexandrou, de Forcrand and Lucini [1] have performed a similar calculation,

albeit in a more restricted geometry. Our work aims to extend their calculation to

remove this restriction, and so explore diquarks in a broader regimel.

From the experimentation with the heavy-light meson, we decided to use the

following conditions for the calculations throughout:

* Wuppertal smeared sources, with a = 3.0 and N = 19, using an APE-smeared

(c = 1/3, N = 10) gauge field for smearing.

* A source and sink locations of tsrc = 11 and tsnk = 20, respectively.

* Data taken at timeslices t = 15 and t = 16, then averaged.

* HYP smearing of the heavy time links.
1 Recently, the de Forcrand collaboration has presented work similar in nature to ours
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As explained in Section 2.6, we take the mass of the u and d quarks to be equal.

In this case, the source is symmetric under the exchange of u and d; thus, we expect

the following equation to hold:

pp(, ) = pp(y, x).

Indeed, we used this condition, among others, to check the validity of our codes.

The density-density correlator allows us to study a diquark in the color field of an

infinitely massive quark: we cannot study a diquark in isolation because the structure

is not a color singlet. It is important, then, to separate the effects of the polarizing

heavy quark field from interactions between the two quarks. For this purpose, define

the single-quark density as in Section 4.2, namely

(J((, tsnk)Pu(, t)J(6, tsrc))
(J(G, tsnk)J(O, tsrc))

The subscript is there to distinguish between different quark flavor densities. For our

particular source, the manifest u/d symmetry ensures p() = Pd(X). We then define

the following correlation function:

C(,:= pp(5, Y) - pu(i)Pd(Y)
Pu () Pd (Y

If the two light quarks had independent dynamics, then we'd have pp(, y) = Pu(i)pd(Y,

so C(Y, y) = 0. It follows that C(Y, y) provides a convenient, dimensionless measure of

how the behaviour of the two light quarks is correlated. A more convenient expression

for C(, :y) is given below:

C(, ) = PP(V ) _ 1. (4.3)
P.(£)Pd(Y

To set the stage, we first calculate pu(?3 and plot r2pu(rJ in Figure 4-12. For

this initial exploration, we used a single heavy line and did no image correction.

The former results in larger error bars, while the latter results in systematic errors.
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Nevertheless, as is argued in [1], because both Pu and pp suffer from the same kinds

of image effects, these effects cancel to a large extent in the correlation function.

HLL light quark density
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N_

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

it :t10,
FiII 

I

0 2 4 6 8 10 12
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Figure 4-12: Single-quark density correlator for heavy-light-light baryon.

Throughout, all values of pp(i, y) and C(x, y) are averaged over cubically equiv-

alent pairs of points. As before, there are up to 48 of these (96 counting exchanging

x and , but as discussed before, this exchange yields no new information), again

corresponding to cubical rotations and reflections.

Cartesian coordinates are ill-suited to describing C(x, Wy): as it stands, the function

has six degrees of freedom, yet symmetry considerations dictate there be only three.

Thus, we use the following two coordinate systems; the first one is more natural to

described a two-particle body around the heavy quark, while the second one (from [1])

is more useful for describing angular correlations as measured from the heavy quark.
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As a first measurement, Figure 4-13 shows pp(R, r, 0 = 0) for various R values, as a

function of r. Setting 0 = 0 corresponds to making perpendicular the line joining the

two light quarks and that from the center of this line to the heavy quark. We expect

pp to decay exponentially as a function of r in that case, and indeed it does. We

expect pronounced image effects when R2 + (r/2) 2 7 or 8, that is, when x or 

are close to the edge of the lattice. For R = 2, 3, 4, and 5, that means there should be

an anomaly around r = 13-15, 12-14, 11-14, and 10-12, respectively. These ranges

coincide roughly with the observed "bumps" in 4-13.

Next, we reproduce the qualitative result of [1] when it comes to observing attrac-

tive behavior in the "good" diquark channel (see their Figure 2; where we write ca,

they write 0). They calculated C(rl = r2, a) for rl = 5.1 and plot it versus cos a. Our

equivalent plots for r = r2 = 4 and 6 are shown in Figure 4-14. The conclusion to

be derived is that there is clear evidence for the existence of an attractive interaction

between the two light quarks, as C rises sharply above 0 as cos a -- 1.
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HLL correlation function, Icos thetal < 0.05, as a function of r,
for various R shells (0.4 units thick)

Plotting C(rl,r2) = <rhou(rl) rhod(r2)>/(<rho(rl)> <rho(r2)>) - 1.0

5 10 150

Figure 4-13: Consistency check for pp(R, r, 0 = 0) calculation.
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HLL angular correl for thin shell 4a away from heavy quark
Irl - 41< 0.3 and r2 - 41 < 0.3

