
Computational Studies of Cat ion and Anion 
Ordering in Cubic Yttria Stabilized Zirconia 

Ashley P. Predith 

Submitted to the Department of Materials Science and Engineering 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

June 2006 

@ Massachusetts Institute of Technology 2006. All rights resewed. 

Author ..................... w -.7- ....-..... ............................. 
Department of Materials Science and Engineering 

April 28, 2006 

Certified by. ............ .............. .--. . ;. . . . . . . . . .  ~/3/.*6' - 
Gerbrand Ceder 

R.P. Simmons Professor of Materials Science and Engineering 
Thesis Supervisor 

n A 

i. 
/ 

...... Accepted by ................... ~~.Y.V.W.Y.-.-.~. . : .-. .& . . . . . . . .  .,. 
Samuel Mi Allen 

POSCO Professor of Physical Metallurgy 
Chairperson, Department Committee on Graduate Students 

' MASSACHUSElTS INSTITUTE ,' 
OF TECHNOLOGY 

LIBRARIES 

A R C H ~ Q  





Computational Studies of Cation and Anion Ordering in 

Cubic Yttria Stabilized Zirconia 

by 

Ashley P. Predith 

Submitted to the Department of Materials Science and Engineering 
on April 28, 2006, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

Abstract 

The investigation of ordering and phase stability in the Zr02-Y203 system involves 
two sets of calculations. The first set of calculations uses the cluster expansion 
method. A guide to the practical implementation of the cluster expansion outlines 
methods for defining a goal and choosing structures and clusters that best model 
the system of interest. The cluster expansion of the yttria stabilized zirconia system 
considers 447 configurations across the Zr02-Y203 composition range. The effec- 
tive cluster interact ion for pair clusters show electrostatic repulsion between anions 
and little interaction between cations. Triplet anion terms largely modify the en- 
ergy contributions of the pair terms. Separate cluster expansions using structures a t  
single compositions show that cation clusters become more important at high yttria 
composition. 

The cluster expansion led to the discovery of three previously unidentified ordered 
ground state structures at 25, 29, and 33 % Y on the cubic fluorite lattice. The ground 
state with 33 % Y is stable with respect to the calculated energies of monoclinic Zr02 
and the Y4Zr3OI2 ground state. The ground states have the common ordering feature 
of yttrium and vacancies in [I 1 21 chains, and Monte Carlo simulations show that 
vacancy ordering upon cooling is contingent on cation ordering. 

The second set of calculations consider three driving forces for order: ionic re- 
laxation, vacancy arrangements, and differences in Zr and cation dopant radii. Bond 
valence sums of fully relaxed and anion relaxed structures are nearly equal at all com- 
positions. In supercells of Zr02, the vacancy arrangement of the ground state with 
25 % Y is more stable than arrangements maximizing the distance between vacancies 
or aligning vacancies in [I 1 11. Comparing the YSZ ground state with structures of 
the same configuration with scandium replacing yttrium shows different stable phases 
on the convex hull between cubic ZrOz and the dopant M203  phase. The change in 
the stability of the configurations may be a result of cation radius sizes. The factors 
suggest that the driving forces of phase stability depend on composition. 
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Chapter 1 

Introduction 

Yttria-stabilized zirconia (YSZ) is an important material for its use as an oxygen ion 

conductor. An understanding of the interaction among ionic species in the Zr02-Y203 

system would be useful for optimizing the material's conductivity. The computational 

studies in this dissertation show that the Zr02-Y203 system exhibits stable, ordered 

ground state structures and that driving forces contributing to phase stability depend 

on composition: oxygen relaxation contributes to stability at low compositions of 

yttria, and the arrangement of cations contributes to stability at high compositions 

of yttria. 

Conductivity 

Pure monoclinic zirconia exhibits negligible oxygen ion conductivity, but with the ad- 

dition of yttria, the system takes a cubic fluorite structure. The oxygen conductivity 

increases to reach a maximum of 10-I (ohm . cm)-' at 1000 K with 15-18 % 

(8-10 % Y203) [3, 41. With the addition of 20 % more Y01.5 doping, the conductiv- 

ity decreases by an order of magnitude. Numerous computer modelling studies have 

attempted to explain the mechanism of diffusion in doped zirconias and the reason 

for a peak and subsequent decrease in conductivity with more doping v[5, 6, 7, 8, 91. 

For each Y203 molecule added to Zr02, one vacancy forms to maintain charge 

balance in the material. As yttria is added to zirconia, the concentration of vacan- 



cies, and hence available oxygen hopping sites, increases. The conductivity, however, 

decreases. One possible explanat ion involves the oxygen diffusion pathway. Oxygen 

ions diffuse along pathways between two cation sites, and studies suggest a path- 

way between two large yttrium ions is unfavorable [5, 81. As the composition of 

the material increases above 15-18 % Y01.5, the Y-Y unfavorable pathways inhibit 

conductivity. Another possible explanation for the decrease in conductivity is the 

ordering of oxygen vacancies. A driving force for order would resist oxygen hopping 

in to ordered vacant sites. Evidence exists for short range order of vacancies [lo]. 

1.2 Structure and phases 

Pure zirconia and yttria have fluorite based structures. The cubic fluorite structure 

has cations on face centered cubic positions and anions in the tetrahedral interstices 

of the fcc lattice (figure 1-1). Another representation of the structure is to consider 

anions in a simple cubic array with a cation inside every other oxygen cube. Each 

cation site has eight nearest neighbor anion sites, and each anion site has four nearest 

neighbor cation sites. 

Pure ZrOz is cubic fluorite at high temperatures. From the cubic fluorite structure, 

zirconia transforms to a tetragonal structure at 2350 "C. The tetragonal structure is 

a result of a distortion of the oxygen sublattice along the Xc mode of vibration, 

which causes [0 0 11 rows of oxygen to be offset alternately up or down with respect 

to the fcc cation lattice (1 11. Continued cooling yields the monoclinic ground state 

structure at 1100 "C. The monoclinic structure is a further distortion of the cubic 

fluorite structure such that each zirconium has seven oxygen at the nearest neighbor 

positions. 

The structure of pure yttria is the C-type lanthanide structure, where the letter C 

is an abbreviation for cubic. The structure is based on cubic fluorite, but one-fourth 

of the anion sites are vacant. The conventional unit cell is body centered cubic with 

80 atoms. One way to visualize the vacancy arrangement in C-type structure is that 

the vacancies align along four nonintersecting (1 1 1) chains so that every yttrium has 



Figure 1-1: The cubic fluorite structure has cations (Y, Zr) on fcc sites and oxygen 
and vacancies in tetrahedral interstices. The light green cation is yttrium, which is 
0.2 A larger in radius than zirconium in grey. 

six oxygen nearest neighbors [12]. The structure may also be visualized as a set of 

64 simple anion cubes (a 4 x 4 ~ 4  array) with yttrium filling half of the cubes. Three- 

fourths of the cubes have two vacancies at face diagonal positions and one-fourth have 

two vacancies at cube diagonal positions. 

When yttria is added to zirconia, the monoclinic zirconia transforms to tetragonal 

and then cubic fluorite. The term yttria-stabilized zirconia refers to the cubic fluorite 

phase of zirconia, which is stabilized over the monoclinic structure as a consequence of 

incorporating yttria. At compositions between pure Zr02 and pure Y203, experiments 

have verified the existence of one ordered structure with stoichiometry Y4Zr3012 

[13, 141. In materials with low yttria (less than 50 % YOla5) concentration, ongoing 

research investigates the driving forces for short range order of cations and anions. 

Some studies suggest that phase separation between pure yttria and another ordered 

compound may occur at compositions between Y4Zr3012 and pure yttria [15, 16, 17, 

181, but other investigations do not confirm those findings[l9, 20, 21, 221. 

