
Information Inaccuracy in Inventory Systems 

Yun Kang 

Submitted to the Department of Mechanical Engineering 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Mechanical Engineering 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

February 2004 

@ Massachusetts Institute of Technology 2004. All rights reserved. 

................ Author ...................................................... v U D e p a r t m e n t  of Mechanical Engineering 
February 1, 2004 

. ..................................... Certified by. .C g. 

Stanley B. Genhwin 
Senior Research Scientist 3 

Thesis Co-Supervisor 

n 
A 

....................................... ................ .... .. Certified by. /. a n 
Sanjay E. Sarma 

Associate Professor of Mechanical Engineering 
Thesis Co-Supervisor 

- 
Accepted by 

Ain A. Sonin 
Chairman, Department Committee on Graduate Students 

I LIBRARIES J 





Information Inaccuracy in Inventory Systems 

by 

Yun Kang 

Submitted to the Department of Mechanical Engineering 
on January 19, 2004, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy in Mechanical Engineering 

Abstract 

It is critically important for inventory-carrying facilities to provide high availability of prod- 
ucts at the minimal operating cost. To achieve this objective, many companies have au- 
tomated their inventory operations and rely on the information system in critical decision 
makings. However, if the information is inaccurate, it may lead to high out-of-stocks and/or 
excess inventory. This thesis examines what the primary causes of the inaccuracy are, how 
and to what extent they degrade the inventory system performance, and what can be done 
to compensate for the inaccuracy. 

Analytical and simulation modelling demonstrate that the inventory system performance 
is highly sensitive to the inaccuracy caused by stock loss, which is the disappearance of 
items (such as due to theft) not detected by the information system. That is, even a small 
level of stock loss accumulated over time can lead to inventory inaccuracy that disrupts 
the replenishment process and creates severe out-of-stocks. In fact, revenue losses due to 
out-of-stocks can far outweigh the property losses due to the disappearing items. 

One way to deal with the inaccuracy problem is the use of RFID-based automatic prod- 
uct identification technology under development at the Auto-ID Center, which can provide 
the real-time and accurate information regarding the location and quantity of objects in 
supply chain. It is found that even when this technology provides imperfect measurement of 
the stock quantity, dramatic performance improvement can be achieved using an inventory 
control scheme based on dynamic programming. 

Various other methods of compensating for the inventory inaccuracy are presented and 
evaluated. Analysis of each met hod reveals that the inventory inaccuracy problem can 
be effectively treated even without automatic identification technology in some situations. 
However, each met hod has weaknesses. 
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Chapter 1 

Introduction 

For many companies that operate inventory-carrying facilities, providing high product avail- 

ability to customers at minimal operation costs is one of the key factors that determine the 

success of their businesses. Especially in industries where the competition is fierce and 

profit margins are thin, companies have automated the inventory management processes to 

better meet customer demand and reduce operational costs. For example, many retailers 

use an automatic replenishment system which tracks the number of products in the store 

and places an order to suppliers in a timely fashion with minimal human intervention. 

By doing so, the companies depend on the accuracy of the computerized information 

system for critical decision making. Information regarding what products are where and in 

what quantity must be provided accurately to effectively coordinate the movement of the 

goods. However, if the information provided by the computer system is incorrect, the ability 

to provide the product to the consumers at the minimal operation cost is compromised. For 

example, if the computer's record of stock quantity in the facility does not agree with the 

actual physical stock, orders may not be placed to the supplier in time, or the facility could 

be carrying unnecessary inventory. 

This research investigates the problems related to the information inaccuracy in inven- 

tory systems - what the inaccuracy is, what the causes are, and what impact it has on the 

performance of the inventory system. In addition to quantifying the costs of inaccuracy, 

this research also addresses various ways the inaccuracy can be mitigated to improve the 

system performance. 



1.1 Research Motivation 

The issues discussed here became apparent due to the work of the Auto-ID Center. The 

Auto-ID Center, founded in 1999 at the Massachusetts Institute of Technology, is sponsored 

by over 100 global companies, many of whom are leaders in their industries. Its aim is to 

create an automatic product identification system that can potentially replace bar-code 

technology. A radio frequency identification (RFID) tag, which is a microchip with an 

antenna, would be placed on physical objects in trade - a soda bottle, a pair of jeans, 

a car engine, etc. By placing the RFID readers that sense the presence of tagged objects 

throughout key locations in the supply chain, the objects can be tracked from the point of 

manufacture to and beyond the point of consumption. The Auto-ID Center is engaged in 

designing and deploying a global infrastructure that will make it possible for computers to 

provide accurate, real-time identification and location of objects. 

Figure 1-1 shows the components of the Auto-ID Center technology and how they in- 

teract with one another. In the microchip of each tag is stored a number called Electronic 

Product Code (EPC) [JosOO]. The EPC is similar to the barcode numbering scheme in 

identifying the item's manufacturer and product category, but by having more digits than 

the barcode, it is able to uniquely identify every single item in trade. The RFID reader 

transmits electromagnetic waves that power the RFID tag, and if the tagged object is within 

the reading range of the reader (which can vary from a few inches to a few meters), the tag 

sends back the EPC stored on the microchip. 

The local controller, once it retrieves the EPCs from the reader, can find the location in 

the Internet where the information about the products are stored (such as date of manufac- 

ture, ingredients, expiration date, and etc.). It does so by transmitting the EPC to a server 

that provides a look-up service called Object Naming Service (ONS) [JosOO]. ONS serves 

as a directory of the EPCs - it takes as an input an EPC and returns the address in the 

Internet where the information about the object resides. Once the location is determined, 

the local controller then contacts the server which stores the information about the object. 

This server uses a structured language called Product Markup Language (PML) to describe 

the product in a way that can be understood by other computers [BroOl]. PML is based 

on the widely used extensible markup language (XML), and makes it possible to share the 

information necessary for common business tasks. 
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Figure 1- 1 : Auto-ID Center Technology 

Therefore, Auto-ID Center technology attempts to extend the network of computers to 

interact with the physical objects. Although the Internet enables sharing of information 

between one computer and another, computers still remain unable to interact with the 

physical objects. The Auto-ID Center, by using the RFID technology and by developing a 

universal and open standard for identifying products, allows the computers to gather and 

share the information about the physical objects in the world. 

By creating a network of physical objects, the Auto-ID Center technology can provide 

a wide range of applications throughout the supply chain. Figure 1-2 lists some of the 

potential opportunities in a generic, simplified supply chain in which the physical goods 

typically flow in the direction of the arrows. For example, the manufacturers are able to 

track their manufactured goods uniquely, and in case of a recall, can trace only the defective 

goods instead of the entire batches of items shipped. At warehouses and distribution centers, 

material transactions (such as shipment verification) at both the inbound and outbound 

sides can be facilitated through the use of automatic identification. Retailers can process 

the checkouts faster by not having to scan individual products with the barcode scanner. By 

constantly monitoring the items on the shelves, the store inventory system can also predict 
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Figure 1-2: Potential applications of the Auto-ID Center technology in supply chain 

a bulk pilferage when an unusually high number of items are taken off the shelf at one time. 

The applications extend beyond the stores. At consumers' homes, the microwave ovens can 

be made 'smart' by reading the tag ID on the food package with its built-in RFID reader 

and downloading the cooking instructions from the food manufacturer. 

Inventory Inaccuracy 

While working with a number of select sponsors in the area of consumer goods to understand 

the potential applications of the Auto-ID Center technology, we learned something that is 

contrary to a popular belief. That is, retailers are not very good at knowing how many 

products they have in the stores. 

1.2.1 Real-life Example 

Consider a global retailer who will be referred to as Company A for confidentiality. Each 

store carries thousands of product lines (also known as SKUs - stock keeping units), and as 

a common practice for any inventory-carrying facility, it conducts a physical count of all the 

items in all the stores at least once a year for financial reporting purposes. After the manual 

inventory verification, the stores are able to compare the stock quantity in the inventory 



A. Pemnt of SKUs with Perfect Inventory Recards B. Percent of SKUs with Inventory Records Accurate to Within 5 Units 

Figure 1-3: Inventory accuracy in Company A stores 

record (which is stored in the computer information system) and the actual stock quantity. 

For each store, the percentage of SKUs whose inventory record matches the actual stock 

perfectly is calculated. Define this as the perfect inventory accuracy of a store. Figure 1-3A 

summarizes the inventory accuracy of a large subset of Company A's stores. 

According to the histogram, the best performing store is the one in which only 75%-80% 

of its inventory records match the actual inventory. In one store, two thirds of its inventory 

records are inaccurate. On average, the inventory accuracy of Company A stores is only 

51%. In other words, only about a half the SKUs have perfectly accurate inventory records. 

Another measure of the inventory accuracy can be obtained by relaxing the requirement 

and allowing the inventory record of a SKU be considered accurate if it agrees with the 

actual stock within f 5 items. A histogram for this definition is shown in Figure 1-3B. 

Under this definition, the average accuracy of Company A stores rises to 76%. What this 

means is that on average, the inventory record for one out of four SKUs in the store deviates 

from the actual stock by six or more items. 

The impact of inaccurate inventory records on the performance of retailers like Company 

A can be severe because the stores rely on the inventory record to make important operations 

decisions. Since Company A stores carry thousands of SKUs, tracking the inventory record 

of every SKU manually is very time-consuming. Instead, the stores use an automatic 

replenishment system in which the inventory record of each SKU is monitored and the 

computer system determines the order quantity based on the inventory record readings. If 

there is an error in the inventory record, items may not be ordered in a timely fashion, 

resulting in out-of-stocks or excess inventory. 

Raman et al. reports similar findings from a study done with a leading retailer. Out of 



close to 370,000 SKUs investigated, more than 65% of the inventory records did not match 

the physical inventory at the store-SKU level. Moreover, 20% of the inventory records 

differed from the physical stock by six or more items. The retailer in the report also used 

information technology extensively to automate the replenishment processes [RDTOl]. 

1.2.2 Causes of the Inventory Inaccuracy 

These findings indicate that perfect inventory records are difficult to maintain and inventory 

records are very likely to be incorrect. The causes of discrepancies in the records are many, 

and some of the commonly observed ones are discussed here: stock loss, transaction error, 

inaccessible inventory, and incorrect product identification. 

Stock loss, also known as shrinkage in industry, includes all forms of loss of the products 

available for sale. One common example is theft, which can be committed by both shoppers 

(external theft) and employees (internal theft). It also includes collusion between customers 

and staff and the unauthorized consumption (such as eating) of the stock by both shoppers 

and employees. In addition, the vendors can also steal merchandise while in the store 

performing replenishment duties for their merchandise. Stock loss can also occur when 

products are rendered unavailable for sale by becoming out of date, damaged, or spoiled. 

Stock loss can be categorized into known and unknown stock loss. The former refers to 

all losses that are identified by the store personnel and reflected in the computer inventory 

record (such as out-of-date products that are taken off the shelf and written off the books). 

The latter refers to the rest of the losses not detected and thus not updated into the record. 

Undetected theft, for example, would fall under this category. It is the unknown stock loss 

that creates inventory record inaccuracy. 

Transaction error occurs typically at the inbound and outbound sides of the facility. 

At the inbound side, shipments that arrive from the suppliers have to be registered into 

the store informat ion system and this regist rat ion involves a manual, error-prone process. 

There may be discrepancy between the shipment record and the actual shipment, and if it 

goes unnoticed by the receiving clerk, the inventory record will not reflect the actual stock 

accurately. On the outbound side, the checkout registers are not exempt from contributing 

to the inventory record errors. Typically, the cashiers are rewarded based on the speed 

of checkouts, and when a shopper brings similar products with identical price, they may 

choose to scan only one of the products and process them as identical SKUs. The result is 



that the inventory record of the scanned product decreases more than it should, while that 

of other products is left unchanged. 

Inaccessible inventory refers to products that are somewhere in the facility but are not 

available because they cannot be found. This can happen when a consumer takes a product 

from the shelf and places it at another location. It can also happen in the back room or 

any other storage area in the store. The inaccessible inventory will eventually be found and 

made ready for sale. However, a long time may pass until this happens, and until then, the 

inaccessible products are no different from being nonexistent as far as revenue is concerned. 

Incorrect product identification can occur in several different ways. Wrong labels can 

be placed on the products by both the suppliers and the stores. When the barcode on these 

labels are scanned during receiving or checkout, the inventory record for wrong items will 

change. Incorrect identification can also happen during manual inventory counts. 

What makes inventory inaccuracy seem like an insurmountable problem is the sheer 

volume of the products handled in the stores. Typical retail stores, being at the far end of 

the supply chain, are the merge points of thousands of products that come in all different 

categories, shapes, and sizes, and tens of thousands of items may come into and go out of 

the store in a single day. For this reason, keeping track of the location of every item and 

making sure the inventory record agrees with the actual stock quantity is a daunting task. 

1.2.3 The Stock Loss Problem 

Determining which causes contribute to inventory record error and in what proportion is no 

less difficult than maintaining the accuracy of the inventory record itself. While the stores 

admit the gravity of inventory inaccuracy problems and consider it to be one of the major 

obstacles to the successful execution of their operations, they often do not know when and 

where it occurs and in what magnitude. However, of all the inventory error causes discussed, 

industry findings suggest that the unknown stock loss can be a dominant factor for many 

SKUs. 

What makes the unknown stock loss differ from the other causes discussed here is the 

direction of the inventory record error. Since the loss of the physical items are not reported 

in the record, the inventory record overestimates the stock. On the other hand, the other 

causes - transaction errors, inaccessible inventory, and incorrect product identification - 

can make the error either positive or negative. While it would be almost impossible to break 



down the inventory error into individual causes, the results of manual inventory counts can 

reveal some truth about the extent to which unknown stock loss contributes to the inventory 

inaccuracy. If the inventory record overestimates the actual stock persistently, it is likely 

that unknown stock loss is the dominant cause of the inaccuracy. 

Consider again Company A whose stores carry brands from Company B, who is a 

global consumer goods manufacturer. To understand the extent of the inventory inaccuracy 

problem, the two companies decided to pick the topmost selling product from Company B 

and monitor how the inventory record and the actual inventory change over the period 

of eight weeks. Dozens of Company A's stores were selected in several regions of North 

America, and field observers visited the stores once a week and manually counted the stock 

quantity of the product. At the outset of this testing, the inventory record was set to 

exactly match the actual inventory. At the end of the testing, however, the actual inventory 

was less than the inventory record, and the total adjustment was 5% of sales quantity on 

average over the stores tested. In a thin margin retail industry, this figure is a substantial 

loss in the bottom line profit. 

Company C is a leading supermarket chain who also uses automatic replenishment 

system for its stores, and in a recent year reported combined known and unknown stock 

loss of 1.14% of sales in monetary value. Among the product categories that have the 

highest rates of stock loss were batteries and razor blades, whose stock loss equaled 8% and 

5% of sales, respectively. Both of these are products characterized by high value and small 

size, and thus it was believed that theft accounted for most of the losses. 

There are also few industry reports that shed light on the magnitude of the stock loss at 

the macroscopic level. An extensive study on the magnitude of stock loss was conducted by 

ECR Europe. Based on a sampling of 200 companies with dominant share of the consumer 

goods industry in Europe, the study reports that stock loss amounts to 1.75% of sales 

annually for the retailers. This figure translates to 13.4 billion euros annually. Of this, 59% 

(or, 1% of total sales) was unknown to the retailers - meaning that the stores did not know 

where or how the products were lost [EurOl]. 

Every year, the University of Florida publishes a similar industry-wide empirical research 

on retail inventory shrinkage in the US [Ho103]. In the most recent report, 118 retailers from 

22 different retail markets reported an average stock loss equaling 1.7% of total annual sales, 

a figure very close to the result from the ECR Europe. It further reports that the retailers 



perceive theft by the shoppers, employees, and vendors account for 80% of the total stock 

loss. 

Since the stock loss figures are typically obtained by comparing the manual count of all 

inventories and the store inventory records, these findings suggest that overall in the retail 

industry, the inventory record error tends to have nonzero mean. The magnitude of this 

error, however, can vary significantly from one product to another, and the stores are able 

to estimate this figure for all of its SKUs at the end of yearly audit. 

For these reasons, and to simplify our models, we focus on stock loss as a primary cause 

of inventory record error throughout the thesis. 

1.3 Literature Review 

The literature in the field of inventory management is vast. However, survey of the literature 

indicates that almost all of the research that address inventory policies assume perfect 

knowledge of the inventory is available. There is a scarcity of works that address the causes 

and consequences of inventory error. Here we summarize published documents that are 

most closely related to this work. 

Iglehart et al. (1972) considers a reorder-point stocking policy subjected to random 

demand and inventory record error. Assuming the stocking policy is designed to protect 

only against variations in the demand and lead time, the optimal combination of additional 

safety stock and frequency of cycle count is obtained. This optimal combination minimizes 

the sum of the inventory holding cost and the counting cost, subject to the service level 

meeting a desired target. 