Plotting C(rl ,r2) = <rhou(r1) rhod(r2>/(<rho(rl )> <rho(r2)>) - 1.0

-1 -0.5 0 0.5
cos(alpha)

HLL angular correl for thin shell 6a away from heavy quark
Irl - 61< 0.3 and r2 - 61 < 0.3

Plotting C(rl,r2) = <rhou(rl) rhod(r2)>/(<rho(rl )> <rho(r2)>) - 1.0

-1 -0.5 0 0.5
cos(alpha)

Figure 4-14: Angular correlation function
5.7 < Irl < 6.3 (bottom).

C(rl = r2 = r,ca) for 3.7 < Irl < 4.3 (top); and
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Now we can go beyond the work in [1]. The correlation function C(-F, r) has only

one degree of freedom and serves as another rough measure to observe the behavior

of the diquark. However, very few pairs of points (-F, r-) are available in the lattice.

Instead, we used two pairs ri and 2 whose center of mass is within a unit of the heavy

line, which greatly enhances the number of points for which C(-r, r-) is available while

only compromising the analysis minimally. The results are shown in Figure 4-15(a).

In part (b), we additionally exclude any data point with Cartesian paths to them, to

mitigate some of the worse image effects. The results are shown in Figure 4-16.

The figures clearly show again that the light quarks like to be together at short

distances, and have a corresponding lower probability of being separated by a large

spatial distance r.

HLL correlation function u+d center of mass close to heavy uark (R <= 1)
Plotting C(rl,r2) = <rhou(rl) rhod(r2)>/(<rho(rl)> <rho(r2)>) - 1.0

rl = r + (small), r2 = -r + (small)

0.5

0

-0.5

-1
0 2 4 6 8 10 12 14

Figure 4-15: Correlation functions of (nearly) diametrically opposite light quarks

Figure 4-17 shows that C(R, r, 0) is only weakly dependent on 0. In other words,

it appears the polarization of the diquark pair induced by its interaction with the

heavy quark is of the order of the noise of the calculation. With this in mind, we

can eliminate one degree of freedom and simplify our analysis of the diquark. In

particular, after fixing R, we can observe the decay rate in r of C(R, r) to look at the
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HLL correlation function u+d center of mass close to heavy quark (R <= 1 )
Plotting C(rl ,r2) = <rho(rl) rhod(r2)>/(<rho(rl)> <rho(r2)>) - 1.0

rl = r + (small), r2 = -r + (small)
EXCLUDE pairs where one point has a zero coordinate (where big lattice artifacts expected)

0.5

0
Cr

-0.5

-1
0 2 4 6 8 10 12 14

r

Figure 4-16: Same as Figure 4-15, but excluding coordinates along Cartesian paths.

spatial extent of a diquark. This idea is realized in Figure 4-18. There, we plot C(r)

for R = 4.0 ± 0.2 and a small fraction of 0 space. When 0 is set to other values, the

plots look qualitatively similar but see to have stronger image effects.

4.4 Conclusion

The results described above highlight that diquarks do form inside a model baryon;

moreover, in real QCD, they're not point-like, but rather, have spatial extent of

the same order of magnitude as the RMS radius of the light quark distribution. An

immediate improvement to our present analysis is to incorporate image correction and

heavy-line averaging, thus increasing statistics and reducing systematic errors. It's

then one extra simple step to redo these calculations with the "bad" diquark sources

to have a basis for comparison. The successful result of this research motivates further

study in these directions, which we do plan perform and publish in the near future.
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0.1
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0
0

HLL correlation function, fixed r shell (0.4 units thick)
and R (3.8 <= R <= 4.2), as a function of Icos thetal

IPlotting C(rl ,r2) = <rhou(rl) rhod(r2)>/(<rho(rl)> <rho(r2)>) - 1.0

r2 2-i -
r=3 .
r=4 .. ..
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Figure 4-17: C(R, r, 0) plotted with respect to 0 at various r values, with R = 4.0 ± 0.2.
Notice the lack of 9-dependence.

HLL correlation function, 0.8 < Icos thetal <= 1.0
and R (-3.8 <= R <= 4.2) as a function of r

IPlotting C(rl ,r2) = <rhou(rl) rhod(r2)>l/(<rho(rl)> <rho(r2)>) - 1.0
0.6

0.5

0.4
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0a'6 0.1
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Figure 4-18: C(R, r, 0) plotted with respect to r at I cos /1 > 0.8, with R = 4.0 ± 0.2. Plots
for other 0 slices are very similar but seem to have stronger image effects.
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