The compositions of the materials discussed in this dissertation are written with 

respect to the percentage of YOl.s. Useful references are the conversion factors be- 



tween % YOlms and % Y203: 

1.3 Investigations of order and phase stability 

This work investigates the ordering and phase stability across the ZrOzY203 compo- 

sition range. The calculations show the presence of stable, ordered ground states on 

the cubic fluorite lattice and composit ion-dependent driving forces for phase st ability. 

Chapters 2 and 3 describe the cluster expansion technique and its application to the 

yttria stabilized zirconia system. Chapter 2 is a practical guide for implementing a 

cluster expansion, and chapter 3 presents the cluster expansion of YSZ. The cluster 

expansion has led to the identification of previously unknown ordered ground states. 

An evaluation of the ground state structures in chapter 4 shows the relationships 

among their atomic ordering and electronic structure. 

Chapter 4 also offers insight in to the driving forces for stability in YSZ. Three 

parts of the chapter describe the complex nature of ordering: a survey of the lit- 

erature on ordering and phase stability, an analysis of how the cation coordination 

and relaxation around oxygen varies across the composition range, and Monte Carlo 

calculations of the configurational changes of one ground state with temperature. 

Chapter 5 parses some factors that are important for understanding phase stability 

and quantifies the impact of oxygen relaxation, vacancy ordering, and cation size on 

the stability of the ground states. 



Chapter 2 

Cluster expansion implement at ion 

2.1 Developing a cluster expansion 

A cluster expansion is a method to model the energetics of a material using insight 

from both physics and statistics. A cluster expansion in theory provides an exactly 

converging expression of the energy in terms of configuration variables; in practice, 

complex systems require the cluster expansion to be optimized for a specific purpose 

rather than providing the exact energy convergence. This chapter offers a guide for 

defining the purpose a cluster expansion, met hods for choosing structures and clusters 

to be included in the fit, and metrics for analyzing the results. 

Section 2.1 defines the cluster expansion and suggests common purposes. Section 

2.2 describes metrics like rms error and cross validation score to quantify how well 

the fit reproduces the original data, and section 2.3 details factors for consideration 

or methods that can be employed to choose the structures and clusters used for 

implementation. Comparing the implement ation and results with the purpose of the 

fit determines whet her the cluster expansion is complete. 

2.1.1 Cluster expansion background 

The main achievement of the cluster expansion formalism is to rigorously quantify the 

configurational disorder of a system by an orthogonal expansion of basis functions. 



This is accomplished by parameterizing the energy in terms of the atom types placed 

on lattice sites. Given a structure with two components, an Ising lattice provides a 

model for the lattice sites of the solid. To compare different configurations of atoms 

within a single material system, all structures must map on to the same Ising lattice 

type. A spin variable, ai, of +1 or -1 denotes what type of atom is on each site i. 

Rather than specifying the type of atom on each lattice site within a particular 

structure, a complete set of orthonormal basis functions can also specify the configu- 

ration of a structure. The basis functions called cluster functions are polynomials of 

the discrete variables ai. A cluster function, a, is the product of the spin variables 

at one or more sites. The cluster of just one a site is called a point cluster. A cluster 

of two sites is called a pair. A cluster of three sites is a triplet. To simplify the 

cluster expansion, one can group together clusters that are symmetrically equivalent. 

If a cluster can be mapped on to one another cluster by operation of one or more 

symmetry elements of the parent structure, the two clusters belong in the same group 

called an orbit R,. The average of the spin variable products over all the clusters in 

the orbit is given by 
-l 

where N is the number of clusters ,6' in the orbit. (&(a')) are called the correlation 

functions. 

Using the cluster functions as the basis for the expansion of the energy, the pa- 

rameterization of the energy takes the form 

where ma is the multiplicity of cluster a and Np is the number of Bravais lattice 

points. The coefficients of the expansion V, are the effective cluster interactions 

(ECI). The cluster expansion is an exact expansion of the energy. Truncating the 

expansion introduces error. In matrix notation, the cluster expansion becomes a 



mathematical fit : 

Ern = XmxnVn 

where Em is a vector of m structural energies, X,,, is a matrix of the n correlations 

for each m structures, and V, are the n ECI to be fitted. An excellent summary 

of the cluster expansion formalism is available in A. van der Ven's thesis [23] and a 

thorough review is in a book chapter by D. de Fontaine [24]. 

2.1.2 Purpose of the cluster expansion 

The task of someone implementing a cluster expansion is how to choose clusters a 

and structures (and hence their energies E) for equation 2.2 to create a useful model. 

The primary result of the cluster expansion is the set of ECI. Since the expansion 

is exact, the theoretical values of the ECI depend on the overall energetics of the 

system, but in practice, the truncation of the expansion and the particular cluster 

functions and structural energies chosen for the fit will determine the specific ECI 

values obtained. By defining one or more purposes for the cluster expansion, choices 

during the development of the cluster expansion will guide one to obtain useful results. 

A cluster expansion has many potential purposes: 

to predict and identify the ground state structures at one or more compositions 

to function as a Hamiltonian for Monte Carlo to model relative phase stability 

in a specific temperature range (for phase diagram calculations, for example) 

to infer local contributions to a structure's energy and hence driving forces for 

order /disorder 

to accurately represent the energetics of structures in a particular energy range 

Referring to the last item in the list as an example, to go from a statement of purpose 

to the implementation of the cluster expansion, one must be specific and quantita- 

tive. What structures are 'representative' of the system? How many structures are 



necessary? What cluster functions give the degrees of freedom necessary for 'represen- 

tative' energetics? What metric defines an accurate representation: a small difference 

between the calculated and fitted energies or ECI values following physically rational 

behavior? 

To help answer quest ions like these, the following sect ions suggest quantitative 

measures of accuracy and suggest methods to choose structural energies and clusters 

for modeling a system of interest. Experience with the cluster expansion of yttria 

stabilized zirconia provided a foundation of thought and experience for this chapter. 

For details on the cluster expansion of YSZ, see chapter 3. 

2.2 Metrics of the expansion 

A cluster expansion is a fit of structural energies to the correlation variables that 

describe the structures' configurations. The structures included in the fit are a subset 

of all possible configurations of the system. Metrics quantifying the errors of the 

cluster expansion help evaluate the usefulness of the resulting fitted ECI. Two sys- 

tematic types of error can arise in a cluster expansion: the differences between the 

calculated energies and fitted energies within the subset structures of the expansion 

and the differences in ECI between the whole set of configurations of the system and 

the subset of structures included in the fit. Throughout this thesis, the definition of 

the calculated energy is the energy of a structure calculated with DFT, electrostatic, 

potential model calculations, or other total energy methods. The fitted energy of a 

structure is the energy found by multiplying the fitted ECI with the correlations of 

the structure. 

Consider the difference between the calculated and fitted energies of the structures 

in the fit. As more cluster functions are included in the cluster expansion, the fitted 

energies converge upon the calculated energies [24]. A cluster expansion in practice, 

however, truncates the fit to a finite number of clusters. Removal of clusters that 

would further converge the fit cause an error called bias in the fitted ECI. Now 

consider the error called variance; it is the statistical deviation around a mean value. 



As the number of structures in the sample increases, the mean of the sample converges 

to the mean of the whole population of structures. The average deviation from the 

mean, however, is sensitive to the particular energies and correlations in the fit. That 

deviation is the variance. The four metrics below help quantify the errors in the fit. 

2.2.1 Root mean squared error 

The residual error of a structure's energy is the difference between the calculated 

energy, E,, and the fitted energy E ~ .  The root mean squared (RMS) error of the fit 

is the average of the squared residual error of all the structures 

RMS error = 
N 

RMS error is the simplest estimation of goodness of fit for the set of structures in the 

cluster expansion. It does not measure the ability of the cluster expansion to predict 

the energies of structures not in the fit. 

2.2.2 Cross validat ion score 

The cross validation score measures the ability of the cluster expansion to predict the 

energy of a structure left out of the fit. In leave-one-out (n=l) cross validation (cv), 

one removes a single structure from the fit, uses the remaining structures to obtain 

ECI, and calculates the residual error on the energy of the removed structure. The 

procedure is done successively for every structure in the fit. The average root mean 

squared error of all the residual errors is the cv score. 