Morey (1985) also investigates reorder-point based policies and develops a closed-form 

expression that relates the service level and three factors that affect it: frequency of cycle 

count, safety stock level, and the magnitude of inventory record error. This formulation is 

intended to serve as a very conservative, 'back-of-the-envelope' calculation tool for inventory 

managers to estimate the service level improvement due to combination of one or more of 

the three opt ions. 

Morey (1 986) calculates the minimum required frequency between audits that maintains 

an inventory record accuracy (not the service level) in pre-specified limits. The optimal 

audit frequency is determined for two types of audits: perfect audits which eliminate all 



discrepancies between the book and actual inventory, and imperfect audits which leave 

errors in records. 

A number of works have appeared that address the effective timing of cycle counts in 

lSCUSS multiple SKU environments. Cantwell (1985), Edelman (1984), and Reeddock (1984) do 

the ABC analysis which assigns differing tolerances in inventory accuracy depending on the 

proportion of the total sales of the products. The size of tolerance would be directly related 

to the frequency of cycle counts. Neely (1987) proposes a few more methods of determining 

when to count, including increasing the cycle count frequency for high-activity SKUs. 

In environments where there are many SKUs and the cost of manually counting the 

entire inventory becomes prohibitive, the inventory managers have the option of choosing 

and counting only a portion of the SKUs. Various sampling techniques exist to perform this 

task, and are explored in Buck and Sadowski (1983), Dalenius and Hodges (1959), Cochran 

(1977), Arens and Loebecke (1981), and Martin and Goodrich (1987). 

Bernard (1985) and Graff (1987) discuss managerial steps that can be taken to make 

the cycle counts more effective and to improve the inventory record accuracy in multi-item 

production environment. Graff (1987) also emphasizes that cycle count merely provides a 

measurement of the inventory, and it alone is inadequate to control or improve the accuracy. 

Various definitions and measures of inventory accuracy are presented in Ernst et al. 

(1984), Buker (1984), Chopra (1986) and Young (1986). Ernst et al. (1984) also proposes 

using a control chart to monitor the changes in the inventory accuracy. It serves as a tool for 

the inventory manager to identify when to look for non-random variability in the inventory 

accuracy. Hart (1998) provides a case study of a company that used a control chart. 

A few works address inventory inaccuracy in MRP (Manufacturing Resource Planning) 

systems. French (1980) identifies numerous sources of work-in-process inventory inaccuracy. 

Krajewski (1987) uses a large-scale simulation to assess which factors in a MRP-based 

product ion environment (inventory inaccuracy being one of them) have the biggest impact 

on performance. Brown (2001) also uses simulation to investigate the impact of not only 

the frequency of error, but the magnitude of error and the location in the bill of material 

structure where the error takes place. 



1.4 Thesis Overview 

In this thesis, the research work in inventory inaccuracy is largely divided into two parts. 

The first part (Chapters 2 and 3) investigates what happens when the inventory record error 

created by unknown stock loss is left uncorrected and how much the system performance 

is degraded as a result. Chapter 2 treats inventory systems operating under the (Q,R) 

policy and Chapter 3 is focused on the fixed review period, base stock policy. At the end 

of Chapter 3, we present a comparison of the impact that inventory inaccuracy has on the 

performance of the two policies. 

The second part (Chapters 4 through 7) primarily addresses the question of what can 

be done to deal with the inventory record error and thereby improve the performance of the 

system. In Chapter 4, various compensation methods are discussed and modelled, including 

the Auto-ID Center technology which has motivated this research. Chapter 5 and 6 probes 

deeper into the inventory control problems using the Auto-ID Center technology. The 

optimal ordering policy is developed for two types of cases: the perfect information case 

in which the technology provides an accurate measurement of the stock quantity, and the 

imperfect information case in which the measurement is erroneous. Chapter 7 investigates 

a near-optimal inventory control scheme for the current inventory systems in which no 

Auto-ID Center technology is used. 





Chapter 2 

Inventory Inaccuracy in the (Q,R) 

Policy 

The questions addressed in this chapter and the next are: what impact does inventory 

record error have on the performance of inventory systems if the error is not corrected, 

what are the mechanisms by which the inaccuracy degrades the performance, and in what 

circumstances does it affect the performance most? Specifically, we answer these questions 

for the (Q,R) policy in this chapter and for the fixed review, base stock policy in Chapter 

3. 

The rationale behind choosing the (Q,R) policy is its wide presence in the retail industry, 

including the mass merchandisers who carry a large number of product lines available for 

consumers at their retail stores. Company A mentioned in the previous chapter, for example, 

uses policies based on the (Q,R) for many of its fast-moving products. 

2.1 Mechanisms of the (Q,R) Policy 

In the (Q,R) policy, the inventory is monitored continuously1 and an order of fixed quantity 

Q is placed to the supplier if the sum of inventory on-hand (quantity in the facility available 

for sale) and on-order (quantity ordered to the supplier and waiting to be received and made 

ready for sale) is less than or equal to the reorder point R. The time between placing an 

order and its arrival is called lead time. Figure 2.1 illustrates the mechanism of this policy. 

The reorder point is set so that when an order is placed, enough inventory exists in the 

'1n practice, monitoring is often done daily. 
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Figure 2-1: (Q,R) Policy 

facility to meet the demand until the order arrives. Thus the reorder point has a critical 

bearing on the performance of this policy. If it is set too low, inventory will be depleted 

frequently and out-of-stocks will occur. If it is set too high, then the facility will be carrying 

unnecessary inventory. 

The reorder point is often explained as consisting of two parts: the expected value of 

total demand during lead time and safety stock: 

R = (expected demand during lead time) + (safety stock). 

If the demand is known and constant, then setting the reorder point equal to the to- 

tal expected demand during lead time would ensure that all demand would be satisfied. 

However, if there is randomness in the system - such as in the demand or supplier lead 

time - then the reorder point will have to be higher to cover the uncertainties. This extra 

inventory is safety stock. 

The (Q,R) policy is effective in its timing of orders and thus provides high availability of 

the stock at the minimal inventory level, provided that the on-hand inventory information 

used during the review is accurate. In reality, however, the exact value of on-hand inventory 

is often unknown, and many stores estimate the on-hand inventory based primarily on 

two measurements that they have access to: the incoming shipments and outgoing sales. 



The data for the former is obtained either through order transaction records or shipment 

verifications, and the latter through a technology commonly used that keeps track of bar- 

code-scanned sales at the checkout registers (called POS - Point of Sales). By updating 

the computerized inventory record whenever these two events are observed (the industry 

terminology for this inventory record is perpetual inventory), the stores are able to automate 

the inventory review and order placement processes with minimal human intervention. 

According to this method, the inventory record at the beginning of period k+ 1, denoted 

iZk+l, is determined from the inventory record at the beginning of the previous period, iZk, 

the quantity received in the previous period, hk, and the quantity sold in the previous 

period, ak , through the relationship 

In reality, the inventory record suffers from accuracy problems even if the incoming shipment 

and sales are known exactly. As discussed earlier, the unknown stock loss is an example of 

the causes of the error. 

Throughout the research, we make a fundamental assumption that differs from those of 

traditional inventory models: stores do not know the exact value of on-hand inventory at 

the time of ordering. Therefore, our models distinguish between the inventory record and 

the actual inventory, and recognize the discrepancy between these two caused by stock loss. 

2.2 Stochastic Simulation Model 

To see how the stock loss, by creating a discrepancy between the actual inventory and the 

inventory record, can affect the performance of the (Q,R) policy, consider a single-item 

inventory model with the following assumptions: 

The demand for purchase during each period k, wk, is assumed to be independent and 

normally distributed with mean p, and standard deviation ow. (That is, a normal 

distribution with these parameters is used and the negative demands are discarded.) 

The demand for stock loss in period k, vk, is also independent and identically distrib- 

uted, and is generated from a Poisson distribution with mean A. 

The lead time is known and fixed at L. 



The demand occurring when there is zero actual on-hand inventory is lost (no backlog). 

A Poisson distribution is chosen for stock loss to prevent assigning negative values when 

the mean of the distribution is small. 

The sequence of events in each period is assumed to be as follows: 

1. The inventory record is reviewed and an order is placed to the supplier. 

2. The incoming order is received. 

3. Sales and stock loss take place. 

Denote by xk the actual inventory at the beginning of period k. According to this sequence, 

there is xk + hk available for meeting the demand for purchase and stock loss in period k. 

When the sum of demand for purchase and stock loss exceeds the available inventory, the 

available inventory is divided proportionately to meet the the two demands. The sales in 

period k is then 

a. = { wk 
i fwk+vk  < x k + h k ,  

(xk + hk) otherwise. 

Since sales can only take on integer values, the quantity in the second line is rounded to 

the nearest integer. The changes in actual inventory and the inventory record are then 

The min term represents the actual stock loss in period k: it is the smaller of the stock loss 

demand vk (sufficient on-hand inventory) and the difference between the available inventory 

xk + hk and sales ak (insufficient on-hand). Since stock loss is not seen by the inventory 

record, it is not included in Equation (2.4). 

Figure 2-2 shows the evolution of the actual inventory and the inventory record in a 

sample simulation run. The average demand pw is 10 and the standard deviation a, is 2. 

The average daily stock loss X is 0.2, which is 2% of the average demand. Lead time L is 

3 periods and the fixed order quantity Q is 50. The operation end time t f  is chosen to be 

365 periods since the standard procedure in the industry is to conduct a physical count of 

the stock at least once a year and reconcile the inventory record. The initial inventory is 
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Figure 2-3 shows how stockout rate is impacted by stock loss as the average stock loss 
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The results also convey a compelling managerial insight. Items lost to shoplifters, for 

example, are direct loss to the retailer, but the chain reaction created by shoplifting - 

error in the inventory record, untimely replenishment, and out-of-stocks -- creates lost 

sales substantially greater than the items stolen. Results show that the lost sales quantity 

can be ten to twenty times higher. Even if the comparison is made in bottom line monetary 

values2, the unrealized revenue due to lost sales is substantial in highly competitive retail 

environments. This means that to effectively control the stock loss problem, management 

needs to pay close attention to maintaining inventory accuracy. 

2.3 Deterministic Model 

Whereas in the previous section the demand for purchase and stock loss were assumed to be 

stochastic and discrete, in this section they are treated as constant and continuous. With 

this simplification, we look for a closed-form solution for the system performance given 

the parameters of the (Q,R) policy. Moreover, by developing a model with deterministic 

demand and stock loss, the role that randomness plays in the inventory inaccuracy problem 

can also be examined. 

Assume demand for purchase and stock loss occur at a rate of w and v units per time, 

respectively. The lead time L is again fixed and known, and the assumption regarding 

excess demand (lost sales and no backlog) remains unchanged from the previous model. 

Also, the ordering decision is made in accordance with the (Q,R) policy. Figure 2-4 shows 

how the on-hand inventory record and actual inventory evolve over time, along with the 

inventory position, defined as the sum of on-hand and on-order quantity. 

The deterministic model exhibits all the essential features seen in the stochastic simula- 

tion model - the growing gap between the recorded and actual inventories, the continual 

rise of the inventory record cycles, and the eventual freezing of replenishment as the inven- 

tory record stays above the reorder point. 

For convenience, we break the inventory evolution into two time intervals. Let Region 

A consist of the group of cycles in which no out-of-stock occurs. The time t~ marks the end 

of this region. Region B consists of the group of complete cycles that fall between t~ and 

2 ~ i n c e  stock loss is lost property and the lost sales is lost revenue, comparison of the impact on profit 
would require the profit margin of the product. The margin, however, varies widely based on the pricing 
strategies of the retailers, and could range from a small percentage to multiple times the product cost. 
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Figure 2-4: (Q,R) Policy subjected to stock loss under deterministic demand 



the time of last order arrival prior to system freezing. Let t~ denote the end of this region. 

We can compute various performance measures of the system - the time of first out- 

of-stock tl, the time of replenishment freeze t2, and the stockout rate Sout. The exact 

calculations for these quantities can be obtained. However, by making the plausible as- 

sumptions that the stock loss rate v is small and there are many replenishment cycles 

before the end of operation tf , we arrive at expressions that are much simpler and yet able 

to approximate the exact calculation very closely. Appendix A describes in detail how the 

expressions for both exact and approximate values are found. Approximations for tl and t2 

are 

The stockout rate Sout is determined by adding all the horizontal, flat portions of on- 

hand actual inventory curve in Figure 2-4 and dividing it by the operating time tf. It is 

approximated by 

where m appearing in the second expression is the number of complete cycles between tl 

and tf if tf is located in Region B, approximated by 

Figure 2-5 shows the exact and approximate calculation for stockout rate when the 

purchase demand rate w  is 10 units per time and the stock loss demand rate v is varied 

from 0 to 0.7 units per time (0% to 7% of purchase demand rate). The lead time L is 3, 

order quantity Q is 50, and the operation is allowed to continue until tf = 365. The reorder 

point R is set to equal to the lead time demand of W L  = 30. In absence of stock loss, this 

would be the lowest value of R that produces zero stockout rate. 
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Figure 2-5: Stockout rate for deterministic (Q,R) model subjected to varying stock loss 

Stockout rate calculations show that the approximation (dotted line) agrees very closely 

with the exact (solid line) for the stock loss range shown. When there is no stock loss, 

stockout rate is zero. With increasing stock loss, however, we observe a rapid rise in 

stockout rate as seen in the simulation model. Therefore, the deterministic model confirms 

the finding that when the inventory error is left untreated, system performance is highly 

sensitive to the inventory inaccuracy created by stock loss. Furthermore, the randomness 

in demand is not what causes the inventory inaccuracy problem. 

One distinct difference between the two curves is the smoothness. While the stockout 

rate in approximation curve rises smoothly throughout the stock loss shown, the exact 

calculation curve has small step increases which are followed by almost flat lines at higher 

values of stock loss. Examining the calculation closely reveals that this abrupt increase 

occurs whenever the number of cycles in Region B decreases with the increase of stock loss. 

When the stock loss is high enough to create replenishment freezing, increasing it even 

further makes the ending inventory record in the last cycle of Etegion B move closer to the 

reorder point. When it eventually steps above the reorder point, Region B suddenly loses 

a cycle and the time of replenishment freeze t z  decreases. Consequently, the length of flat 

line beyond ts increases abruptly, leading to a sudden rise in stockout rate. 
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Figure 2-6: Comparison of stockout rate calculations from deterministic and simulation 
model 

Now, we test how well the deterministic demand model predicts the stockout rate of a 

system subjected to stochastic purchase demand and stock loss demand. In Figure 2-6 is 

shown the simulation points (from Figure 2-3) along with the approximation for stockout 

rate calculated in the deterministic model (dotted line). The same values of parameters 

used in simulation (R = 41, Q = 50, w = p, = 10, L = 3) were ueed for the deterministic 

model calculation. 

The deterministic model makes accurate predictions for stockout rate in stochastic sys- 

tem for high stock losses but it significantly underestimates for stock loses of approximately 

1.5% or h. Here we make note of a fundamental difference between the deterministic and 

stochastic model: whereas in the former order is placed when the sum of inventory record 

and on-order ie mctly equal to the reorder point R, in the latter order is often placed at 

values below the reorder wink This is because in the stochastic model, changes in inven- 

tory tiom one period to the next occurs in multiple quantities. Therefore, the 'true' reorder 

point in the stochastic model is loner than the designated R, and stockout rate is likely to 

be higher in the stochastic model. For the cases in which out-of-stocks due to replenishment 

fkeeze is not the dominant contributor to the stockout rate (i.e., for small stock losses), this 

difference makes a noticeable impact on the calculation of stockout rate. 



Therefore we look for a correction factor for the reorder point used in deterministic 

model calculation that will better reflect the actual reorder point in the stochastic model. 

In absence of stock loss, we find that the average value of inventory record at which ordering 

takes places is 36.2, which is lower than the set reorder point of 41 by approximately half 

of the average demand p,. Replacing the reorder point R by R - in tl expression 

(Equation (2.6)) and updating the calculation for other variables, we obtain the solid line 

in Figure 2-6. The result of modifying the reorder point is a market1 improvement in the 

prediction of stockout rate for the entire range of stock losses. 

2.4 Sensitivity Analysis 

In this section, we investigate in what circumstances the stock loss impacts the system 

performance the most. Using the simulation model, we conduct a parametric analysis by 

observing how stockout rate is affected when the lead time L and order quantity Q are 

varied. 

Figure 2-7 illustrates the effect of varying lead time on the stockout rate when the 

system is subjected to average stock loss demand at 1% of the average purchase demand. 