2.2.3 ECI error 

In the least squares fit, a standard error of the fitted ECI arises when there are more 

structural energies than clusters included in the fit. The fitted ECI minimize the 

difference between the fitted energies and the calculated energies for all the structures. 



The standard error of the ECI, s~ is 

s2- is the estimated variance of the energy residuals 
Ei 

2 

2 s-. = 
cL1 (E,  - $) 

Ei n - k  

where n is the number of energies in the fit and k is the number of ECI. The cii are 

the variances of the ECI. A derivation of the ECI variance is in Appendix A, and the 

covariance subsection of section 2.3.1 discusses this further. 

The appendix explains that each row of the matrix X contains the correlations for 

the clusters in one structure, and cii are the diagonal elements of the matrix (XTX)-I . 

If the correlations of the structures have high covariance with each other, then the 

XTX matrix will approach singularity. As the matrix approaches singularity, the 

values of cii will increase indicating that the ECI estimates may be imprecise, and 

the fitted ECI will deviate from the theoretical ECI. 

2.2.4 Cluster expanded energy of trial structures 

One useful capacity of a cluster expansion is the ability to quickly obtain estimated 

energies for uncalculated structures. Given the ECI from a set of fitted structures, 

one can calculate an approximate energy using the fitted ECI and the correlations for 

the structure of interest that was not included in the cluster expansion. If the purpose 

of the cluster expansion includes searching for ground state configurations, knowing 

approximate energies of unfitted configurations accelerates the search process. High 

energy structures may be discounted if they are not considered candidate ground 

states. The cv score offers a predictive measure of the fit using the energies and 

correlations already in the cluster expansion. Calculating the energy of a set of trial, 

unfitted structures with the ECI of a fitted sample set offers a predictive measure 

of the energies in the correlation space not in the fit. The set of trial structures 



may be orders of magnitude larger than the set of fitted structures. If some trial 

structures have energies below the convex ground state hull, these trial structures 

may potentially be ground state configurations (figure 2-1). 

potential 
I ground states I 

composition (x) 

Figure 2-1: Calculating energies of trial structures using the ECI of the fitted config- 
urations can be useful to identify potentially stable structures. Circles denote fitted 
energies of structures in the cluster expansion. Triangles represent estimated energies 
of trial structures calculated from ECI. Using DFT or other total energy method, 
one can calculate the energies of the potential ground state structures (triangles) to 
determine if one is a true ground state. 

2.3 Factors for implement at ion 

Two approaches exist for determining what clusters and structures to include in 

the cluster expansion. One approach involves choosing clusters and structures that 

have particular physical or statistical characteristics with the desire that they will 

adequately model the system. The other approach involves selecting clusters and 

structures regardless of their individual properties until the final fit has particular 

statistical characteristics. The two approaches ideally converge on the same solution, 



although praxis shows this convergence is not guaranteed. 

2.3.1 Cluster choice 

In the practice of putting together a cluster expansion, the number of distinct clusters 

possible to enumerate on a lattice is 2 N ,  where N is the number of lattice sites. 

The number of structures for which it is possible to calculate energies is limited 

by computational resources. Since fitting a larger number of clusters to a fewer 

number of energies creates an undetermined fit, truncating the cluster expansion to 

include a subset of the possible cluster functions gives a more rigorous set of ECI. 

The decision to include a particular cluster in the fit depends on whether it has a 

desirable physical arrangement of the points in the cluster or whether the cluster's 

correlations have a desirable affect on the quantitative metrics of the fit. All of the 

methods described below, except the last one, select clusters based on their physical 

or statistical properties. The last method follows an outcome approach that chooses 

clusters arbitrarily to minimize the cross validation score of the final fit. 

Including subclusters 

A common property of convergent cluster expansions is that every subcluster of each 

included cluster is in the expansion. The subclusters of a pair are the pair clusters 

that are smaller in range. Figure 2-2 gives an example. 

Covariance between clusters 

According to standard statistical fitting practice, when variables are highly covariant , 

the coefficients of those variables do not represent the independent contribution of 

each variable to the observation. In a cluster expansion, the observation is the cal- 

culated energy of the structure. The covariance between two clusters is the degree 

to which the variance of the correlations of one cluster moves with the same sign, 

opposite sign, or independently of the variance of the correlations of another cluster 

cov(xi 7 x j )  = ( ( x i  - pi) ( x j  - p j ) )  (2.8) 
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Figure 2-2: The square cluster in (a) has three subclusters: the pair subclusters in 
(b) and the triplet in (c). 

xi and X j  are two sets of correlations, and pi and p j  are the sample means of xi 

and Xj. When C O V ( X ~ , X ~ )  > 0, then X j  tends to increase when xi increases. When 

C O V ( X ~ , X ~ )  < 0, then xj  tends to decrease when xi increases. When C O V ( X ~ , X ~ )  = 0, 

the correlations are independent. In statistical fitting, independent variables provide 

the most explanatory power. A cluster expansion, however, is not a pure statistical 

fit of data. As Sanchez shows, a convergent solution to fitting cluster functions to 

the energies is possible [25]. In the whole configuration space, the correlations of 

the clusters create an orthogonal set of vectors. When considering a finite set of 

correlations for the structures in a cluster expansion, however, subclusters can be 

highly covariant with their parent cluster. Since the subclusters can, in practice, add 

covariance to the matrix of correlations, a physical cluster expansion and a statistical 

fit may be at odds with each other. Note that in statistical literature, the covariance 

normalized by the product oigj is called the correlation between xi and X j ,  where 

oi and oj are the variances of xi and xj. The statistical correlation between xi and 

xj  is different from the cluster expansion correlation defined earlier in equation 2.1. 

The term correlation in this thesis always refers to the cluster expansion correlation 

unless specifically noted otherwise. 



Analytical terms 

In the standard construction of the cluster expansion, the formation energies of a set 

of configurations are fit to the correlations of clusters defined by geometrical point 

arrangements. Subtracting off a known, analytical portion of the energy from the 

formation energy may improve convergence by removing a degree of freedom from 

the energies to be fit by the correlations. The electrostatic energy between point 

charges on a periodic lattice, for example, has been worked out in an Ewald sum [26]. 

The real space Ewald term Er is 

Subtracting off Er from the energy is analogous to adding a term to the cluster 

expansion 

where the last term of equation 2.10 is a weighted sum of the pair correlations. rr 
are the pair correlations, a is a damping parameter, and ri is the distance between 

two points in the ith pair cluster. 

Another example of accounting for portions of the energy analytically is in the 

mixed space cluster expansion (MSCE) [27, 28, 291. MSCE uses the traditional cor- 

relations and ECI for all clusters except the pair terms. Employing earlier work 

on reciprocal-space expansions [30], it uses the Fourier transforms of the ECI and 

correlations for the pair terms. 

The expansion includes a third term to account for the constituent strain energy. 



The constituent strain (cs) energy, AE::(X,~), is the energy necessary to maintain 

coherency at an interface between regions of each pure component. It depends on the 

orientation k of the interface. 

Minimizing cross validation score 

The previous approaches in section 2.3.1 use a building approach of choosing clusters, 

whereby clusters are f i s t  chosen by their physical or geometrical significance without 

knowing the final impact on the metrics of the expansion. Outcome approachs are 

possible that iteratively choose clusters in an arbitrary manner to optimize an aspect 

or metric of the final cluster expansion. The statistical literature explains the use 

of leave-one-out cross validation (cv) , Mallow's C, [3 11 and Akaike's Information 

Criterion (AIC), as well as describing the bootstrap and jackknife methods [32], for 

choosing variables/clusters. These five methods are asymptotically equivalent [33,34]. 

Li [35] and Shao [36] discuss the use of cross validation methods to choose variables 

for the best predictive model of a system. Li proves, and van de Walle [37] summa- 

rizes, that if the number of observations (structural energies) in the fit increases as the 

number of variables (clusters) added to the model increases, minimizing the cross val- 

idation score finds the the optimal, most predictive model. Van de Walle explains this 

result using the decomposition of the expected squared error of the cluster expanded 

energy. A paraphrase of his explanation gives the essential details [37]: 

If yi is the energy of a structure with correlation vector Xi. Each correlation vector 

Xi contains k elements, one for the average value of each cluster in structure i. fii is 

the predicted energy of structure i from the cluster expansion of N total structures. 

A decomposition of the expected squared error gives 

The first term is called the bias term, the second term is called the variance term, 



and the last term is the covariance term. In a least squares fit of the N structural 

energies, the covariance term will be positive and increase as $ increases. The ex- 

pected error is therefore sensitive to the number of clusters and structures in the 

fit, regardless of their individual characteristics. Consider if iji is replaced by 

which is the energy of structure i predicted fiom a cluster expansion of all structural 

energies except the energy of i (hence N-1 structures in total). Now the covariance 

term goes to zero, and the change in the variance term goes to zero as N increases. 

This provides more accurate predictive power. The CV score is the sample average 

of (iji-m - ~ i ) .  

The remaining step is to choose a procedure for adding variables most efficiently to 

the model. The literature lists several methods: forward selection, backward elimina- 

tion, stepwise, branch-and-bound, and simulated annealing [32]. Of greatest interest 

is simulated annealing because of its use as a search method in global minimization 

problems. Based on Monte Carlo simulations, adding or subtracting a cluster to 

the cluster expansion will increase or decrease the cv score. When the cv score de- 

creases, the cluster is accepted. When the cv score increases, the cluster is accepted 

if the probability of it occuring is greater than a randomly chosen number. The au- 

thor acknowledges Tim Mueller for proposing the Monte Carlo approach of choosing 

structures. 

2.3.2 Structure choice 

The calculated energies of structures are the computational observations that lead us 

to make conclusions about a system's configurational behavior. In standard statis- 

tical practice, the sample of a population is a random selection of data points from 

a whole population. In the cluster expansion, the fit of ECI is not a pure statistical 

process, and randomly selecting structures may not be the best approach to model a 

system's configuration. Since the ECI are a convergent series to the exact solution, 

random selection will invariably lead to the selection of large supercell structures. Ex- 

isting computers cannot calculate large supercell structures (lo3-lo4 atoms or larger, 

depending on energy method) in an acceptable amount of time; therefore, calculating 



large structures may not be feasible modelling option. Depending also on the purpose 

of the cluster expansion, all structures of a given system may not be of interest. In- 

herent in the selection of structures is the decision about whether to choose structures 

that either widely sample or narrowly sample the available correlation space. 

The first four methods below choose structures for the fit based on the struc- 

tures' physical characteristics. The sections on sensitivities and orthogonality use an 

approach that chooses structures based on their correlations to directly create a clus- 

ter expansion modelling a particular range of correlation space. The last section on 

weighting describes an approach to add elements to the energy vector and correlation 

matrix to optimize the cluster expanded convex hull outcome. 

Structures by energy 

Structures may be sorted by their formation energy. Structures with a high formation 

energy are unlikely to stabilize experimentally, while structures with a low formation 

energy are more likely to be stable or metastable phases. Low energy structures model 

the configurational landscape near the convex hull. One approach in a successful 

cluster expansion was to include only low energy structures near the convex hull in 

the fit [38]. 

Supercell size 

The structures that model a material system come from configurations of atoms on 

various supercells of the primitive lattice unit cell. Small supercell sized structures 

have simple ion geometries due to the few number of sites for repetition, and larger 

supercell structures have more complicated geometries. Small sized structures may 

model some material systems well, while other systems may require large structures. 

Including complicated geometries adds additional complexity for the cluster expansion 

to model. 

Along with the geometrical attributes of supercell sizes is the effect of choosing 

different compositions. The supercell size limits the number of compositions that the 

cluster expansion models. The number of compositions that can be modelled may be 



important if many structures at small composition increments are stable (a Devil's 

staircase) [39]. 

Experimental information 

Experiments on the system of interest can yield clues about what the expected or- 

dering and ground state structures are and guide the selection to a group of possible 

ordered structures [40]. 

Cluster expanded predicted structures 

Estimating energies of uncalculated trial structures is possible using the coefficients 

of the cluster expansion. When the cluster expanded energy is lower than the hull of 

the current fit, the structure may have a true, calculated energy that is also below the 

hull. To predict the ground state structures of the system, that potential structure 

needs to  be calculated to verify its energy. With enough iterations, this method can 

find previously unidentified ground state structures, if they exist. Section 2.2.4 also 

discusses the approach. 

Sensitivities 

One way to quantify the range of correlation space sampled by the structures' corre 

lations is to  use singular value decomposition (SVD). The SVD of the X matrix of 

correlations decomposes it into 

X = U S V ~  (2.15) 

where the columns of U are an orthonormal basis of the columns of X,  the rows of vT 
are an orthonormal basis of the rows of X, and the elements of the diagonal matrix S 

are the singular values [41]. The singular values indicate how the correlations sample 

the available correlation space. If the singular values are nearly equal, the correlations 

sample space evenly. If the singular values contain some very large and some very 

small values, the correlations for those clusters narrowly sample and widely sample 

correlation space. 



Notice that one method to solve equation 2.15 is with 

where by diagonalizing XTX-' (the covariance matrix) gives S and V. The semi- 

tivities are the diagonal elements of the (XTX)-' matrix, as shown in equation A.3. 

The sensitivities relate how much the correlations vary with each other and hence are 

directly related to the singular values. A small value of the sensitivity for a cluster 

signifies that the correlations vary greatly with each other and the correlation space 

is not widely sampled. The author acknowledges Chris Fischer for proposing the 

sensitivity approach of choosing structures. 

Orthogonalizing configuration space 

If the widest possible correlation space is desired, one approach is to include structures 

that are most orthogonal to the current space of structures. SVD is one technique for 

determining the structure that is most orthogonal to the current space of correlations 

[42]. The singular value with the smallest value corresponds to vector Go of V that 

is most orthogonal to the correlation space. Including structures with correlations 

that are similar to Go will expand the region of correlation space in the fit. One 

method for identifying those structures is to compare 6 to a trial database of cor- 

relations of known structures. The author acknowledges Chris Fischer for proposing 

the orthogonalization approach of choosing structures. 

Weighting 

The previous methods listed in this section describe how to choose structures based 

on the properties of the correlations of the structure. One technique that changes the 

fit of ECI is the weighting of particular attributes. Increasing weight on an attribute 

causes its energy to be more or less accurately reproduced by the fit. Weighting 

is possible on three kinds of attributes: an individual structure's energy, convex 

hull energies, and the energy difference between a particular structure's energy and 



the convex hull energy at its composition. The method to mathematically include 

weighting into the fit depends on the type of weighting. To weigh an individual 

structure i, multiply each element m in the row of correlations, oL, for the structure 

and the element of the energy vector for the structure by a constant factor, wi . 

To weigh the convex hull, an additional row of correlations for the correlation 

matrix and an energy element for the energy vector are necessary. One correlation 

row and one energy element are added for each ground state structure (not including 

the end point structures). Referring to figure 2-3, the energy element for the ground 

state structure B is 

and the element of the row of correlations for B are 

To weigh the energy difference, Ek, between the energy of a structure D and the 

energy of the hull, an additional energy element and correlation vector are necessary: 

and similarly 

The author acknowledges Anton van der Ven for the weighting schemes. 
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Figure 2-3: Adding elements to the energy vector and correlation matrix will empha- 
size attributes of the cluster expansion. One attribute, for example, is the energy 
difference Ek between a structure and the hull. 

2.3.3 Mathematical fitting 

Several mathematical techniques exist to determine the relationship between the clus- 

ters and the energies. Least squares minimization, linear programming, principal 

components, partial least squares, and Ridge regression are all available techniques. 