The parameters are set to be consistent with what is presented in Section 2.2: p, = 10, a, = 

2, Q = 50, and t f  = 365. Note that along with the lead time, the reorder point R is also 

set to provide the same target stockout rate of 0.5% in the absence of stock loss. Thus, we 

assume that the inventory manager, either unaware of the stock loss or ignoring it, simply 

sets the reorder point based on the purchase demand characteristics and lead time. We 

have already mentioned that R = 41 provided the target stockout rate when the lead time 

L is 3. For smaller lead times, the variability of the lead time demand is also smaller, and 

thus the safety stock component of the reorder point can be reduced and still achieve the 

same target stockout rate - again, provided there is no stock loss. Similarly, for longer 

lead times, the reorder point will have to increase. However, once we allow uncompensated 

stock loss, the reduced safety stock associated with shorter lead times leads to much worse 

performance. 

We have seen that the performance of a system with L = 3 is highly sensitive to 

unaccounted stock loss. At shorter lead times, this sensitivity becomes greater. In a system 

where ordered products are delivered instantly (L = 0), it only takes an average stock loss 
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of 1% of average demand to render three quarters of the total purchase demand unfulfilled. 

The reason why such an extreme out-of-stock condition is created is because with zero lead 

time, Region B in Figure 2-4 does not exist. Instead, in the first cycle after Region A, the 

system directly enters the replenishment freeze zone. The time of replenishment freeze is 

on average 95 when L = 0, 225 when L = 1, and 349 when L = 2. 

Figure 2-8 is the result of same simulation runs, this time holding L = 3 and varying 

the order quantity Q from 20 to 80. Having a large order quantity reduces stockout rate 

since the actual inventory is higher on average. 

These observations demonstrate the severe consequences of inventory inaccuracy on 

lean systems characterized by short lead times and frequent ordering of small quantities. 

At shorter lead times, the desired product availability can be achieved with smaller safety 

stock if there is no stock loss (thus allowing R to be reduced). However, small safety 

stock provides little protection against unexpected disturbances in the system. Inventory 

inaccuracy, which is considered an uncertainty in the system, is likely to wreak far greater 

havoc on lean systems, and thus maintaining accurate inventory record is critical to reap 

the benefits lean systems have to offer. 





Chapter 3 

Inventory Inaccuracy in the Fixed 

Review Period, Base Stock Policy 

Another commonly used inventory policy besides the (Q,R) is the fixed review period, 

base stock policy. For convenience, this policy will be referred as the base stock policy 

throughout this chapter. While the (Q,R) policy is efficient in timing of the order and is 

used for products that are fast-moving, the base stock policy is typically used for slow- 

moving products that account for a smaller fraction of the revenue. 

In this chapter, we investigate how the performance of base stock policy is impacted by 

inventory inaccuracy caused by stock loss. Also, the cost of this inaccuracy is quantified 

by the same methods employed in the previous chapter for (Q,R) policy - stochastic 

simulation and deterministic modelling. 

3.1 Mechanisms of the Policy 

The mechanisms of the base stock policy differs from the reorder point policy in the quantity 

and time of order. Whereas in the (Q,R) policy the inventory is reviewed continuously and 

the order size is fixed, in this policy the inventory is reviewed at fixed times and the order 

size is varied. Figure 3-1 shows how this policy works. At each review time r l ,  r2,. . . , r k  

which are spaced in interval T, the size of the order is set to bring the on-hand and on-order 

inventory up to the base stock B. 

Under this ordering scheme, the size of order placed at the ith inventory review can be 

thought of as the sales accumulated since the last review time, denoted w ri). In this 
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Figure 3-1: Fixed review period, base stock policy 

policy, the base stock level B is the decision parameter, and choosing the right base stock 

is critical in ensuring product availability while keeping the inventory low. Similar to the 

reorder point in the (Q,R) policy, B is also understood as consisting of two parts as follows: 

B = (Expected demand during review period and lead time) + (Safety stock) (3.1) 

The safety stock is needed to provide protect ion from out-of-stocks due to uncertain demand 

and deliveries. 

Because the review is conducted at predetermined times, the base stock policy offers 

the advantage of shared costs over multiple items, such as cost associated with reviewing 

orders, order fulfillment, and transport at ion. Nevertheless, it is not exempt from suscept i- 

bility to inventory inaccuracy. In practice, the exact value of the on-hand quantity is not 

readily available during the inventory review. Instead, much like in the (Q,R) policy, it is 

implemented in practice based on two accessible pieces of data: the incoming shipment and 

out going sales. The computer system that tracks this estimated inventory (again, called 

perpetual inventory) becomes the guideline in ordering decisions. Unfortunately, when the 

inventory is subjected to stock loss not reflected in the inventory record, proper replenish- 

ment is not made and product availability suffers. 



3.2 Stochastic Simulation Model 

The assumptions made in simulating an inventory system using the base stock policy are 

similar to those presented in Section 2.2 for the (Q,R) model. Demand for purchase during 

each period k, wk, is assumed to be independent and normally distributed with mean pw and 

standard deviation a,. The stock loss demand during each period, vk is also independent, 

and has Poisson distribution with mean A. Furthermore, wk and vk are independent. Again, 

the lead time is fixed and known at L, and the sequence of events in each period does not 

change: first, review the inventory and place the order to the supplier, secondly, receive the 

incoming order, and lastly, fill the demand and stock loss. The received quantity in period 

k and sales during period k are denoted hk and ak, respectively. The assumption regarding 

dividing the available inventory proportionately to the purchase demand and stock loss 

demand in case of shortage remains unchanged. Therefore, the dynamics of the inventory 

record 5k and the actual inventory xk also remains unchanged from Equation (2.4) and 

(2.5): 

The interval between inventory reviews is T and the first review takes place at time 

k = T - L (assuming T 2 L). The initial value of both the actual inventory and inventory 

record is B - pw L. These selections for the first review time and initial inventory are made 

to be consistent with the deterministic model to follow in the next section. 

In Figure 3-2 is shown the day-ending inventory of a sample simulation run. The value 

for the parameters are consistent from the (Q,R) simulations in Section 2.2: pw = 10, ow = 

2, X = 0.2 (which is 2% of the average demand), L = 3, and t f  = 365. Again, the target 

stockout rate is 0.5%, and it was found, through many runs of the simulation, that the base 

stock level B of 87 achieved this target stockout rate in absence of stock loss. Thus, by 

keeping B at 87 and introducing stock loss in the system, we are investigating the impact 

of stock loss if no action is taken to correct the error in inventory record. 

We observe a pattern similar to what is found in the (Q,R) policy: the stock loss not 

recognized by the inventory record causes the actual inventory to be underestimated, and 

the two inventory curves diverge. As a result, the actual inventory starts to experience 
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Figure 3-2: A sample simulation run showing inventory evolution of a base stock policy 
system when subjected to stock loss. 
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Figure 3-3: Stockout rate vs. stock loss in base stock policy. 

more frequent depletion of stock, and the out-of-stock situation worsens over time. 

However, the mechanism by which the out-of-stock situation worsens in this policy is 

different from that of the (Q,R) policy. In the (Q,R) policy, the out-of-stock duration 

becomes progressively longer because the time it takes for the inventory record to reach the 

reorder point increases with each cycle. In the base stock policy, the ordering times are 

fixed, but the size of order decreases as a result of the inventory record moving closer to 

the base stock B over time. 

In Figure 3-3 is shown the relationship between the stockout rate in the base stock policy 

and the stock loss as the average stock loss is varied from zero to 0.7 (7% of the average 

demand). The base stock B is maintained at 87, which generates the target stockout rate 

of 0.5% when there is no stock loss. 

The rise in stockout rate is smooth throughout in Figure 3-3, and we do not observe an 

abrupt change in the slope of the stockout rate curve as seen in the (Q,R) policy (Figure 2- 

3). The complete shutdown of replenishment like those seen in the (Q,R) policy can also 

happen in the base stock policy. However, because the order is placed and products are 

delivered at regular intervals, it takes much longer for the replenishment freeze to occur 

under comparable settings - the same lead time, demand and stock loss distribution, and 



average ordering frequency in absence of stock loss. For the replenishment freeze to occur 

in the base stock policy, the inventory record will have to equal to the base stock level B 

and the on-order has to be zero simultaneously. For this to happen, either the stock loss 

rate has to be very high or the operation must continue for an extended period of time. 

3.3 Deterministic Model 

With the except ion of the ordering mechanism, the deterministic demand and stock loss 

model developed in this section for the base stock policy uses the same set of assumptions 

made in the (Q,R) deterministic model: demand and stock loss occurs continuously at 

a constant rate of w and v, respectively, the lead time is fixed at L, and the operation 

ends at time tf. Given the base stock level B and the inventory review interval T, we 

can determine the extent to which the inventory inaccuracy impacts the stockout rate and 

average inventory. 

Figure 3-4 shows how the two on-hand inventories - recorded and actual - change 

when there is stock loss occurring in the system. The initial inventory is B - WL and the 

first ordering decision is made at time T - L. By setting up the initial conditions this way, 

the duration of the sawtooth cycles are all equal, and thus the calculation is facilitated. 

As the error in the inventory record (dashed line) grows with unrecognized stock loss, 

the actual inventory (solid line) starts to experience depletion of stock. Whenever there is 

out-of-stock, no sales take place, and the inventory record stops dropping. This means at 

the next inventory review, the amount ordered will be less than what it would have been 

if there were no out-of-stock. With decreasing order size, the out-of-stock duration in the 

next cycle becomes even longer, which in turn reduces the order size in the next cycle, and 

so on. The order size approaches zero with infinite operation time. 

The stockout rate for this policy has been calculated. Let the inventory evolution be 

divided into three regions as shown in Figure 3-4. Let Region A consist of the sawtooth 

cycles in which no out-of-stock occurs. Region B consists of the cycles beyond Region A 

which have out-of-stock duration less than the lead time L. The rest of the cycles, whose 

out-of-stock duration is greater than L, fall in Region C. Knowing that the approximation 

method in the (Q,R) deterministic model yields very good results, we present the approx- 

imated calculations for the stockout rate and average inventory in this model also. See 
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Figure 3-4: Base stock Policy subjected to deterministic demand and stock loss 



Appendix B for the details of mathematical steps. 

The times that mark the end of Region A and B - t~ and t ~ ,  respectively - are 

approximated by 

where k is related to the number of cycles in Region B and is 

If the operation end time tf lies in Region C, we need to determine the number of cycles in 

Region C, denoted nc ,  as well. It is approximately 

The final expression for the stockout rate SOut is 

Using this expression for stockout rate, we can examine how well the model built under 

the assumption of deterministic demand and stock loss can predict the stockout rate of 

a system subjected to stochastic demand and stock loss. Figure 3-5 compares the results 

of the stochastic simulation model discussed in the previous section and the deterministic 

model. The parameter values are set to be consistent with the simulation: w = pw = 

10,T = 5 , L = 3 ,  andtf  =365. 

For small stock loss, the stochastic model has a slightly higher stockout rate than the 

deterministic model. This is because in the former, the base stock level B was purposely set 

to generate a finite target stockout rate of 0.5%, and thus the out-of-stocks are purely due 
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Figure 3-5: Comparison of stockout rate calculations from deterministic and simulation 
model (base stock policy) 

to random demand. In the deterministic model, however, the base stock level of 87 is higher 

than the minimum base stock that will provide zero stockout rate, which is w(T + L) = 

10(5 + 3) = 80. For this reason, the deterministic model produces zero stockout rate until 

the stock loss rate is 0.2% of the demand rate. With increasing stock loss, the out-of-stocks 

due to inventory inaccuracy becomes dominant, and the deterministic model makes more 

accurate predictions. 

What both the simulation and deterministic models confirm, however, is that the impact 

made on the inventory system performance by inaccurate information can be very high in 

the base stock policy as well as in the (Q,R) policy. A stock loss as small as 1% of demand 

creates stockout rate well above 10%. At 2% stock loss, more than a quarter of the purchase 

demand is lost. 



3.4 Comparison of the Impact of Inaccuracy on the Two Poli- 

cies 

Having seen how the performance of both the (Q,R) and base stock policy can be highly 

susceptible to inventory inaccuracy, we now investigate which of the tjwo inventory policies 

is more sensit'ive to the inaccuracy created by stock loss. A basis for comparison is made 

by choosing the parameters in the policies in such a way that in absence of stock loss, both 

policies produce identical inventory curves in the deterministic model. This is achieved by 

setting the parameters as follows: 

Since the demand rate w  is a given parameter, the two equations with two unknowns above 

will allow us to determine the unique combination of B and T in the base stock policy for 

any given R and Q in the (Q,R) policy, and vice versa. Suppose the demand rate is 10 units 

per time and the parameters in the (Q,R) policy are set at R = 30, Q = 50, and L  = 3. 

Equation (3.7) yields B = 80 and T = 5 .  Moreover, the initial inverltory needs to be the 

same. If the initial inventory in the (Q,R) policy is R + Q - W L  = 50, then it would be the 

same in the base stock policy at B - wL = 50. Figure 3-6 shows how the inventory changes 

over time in each of the two policies if there is no stock loss occurring in the system. 

Since the two curves are identical over time, the two policies produce identical perfor- 

mance -- stockout rate, average inventory, and order frequency - in absence of stock loss. 

Notice the R in the (Q,R) and B in base stock are set to be the minimum possible values 

which achieve zero stockout rate. Now, by introducing a stock loss in the system, the impact 

of inventory inaccuracy on the performance of these two policies can be compared. 

Stockout rate in the (Q,R) and base stock policy model for varying stock loss is plotted in 

Figure 3-7. The (Q,R) policy has considerably higher stockout rate for stock losses greater 

than 1%. This is due to the replenishment freeze that occurs in the (Q,R) model shortly 

after the stock loss of 1%. The base stock policy, on the other hand, does not experience 

the replenishment freeze, producing much lower stockout rate. 

The base stock policy outperforms the (Q,R) even when the replenishment freeze doesn't 

occur in the (Q, R) policy (stock losses less than 1%). Note the difference in mechanism by 



Figure 3-6: Inventory evolution of the (Q,R) and base stock policy in absence of stock loss 
and randomness ; - 
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Figure 3-7: Stockout rate comparison of the (Q,R) and base stock policy 



which out-of-stock situation worsens with time for a given stock loss. In the (Q,R) policy, 

the order interval increases with each cycle in Region B while the order quantity is fixed. In 

the base stock policy, the order quantity decreases with each cycle while the order interval 

stays constant. The results indicate that the out-of-stocks created due to delay in ordering 

are greater than the out-of-stocks due to decreasing order quantity. The base stock policy 

achieves lower stockout rate by ensuring delivery of products at regular intervals during the 

operation. 



Chapter 4 

Compensation Methods for 

Inventory Inaccuracy 

In the previous two chapters, it was found that stock loss unknown to the inventory man- 

agers can seriously affect the availability of on-hand stock. One underlying assumption 

used in the models, however, was that nothing is done to correct the inventory record error. 

The management may not be aware of the stock loss, or may simply choose to ignore it in 

designing the inventory policy. 

In this chapter, we examine various techniques inventory managers can use to cornpen- 

sate for the inventory record error. The possible methods of controlling the error are many, 

but we describe some of the representative ones here and assess the improvements each 

method can make in bringing the in-stock performance to the desired level. 

4.1 Compensation Methods and Model 

Consider the simulation exercise used in Section 2.2 to assess the impact of unknown stock 

loss on the performance of the (Q,R) policy if no corrective actions are taken. We use this 

model as a basis for testing how well each error-adjustment method performs in compen- 

sating for the inventory error. By using the same set of assumptions, we can examine how 

much improvement is made from the no-correction case by each compensation technique. 

Assumptions of the model are restated for convenience: 

The demand for purchase during each period k, wk, is assumed to be independent and 



normally distributed (truncated) with mean pw and standard deviation a,. 

a The demand for stock loss in period k, vk, is also independent and identically distrib- 

uted, and is generated from a Poisson distribution with mean A. 

a The lead time is known and fixed at L. 

The demand occurring when there is zero actual on-hand inventory is lost (no backlog). 

The sequence of events in each period is assumed to be as follows: 

1. The inventory record is reviewed and an order is placed to the supplier. 

2. The incoming order is received. 

3. Sales and stock loss take place. 

The dynamics of the inventory record, Zk, and actual inventory, xk, is influenced by the 

receipt quantity hk, sales ah, and stock loss vk according to the relationship 

4.1.1 Safety Stock 

Safety stock is often used as a protection against uncertainties in variables in inventory 

operations, such as the demand and supplier lead time. It can be extended to serve as a 

buffer against uncertainty in the inventory record. 

In (Q,R) policy, the level of safety stock is determined by setting the reorder point R 

(Sect ion 2.1). Since the reorder point consists of the expected demand during lead time and 

safety stock, to provide a buffer against inventory error would require increasing the reorder 

point to a level higher than that needed to cover the variability in purchase demand. In the 

numerical example shown in Section 2.2, the reorder point of 41 achieved 0.5% stockout rate 

when there is no stock loss occurring in the system. Since the expected purchase demand 

during lead time is 30 (pwL = 10 3 = 30), a safety stock of 41 - 30 = 11 units was required 

to provide this target stockout rate. To cover the additional uncertainty in the inventory 

record, a higher safety stock would be required. Thus, to see the benefit of carrying higher 

safety stock, we simulate the (Q,R) policy with R higher than 41. 