Ridge regression is also known as the weight decay method in neural networks. In 

cluster expansions, the least squares method and linear programming are the most 

common methods to determine ECI. Least squares minimization seeks to minimize 

the root mean squared error of the energies. Linear programming seeks to find a space 

of available solutions and choose the solution which optimizes an objective function 

of those variables [44]. The techniques may give similar but distinct results and are 

both viable options for determining ECI. 





Chapter 3 

Cluster expansion of Zr02-YOls5 

using nrst principles energies 

3.1 Expansion on coupled sublat t ices 

The cluster expansion of Zr Oz-YO is different from a traditional binary cluster 

expansion because configurational disorder exists on two types of sites: the cation fcc 

sites with Y and Zr and the anion simple cubic sites with oxygen and vacancies. For 

every two yttrium on the cation sites, one vacancy is necessary on an anion site to 

maintain charge balance. The cations and anions do not mix between their respective 

fcc and simple cubic sublattices, but the equilibrium configurations on each sublattice 

may depend on the other. To model the possible dependence between sublattices, 

the cluster expansion couples the sublat t ice configurations by including clusters that 

contain at least one cation site and one anion site. The model for YSZ only considers 

structures on a cubic lattices; monoclinic and tetragonal phases of zirconia are not 

considered. 

3.2 Energies from first principles 

Configurations of the cluster expansion of YSZ came from a variety of sources. C. 

Wolverton and A. Bogicevic at the Ford Motor Company chose the first 90 structures 



and calculated the total energy of each. Their investigations of YSZ used configura- 

tions at  25, 29, 33, 50, and 57 % Y01.5 [40, 45, 461. Using lattice algebra techniques, 

they determined unique cation configurations on the face-centered cubic sublattice 

and then decorated the simple cubic anion sublat tice [40]. 

Selection of structures to calculate and add to the initial set for this investigation 

followed the methods in section 2.3.2. A useful source of structures was a database 

of all 81827 configurations that are possible in supercells consisting of 9 primitive fcc 

unit cells or smaller on the fluorite lattice. Each primitive unit cell has 1 cation and 

2 anion sites. 

The total energy of each structure is obtained with the VASP implementation of 

Density Functional Theory (DFT) in the Generalized Gradient Approximation (GGA) 

with the PW91 exchange-correlation functional. The calculations use ultrasoft pseu- 

dopot entials. Beginning with configurations of ions in ideal cubic fluor it e positions, 

the calculation allows ion positions and volumes to relax during energy minimization 

with a 2 x 2 ~ 2  k-point mesh. Starting from the 2 x 2 ~ 2  k-point mesh relaxed configura- 

tion, a calculation of the total energy using a 4 x 4 ~ 4  k-point mesh gives the final total 

energy. Calculations of some structures with a 6 x 6 ~ 6  k-point mesh ensure that the 

4 x 4 ~ 4  k-point mesh is adequate for k-point convergence. The fit does not include any 

structure having ions that relaxed more than half of the distance from its original site 

to its first nearest neighbor. 

The final YSZ cluster expansion contains the energies of 447 structures. Figure 3-1 

shows the DFT formation energies of the structures. The ground states of the system 

are cubic Zr02, C-type Y203, and structures with 25, 29, 33, and 57 % YOle5. The 

structures with 25, 29, and 33 % YOlm5 have not been previously identified on the 

cubic lattice as stable structures on the convex hull. Descriptions of the ground state 

structures are in chapter 4. 



Y composition 

Figure 3-1: The DFT energies of configurations in the cluster expansion are at  15 
compositions: 0, 22, 25, 29, 33, 44, 50, 57, 67, 73, 75, 80, 86, 89, 100 % Yo1.5. 

3.3 Cross validation score minimization 

3.3.1 Clusters 

To select clusters, a Monte Carlo-like approach was used to chose clusters that mini- 

mize the cross validation score [47]. Minimizing the cv score theoretically converges 

the cluster expansion on the optimal fit of the correlations to the energies (see sec- 

tion 2.3.1). To choose clusters for the expansion, the searching algorithm selects a 

cluster at random from a set of enumerated clusters. If including the correlations 

of that cluster in the expansion decreases the cv score, the algorithm includes the 

cluster. If the cluster increases the cv score, the algorithm accepts the cluster when 

the following condition holds: 

eup (k) > random number 
~ B T  
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where Acv is the increase in cross validation score, T is a pseudo-temperature term 

set to  obtain efficient sampling statistics, and the random number is in the range 

between zero and one. For this expansion, kBT equals 0.1 meV. The final cluster 

selection has 111 clusters: an empty term, a point term, 27 pairs, and 82 triplets. 

The set of triplets contains 51 anion-only clusters, 13 cation-only clusters, and 18 

mixed cation-anion clusters. The rms error of the fit is 0.015 eV and the cv score 

is 0.022 eV. Figures 3-2, 3-3, and 3-4 show the cation, anion, and cation-anion pair 

clusters. 

ECI 

The pair ECI from fitting the 447 structures with 111 clusters are in figure 3-5. The 

anion-anion pair ECI have large values that peak at the fourth nearest neighbor and 

then roughly decrease with distance. Two third nearest neighbor pairs exist at 4.59 A 
apart, given a perfect cubic fluorite lattice with lattice parameter 5.3 A. The positive 

third nearest neighbor pair corresponds to a simple cube body diagonal with a cation 

between the pair sites, and the negative third nearest neighbor pair corresponds to a 

simple cube body diagonal with no cation between the pair sites. 

Large values for the anion-anion terms likely result from the energetics of the re- 

pulsion of -2 charges and the physical distortion due to vacancies. In all cases except 

at third nearest neighbor, the anion-anion interactions show that vacancies repel each 

other, which is consistent with electrostatic repulsion of effective +2 charges. The 

negative third nearest neighbor pair term, however, shows that vacancies at body 

diagonals from each other are attractive when no yttrium or zirconium is between 

them. If the material energetically favors the cubic fluorite structure, the configura- 

tion of body diagonal vacancies may be the ideal arrangement to minimize distortion 

of the structure. 

The cluster expansion also contains cation-anion and cation-cation pair terms. 

The cation-anion pair ECI show repulsive interactions for zirconium-vacancy (and 

yttrium-oxygen) pairs in the first and second nearest neighbor. This repulsion is con- 

sistent with an electrostatic preference of vacancies to be near the lower +3 valent 



origin 

Figure 3-2: The pair clusters of the cation sublattice are on face centered cubic sites. 
Each pair contains the site at the origin and one of the numbered neighboring sites. 
The site numbers indicate increasing distance away from the origin. The first through 
seventh nearest neighbor clusters are in Appendix B labelled #5, 10, 15, 19, 24, 26, 
29 (listed by increasing size). 

Figure 3-3: The pair clusters of the anion sublattice are on simple cubic lattice sites. 
The dotted circles are cation sites, and cluster labelling is the same as in figure 3- 
2. Two distinct 3nn and 9nn pairs exist: the 3nn and 9nn clusters shown here and 
clusters with the same configurations except no cation between anion sites. Listed by 
increasing size, the first through ninth nearest neighbors are in Appendix B labelled 
#4, 6, 8, 9, 11, 13, 14, 18, 21, 22, 23. 



Figure 3-4: Anion sublattice sites are on every simple cube corner. For clarity, only 
the anion sites in the representative clusters are denoted with solid-line circles. Cation 
sites (dotted circles) are in the middle of every other anion cube. Listed by increasing 
size, the first through ninth nearest neighbors are in Appendix B labelled #3, 7, 12, 
16, 17, 20, 25, 27, 28, 30. 

yttrium rather than the +4 valent zirconium. After the second nearest neighbor, the 

interactions become slightly attractive and then are negligible with increasing dis- 

tance. The cation-cation terms are small for all pairs. The large oxygen anions likely 

screen the smaller cations from each other and hence the cation-cation interactions 

contribute little to the energy of a structure. The ECI of triplet clusters modify the 

energetic contribution of the pair ECI. The set of triplets are largely clusters of an- 

ions only. In figure 3-6, the four triplets labelled in the figure have relatively large 

ECI. One triplet (# 41) consists of all anions, and the other three triplets consist of 

one cation and two anions. Appendix B lists the coordinates and ECI of the triplet 

clusters. 