4.1.2 Manual Inventory Verification 

One of the most commonly used techniques for mitigating the inventory error is manually 

counting the items in the facility and correcting the inventory record. The inventory man- 

agers can choose to verify the inventory for a part of the entire SKU more frequently than 

the required yearly audit. This frequency may depend on various elements, such as the 

availability of the labor and product characteristics, including the profit margin, sales ve- 

locity, and whether the products are highly prone to stock loss and other causes of inventory 

error. 

We assume manual verification is done at predetermined, regular intervals, such as every 

month or every six months. In the simulation, the inventory record is set to equal to the 

actual on-hand at the end of the period when verification is done. It is assumed that the 

manual count is done with perfect accuracy. 

4.1.3 Manual Reset of the Inventory Record 

If a direct measurement of the on-hand inventory is not available, inventory managers can 

gather and monitor the available data and search for any patterns that may be indicative 

of the presence of serious inventory error. In the (Q,R) policy, for example, we saw that 

if the inventory error grows enough, it will eventually reach a point where the inventory 

record stays above the reorder point and no replenishment is made. In that situation, the 

daily POS (Point-of-Sales) reading will simply be zero every day. Knowing that this is 

an unlikely event under normal operations, the inventory manager can choose to manually 

reset the inventory record to zero, thereby allowing the automated replenishment system to 

start placing orders again. 

To simulate this compensation method, we set the inventory record to zero at the end 

of each period whenever zero sales is observed. Since the probability of zero demand is very 

small ( 7.4 in the truncated normal distribution for purchase demand with p, = 10 

and a, = 2, zero sales would be a strong indication of the existence of an out-of-stock 

condition. 



4.1.4 Constant Decrement of the Inventory Record 

If the inventory manager is aware of the presence of stock loss and also knows its stochastic 

behavior, another way to compensate for the error is to decrement the inventory record by 

the average stock loss demand each period. Since the actual value of the stock loss at each 

period is unknown, simply decrementing the record will still not eliminate the error in the 

inventory record. However, over time, this corrective action can be expected to perform 

better than leaving the inventory record unadjusted. 

In the simulation, an additional step at the end of each period is added to decrease the 

inventory record by the estimated daily stock loss demand A. The actual inventory and 

record now change according to 

The technology under development at the Auto-ID Center differs fundamentally from the 

current inventory systems in that it provides a direct measurement of the stock quantity 

using RFID readers and tags. To preserve generality, we refer as 'Auto-ID' all means 

of automatically obtaining the direct measurement of the stock quantity without having 

to count the items manually. Here we assume the Auto-ID provides a perfectly accurate 

measurement of the actual inventory and examine how it improves the inventory system 

performance. In the next chapter, we consider a more realistic case in which the Auto-ID 

makes inaccurate measurement of the actual inventory and develop an optimal ordering 

policy for various measurement performances. 

Auto-ID is simulated by setting the inventory record to equal to the actual inventory at 

the end of each period. Thus, the ordering decisions are made with the perfect knowledge 

of the on-hand quantity. The equations describing the inventory estimate and the actual 

inventory are 



It should be noted that new compensation methods can be created by combining two or 

more of the techniques described above. For instance, manual verification of the inventory 

can be conducted along with carrying a higher safety stock. 

4.2 Results and Discussion 

Figure 4- 1 shows how the inventory system performance changes when the compensat ion 

methods are implemented. The same parameters from the numerical example in Section 2.2 

are used: pw = 10, a, = 2, L = 3, and Q = 50. The average stock loss X is held constant 

at 0.1, which is 1% of average demand for purchase. The reorder point R is varied in steps 

of 2 around the base value of 41 (which produces the target stockout rate of 0.5% in the 

absence of stock loss) for each compensation. The rationale behind varying the reorder 

point is that in the (Q,R) policy, R is the decision parameter, and it is the responsibility of 

the inventory manager to select the R that produces the most desirable performance (the 

best combination of average inventory and stockout rate) for each compensation technique. 

The figure plots stockout rate against average inventory for each compensation method. 

Since the desired goal is to obtain a low stockout rate at minimal inventory, the stockout 

rate-inventory pair is chosen as the performance measure. The vertical distance between 

the curves is the difference in average inventory required to attain a particular stockout 

rate. Therefore, for a given stockout rate, the compensation technique with the lowest 

inventory would be the best-performing one. Notice that by increasing the reorder point 

higher than the base value 41, we are also testing how each compensation technique performs 

in conjunction with carrying higher safety stock. 

The 'No Compensation' curve represents the case in which nothing is done to correct 

the inventory error caused by stock loss other than varying R (Section 4.1.1). This curve 

thus serves as a basis from which improvements made by each compensation method can 

be observed. The rightmost data point in this curve corresponds to the lowest reorder 

point, and thus has the highest stockout rate. As R increases, stockout rate improves at 

the expense of inventory. 

In the manual inventory verification method (Section 4.1.2 - represented by 'Verify 

Twice'), counting is assumed to be conducted twice a year. The result shows that even the 

infrequent inventory record reconciliation of every six months improves the performance 
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Figure 4 1 : Stockout rate and average inventory for various compensation met hods 

dramatically, primarily it prevents replenishment freeze. 

The 'Reset Record' curve is the result of resetting the inventory record to zero when 

sales are zero (Section 4.1.3). Notice that the vertical distance from the 'No Compensation' 

curve is large for low reorder points but is almost zero for high reorder points. This is 

because at low reorder points, inventory is small on average and zero sales occur frequently. 

Thus, the POS provides useful information needed to correct the inventory record error. 

At high reorder points, zero sales are infrequent, and the system behaves close to the 'No 

Compensation' case. 

The strategy of decrementing the inventory record daily by the average stock loss (Sec- 

tion 4.1.4 - shown by the 'Decrement Record' curve) performs remarkably well in improving 

the stockout rate-inventory compromise from the no compensation case. Simply reducing 

the inventory record value by a constant amount each period still leaves errors in the record, 

but over time the record is able to track the actual inventory much more closely and keep 

the out-of-stocks low. 

As expected, having a pertectly accurate knowledge of the on-hand inventory (Sec- 

tion 4.1.5 - the 'Auto-ID' curve) achieves the best stockout rate-inventory compromise: 

AuteID is able to attain the lowest inventory for any given stockout rate. The benefit of 



having the accurate knowledge of on- hand inventory becomes greater as the desired target 

stockout rate becomes smaller. 

The effect of carrying higher safety stock can be observed from the 'No Compensation' 

curve. Since in the absence of stock loss the minimum reorder point required to achieve 

0.5% stockout rate is 41, any reorder point higher than this can be considered safety stock 

for protecting the system from inventory record error and stock loss. When the stock 

loss demand is 1% of average purchase demand, the reorder point must be increased to at 

least 73 to maintain the stockout rate at 0.5%. This means the safety stock will have to 

increase by more than three days' worth of average purchase demand. Starting the inventory 

operation with higher reorder point allows more time for the actual inventory to stay above 

zero. However, as the gap between the actual inventory and inventory record grows and 

out-of-stocks begin to occur, this compensation method takes no further action to correct 

the error. In fact, when the stock loss is higher at 396, the reorder point must be much 

higher at 145 (including a safety stock of more than eleven days' worth of average demand). 

This indicates that at high stock losses, the inventory required to maintain the low target 

stockout rate becomes prohibitive. Therefore, merely stocking up the facility with extra 

inventory to provide a buffer against uncertainty in inventory accuracy and stock loss is not 

an effective way to treat the problem. 

4.3 Limitations of Each Method 

The results reveal that if the stochastic behavior of stock loss is known, a significant im- 

provement in performance can be achieved by compensating for the inventory record error. 

We also have seen that in some instances, such as decrementing the inventory record by 

average stock loss, a dramatic improvement can be made even without Auto-ID. However, 

the stockout rate-inventory performance is not the only measure that has to be taken into 

account in selecting the appropriate compensat ion met hod. 

Higher safety stock, as we have seen, keeps the lost sales to a minimum only for very small 

stock losses, and does so at the price of carrying high inventory. For inventory inaccuracy 

caused by nonzero-mean error such as the stock loss considered here, this is not a desirable 

solution. 

Manual verification of the inventory record has a number of disadvantages as well. It 



is costly to implement, especially in low-margin, high-competition environments where the 

availability of workforce is limited. In addition, manually verifying the entire facility requires 

shut down of the operation, which leads to loss of revenue. Targeting only a portion of the 

entire SKUs and cycle counting them is an alternative, but often items cannot be found 

in the designated locations when they are misplaced by shoppers or employees. In mass 

merchandise retailing environments where there are hundreds of thousands of individual 

items at any time, finding the items of interest during the cycle count alone becomes a 

challenging task. If the possibilities of mis-labeling and mis-counts are also considered, there 

is no guarantee that the manual counts will accurately reflect the true on-hand inventory. 

The method of resetting the inventory record to zero bears the danger of false positives. 

This is true especially for low demand products, for which zero sales does not necessarily 

mean zero inventory. Incorrectly setting the inventory record to zero results in over-stocking 

the inventory. In our example, the use oft his compensation makes sense since the probability 

of zero purchase demand is extremely small. For products with much lower demand, the 

inventory record should be reset only if a number of consecutive zero sales days are observed. 

However, determining the number of such days to wait until reset requires a sophisticated 

analysis. 

Decrementing the inventory record, while simple in concept and effective in keeping 

the stockout rate low in our model, presents a few disadvantages as well. First of all, 

implementing this method can be expected to face cultural barriers in the organizations. 

The perpetual inventory has always been discrete, nonnegative integers. Under this met hod, 

however, the computer record could be negative and non-integer depending on how it is 

implemented. 

More important is the sensitivity of the system performance to the stock loss demand 

estimate used in decrementing the inventory record. Earlier in Chapter 2, it was pointed 

out that even a small level of stock loss can create high stockout rates. This is tantamount 

to saying that if the estimated stock loss demand is slightly lower than the actual stock 

loss demand, the stockout rate will also be high. To study this sensitivity, another set of 

simulations were run. Whereas in the previous simulation the average stock loss demand 

was assumed to be known exactly, now we assume the inventory manager makes an incorrect 

estimate of the true stock loss demand. Figure 4-2 shows how the stockout rate and average 

inventory change when the average stock loss demand is estimated to be 3% of average 
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Figure 42 :  Stockout rate and average inventory when the estimated stock loss is incorrect 
in using the inventory record decrement strategy 

demand but the true average stock loss demand varies from 0 to 7%. 

If the estimated average stock loss demand of 3% is equal to the actual stock loss demand 

occurring in the facility, then this compensation method performs well in adjusting the 

inventory error and achieves a relatively low stockout rate of 2.2%. However, as the amount 

by which the estimated value underestimates the actual stock loss demand grows, stockout 

rate rises rapidly. In other worde, to the right of 3% stock loss, stockout rate performance 

exhibits sensitivity similar to what is observed in situations where the inventory error is 

left uncorrected. There is a difference in how the stockout rate rises, however. In the case 

where no compensation is applied, stockout rate rises even more sharply when the stock 

loss is high enough to create replenishment freeze. Here, we do not observe such change in 

the stockout rate curve slope: the stockout rate rises more or less at a constant rate with 



increasing actual stock loss demand. This is because even when the system freezing takes 

place, decrementing the inventory record daily will eventually bring the inventory record 

below the reorder point, thus setting the replenishment back into act ion. Therefore, another 

benefit of the decrement strategy is that it prevents the replenishment freeze from taking 

place, and thus eliminates the extreme out-of-stocks. 

The performance of the system suffers if the estimated stock loss demand is higher than 

the actual stock loss demand as well. In this case, stockout rate drops to zero, but the 

average inventory in the system rises rapidly as actual stock loss decreases. When the 

estimate is off by 2%, the average inventory is more than twice as high as estimating the 

stock loss correctly at 3%. Therefore, the ability of the inventory record decrement strategy 

to effectively compensate for the inventory error depends critically on the accuracy of the 

stock loss estimate. Even a small deviation from the actual stock loss demand will result 

in either high stockout rate or unnecessary inventory in the facility. 

Auto-ID requires high up-front investment in RFID readers and tags, in addition to 

the costs involved in design and execution of real-time inventory tracking algorithm and 

software. Moreover, being an emerging technology still under development, there is no 

guarantee that Auto-ID will work perfectly and provide an exact account of the actual 

stock quantity in the store. 



Chapter 5 

Inventory Control Using Auto-ID 

- Perfect State Informat ion 

The radio frequency identification (RFID) technology was presented in the introductory 

part of this thesis as a motivation for research in inventory inaccuracy. By automatically 

identifying the presence of physical objects using the RFID tags and readers, the technology 

can potentially provide what is coveted by inventory managers and what has been assumed 

in many inventory models - accurate knowledge of the on-hand stock quantity. Further- 

more, the benefit of this knowledge in terms of improving the inventory system performance 

for (Q,R) policy was examined in the previous chapter. 

We now probe deeper into the problem of compensating for inventory record error using 

Auto-ID'. In this chapter, we assume Auto-ID works perfectly and provides accurate infor- 

mation of the on-hand quantity. Under this assumption, we find the optimal ordering policy 

for an inventory system subjected to stock loss. In the next chapter, we make a more real- 

istic assumption that Auto-ID does not work perfectly and has errors in the measurement 

of on-hand quantity. We present a model of the measurement error, the optimal ordering 

policy, and a few suboptimal control schemes that are more readily implementable. 

Under the assumption that the stock quantity is known exactly, the optimal ordering 

policy for a system subjected to demand has been treated in many works [BerOO]. Here, 

we examine how the optimal policy changes when a stock loss is introduced in the system. 

Specifically, we examine the impact of stock loss on the structure of the ordering policy and 

AS mentioned earlier, by ' Auto-ID' we refer to all means of automatic capture of the on-hand quantity. 
Thus, it is not restricted to the technology under development at the Auto-ID Center. 



look for the means to compute the optimal profit. This would also allow us to know the 

upper bound of the performance by Auto-ID and provide a basis of comparison for Auto-ID 

systems with varying degrees of measurement errors. 

5.1 Discrete Time and Continuous State 

Consider the inventory control problem of determining the optimal order quantity at each 

period over N finite horizon so as to maximize the profit when demand for purchase and 

stock loss is present. Let us denote the following variables of the system: 

xk : inventory at the beginning of period k, 

uk : quantity ordered in period k, 

wk : demand for purchase during period k, 

vk : demand for stock loss during period k. 

The variable xk is the system's state. It evolves over time under the influence of decision 

made at each period uk and the random parameters wk and vk. 

In each period k, the events occur in the following order: 

1. Inventory is reviewed and order is placed to the supplier 

2. Ordered quantity is received immediately (zero lead time) 

3. Demand for purchase is filled 

4. Stock loss takes place 

We further assume that the demand wo, wl, . . . , WN-1 and the stock loss vo, vl, . . . , vlv-1 

are independent random variables that take values from a bounded interval, and that excess 

demand is lost (i.e., no backlog).2 Thus the inventory evolves according to the discrete-time 

equation 

xk+1 = max(0, xk + uk - wk - vk), k = 0~1, .  . . , N - 1 (5.1) 

Note the max term is necessary since no backlog (i.e. no negative inventory) is allowed in 

the model. 

2 ~ o t e  that this formulation is equivalent to the inventory problem in which there are two or more customer 
price classes, since the stock loss can be treated as just another demand but with different cost implications 
[CKLBB]. 



We search for an optimal ordering policy that maximizes the total profit raised over time. 

Profit per stage is defined as revenue minus the total expenditure, and since maximizing 

the profit is equivalent to minimizing the negative of the profit, we express the cost per 

stage gk , which is function of xk, uk , wk , and vk, as follows 

gk ( ~ k  Uk Wk vk) = -profit 

= [Expenditure] - [Revenue]. 

The expenditure consists of two components: first, the purchasing cost cuk where c is 

the per unit price paid to the supplier, and second, the inventory holding cost h max(0, xk + 
uk - wk - vk) where h is the per unit cost of holding inventory left at the end of the period. 

Similarly, the revenue generated at each period is the selling price p multiplied by the 

number of units sold. The number of units sold in period k is either equal to the demand 

wk (if there is sufficient stock to meet the demand) or the inventory available just prior to 

meeting the demand xk + uk (if there is out-of-stock) . The per stage cost, gk , then becomes 

Given an initial inventory xo and zero terminal cost, the optimization problem is to minimize 

the total expected cost accumulated over the N periods, denoted Jo (xo) 

by properly choosing the set of order quantities uo, u1, . . . , UN-I subjected to the constraint 

uk 2 0 for all k. 