The coupled cluster expansion of Zr02-Gd01.5 by P. Tepesch, in comparison to 

this cluster expansion, showed the anion-anion pair ECI maximized at a large positive 

value for the first nearest neighbor, and the interactions smoothly decreased with 

distance[38]. The third nearest neighbor anion ECI were both positive, and the 

difference between them was less than 0.1 eV. The difference in pair ECI between that 



study and this study may be due to the differences in the energies of configurations 

caused by the size of the dopant ion (rGd > ry). 

The cluster expanded convex hull contains the same structures as the DFT hull: 

the experimentally-identified 57 % Y 0 1.5 composition (6-Y4Zr3 0 [40]) and also 

ground states at 25, 29, and 33 % YOlm5. Chapter 4 describes the structures of 

the ground states in detail and further investigates the driving forces for order. The 

ECI of the point, pair, and triplet clusters are in figure 3-6. 

3.3.3 Convex hull and monoclinic ZrOz 

The cluster expanded convex hull reproduces the ground state configurations in the 

DFT hull in figure 3-1. These ground state configuration are at 0, 25, 29, 33, 57 and 

100 % YOla5. The experimental ground state of Zr02, however, is a distorted-fluorite 

monoclinic phase, not the cubic fluorite structure in the calculation. Plotting the 

formation energies with respect to the monoclinic Zr02 energy gives a new convex 

hull (figure 3-7). The convex hull with monoclinic Zr02 shows that the ground states 

with 33 and 57 % Y are both stable intermediate compounds between C-type Y203 

and monoclinic Zr02. Experimental studies cite the presence of short range order at 

compositions in the range 0 - 57 % YOlms [lo], and some experimental and computa- 

tional phase diagrams suggest a eutectic at 20 % Y203, which corresponds to 33 % 

YOls5 [48]. No studies were found in the literature for a stable ordered compound at  

33 %. 

3.4 Limiting clusters by type of ion 

Given the complex nature of interaction among cations, among anions, and between 

sublattices, more insight in to the driving forces for stability are possible with a 

separate cluster expansion on each sublattice. Three separate cluster expansions, one 

with only cation clusters, one with only anion clusters, and one with clusters with 

at least one cation and one anion, illustrate how each interaction type models the 

range of compounds. Figure 3-8 shows the pair ECI for the three separate cluster 
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Figure 3-5: The cluster expansion using cv score minimizing clusters had 447 struc- 
tures with 111 clusters. For each of the pair types (cation-cation, cation-anion, and 
anion-anion), the plot of the distance between points in a pair versus the ECI for that 
pair shows the interactions roughly decreases with distance. 
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Figure 3-6: The plot of all ECI from the cluster expansion that minimizes the cv 
score shows large ECI for the pair terms and four distinctively large triplet ECI. The 
empty term is -4.269 eV. The labels on the four large ECI triplets correspond to the 
clusters in Appendix B. 
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Figure 3-7: The convex hull of DFT energies has monoclinic ZrOz and C-type YOlm 
as endmembers. Structures at 33 % Y and 57 % Y are the ground states. 

expansions. Positive ECI in the cation-anion cluster expansion indicate a repulsive 

interaction between Y and 0. The rms errors for cluster expansions with anion clusters 

only, cation clusters only, and cation-anion coupling clusters only are 46 meV, 129 

meV, and 69 meV, respectively. The cross validation scores for the same expansions 

are 79 meV, 138 meV, and 103 meV, respectively. The anion cluster fit has the lowest 

rms error and cv score of the three expansions. Computational studies from other 

authors also conclude that the anion interactions drive the energetics of ordering in 

cubic zirconias [49, 501. 

3.5 Limiting structures by composition 

The configurations at 33, 50, and 57 % Y are an interesting subset of the calculated 

structures. The 33 % and 57 % Y compositions are on the convex hull of the total 

cluster expansion. The 50 % Y composition is intermediate between 33 and 57 % Y, 

and in some zirconias stabilized with dopants larger than Y, the pyrochlore structure 

stabilizes at this composition. The energies at each composition were each used to fit 
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Figure 3-8: Each curve represents the pair ECI from a separate cluster expansion. 
The curve with red square points represents the expansion containing only anion 
clusters. The curve with green triangles represents an expansion with only cation 
clusters. The curve with grey diamonds represents an expansion with clusters that 
each contain at least one cation and one anion. 

increzrs ing duster s ise 

Figure 3-9: The set of ECI from a cluster expansion using clusters with anion sites 
only contain 11 pairs and 51 triplets. The empty term is 3.907 eV. The point term is 
the term in the figure at the smallest cluster size. The next 11 data points connected 
with a line are the pair ECI from figure 3-8. The remaining 51 data points are triplets. 
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Figure 3-10: The set ECI of a cluster expansion using clusters with cation sites only 
contain 5 pairs and 15 triplets. The empty term is 0.0980 eV. The ECI from empty 
and point clusters are labelled as in figure 3-9. 
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Figure 3-11: The set of ECI for a cluster expansion using clusters with anion sites 
only contain 10 pairs and 58 triplets. The empty term is 0.0851 eV. The ECI from 
empty and point clusters are labelled as in figure 3-9. 



a separate cluster expansion. Figure 3-12 shows the subset of formation energies for 

these three compositions. The clusters for each fit are the result of iteratively adding 

Y corn pas ition 

Figure 3-12: The DFT energies for 23 33 % Yconfigurations, 60 50 % Y configurations, 
and 49 57 % Y configurations. 

and subtracting clusters to and from each set to minimize the cv score. The ECI 

of the three expansions are in figures 3-13, 3-14, and 3-15. Each cluster expansion 

contains an empty term, a point term, pairs, triplets, and quadruplets. The rms error 

and cv score for the 33 %, 50 %, and 57 % Y expansions are 0.0082 and 0.0126 eV; 

0.0413 and 0.0523 eV; and 0.0093 and 0.0123 eV, respectively. 

The cluster expansion of structures with high Y content (the 57 % Y structures) 

have ECI with a relatively high number of cation-containing clusters. The cluster 

expansion of structures with low Y content (the 33 % Y structures) have ECI with a 

relatively low number of cation-containing clusters. The cluster expansion of 50 % Y 

structures has an intermediate number of cation-containing clusters. The ratio of the 

total number of cation sites to the total number of anion sites in all the clusters of one 
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Figure 3-13: The anion pair terms dominate the cluster expansion of the 33 % Y 
configurations. The empty term is -2.491 eV. Circles denote pair ECI, triangles 
denote triplet ECI, and squares denote quadruplet ECI. In the labels for triplets and 
quadruplets, the notation 'c-c-a' indicates a cation-cation-anion triplet, for example. 

expansion is a relative indicator of how much the cation sites decrease the cv score 

of the fits. The ratio is 0.290 (9:31), 0.425 (17:40), and 0.600 (21:35) for the 33 %, 50 

%, and 57 % Y expansions, respectively. This suggests that the anion configurations 

are more important at low Y concentrations and the role of the cations increases in 

importance as the yttrium content increases. Further discussion on the role of cations 

to ordering in fluorite oxides is in chapter 4. 



increasing cluster size 

Figure 3-14: The pair terms of the cluster expansion at 50 % Y includes all anion- 
anion pairs and one cation-anion cluster. The empty term is -2.530 eV. 

increasing cluster size 

Figure 3-15: The pair terms of the cluster expansion at 57 % Y includes three anion- 
anion pairs, one cation-anion pair, and one cation-cation pair. The anion-anion 3nn 
pair does not contain a cation intermediate between the anions. The empty term is 
-1.844 eV. 