Dynamic programming is used as an optimization algorithm since we are searching for 

an optimal decision to be made in stages. The appropriateness of dynamic programming 

is evident as the policy is implemented in closed-loop form - i.e., placing the order uk is 

postponed until the last possible moment (time k) so that all the information that becomes 

available since time 0 can be utilized [BerOO]. Since there is no penalty for delaying the 

decision until time k, we can take advantage of the latest information available, which is the 

demand for purchase in the past periods, wo, wl, . . . , wk-1, and the stock level at time 0 up 

to k. This is different from an open-loop minimization scheme in which all order quantity 



would be determined at time 0 without seeing the subsequent information. 

According to dynamic programming, the optimal cost J; (xo) for a given initial state 

xo is equal to Jo(xo) generated at the last step of the following expression, which proceeds 

backward in time from period N - 1 to 0: 

where the expected value is taken with respect to the probability distribution of wk and vk. 

Jk(xk) is the 'cost-to-go' from time k to the ending time N, and consists of the per stage 

cost gk and the cost-to-go from the immediately following time Ic + 1. The set of the order 

quantities u:, uy , . . . , that minimizes the right side of Equation (5.6) is the optimal 

policy. 

Substituting gk in the above expression with Equation (5.3) and xk+l with Equa- 

tion (5. l ) ,  the DP algorithm becomes 

JN (XN) = 0, 

Jk(xk) = min E {cuk + h max(0, xk + uk - wk - vk) - pmin(wk, xk + uk) (5.7) 
'(lk 'Wk9Vk 

f J ~ + ~ ( ~ ~ x ( o , x ~ + u ~ - w ~ - V ~ ) ) ) ,  k = O , l , . . - , N - l  

If the expected value of the quantity in the bracket above (hence the cost-to-go function 

Jk(xk)) is convex in xk and has a minimum with respect to xk, denoted by Sk, the optimal 

policy has the form 

otherwise. 

It turns out that convexity holds. Refer to Appendix C for the complete proof. 

The optimal quantity then follows the order-up- to-level policy which at tempts to main- 

tain the inventory at the target value Sk. If the beginning inventory at period k, xk, is 

lower than Sk, the optimal order quantity would be what brings xk up to Sk. If it is greater 

than Sk, then no order is placed (See Figure 5-1). This is equivalent to the result from the 

classical inventory control problem in which the system is subject to only the demand for 

purchase and there is no stock loss [BerOO]. 



Figure 5-1: Structure of the cost-to-go functions 

5.2 Discrete Time and Discrete, Finite State 

In the preceding section and in most of the research literature, inventory is represented by 

a continuous, real variable. In this section, stock is measured in whole units (such as water 

bottles or razor blades). In addition, we assume that there is a physical upper bound on 

the possible number of units that can be stored in the facility at one time. Thus, the state 

space is defined in this section to be a finite set of integers rather than real numbers. We 

do this in order to compare results with those of Chapter 6 in which these assumptions are 

required to make the problem numerically tractable. 

If the maximum allowed stock is n, the dynamics of the system described in the previous 

sect ion (Equation (5.1)) changes to 

The min term places a constraint on the total available inventory just prior to filling the 

demand, xk + uk, to be no greater than n. The per stage cost becomes 



and the dynamic programming equation becomes 

JN(XN) = 0, 

Jk(xk) = min E cuk + h max(0, min(n, xk + uk) - wk - vk) 
'Ilk W k 9 V k  { (5.11) 

- p min(wk, min(n, xk + uk)) + J ~ + ~  (max(0, min(n, xk + uk) - wk - vk))). 

Since the state space is a finite set of integers from 0 to n, the expectation can be carried 

out with respect to wk and vk. Assuming wk and vk can take values from the finite set 

[0, m] and [0, q] , respectively, the above algorithm can be expressed as 

m 9 

Jk(xk) = min {cuk + h max(0, min(n, xk + uk) - i - j )  
'Ilk i=o j=o 

The optimal policy and the corresponding optimal cost can be obtained by first minimiz- 

ing the right-hand side of Equation (5.12) for every possible value of the state XN-1 to 

obtain the optimal order quantity for period N - 1, U ~ - ~ ( X ~ - ~ ) .  Knowing (xN-1), 

JN-i (zN-l) can be computed and used in the minimization of the right-hand side of the 

same Equation (5.12) for period N - 2, which is carried out for every possible value of 

XN-2 In the same manner, the cost-to-go function JN-3 (xN-3) and the optimal quantity 

u ~ - ~ ( x ~ - ~ )  are obtained, and so forth, until the optimal cost J;(xo) is computed. Since 

the profit is defined to be negative of the cost, the optimal profit achieved by the optimal 

policy is - J; (xo). 

The expected value of optimal profit calculated by the DP algorithm for an example nu- 

merical problem is shown in Figure 5-2. It is assumed that the maximum allowed inventory, 

n, is 10, and the cost parameters of c = 1, h = e,p = 1.25 are used. Under these settings, 

products are sold at a value 25% higher than the purchase price, and the inventory holding 

cost is 25% of the purchase price per year. The demand wk is assumed to have binomial 
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Figure 52:  Expected profit computed by dynamic programming 

distribution characterized by the parameters nb and pb as follows3 

The average demand is set at 5 by selecting nb and pb to be 10 and 0.5, respectively. Poisson 

distribution is used for the stock loss, vk, with the mean X equal to 3% of the average demand 

(A = 0.3). The maximum possible value of both the demand and stock loss - m and q, 

respectively - are equal to n. The initial state, xo, has d o r m  probability distribution 

over the values [O,n]. 

The optimal policy for the N = 365 problem is shown in Thble 5.1, which lists the 

optimal order quantity for each period k and for each possible value of beginning inventory 

xk. For example, if in period k = 10 the beginning inventory $10 = 0, the optimal order 

quantity is 7. If in period k = 364 the beginning inventory 2384 = 4, the optimal order 

quantity is 2. It can be seen that the order-uptelevel policy is preserved in the discrete, 

finite state inventory system with stock loss. The order-uptdevel Sk is, however, non- 

3 ~ h e  binomial distribution is chosen because it closely approximates the normal distribution, and thus 
consistency with the models in the previous chapters is provided. 



Table 5.1: Optimal order quantity 

stationary over the periods according to 

7 for 0 5 k < 363 

6 for k = 364 

4 for k = 365. 

This is because the terminal cost is defined to be zero and thus greater penalty is placed 

on leftover inventory towards the end of the operation. For periods k < 363, the effect of 

this increased penalty is not seen since the leftover inventory in a period can be used to 

fulfill the demand in the following period. Moreover, the cost parameters c, h, and p are 

constant, making the order-up-to-level Sk in these periods to be stationary. 

This optimal policy structure also explains why the expected value of profit, shown in 

Figure 5-2, is not linear with respect to N. For short horizons, the order-up-to-level is 

lower than in longer horizons, resulting in different ordering and inventory cost and thus 

different expected profit per period. However, for long horizons, the order-up-to level is 

constant, and with the cost parameters also being constant, a linear relationship yields a 

good approximation of the expected total cost. 



Chapter 6 

Inventory Control Using Auto-ID 

- Imperfect State Information 

In the preceding chapter, we considered an inventory control problem in which the state of 

the system - the on-hand stock quantity - is known accurately. Under the assumption 

that Auto-ID can obtain a perfectly accurate measurement, the perfect state information 

dynamic programming allows us to find the optimal ordering policy for an inventory system 

subject to stock loss. However, this assumption is unrealistic. All real systems that make 

observation of the system variables are subjected to measurement errors, and Auto-ID is not 

an exception. In this chapter, we define and model an imperfect state information system 

in which the Auto-ID measurement is erroneous in nature and obtain an optimal control 

scheme. Unfortunately, the fast-growing state dimension of the imperfect state information 

problem limits us to solve only small size, simplified problems. Later we present sub-optimal 

control schemes that do not require a computationally burdensome optimization and yet 

are able to achieve a near-optimal performance. 

6.1 Optimal Control for Auto-ID with Measurement Errors 

To see how Auto-ID measurements can have errors, a closer look at how the RFID technology 

works is needed. 

The communication between RFID reader and tag begins when the reader sends an 

electromagnetic wave at a certain frequency and power (See Figure 6-1). If the tag is within 

the reading range of the reader, which can typically vary from a few inches to yards, the 
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Figure 6-1: Communication between the RFID readers and tags 

electromagnetic wave powers the tag, which transmits back to the reader the information 

stored in the microchip (such as the unique identification code). By gathering all the signals 

transmitted from the tags to all the readers in the facility, the physical inventory reading 

is obtained. 

Unfortunately, the data transmission between the reader and tags is subject to the 

uncertainties in the media or channels through which the signal has to pass. First of all, the 

reading range of the reader can fluctuate depending on the environmental factors, leading to 

possible failure to capture some of the tagged objects. Even if all the tagged objects reside 

in the reading range, signal interference and distortion can arise due to many factors such 

as the material content of the tagged object, their orientation, spacing between the objects, 

and etc. For example, a high read rate can be achieved by the RFID reader for products 

such as paper towel and sponge. For products with high fluidic and metallic content - such 

as soup cans and liquid detergents - the read rate can be much lower. The result of this 

data corruption is a discrepancy between the actual stock and the measurement reported 

by Auto-ID. 

One important characteristic of this measurement error is that while the RFID system 

can miss reading some of the tagged objects, it does not identify an object that does not 

exist. Therefore, the measurement by Auto-ID can only understate the actual quantity. 

We model this inventory system using a class of control problem called imperfect state 

information problems. Whereas before the state was assumed to be known exactly, now we 

assume what can be accessed instead is a stochastically uncertain observation about the 



stock quantity in each period. Let us denote the measurement of the state at time k made 

by Auto-ID as xk. 

Since the state xk is not accessible, we need to define a new state at time k to be the 

set of all available information the knowledge of which can be of benefit in looking for the 

optimal order quantity. In fact, the set of all available information at time k includes all 

the observations from time 0, (20, 21, . . . , zk), and all the past controls (uo, ul, . . . , u ~ - ~ ) .  

Call this the information vector Ik 

Next, the cost per stage needs to be reformulated as a function of the variables of the 

new system. This can be done by taking the conditional expected value of the original 

cost per stage, gk(xk,uk,wk,vk), given the information vector Ik and the control uk. The 

reformulated cost per stage, ijk (Ik, uk), is 

Using the expressions (6.1) and (6.2), the DP expression can be written as 

Thus the imperfect state information problem has been reformulated as a problem with 

perfect state information. The optimal policy {uz , u; , . . . , uk-, ) for this problem is obtained 

in the same manner by performing minimization backwards in stages. 

Even though the imperfect state information DP provides a means to determine the 

optimal policy for a problem subjected to measurement errors, it requires highly intensive 

computation. This difficulty arises from the dimension of state Ik that expands over time. 

As a new measurement is made at each stage, the dimension of Ik grows, and even with 

small number of possible values that zk and uk can take, the total possible values of Ik 

increases rapidly with time. For example, if zk and uk are each allowed to take ten different 



values, IN can have 10'' possible values by the tenth stage (N = 10). 

Therefore it is of interest for us to look for an alternative system state which would have 

smaller dimension than Ik and yet provide all the essential content of Ik that is necessary 

for control purposes. Such quantities are known as suficient statistics [BerOO]. Among 

many, one sufficient statistic that is useful for our model is the conditional probability 

distribution of the true state xk given the information vector Ik, denoted Pk. Pk is a vector 

whose elements are conditional probabilities that xk is equal to i, i = 0,1,. . . , n, given the 

information vector Ik. Denoting this conditional probability by p f ) ,  the vector Pk is written 

as 

Using the basic laws of probability, we can show that the elements of the above vector, and 

thus the vector itself, can be generated recursively. That is, the state at stage Ic + 1, Pk+l, 

can be expressed as function of the state in the previous stage Pk, the control applied in the 

previous stage, uk , and the measurement available at present stage, zk+l. See Appendix D. 1 

for the mathematical steps. The result is 

where T i j  (uk) and rij are state transition probability and measurement probability, respec- 

tively, defined as 

Ti,j(uk) = probability that xk moves from i to j when control uk is applied 

= P r o b ( ~ k + ~  = jlxk = i, uk) 



Figure 6-2: Markov chain diagram for state transition 

and 

rij = probability that measurement z is i when the actual stock quantity x is j 
(6.7) 

= Prob(zk = ilxk = j). 

Therefore, the system state at a given period is some function of the previous state, the 

control applied in the previous state, and the current measurement. Using this recursive 

relationship in Equation (6.5), we can construct the system state at any period from a given 

initial state Po. 

The state transition probability r i j (uk) can be determined from the probability distrib- 

utions of wk and vk and the system dynamics described by Equation (5.9). To illustrate how 

this can be done, let us use a simple example in which xk, uk, wk, and vk all can take values 

only from a set of finite integers {0,1,2). Further denote by Wi the probability that the 

demand for purchase wk = i, i = 0,1,2, and denote by Ti the probability that the demand 

for stock loss vk = i. Let uk = 0. Applying the dynamics of the system expressed in (5.9), 

the probabilities of xk moving from one value to another can be shown in the Markov chain 

diagram in Figure 6-2. 

For example, if xk is 1 at the beginning of time k and no order was placed during the 

period k (uk = 0), then the probability that xk+l will remain unchanged is 1 only when 

there is zero demand and zero stock loss. This transition probability is rl,l (0) = WoTo. 

Similarly, xk will drop to 0 at the beginning of k + 1 if the sum of wk and vk is at least one. 

This transition probability is T ~ , ~ ( O )  = 1 - WoTo. The probability that xk+l will increase to 

2 is zero since nothing is ordered. Other transition probabilities can be determined similarly. 



The transit ion probabilities can be summarized by the transit ion probability matrix II(uk), 

and for the simple example shown in Figure 6-2, it is 

. The transition probabilities for other values of uk can be computed similarly. 

Using the newly defined system state Pk, the DP equation becomes 

Jk(Pk) = min E {cuk + h max(0, min(n, xk + uk) - wk - uk) 
U k  Xk ,Wk,Vk  J k + l  

Note that whereas before the system state at time k was collection of all the available prior 

and present measurements and controls, now the system state is the conditional probability 

of the actual stock quantity given the information vector. The per stage cost remains the 

same as in the problem using Ik as the state, but the cost-to-go term now involves the 

recursively-generated Pk. Carrying out the expected values and expressing in matrix form, 

the above algorithm can be expressed as 



where 

R, is the ith row of the measurement matrix R whose elements are the measurement prob- 

abilities Ti, j , expressed as 

f0,O . - r0,n 

R =  [ . : I ,  
rn,O . -  rn,n 

and the operator * represents scalar multiplication of the matrices. 

Thus, a DP problem has been formulated to find the optimal policy for an inventory 

control problem in which the inventory manager has access to the measurement of the actual 

state provided by the Auto-ID system. 

Solving the imperfect state information problem in Equation (6.10) requires a differ- 

ent technique from the one employed for the perfect state information problem in Equa- 

tion (5.12). Whereas in the latter the state is discrete and can take on a finite set of integers, 

in this problem the state is a vector of real numbers representing probabilities. Therefore, 

rather than proceeding backward in time from period N - 1 to 0, we start at the initial 

stage k = 0 where we can compute the state Po - which is the conditional probability that 

the initial inventory, xo, is equal to i, i = 0,1, . . . , n given the measurement zo - and move 

forward. 

We compute the vector Po based on the given problem data - namely, the probability 

distribution of the actual stock quantity xo and the measurement matrix R - and use it to 

determine Jo (Po) in Equation (6.10) for all the possible values of uo. The summation loop in 

the last line of the expression, however, requires computing Pl and solving for J1 (PI), again 

for all the possible values of the control ul . Solving for Jl (PI) in turn requires calculation 

of Pz, and proceeding forward, minimization would reach the stage N - 1, at which point 

JN-i (PN-i) can be determined. This allows the summation loop in the previous stages 

to be calculated, and the minimization of Jo(Po) can be complete for the first uo under 

consideration. In the same manner, we repeat this procedure for all the possible values of 

uo* 



This highly iterative computation indicates that even with the reduction of state space 

achieved by introducing the new state Pk, the problem of intensive computation required 

to carry out the DP algorithm still persists. According to Equation (6.10), each period 

requires (n + 1)2 matrix operations, resulting in (n + 1)2N matrix operation to complete 

the optimization. Ideally, we'd like to obtain the solution for a problem with the horizon of 

N = 365 periods. This is not computationally feasible even with today's fastest computers, 

and thus we solve a five stage problem (N = 5) and look for any insights regarding the 

optimal profit and the structure of the optimal policy. 

We present the solution to the imperfect state information problem of Equation (6.10) 

using the example from the preceding section. All the problem data are identical: n = 

10, c = 1, h = g,p = 1.25. The same probability distributions for the demand wk and 

stock loss vh are also used. In the imperfect state information problem, however, one 

additional set of data has to be defined - the measurement matrix R. Earlier it was 

noted that Auto-ID system can only underestimate the actual stock quantity by failing to 

detect some of the objects. Therefore, the stochastic behavior of the measurement error is 

modelled as a geometric probability distribution, expressed as follows: 

10 otherwise, 

where pg is the geometric probability constant. The numerator in the first relation is the 

geometric distribution, and the denominator normalizes the probabilities. The closer the 

pg is to 1, the better the accuracy of the Auto-ID measurement. 

Table 6.1 shows the measurement matrices for pg = 0.7 and pg = 0.3. For example, when 

pg = 0.7, the probability that Auto-ID measurement is 4 when the actual stock quantity is 

5 is 7-4,s = 0.21. Notice the columns of the matrices add to 1. 

Figure 6-3 shows the expected value of optimal profit for Auto-ID systems with mea- 

surement accuracy of pg = l (which corresponds to a perfect state information system), 

pg = 0.7, and pg = 0.3 when the horizon N is varied from 1 to 5 stages. 

The result shows that even with poor measurement accuracies, Auto-ID can perform 

close to the perfect state information case. When Auto-ID can make a perfectly accurate 



Table 6.1: Measurement probabilities for p, = 0.7 and p, = 0.3 

(a) pg = 0.7 

2 3 

N (Number of Stages) 

Figure 6-3: Expected profit for various measurement accuracies 



observation of the actual stock quantity only 70% of the times for most possible values of xk , 
it is able to attain a profit almost equal to that of perfectly accurate measurement system. 

When pg = 0.3, the optimal profit is only 2.2% lower than that of perfect state information 

system for N = 5. This ability of the poor measurement systems to perform well is due to 

knowing the dynamics of the system and the stochastic behavior of the demand and stock 

loss. 

However, this ability comes at a price. We know from the results of the perfect state 

informat ion problem that the optimal order quantity follows a nice and simple order-up- to- 

level policy (shown in Table 5.1). However, as the measurement accuracy decreases, this 

simple ordering structure no longer holds. Table 6.2 shows the optimal policy that achieves 

the maximum profit that appears in Figure 6-3 for pg = 0.7 and pg = 0.3 system when the 

inventory horizon N = 5. The table summarizes the quantity that should be ordered to the 

supplier for every possible value of the measurement zk, and it turns out that this quantity 

also depends on the previous measurement q - 1  for k 2 1. The optimal quantities for the 

first four periods (k = 0,1,2,3) are shown for the pg = 0.7 system and first three periods 

(k = 0,1,2) for the pg = 0.3 system. 

First of all, we see that to achieve the optimal profit, the inaccurate measurement 

systems in general order less than the perfect information system for the same measurements 

obtained. For example, when the measurement at the first time period k = 0 is 4, the perfect 

information system should order 3 units, while the pg = 0.7 system should order 2 units 

and the pg = 0.3 system should order only 1 unit. This is because the inaccurate systems 

underestimate the actual stock quantity, and to maintain the same target inventory (the 

order-up- t 0-level) , the inaccurate systems need to order less than the perfect information 

system would order, given the same measurements. 

Another noticeable difference in the optimal policies is in the structure. In the pg = 0.7 

case, the optimal policy starts with an order-up-to-level of 6 at k = 0. However, as time 

passes, the order-up-to-level policy is no longer valid. Also note that whereas in the perfect 

state information case the optimal order quantity depended only on the measurement made 

at the present stage, in the imperfect state information case it depends also on the previous 

measurements as well. This is seen when an unusually high measurement in one stage is 

followed by a low measurement in the next. For instance, when the measurement of = 10 

is made in stage k = 0, the optimal order quantity in the next stage for measurement of 



Table 6.2: Optimal order quantities for pg = 0.7 and pg = 0.3 

(a) p, = 0.7 * 6 if zo=8 



xl = 0 is 5, compared to the optimal quantity of 7 if the previous measurement zo is seven 

or less. This is due to the fact that Auto-ID cannot report a value that is greater than 

the actual inventory, and a measurement of 10 - the maximum possible inventory - is 

always accurate. Since the probability that the actual inventory will move from 10 to 0 

is very unlikely, the controller simply does not believe that the measurement of zl = 0 is 

accurate, and thus recommends a quantity less than it would if the previous measurements 

were lower. 

The optimal policy for the pg = 0.3 case exhibits similar characteristics, with a much 

further deviation from the order-up-to-policy and a stronger dependence of the optimal order 

quantity on the previous measurements. In addition, the order quantities are generally even 

smaller. Thus, the ability of systems with poor measurement accuracies to achieve optimal 

performance comes at the price of a complex inventory policy. 

Although Auto-ID systems with inaccurate measurements require complex policies to 

achieve optimality, there may exist alternative solutions that are much simpler in concept 

and implementation and st ill enable near-optimal performance. Therefore, it is of interest 

to examine how sensitive the performance of Auto-ID system with measurement error is 

to the type of the ordering policies used. We know there exists an optimal policy for each 

Auto-ID system characterized by the measurement inaccuracy parameter pg.  What we 

intend to find out is how much the performance degrades when other non-optimal policies 

are applied. We test the sensitivity in three different ways. 

One way to test the sensitivity is making the systems with measurement inaccuracy 

follow the simple order-up-to-level policy derived for the perfect state information system. 

This may illustrate a situation in which the inventory manager, either not aware of the 

measurement errors in the Auto-ID system or ignoring the presence of error, chooses to 

follow the perfect state information policy. In the next method, we compute, for Auto-ID 

systems with various p,, the expected profit that results from using the optimal policy 

obtained for pg = 0.3. This may correspond to a situation in which the inventory manager 

is conservative about estimating the measurement accuracy of the Auto-ID system and 

decides to adopt the policy for a low-end measurement performance. 

Lastly, we use the method of estimating the actual inventory by taking the expected 

value of the conditional probability distribution of the actual inventory given in Equa- 

tion (6.5) and follow the perfect state information policy by treating this estimate to be 



--*--UsingppO3Policy 

-4- using -1 

Figure 6-4: Expected profit of imperfect measurement systems subject to various policies 
(N = 5) 

exact. The estimated inventory at the beginning of period k + 1, denoted Zk+1, is obtained 

by the matrix multiplication 

Zk+1 = [O 1 . . . n]Pk+l 

where the conditional probability distribution of actual inventory Pk+1 can be calculated 

from the conditional probability distribution at the beginning of the previous period k, f i ,  
the order quantity uk, and the measurement observed at the beginning of present period 

according to Equation (6.5). 

This method is similar to what is called certaintg equivalent control. For several types 

of problems involving a linear system and a quadratic cost, the system estimates are in- 

corporated into the contrd law as if they are perfect measurements of the state, and the 

resulting optimization is the same as for the corresponding deterministic problem [BerOO] . 
Figure 6-4 summarizes the changes in expected profit due to these tests for Auto-ID 

systems with pg varying from 0.3 to 1.0. The horwn is N = 5, and the same numerical 

example presented earlier in this section is used here. 

The 'Optimal' curve represents the optimal expected profit achievable by each imper- 



fect measurement system from following its own optimal policy. This upper bound on 

performance is compared with the expected profit computed for the same set of imperfect 

measurement systems when they follow the order-up-to-level policy obtained for the perfect 

state information system shown in Table 5.1 ('Using Perf Info Policy' curve). What we ob- 

serve is a decrease in the profit that becomes more and more noticeable as the measurement 

accuracy decreases. 

The upper bound is also compared to the expected profit achieved when the systems 

with various pg follow the optimal policy of the worst measurement accuracy pg = 0.3 

(shown by the 'Using pg = 0.3 Policy' line). Similar to the case where the order-up- 

to-level policy is used, the drift from the optimal performance grows as the measurement 

accuracy moves away from pg = 0.3. However, the biggest performance decrease in using the 

pg = 0.3 policy, which takes place at pg = 1.0, is much less than the biggest performance 

decrease in using the perfect state information policy. This is because in the pg = 0.3 

system, the actual stock quantity is greater than the measurement provided by the Auto- 

ID system (Auto-ID can only underestimate the actual quantity), and if the inventory 

manager believes the measurement is perfect and follows the perfect information system 

ordering policy (illustrated by the 'Using Perf Info Policy' curve), quantities less than the 

optimal would be ordered consistently. Furthermore, the penalty of lost sales is higher than 

the penalty of storing inventory, and thus using the perfect information system ordering 

policy for pg = 0.3 system results in a greater loss in expected profit than using the optimal 

policy for pg = 0.3 for the pg = 1 system. 

What is common in both methods, however, is flatness of the expected profit curve 

around the pg for which the optimal policy is used. This means, for example, the inventory 

manager can incorrectly assume the pg of the Auto-ID system to be 0.5 when the true pg 

is 0.3 and still attain a near-optimal profit. 

Overall, the best performing of the three methods is using the expected value of the 

conditional probability distribution as an estimate for the actual inventory ('Using E[Pk] ' 

curve). This state estimation technique attains the expected profit very close to the upper 

boundary for the entire range of pg considered. 

Having been inspired by the performance of this state estimation technique, we explore 

further the applicability of this compensation technique in the following section. 



6.2 Sub-optimal Compensation Using State Estimation 

The dynamic programming exercise in the previous section demonstrates that the optimal 

performance and the ordering policy can be obtained for inventory systems with inaccu- 

rate measurements. However, due to the high computational power requirements, the size 

of the problem (namely, the horizon and maximum allowed inventory) had to be limited 

and oversimplifications in the model (such as zero lead time) had to be made. Therefore, 

for more realistic models, we are interested in searching for control schemes that do not 

require comput at ionally burdensome optimization and yet are able to attain near-opt imal 

performance. 

One of the advantages of the state estimation technique presented in the previous sec- 

tion is the reduction of this computational burden. Notice in this control technique no 

optimization is done. Instead, the state, which is the conditional probability distribution of 

the actual inventory given the available information, is constructed at each stage using ex- 

pression (6.5), and by computing the expected value of this state, a dramatic improvement 

in the estimate of the state is achieved. This relatively simple computation makes possible 

the control of inventory problems with much longer horizon, much higher upper limit on 

the stock quantity, and finite lead time. 

Consider, for example, the (Q,R) model used in the earlier chapters, but now the state 

is no longer exactly known and instead the only available information are the inaccurate 

Auto-ID measurements in the past and present period (20, zl, . . . , zk) and the past order 

quantity (uo, ul , . . . , u ~ - ~ ) .  We can build a state estimation technique that is conceptually 

identical to what is presented in the previous chapter with minor modifications. Assuming 

the lead time is known and fixed at L and the receipt quantity is exactly equal to the order 

quantity, our information vector at period k + 1 would now consist of all the past shipment 

quantities, ho, hl, . . . , hk (which are equal to the quantities ordered L lead time periods 

ago), and the past and present measurements zo, zl , . . . , zk+l 

This is simply the information vector used in the zero lead time model in the previous 

section with the order quantity ur, replaced by the shipment quantity hk. 

The conditional probability distribution of the actual inventory in period k + 1 would 



then be computed using the expression 

which, similarly, is equivalent to Equation (6.5) with uk replaced by hk . The state transit ion 

probability Tij(hk) can be determined from the probability distribution of the demand wk 

and the stock loss vk and the system dynamics in (2.5) 

The sequence of events is same as that of Section 2.2 with additional steps at the 

beginning of each period. In period k + 1, events occur in the following steps: 

1. The measurement of the actual inventory, xk+l, is obtained from Auto-ID system. 

2. The conditional probability distribution of the actual inventory, Pk+ is computed 
using (6.16). 

3. The estimate of the inventory is obtained by taking the expected value of Pk+l. 

4. Quantity Q is ordered to the supplier if the estimate is less than the reorder point R. 

5. The incoming shipment is received. 

6. The demand for purchase and stock loss are met. 

Therefore we have designed an inventory error compensation method that uses the 

probability distribution of the stock quantity under the presence of erroneous Auto-ID 

measurements, and its performance can be compared with that of other compensations 

presented in Chapter 4. This is accomplished by using the same numerical example: the 

demand for purchase during period k is normally distributed with mean pw = 10, standard 

deviation ow = 2, and the stock loss demand has Poisson distribution with mean X = 0.1 

(1% of average demand). The lead time is L = 3 and Q = 50. 

One more parameter needs to be specified - pg.  We test an extreme case of the 

measurement performance and set pg to be 0.05. To illustrate the measurement performance 

of this system, the cumulative measurement probability when the actual inventory is 50 is 

shown in Figure 6-5. Under this setting, the Auto-ID measurement is off by more than 12 

items with the probability of 0.5. 

In Figure 6-6 are the sample simulation runs showing the effect of using the state esti- 

mation technique. The reorder point is set at 41 so that the target stockout rate of 0.5% is 



Figare 6-5: Cumulative Auto-ID measurement probability (Actual inventory is 50) 

achieved in absence of stock loss and under perfect state information. When the Auto-ID 

system has the poor measurement performance of p, = 0.05, the inventory record severely 

underestimates the actual inventory fhquently (shown in Figure 6-6(a)), resulting in higher 

average inventory level than desired. When this poor measurement is 'filtered' by using the 

state estimation technique, the inventory record is able to track the actual inventory much 

more closely (Figure 6-6(b)). The overall improvement in the performance achieved by this 

state estimation technique is shown in Figure 6-7, which plots the average inventory against 

the average stockout rate for various reorder points. Each data point is the result of 500 

repetitions of independent simulations. . a '  This is the - - ~ a m e  type of plot in Section 4.2 used to 

compare the various compensation methods. In Eact, the performance af system when the 

Auto-ID is working perfectly ('Perfect State Info' curve) and when no correction is made to 

the inventory record ('No Compensate' curve) is reproduced here for comparison purposes, 

along with the result of decrementing the inventory by the average stock loss ('Decrement 

Record' curve). The Auto-ID system with pg = 0.05 ('pg=0.05' curve) makes only limited 

improvemeat from the worst case scenario due to the poor measurement performance. In 

fact, its performance is noticeably worse than the simple technique of decrementing the 

inventory record each period. However, when this corrupt Auto-ID measurement is filtered 

using the probability distribution of the actual inventory (represented by the 'pg=0.05, Fil- 

tered' curve), dramatic imprwement in the inventory-stockout rate compromise is seen, as 
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Chapter 7 

Sub-optimal Inventory Control 

Without Auto-ID 

In the previous chapter, it was found that even when the Auto-ID system falls short of 

providing the perfectly accurate measurement, the inventory error can be effectively com- 

pensated through better estimation of the actual inventory. This was accomplished by 

computing the probability distribution of the actual inventory in each period, simply tak- 

ing its expected value, and using it as if it is an accurate read of the actual inventory in 

making ordering decisions. 

In this chapter, we apply this control scheme to today's typical inventory environment 

in which there is no Auto-ID, but the only available data is the incoming shipment quantity 

and the sales data (namely, the perpetual inventory system). It was shown in Chapter 2 

that if nothing is done to adjust for the inventory inaccuracy, the recurring stock loss would 

create a growing gap between the inventory record and the actual inventory and lead to 

performance degradations. It is of interest to see how the state estimation technique based 

on the available data in today's inventory control environment can make the inventory 

record better track the actual inventory. 

This control scheme basically is an addition to the various compensation methods pre- 

sented in Chapter 4. In fact, we subject this control scheme to the same model and testing, 

and compare its performance under the same set of criteria. 



The State Estimation Technique 

As described in the introduction, many of today's automatic replenishment systems are 

designed to update their computerized inventory records whenever there there is incoming 

shipment from the suppliers or items are sold. The transaction for the former is done 

typically through the purchase order documents (which may be in hardcopy or electronic 

form) and the latter through barcode scan data at the checkout counters (also known as 

POS - Point of Sales). Under this 'perpetual inventory' system, the actual inventory in 

period k + 1, xk+l, and the inventory record, j.k+l, change according to (2.4) and (2.5), 

respectively : 

where hk is the receipt quantity, ak is the sales quantity, and vk is the demand for stock 

loss in period k. 

The goal is to build a state estimation technique analogous to what is used for the Auto- 

ID system (Section 6.2) applicable for this perpetual inventory system. One clear difference 

lies in the available information. At the beginning of period k, the information that can aid 

the inventory manager's ordering decision is the collection of the past incoming shipment 

quantity (assuming this is equal to the order quantity) and the sales quantity. Summarizing 

this data is the information vector Ik which is expressed as 

The next task is to come up with an expression for the conditional probability distribution 

of actual inventory given the information vector, Pk , 

It turns out that much like for the case involving the Auto-ID measurement zk, the above 

90 



probability distribution can be generated recursively using the probability distribution at 

the previous period and the incoming shipment and sales observed in the previous period. 

In fact, the expression for p!), j = 0, 1, . . . , n, that constitutes the above matrix can also 

be obtained using the basic probability laws, and the final expression is 

See Appendix D.2 for the detailed mathematical steps of derivation. 