Chapter 4 

The ground states of YSZ 

This chapter discusses ordering in YSZ materials by highlighting the literature on the 

topic and describing the characteristics of a large set of structures and the ground state 

structures, in particular, predicted with DFT in chapter 3. The literature suggests 

many ordering and relaxation trends, but most recent studies agree on the arrange- 

ment of yttrium and vacancies at second nearest neighbors. An analysis of almost 300 

YSZ structures shows the roles of coordination and relaxation across the composition 

range. A close look at the ground states shows yttrium ions nearest neighbors to 

each other in adjacent [I 1 21 chains and vacancies at sixth nearest neighbors to each 

other on the anion sublattice. Giving further insight in to the system, the density of 

states gives of the ground state structures suggests hybridization of oxygen p orbitals 

with Zr d orbitals but not Y d orbitals, and Monte Carlo simulations give preliminary 

evidence for an important feature in the ordering mechanism with temperature in one 

of the ground states. 

4.1 Literature review of Zr02 - Y01.5 ordering 

In the fluorite structure, cations are in 8 fold coordination by anions, and anions are 

in 4 fold coordination by cations. In the cubic yttria-stabilized zirconia literature, the 

arrangement of yttrium and zirconium cations and the oxygen (and vacancy) anions 

with respect to each other is a topic of discussion. Interpretations of experimental 



and computational data suggest both random disorder and short range order on 

each sublattice. Classical arguments for ordering/disordering of cations and anions 

reference several driving forces: electrostatic interactions, coordination preference, 

and elastic strain. The electrostatic interaction of vacancies with cations suggests 

that positively charged vacancies would associate more closely with lower valent Y3+ 

rather than Zr4+. A coordination driven argument suggests that vacancies in YSZ 

would associate with Zr rather than Y to decrease the Zr coordination from eight 

to seven. Zirconium is seven fold coordinated in its ground state ZrOz monoclinic 

phase. Elastic strain could also influence ordering. The differences in sizes of the 

cations may create strain fields around the larger ions. The presence of a vacancy, in 

addition, creates a large physical distortion. Rey, et. al. offer a thorough review of 

studies of structural features of stabilized zirconia [51]. 

The precise contribution of each of these driving forces to atomic arrangements 

is unclear. The literature does, however, broadly investigate the structure of YSZ 

materials. For the purposes of summarizing the literature, experimental and com- 

put ational results cover four themes: (1) relaxations and displacements of ions from 

cubic fluorite sites, (2) the vacancy positions relative to zirconium and yttrium ions, 

(3) microscopic order of ion aggregates, and (4) the affect of cation arrangement on 

oxygen diffusion. 

4.1.1 Relaxations and displacements 

Experimental and computational studies of YSZ show that ions are not arranged on 

perfect cubic fluorite sites. The direction and magnitude of displacement depends on 

the measurement technique, sample composition, and degree of crystallinity of the 

material, but some common results do emerge. A thorough summary is available 

from Frey, et. al. [51]. Neutron diffraction results show that nearest neighbor oxygen 

atoms relax in (100) towards vacancies and that cations relax in the (111) direction 

either toward or away from vacancies in 22 % and 26 % Y01.5 powders and single 

crystals [52] and in 18, 30, and 39 % powders and single crystals [53, 101. Studies 

with synchrotron radiation on a 24 % Y01.5 single crystal and EXAFS of a 21 % 



YOle5 single crystal support these conclusions [54, 551. 

Another fitting of EXAFS data, however, found that half of oxygen relax in (1 

1 1) and the other half in (1 0 0) in a 31 % Yolm5 powder [56], and an analysis of 

convergent beam electron diffraction of 18 and 31 % YOlm5 single crystals describes 

both anion and cation displacements in (111) [57]. From electron diffraction data of 

18 %, 33 %, and 46 % YOls5 powders, Suzuki, et. al. model the structure of to have a 

regular anion displacement modulation along (110) present with a series of antiphase 

boundaries [58, 59, 601. Welberry, et. al. also model diffuse x-ray scattering and 

conclude that strain between cation sites gives rise to [I 1 01 and [-1 1 0] distortion 

in their 39 % YOl.5 crystal 1611. 

Some computational studies provide another perspective on the role of relaxations. 

An ab initzo study of a 96 atom supercell (2x2~2 cubic fluorite cells) investigated the 

effect of vacancies and yttrium in a ZrOz matrix. For both a single vacancy and 25% 

Yolm5 models, an oxygen next to a vacancy relaxed in (100) and cations next to a 

vacancy relax in (1 1 1) [62]. The cation relaxed in (1 1 0) if it was near two vacancies. 

From the number and variety of studies summarized, relaxation and atom dis- 

placements clearly do not follow simple predict able behavior. Two computational 

studies do indicate that the effect of the relaxation is important. While not explicitly 

defining the direction of relaxation, Bogicevic, et. a1.k studies of a range of com- 

positions involved decoupling the electronic and elastic/displacement components of 

energy [46, 40, 451. They found that the elastic component of the energy had a larger 

contribution to the total energy than the electronic component and thus determined 

which ionic configurations had lowest energy. Stapper also compared energies of a va- 

riety of configurations and found that electrostatic energies of different configurations 

did not explicitly correlate to the DFT total energies [62]. 

4.1.2 Vacancy position relative to Y and Zr 

The direction and magnitude of displacement of ions from their idealized cubic sites 

may depend on the larger arrangement of cations and vacancies with respect to each 

other. A number of studies on this topic come to a variety of conclusions. 



Several older studies found vacancies at first nearest neighbors to yttrium. Neu- 

tron diffraction of single crystal and powder samples with 18-26 % YOlm5 [52] and 

x-ray diffraction of 21% single crystals [54, 631 found evidence for vacancy-yttrium 

association. Tuilier 's EXAFS study on samples across the Zr 02-YO composit ion 

range also concluded that vacancies are at first nearest neighbor to yttrium. The 

authors do cite the possibility that as the composition of samples increases, yttrium 

ions have greater oxygen coordination. They found that the anion framework around 

yttrium changes more than the framework around zirconium as the dopant compo- 

sition increased [64]. One XPS study found that binding energies of cation electrons 

did not change among different yttrium compositions suggesting, in contrast, that 

oxygen coordination is independent of composition [65]. 

More recent studies of YSZ compounds found that vacancies reside at nearest 

neighbors to zirconium. Goff's single crystal neutron diffraction study found vacancy 

pairs at (111) to each other with a cation between them [lo]. They used a bond 

distance argument to support that the central cation is zirconium. Catlow's EXAFS 

studies and potential modelling of 31 % YOlB5 powders concluded that vacancies 

reside at first nearest neighbors to zirconium [56, 661. In an extensive x-ray study of 

stabilized zirconias, Li, Chen, and Penner-Hahn cite that EXAFS may only be 20 % 

accurate in determining ion coordinations [67]. They refine their EXAFS study and 

include x-ray diffraction and XANES studies to conclude that vacancies reside next 

to the smaller of the zirconium or dopant cation 168, 67, 69, 70, 71, 721. In the case 

of doping with Fe and Ga, the vacancies are next to the dopant ion; in the case of 

doping with Y or Gd, the vacancy is next to the zirconium [70]. 

The conclusion that vacancies reside next to zirconium also has support from sev- 

eral computational works. Stapper's DFT LDA study of 25% YOlm5 found the total 

energy of supercell configurations decreased by increasing the number of vacancies 

at second nearest neighbors to yttrium [62]. Ostanin's LMTO computational study 

supported this finding showing that the lowest energy supercell structures had vacan- 

cies at second nearest neighbors to yttrium [73]. Zacate, et. al. calculated binding 

energies of oxygen in supercells of ZrOz using shell models and Buckingham poten- 



tials [74]. They found the binding energies varied by the relative size and placement 

of a metal dopant in the supercell. They suggest that the reason oversized dopants 

are energetically favorable at second nearest neighbors to vacancies is to allow ions 

in the supercell to fully relax. When oversized dopants are nearest neighbors to the 

vacancy, relaxation does not occur. 