According to the above equation, the construction of Pk+1 involves Pk and two condi- 

tional probabilities P ~ ( X ~ + ~  = j lxk = i, hk, ak) and Pr(ak lxk = 2 ,  hk). The former is the 

transition probability of the actual state xk given the knowledge of hk and ak and is anal- 

ogous to r i , j  in Equation (6.5). Both of these conditional probabilities can be computed 

from the problem data, which would contain the distribution for the purchase demand wk 

and the stock loss demand vk, and the dynamics of the system described by Equation (7.2). 

We can now use the (Q,R) simulation model used in Chapter 4 and Section 6.2 to see how 

well the state estimation technique using the currently available data in today's perpetual 

inventory systems compares with that of others. The sequence of events is as follows: 

1. The probability distribution of the actual inventory, Pk+l, is computed using Equa- 
tion (7.5). 

2. The estimate of the inventory, 5k+l, is obtained by taking the expected value of Pk+1. 

3. The order of quantity Q is placed to the supplier if 5k+l 5 R. 

4. The incoming shipment is received. 

5. The demand for purchase and stock loss are met. 

7.2 Results and Discussion 

We use the same numerical example of the previous sections: the demand during period k is 

normally distributed with the mean pw = 10 and standard deviation ow = 2, and the stock 

loss demand has Poisson distribution with mean X = 0.1 (1% of average demand). The 

lead time is L = 3 and Q = 50. Figure 7-1 shows sample simulation runs when nothing is 

done to correct the inventory record error (7-la) and when the inventory record's estimate 

is enhanced using the control scheme outlined in the previous section (7-lb). 
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Figure 7-1: Sample simulation runs showing the effect of improving the estimate of inventory -.. . . -. ' 
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Figure 7-2: Overall improvement in performance made by the state estimation technique 
using currently available data 

The improvement is dramatic. When no adjustment is made to the inventory record, 

the inventory record diverges fiom the actual inventory continuously and eventually reaches 

the replenishment fieeze zone. By computing and using the probability distribution of the 

actual inventory, the inventory record is able to track the actual inventory much more 

closely, thereby reducing the out-of-stocks significantly. 

Figure 7-2 shows the overall performance of this control scheme in terms of the inventory- 

stockout rate compromise. Again, the reorder point is varied in the neighborhood of 41, 

which produces the target stockout rate of 0.5% in absence of stock loss. 

This compensation technique is able to deliver a result very close to that achieved by 

the perfectly accurate Auto-ID ('Perfect State Info' curve). It outperforms the strategy of 

decrementing the inventory record by the average stock loss ('Decrement Record' curve) 

for all the reorder points considered. Since this control scheme requires a far less costly 

implement at ion than Auto-ID, the investment required by Auto-ID systems may not be 

justified if the measurement accuracy is not high enough. 

Nevertheless, the ability of this compensation method to perform well depends on one 

critical factor: the model using state estimation, as well as other cornpensat ion techniques 

discussed in previous chapters, needs accurately estimated system parameters. Consider, 
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for example, the assumptions regarding the stock loss. We have seen that the perpetual 

inventory system is highly sensitive to the rate of stock loss if no correction is made on the 

inventory record. This can be interpreted to saying that even a slightly inaccurate estimate 

of the stock loss is likely to result in serious performance decrease. Figure 7-3 shows how 

much the performance of this compensation technique suffers when the actual stock loss 

(A in the Poisson distribution used for the stock loss) is 1% of the average demand for 

purchase, but it is incorrectly estimated at 0% (('Assume 0% Stock Loss' curve) and at 0.5% 

('Assume 0.5% Stock Loss' curve). If the stock loss estimate is off by as small as 1%, a 

sharp degradation in the performance is observed. 

The Auto-ID is exempt from this sensitivity on the stock loss estimate since its mea- 

surement is dependent only on the actual inventory at the time of the read and is thus 

unaffected by the stock loss. 



Chapter 8 

Conclusion and Further Research 

8.1 Conclusion 

Motivated by an emerging product identification and tracking technology under investiga- 

tion at the Auto-ID Center at Massachusetts Institute of Technology, this research attempts 

to assess the value of accurate account of what products are where in what quantity through- 

out the various points in supply chain. However, in order to quantify this impact, it was 

necessary to first understand what the causes of the inventory errors are, the mechanism 

by which the inaccurate inventory record degrades the inventory system performance, and 

what the cost of that inaccuracy is. Understanding this baseline performance enables us to 

quantify the incremental benefit of the Auto-ID technology. 

Among many different causes of the inventory error, the unknown stock loss, defined 

as disappearance of items (such as due to theft) not detected by the information system, 

is identified as a serious potential threat to inventory system performance and becomes 

the focus of this research. Analytical and simulation modelling of two commonly used 

inventory policy in practice - the (Q,R) policy and the fixed review period, base stock 

policy - demonstrate that the inventory system performance is highly sensitive to the 

inaccuracy caused by stock loss. That is, even a small level of stock loss accumulated over 

time can lead to inventory inaccuracy that disrupts the replenishment process and creates 

severe out-of-stocks. The consequences of untreated inventory error can be especially severe 

in the (Q,R) policy where the inventory record can stay above the reorder point and halt the 

replenishment process completely. This modelling work also provides a managerial insight: 

that revenue losses due to out-of-stocks can far outweigh the losses due to the disappearing 



items themselves, and thus calls for the inventory managers to pay a close attention to 

maintaining the inventory record accuracy to effectively control the stock loss problem. 

Parametric analysis further reveals that the sensitivity of the inventory system perfor- 

mance to the inventory record error is heightened in lean systems characterized by short 

lead times and frequent ordering of small quantities. Stripped of the ability to deal with 

uncertainties in the operation, performance of lean system is likely to be hampered far more 

by inventory inaccuracy, and thus maintaining accurate inventory record is critical to reap 

the benefits lean systems have to offer. 

The benefit of the accurate inventory information, such as provided by the Auto-ID 

technology, is indeed substantial. The simulation model (demonstrated in Chapter 4) shows 

that once furnished with accurate stock quantity every period, the inventory system has the 

resilience to counter the damaging effects of unknown stock loss and maintain a performance 

level (characterized by the inventory-stock loss compromise) very close to that of a system 

without any stock loss. 

Comparison of the Auto-ID technology to other compensat ion techniques demonstrate 

that there are much simpler and less costly ways to effectively control the inventory error, 

such as decrementing the inventory record by the mean of the stock loss every period. 

However, due to the high sensitivity of the system performance to the stock loss, accurate 

estimate of the system parameters and the dynamics are required for successful execution. 

Furthermore, it is found that classic ways of buffering against operational uncertainties, 

such as carrying higher safety stock, is not a desirable solution to the inventory inaccuracy 

problem caused by the stock loss. 

Next, we examine the performance of the Auto-ID system whose measurement of the 

actual stock quantity is not perfectly accurate. This is motivated by the fact that the 

technology is still under development in the industry and is yet to reach a full maturity in 

operational environment. We formulate the inventory management problem as an imperfect 

st ate informat ion dynamic programming problem and we obtain the optimal inventory 

policy. This analysis reveals that even with a poor measurement performance, optimal 

profit close to the perfect measurement case can be achieved. However, this comes at a 

price. As the measurement performance gets poorer, the structure of the optimal policy 

becomes more complex. The optimal order quantity develops the tendency to depend not 

only on the current period measurement, but on the previous periods as well. 



Another challenge in the implementation of the optimal inventory policy for Auto-ID 

systems with measurement error is the small scope of the problem due to the computational 

limitations. To address this problem, we examine a state estimation technique that uses 

the probability distribution of the actual stock, the quantity ordered, and the Auto-ID 

measurement, and discover that it is able to substantially simplify the computation of the 

order quantity and yet achieve a near-optimal performance. 

Moreover, motivated by the superb performance of this state estimation technique, we 

also look for a similar sub-optimal control scheme which does not require the Auto-ID 

measurement, but utilizes the information currently available in today's typical inventory 

operations - incoming and outgoing shipment quantity. We again discover that this state 

estimation technique is able to achieve a performance very close to that using Auto-ID 

measurement. However, it also requires a very accurate knowledge of the system parameters 

due to the highly sensitive nature of the system on inventory inaccuracy caused by stock 

loss. 

These observations lead us to the conclusion that the selection of an appropriate control 

technique to combat the inventory inaccuracy caused by unknown stock loss requires careful 

evaluation of the dynamics of the system and the system parameters, including the purchase 

demand, stock loss demand, and the behavior of the Auto-ID measurements. If these 

parameters can be estimated with confidence, then there exist compensation techniques that 

are much simpler and less costly than Auto-ID and still achieve near-optimal performance. 

However, in environments where the system behavior is governed by high uncertainty, which 

is true in most real-life situations, the accurate stock quantity information provided by Auto- 

ID (or, an estimate of the quantity based on an Auto-ID system with measurement errors) 

can be of a great benefit. 

Further Research 

This research attempts to contribute to the field of inventory management and control by 

challenging a fundamental assumption commonly used in many inventory models: perfectly 

accurate knowledge of inventory system information is available and accessible for decision 

making. In particular, we relax the assumption that the knowledge of the actual stock 

quantity, which is the single most important piece of information required in inventory 



policies, is provided accurately. 

Such deviation from the classical inventory models opens the doors for many research 

areas other than the ones covers in this thesis. We summarize some of the potential key 

research problems that build or expand upon this thesis in the area of information inaccuracy 

in inventory systems: 

Modelling other causes of inventory inaccuracy: In this research, unknown stock loss 

was identified as one of the primary causes of inventory inaccuracy and became the 

focus of the study. However, other types of causes of inventory inaccuracy exist as 

described in Chapter 1, and some may be more important than unknown stock loss 

depending on the nature of the product and operations. 

Selecting other causes of inaccuracy is likely to result in different conclusions about the 

mechanism by which the error creates disruptions in the operations, sensitivity of the 

system performance on the inventory inaccuracy, performance of various compensation 

techniques, and etc. 

Supply-chain-wide impact of inventory inaccuracy: No inventory-carrying facility is 

a stand-alone system in the supply chain. Therefore, disruptions caused by inventory 

inaccuracy at one point in supply chain are likely to propagate to the upstream and 

downstream trading partners. For example, when a retailer at the far end of the 

supply chain suffers from replenishment freeze due to prolonged period of untreated 

inventory inaccuracy, its supplier will be impacted by this disruption and experience 

unusual ordering pat terns. Modelling a mult i-stage inventory system and looking for 

a macroscopic understanding of the impact of inventory inaccuracy is a potential area 

of investigation. This investigation takes greater importance today as more and more 

companies tightly integrate their supply chain processes with their trading partners 

to maximize efficiency. 

It is also of interest to examine the impact of information inaccuracy in transaction 

between trading partners. By nature, supply chain partners operate on frequent hand- 

off of materials and goods, and every handoff is susceptible to information inaccuracy. 

Investigation would include how such transact ion errors can accumulate over time 

and through what mechanism they can create disruptions in ordering and supplying 

behavior in the partners. 



Expansion in dynamic programming problem: The analytical works involving dy- 

namic programming in Chapter 5 to Chapter 7 were intended to illustrate a way 

in which an inventory inaccuracy problem can be formulated as a dynamic program- 

ming model. For this reason, simplifications were used in the model. However, a more 

interesting and realistic problem can be formulated by expanding the scope of the 

model. 

For an example, a finite lead time, rather than zero lead time as used in this re- 

search, can be incorporated into the model. The dynamic programming formulation 

would then use state augmentation that involves enlargement of the state space. Un- 

fortunately, this reformulated problem may have very complex state and/or control 

spaces. 

Another example is to add a fixed ordering cost. In the perfect state information 

problem, this leads to the optimal policy known as the (s, S) policy. This research 

area could include an investigation of the relevancy of this policy to the imperfect 

state information problem and identification of the structure of the optimal ordering 

policy. 

Inventory Inaccuracy in MRP and DRP systems: Manufacturing Resource Planning 

(MRP) and Distribution Resource Planning (DRP) systems require inventory control 

policies very different from the ones discussed in this thesis. The research questions 

addressed in this thesis can be studied in the MRP and DRP system: what the causes 

of errors are, by what mechanism the error degrades the performance, how sensi- 

tive the performance is to the error, and what effective compensation techniques are 

available. 

A number of research works appear in the literature that addresses inventory inaccu- 

racy in MRP systems. In particular, Krajewski (1987) uses simulation to assess which 

factors in a MRP-based production environment (inventory inaccuracy being one of 

them) have the biggest impact on performance. One possible contribution beyond 

this work is rather than building a complex and large-scale model, starting with a 

simple model and looking for insights to explain the relationship between inventory 

inaccuracy and the performance of the MRP systems. 





Appendix A 

Calculations for Deterministic 

Model - (Q,R) Policy 

A. 1 Exact Calculations 

Calculating performance measures of the inventory system of Section 2.3 requires computing 

the ending times t~ and tB of Regions A and B, respectively, of Figure 2-4. The schematic 

is shown again in Figure A.l for convenience. 

The analysis of Region A and the calculation of times t~ and tl require a focus on the 

actual inventory, since they are defined by the actual inventory reaching zero. 

t~ can be determined by finding the number of cycles in Region A, denoted nA, and the 

length of each cycle. In the first cycle, the initial actual inventory and the initial inventory 

record are both R + Q - wL. When the inventory record reaches the reorder point R, it has 

decreased by (R + Q - wL) - R = Q - wL. The inventory record further decreases by w L  

until just before the first order arrives. The inventory record is then R - W L  so the total 

decrease in the first cycle is (R + Q - wL) - (R - wL) = Q. When the order of amount 

Q arrives, the inventory record jumps back up to R + Q - wL. This cycle in the inventory 

record repeats as long as the real inventory is above zero. The length of a cycle is the time 

required for the demand (at rate w) to consume the amount Q, or Q/w. 

When the actual inventory reaches zero, sales are interrupted and a new kind of behavior 
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begins. The actual inventory, since it decreases at the rate v faster than the inventory record, 

drops by an additional amount, v (length of a cycle) = v(Q/w), in the first cycle. That is, 

the actual inventory decreases by Q(l  + vlw) in the first cycle. The net change, after the 

order arrives, is then a decrease of v(Q/w). 

As long as the demand and stock loss rate are constant, the actual inventory decreases 

by this amount during each cycle. However, when the actual inventory reaches zero, the 

slope of the two inventory curves change - in fact, they go to zero. The number of cycles 

until this happens, i.e., the number of cycles in Region A, is the largest integer number of 

times the quantity v(Q/w) can fit into the inventory record at the end of the first cycle. 

This value is d in Figure A.l, and d = R - wL. nA is then 

where I ( x )  is the largest integer less than x.  Then t~ is nA times the length of a cycle, or 

The value of the actual inventory at time t ~ ,  denoted I,, , is the value of the actual 

inventory at time 0 minus the stock loss since time 0. The stock loss since t = 0 is v t ~ ,  so 

The remaining time after t~ until the actual inventory reaches zero is IrB divided by 

v + w, the rate that actual inventory actually decreases. The time of the first out-of-stock, 

tl ,  is t~ plus the time after t~ that the actual inventory reaches zero, or 

t 2  

The analysis of Region B and the calculation of times t~ and tz require a shift of focus to 

the inventory record, since they are defined by the inventory record exceeding R. 



In this section, we determine ng, the number of cycles in Region B, and the length of 

each cycle. To calculate nB, we make use of the fact that in Region B, the ending value of 

an inventory record cycle is higher than that of the previous cycle. 

First cycle in Region B The inventory record is R + Q - wL at time t ~ ,  and it drops 

at rate w as long as the actual inventory remains strictly positive. As we have shown, the 

actual inventory remains positive for a time period of length I,, / ( v  + w ) ,  so the inventory 

record drops by utI,, / ( v  + w )  between t~ and tl . Note that this decrease is less than the 

order amount Q since the time between t~ and tl is less than a full Region A cycle. 

Since the actual inventory is zero immediately after t l ,  sales are zero and the inventory 

record remains constant until the order arrives. The inventory record, between tl and 

when the order arrives, stays at R + Q - wL - wIrB / ( v  + w).  Since the value of the 

inventory record just before the order arrives in Region A is R - wL, the increase in the 

inventory record just before the order arrives at the end of the first cycle in Region B is 

( R  + Q - wL - wI,,/(v + w ) )  - ( R  - wL) = Q - Z U I ~ ~ / ( V  + w).  When the order arrives, 

both the inventory record and the actual inventory jump by Q. 

Later cycles In later cycles, the actual inventory always starts at exactly Q. The time 

required for the actual inventory to reach zero is Q / ( v  + w ) ,  and it remains at zero until 

the next order arrives. The inventory record decreases by wQ/(v  + w )  while the actual 

inventory is positive, and then, after a period of no sales, it jumps by Q. Therefore, 

the net change in the inventory record during a Region B cycle other than the first is 

Q - wQ/(v  + W )  = vQ/(v  + w).  

To summarize, the value of the inventory record at tl , the end of the first cycle of Region 

B, is 

and the inventory record at the end of the ith cycle is 



Number of cycles Let nB be the number of Region B cycles until the inventory record 

is greater than or equal to R at the lowest point of a cycle. For there to be at least one 

cycle, we must have 

Then ng is given by 

( l + m i n n  otherwise 

where n  is an integer such that 

Therefore, n ~  is given by 

if&-- w l r ~  < W L  
v + w  

otherwise. 

Length of Region B Unlike the Region A cycles, the duration of the Region B cycles 

are not all the same. To determine the total length of Region B, we need to compute the 

length of its cycles. The length of each cycle is the time it takes for the inventory record to 

reach the reorder point from the start of the cycle plus the lead time L. 

That is, if the inventory record at the start of a cycle is x (which includes the order of 

size Q that just arrived), the time until the inventory record reaches R is (x - R ) / w  and 



the length of the cycle is 

At the start of the first cycle, the inventory level is the same as in every cycle in Region 

A: R + Q - wL. Therefore, the length of the first cycle is Q/w . 

To determine the length of the second cycle, we recall from (A.5) that the inventory 

record at time t l  is R+Q-wL-wI,,/(v+w). Therefore, the inventory record, at the start 

of the second cycle, just after the order arrives, is R+Q-wL-wITB/(v+w)+Q. The length 

of the second cycle is then (Q-wL-wITB/(v+w)+Q)/w+L or Q/w+Q/w-ITB/(v+w). 

More generally, (A.6) implies that the inventory record at the start of the ith cycle, for 

i > 2, is 

so the length of the ith cycle is, according to (A.7), 

The total length of Region B, for n~ > 2, is therefore 

Carrying out the summation above and simplifying, the total length of Region B can be 

summarized as 

tz is now the sum of t ~ ,  the total length of Region B, and the last in-stock duration 



that exists immediately after Region B, which is & if n~ = 0 and & otherwise. This is 

( t ~  + $ + ( n ~  - 1) (18 w - h) V+W + ( n ~  - I ) (ns  -2)-& + & i f n ~  2 2. 
(A. 10) 

We compute the stockout rate Sout to be the fraction of the entire operation time, t f ,  

occupied by the flat portions of the actual inventory curve in Region B. The length of the 

flat line in each Region B cycle is found by subtracting from the length of each cycle (which 

has already been determined in the previous section) the in-stock duration of each cycle, 

which is & for the first cycle and & thereafter. Using (A.8), the length of the flat line 

in the ith cycle is 

+ ( i - 2 )  (2)) --- Qv 
W v + w  u + w  w(v + w)' 

If tf 2 t2, then the stockout rate is the sum of the lengths of the flat lines in the above 

expression with i = nB and the amount by which tf exceeds t2, which is 

1 nB sou, =-[c(Q - T- + (i - 
w v + w  

Qv ) + t f  - t,] 
tf i=1 l)W(v + W) (A. 11) 

If tl 5 tf < t2, then stockout rate takes the form similar to the previous expression, 

except n~ is replaced by the number of complete Region B cycles that exist prior to the 

finishing time t f ,  denoted by m. Also, the last two terms tf - t2 are replaced by length of 

the remaining flat line that may exist between the completion of m cycles and tf . If m is 

zero - meaning t is located between tA and the end of the first cycle in Region B - then 

this remaining flat line is the greater of zero or the quantity that remains when t~ and the 

in-stock duration & are taken away from t f .  Otherwise, it is the greater of zero or the 

quantity that remains when the total length of m cycles and the in-stock duration &$ is 



taken away from tf . Using (A.9) and (A.l I) ,  we write this expression as 

~ , t f - t ~ - ( m - l ) ( % - f r a )  tu V+W - ( m - m - - 1  i f m 2 2  

(A.12) 

What remains is the expression for m. First, we look for the number of intervals (a 

real number), denoted by mi, that lie between t~ and t f .  Using (A.9), we can write the 

quadratic equation 

Solving this quadratic equation for ml, and taking its integer portion (since we are looking 

for integer number of complete cycles), we obtain for m 

where 

We complete the calculation of stockout rate by noting that when tf < t ~ ,  Sout = 0. 

A. 1.1 Approximate Calculations 

The exact calculations shown in the previous section can be simplified significantly by 

making a set of appropriate approximations. The first approximation begins with the 

number of cycles in Region A, nA. Whereas in the exact calculation nA had to be an 



integer, we now relax this constraint and use the approximation 

in Equation (A.l). This approximation works well when the stock loss rate v is small and 

the cycle length z is much smaller than t f  . If this is true, the argument in I ( - )  in the left 

side of equation will be large and taking only the integer portion of the argument will be 

close to the argument itself. n~ and t ~  then becomes 

(A.16) 

(A. 17) 

In determining t  l ,  we make an additional assumption that the beginning actual inventory 

in the first cycle of Region B, I,, , is equal to Q. Again, this works well for small v because 

the amount by which the actual inventory decreases more than the inventory record in each 

cycle will be small. With this approximation, the expression for tl becomes 

(A. 18) 

Applying this approximation also to n ~ ,  and once again relaxing the constraint that nB 

has to be an integer, we obtain 

t2 now simplifies to 

We proceed further by carrying out these approximations to calculation of stockout rate 



and arrive at 

where m also changes by the approximations to 

Note that in approximating Sout for the case when tl 5 tf < t2, we also assumed any flat 

line that may exist beyond rn cycles is negligible. 



Appendix B 

Calculations for Deterministic 

Model - Base Stock Policy 

Define a cycle as the evolution of inventory between arrival of two consecutive orders. A 

cycle therefore would consist of a single sawtooth curve in Figure 3-4. Similar to what is 

done in the deterministic (Q,R) model, the inventory evolution is divided into regions of 

interest. Let Region A consist of cycles for which no out-of-stock occurs. Region B consists 

of the cycles that follow the end of Region A and for which the out-of-stock duration is 

shorter than the lead-time L. Region C consists of the rest of the cycles. Let t~ and t~ 

denote the end of Region A and B, respectively. 

tl can be determined by finding the number of cycles in Region A, denoted nA, the length 

of each cycle, and the in-stock duration of the first cycle in Region B. 

Initially, both the recorded and actual inventory is at B - wL, and by the first review 

time, which takes place at time T - L, the inventory record falls by w(T - L). By the time 

the order arrives, it further falls by wL. The ending inventory is thus B - wL - w(T - 

L) - wL = B - w(T + L). Since the actual inventory falls at the faster rate of w + v and 

the time length of the first cycle is T, the actual inventory will be lower than the recorded 

inventory by vT at the end of the first cycle. The quantity ordered at the first review is 

the difference between B and the inventory record at time T - L, which is computed to be 

B - (B  - wl - w(T - L)) = wT. Since there is no out-of-stock in Region A, the rest of the 



cycles in this region will have the identical order quantity of WT and cycle length of T. The 

number of cycles in Region A is then the integer number of times the quantity vT can fit 

in the vertical distance between zero and the ending recorded inventory of the first cycle, 

and is expressed as 

where I(x)  is the largest integer less than x. 

For small stock loss rate v, however, the above can be approximated by 

The ending time of Region A, t ~ ,  is then approximated by multiplying nA by the cycle 

length T, expressed as 

The in-stock duration of the first cycle in Region B is found first by determining the 

actual inventory at the beginning of Region B, denoted I,, . Knowing the initial inventory 

of this cycle(which is B - wL), the amount by which the beginning value of actual inventory 

drops with each cycle in Region A (which is vT), and the number of cycles in Region A 

(which is nA), it becomes 

The time of first out-of-stock, t is then t~ plus the time required for the quantity WT 

to be consumed at the rate w + v, and is expressed as 

To obtain the expression for stockout rate Smt, we need to calculate the out-of-stock du- 

ration for each cycle beyond Region A. Calculating the out-of-stock duration requires the 

beginning value of actual inventory of each cycle, which depends on the out-of-stock dura- 

tion of its previous cycle, and so forth. 



Region A In the first cycle of Region B, the actual inventory begins at wT and remains 

in stock for $. Since we know the time length of each cycle is fixed at T, the out-of-stock 

duration for this first cycle is T - s. We also know that inventory is reviewed and order 

is placed to the supplier (T - L) after the beginning of this cycle, and the size of the order 

is WT since there has been no out-of-stock in the last cycle of Region A. 

In the second cycle, the actual inventory begins with wT (what is ordered in the first 

cycle), and thus the out-of-stock duration for this cycle is again T - s. The size of order 

placed in this cycle is the quantity sold since the last inventory review time, and would 

be simply wT if there was no out-of-stock in the previous cycle. Since however there was 

WT out-of-stock for the duration T - $, the size of order is WT - w(T - =) = w T W .  w+v 

Calculations for the rest of the cycles in Region B can be carried out in the same manner. 

Table B. 1 summarizes the beginning actual inventory, out-of-stock duration, and quantity 

ordered in each cycle of Region B. It turns out that the out-of-stock duration changes in 

cycle pairs. 

The total out-of-stock duration in Region B is the sum of the individual durations in 

the above table, and can be expressed as 

The out-of-stock duration increases with each cycle, and by the definition of the Region B 

cycles, the last cycle would be the one having the longest out-of-stock duration equal to or 

less than the lead time L. We thus look for the quantity k in the above summation that 

satisfies 



Solving for k, we obtain 

Table B.2: Cycle progression in Region C 

Since the out-of-stock duration increases in pairs (Table B.l), the number of cycles in Region 

B, ng, is 

7 2 ~  x 2k (B-9) 

Cycle in Region B 
lSt 

2nd 

3rd 
ith . 

and the ending time of Region B is 

Beginning Inventory Out-of-stock Duration Order Quantity 
w(T - L) 

w+v 

The total out-of-stock duration in Region B now becomes 

(B. 10) 

Region B The expressions for Region C are obtained through the same analysis. The 

starting actual inventory of the first cycle in Region C is the size of order placed in the 

last cycle in Region B, which is equal to w(T - L) because the last two cycles in Region B 

are approximated to have out-of-stock duration equal to exactly L. Knowing the beginning 

inventory, we obtain the progression of the order quantity and out-of-stock duration of the 

cycles in Region C as shown in Table B.2. 

If the end-of-operation time t f  is greater than t ~ ,  then the total out-of-stock duration 

will have contribution from Region B (which is expressed in Equation (B.ll)) and from 



Region C cycles. If the total number of cycles is approximated to be $, then the number 

of cycles in Region C, nc ,  is approximated by subtracting from this quantity the number 

of cycles in Region A and B. Using expressions (B.2) and (B.9), we arrive at 

The contribution from Region C to the total out-of-stock duration is then 

If t~ < tf 5 t ~ ,  then the total out-of-stock duration takes the same form as Equa- 

t ion (B. l l ) ,  with the quantity k, which is half the number of cycles in Region B, replaced 

by the new number of cycles defined by tf , which is w. The total out-of-stock duration 

is then 

(B. 14) 

Knowing the there is no out-of-stock in Region A, and dividing Equation (B. 14), (B. 11) 

and (B. 14) by tf , we arrive at the final formulation for the stockout rate Sout 





Appendix C 

Proof of Convexity 

Given the discrete time and continuous state system described by Equation (5.1) 

and the dynamic programming algorithm 

JN(XN) = 0, 

Jk(zk) = min E {ak + h max(0, xk + uk - wk - vk) - pmin(wk, xk + uk) (C.2) 
U k  Wk,Vk  

+ J k + l ( m a x ( O , ~ k + U k - W k - ~ k ) ) ) ,  k = 0 , 1 ,  ..., N - 1  

we intend to prove that the function Jk(xk) is convex in xk. Assume the demand and stock 

loss are bounded by wk, vk E [0, b].  The state and control are constrained by xk, uk > 0. 

First, we re-write the term representing the revenue, p min(wk, xk + uk) by 



Now, Jk (xk) becomes 

Jk(xk) = min E {cuk + h max(0, xk + uk - wk - vk) + pmax(0, wk - xk - uk) - pwk 
U k  Wk 9Vk 

By introducing the variables y = xk + uk and H(y) 

we can write Jk(xk) as 

Let the function in the bracket be called 

Suppose Gk(y) is convex in y and has a minimum at Sk. Due to the constraint y 2 xk, 

the minimizing y is Sk if xk < Sk and xk otherwise. According to the reverse transformation 

uk = y - xk, the optimal policy takes the form stated in Equation (5.8) 

Sk-xk ifxk < Sk, 

0 otherwise. 

We proceed to show by induction that the cost-to-go functions Jk (xk) (and hence also the 

functions Gk) are convex. 

Since JN (xN) is equal to zero, it is convex. The minimum of GN-i can be found by 



taking the derivative with respect to y: 

We determine the two derivative terms in the right-hand side of the above equation sepa- 

rately. Given the probability density function of the random variables associated with the 

demand and stock loss, denoted fw (wk) and fv(vk) respectively, the last derivative term 

becomes 

(C. 10) 

Using the second fundamental theorem of calculus, 

= - Y ~ w ( Y )  + Y ~ W ( Y )  - Prob(y 5 wk 5 b) 

= -Prob(y 5 wk 5 b). 

(C. 11) 

Similarly, the first derivative term in the right-hand side of Equation (C.9) can be deter- 

mined using double integrals (since there are two random variables associated with the 

demand and stock loss), and can be shown to equal to 

d 
- E (max(0, y - wk - vk)) = Prob(0 5 wk + vk < y). (C.12) 
dywk,'~k 

Substituting Equation (C. 11) and Equation (C. 12) into Equation (C.9), the derivative of 



G N - i  becomes 

As y  -t -00: d ~ ~ - ~  approaches c  - p, and since c  < p, & G ~ - ~  is negative. As y -t oo, 
dy 

d ~ ~ - ~  approaches c + h, and is positive. Therefore, G N - i  is convex, and given the 
dy 

convexity of JN , convexity of JN - 1 is proved. 

An optimal policy at time N - 1 then is given by 

SN-1 - X N - 1  if xN-i  < S N - ~ ,  
.;-l(xN-l) = 

otherwise, 
(C. 14) 

and the cost-to-go function JN- i  takes the value 

c(SN-i  - X N - 1 )  + H ( S N - I )  - p ~ { ~ k )  if X N - 1  < SN-1, 
J N - ~ ( x N - I )  = wk (C.15) 

H(xN-1)  otherwise. 

We can repeat these steps to show that for all k = N - 2, . . . ,0, if Jk+1 is convex, then 

we have 

( H ( x ~ )  - p ~ { w k )  + ~ { ~ k + i ( ~ k  -wk otherwise. 
wk ( C .  16) 

where Sk is the scalar that minimizes cy + H ( y )  + E{ J ~ + ~  (max(0, y - wk - v k ) ) ) .  F'urther- 

more, Jk is convex, and thus the optimality of the policy 5.8 is proved. 



Appendix D 

Calculation of Pk 

D.l  Pk Using Auto-ID 

Pk+1 is the conditional probability distribution of the actual inventory xk+l given the in- 

formation vector Ik+1, and is a vector whose elements are the individual conditional prob- 

( j  > abilities pk+, , j = 0,1, . . . , n, defined as 

Using the property of conditional probability, the above can be expressed as 

Again applying the property of conditional probability, the numerator of the above equation 

can be expressed as 

The first probability term on the right-hand side of the equation is simply the measurement 

probability rz,+,,j. The second probability term can be expanded using the total probability 



theorem: 

The numerat or in Equation (D. 2) then becomes 

The denominator in Equation (D.2) also can be expanded using the total probability 

theorem to become 

Substituting Equation (D.5) and Equation (D.6) into Equation (D.2), we arrive at the 

final expression for the conditional probability pfll 



D.2 Pk Without Using Auto-ID 

At the beginning of period k, the information vector contains all the past sales and shipment 

receipt data, expressed as 

We begin with the definition of Pk+l the conditional probability distribution of the actual 

inventory xk+l given the informat ion vector Ik+ 1 .  Pk+ 1 is a vector whose individual element 

is 

The denominator of the last expression can be expressed as follows using the total 

probability theorem: 

4- Prob(xk = !/Illk, hk)PrOb(aklIk, hk, xk = n) (D. 10) 

The conditional probability Prob(ak lxk = i, hk) can be computed from the dynamics of the 

system (Equation (7.2)) and the problem data, which includes the distribution for wk and 

Vk - 
Applying the property of conditional probability, the numerator of Equation (D.9) be- 

comes 

The second conditional probability in the right-hand side of the above equation can be 



expanded using the total probability theorem 

The first probability term in the summation, PrOb(xk = i Ilk, hk, xk+l = j) ,  can be expressed 

By substituting the above equation into Equation (D. 12) and the subsequent resulting 

expression into Equation (D. 1 I), we arrive at 

The quantity Prob(aklIk, hk, xk+l = j, xk = i) in the right-hand side of the above equation 

can also be expressed in terms of the quantities we can compute from the problem data. 

Specifically, 

Substituting the last expression into Equation (D. 14) and Equation (D. 10) into Equa- 



( j  1 tion (D.9), we arrive at the final expression for pk+l 

(D. 16) 
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