4.1.3 Microscopic order 

Relaxations and relative arrangement of cations and anions reflect ordering on the 

individual atomic scale. Multiple studies lead to the conclusion that stabilized zirconia 

is cubic on average across a long range scale, but at the local atomic scale, the 

fluorite unit cells are distorted [62, 75, 49, 671. The individual arrangements may 

give rise to a larger microscopic order. Goff describes short range ordering with three 

types of defects: isolated vacancies, vacancy pairs in (111) with a cation between 

them, and aggregates of vacancy pairs in (112) [lo]. The (112) ordering is at least 

15 Angstroms in size, and more aggregates form and in greater size as the yttria 

composition increases. 

Morinaga suggests that locally ordered regions containing yttrium aligned in (-3 -3 

2) exist but without precipitate formation [63]. A selected area diffraction study of the 

50% structure shows weak satellite reflections suggesting both ordering similar to C- 

type Y203 and to a distorted pyrochlore [76]. This is in contrast to electron diffraction 

studies of 39 and 48 % YOlss single crystals by Gallardo-Lopez, et. al. [77, 781. The 

diffuse intensity in the patterns of these crystals resembled the 6 structure and did 

not contain pyrochlore and C-type Yz03-like patterns. 

4.1.4 Computational diffusion studies 

The conductivity of oxygen in yttria stabilized zirconia increases from zero in pure 

ZrOz to a maximimum with 15 - 18 % Y01.5 doping. The conductivity then decreases 

at higher compositions. If the addition of yttria to zirconia creates more vacancies, 

one would expect the conductivity to increase linearly with composition due to the 



availability of more oxygen diffusion sites. One possible explanation for the maxi- 

mum and subsequent decrease in conductivity with composition involves the oxygen 

diffusion pathway. An oxygen diffusing in [l 0 0] to a nearest neighbor anion site 

moves between two cations. The cations form the endpoints of an edge of a cation 

tetrahedron surrounding the oxygen, and the size of the cations on the endpoints 

may influence the migration energy through the edge. Large Y-Y cations on the end 

points could inhibit oxygen diffusion. As the number of vacancies increases with Y 

doping, the conductivity increases until the the number of large Y-Y edges inhibit 

oxygen diffusion. 

Another explanation for the peak in conductivity involves the ions having ther- 

modynamic driving forces to  order. At dopant concentrations higher than 18 % Y, 

oxygen and vacancies may order on the anion sublattice. Ordering of vacancies would 

prohibit oxygen diffusing in to  vacant sites without high thermal energy. 

Molecular dynamics (MD) and Monte Carlo (MC) simulations attempt to model 

the diffusion of oxygen in YSZ at various compositions and temperatures to explain 

the peak in oxygen conductivity. Beginning with a random cation arrangement, 

Khan's MD study using potential energy models and a simulation cell with 18 % 

YOlms gave diffuse oxygen-oxygen maxima in the radial distribution function [7]. The 

diffuse maxima indicate that oxygen are not highly ordered at long range. No cation 

diffusion occurred in the simulation. 

Another MD simulation by Shimojo using potential energy models shows that a 

YSZ cell with 18 % Y doping had higher oxygen diffusion than cells with 9 and 37 

% Y doping [79]. A record of the oxygen diffusion paths in the 18 % Y doped cell 

shows that oxygen ions diffuse primarily through Zr-Zr edges. Either the starting or 

ending site of the oxygen, however, has one or two Y ions in the cation coordination 

tetrahedron that are not on the sites of the diffusing edge. The presence of Y in 

the neighborhood of the diffusing oxygen promotes migration. Molecular dynamics 

studies do not show any cation diffusion. 

Krishnamurthy's kinetic Monte Carlo study of oxygen diffusion uses migration 

barriers calculated with DFT [8]. The random yttrium starting configurations in the 



YSZ cells are constant, and the oxygen diffusivity peaks at 18 % Y. The activation 

energy of diffusion increases linearly with Y composition despite the nonlinear change 

in conductivity with composition. A simple analytic model of diffusion using the 

DFT migration barriers closely models the Monte Carlo results only when the model 

includes correlation between oxygen hops up to fifth nearest neighbor. 

Many studies of oxygen diffusivity in YSZ only consider the movement of oxygen, 

but Fevre's Monte Carlo study considers both the diffusion of cations and anions 

[81]. In a Monte Carlo simulation of a supercell with 43 % YOl.s, the vacancies show 

(1 1 1) ordering up to the seventh nearest neighbor on the anion lattice. Yttrium- 

yttrium configurations show positive deviations from random in the radial distribution 

functions at  a distance up to 1.5 times the lattice parameter. An early analysis of 

experimental YSZ conductivity led Hohnke to add a free energy functional to a simple 

theortical model of oxygen conductivity to bring agreement between experimental and 

theoretical results [82]. He postulated that long range defect interactions may be the 

correct physical interpretation of the free energy functional that accounts for the limit 

in oxygen conductivity at high Y doping. 

4.2 Coordination and relaxat ion 

The literature comes to a variety of conclusions about atomic arrangements in YSZ. 

The work in this section investigates how cation coordination and relaxation around 

oxygen ions impact the stabilization in YSZ materials. The analysis uses a subset of 

the structures in chapter 3 that contains 269 structures and considers the variation 

of cation relaxation with formation energy and cluster occupation probability with 

formation energy. The structures are from six compositions: 22, 33, 44, 50, 67, and 

75 % YOlss, and the energies of those structures are given in figure 4-1. 

4.2.1 Cation coordination around oxygen 

For a given cluster of atomic sites, the probability of a particular occupation depends 

on a structure's configuration. Take, for example, three corners of the fcc cube as a 
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cluster. The probability that the triplet will be occupied by all yttrium will depend on 

the configuration of atoms in the structure. The probability deviation from random 

is the difference between the probability of that occupation in the ordered structure 

and the probability of that occupation occuring in a randomly averaged structure at 

the same composition. The probability deviation from random of an occupation ,8 on 

a cluster is given by 
1 

PP = C 6a.ga - pp-ranciom (4.1) 
a.cP 

where a denotes all subclusters of P, including the empty and point terms and 

itself. 4 is the correlation function of the a subcluster in the structure, and (T is 

the product of the occupation variables for the points in the subcluster. np are the 

number of points in the cluster ,O [88]. pp-randm is the probability of occupation ,O 

occuring in a randomly ordered structure of the same composition and is equal to the 

product of the concentration of the species (Zr, Y, 0 ,  or 0) for each point in ,8 in a 

material at the appropriate composition. 

For this analysis, the cluster of interest is a cation tetrahedron with an oxygen at 

the center, and the different occupations on the tetrahedron are three yttrium with 

one zirconium (3Y-Zr), two yttrium with two zirconium (2Y-2Zr), and one yttrium 

with three zirconium (Y-3Zr). Now consider how the occupation probability varies 

across structures. The probability deviation from random of the cation tetrahedron 

around an oxygen containing two Y and two Zr, for example, may be different for two 

structures with the same Y composition but different ionic configurations. Figure 4-2 

shows the probability deviation from random of the 2Y-2Zr occupation around oxygen 

for all the structures with 75 % YOlss composition. The probabilities are plotted as 

a function of the formation energy of each structure. The range of the probabilities 

is from -0.1 to 0.5. 

The slope of the plot in figure 4-2 provides some useful information. The plot 

shows that the higher energy structures have a higher probability of having the 2Y-2Zr 

occupation around oxygen. High energy structures are relatively less stable than the 

low energy structures, therefore, less stable structures have a higher probability of the 



2Y-2Zr occupation. A positive slope of the probability deviation from random versus 

formation energy plot indicates the occupation is associated with a destabilizing force 

in the structures at that composition. A negative slope indicates the occupation is 

associated with a stabilizing force in the structures at that composition. The plots of 

all three occupations of interest at six compositions are in appendix C. 

For the six compositions of interest, figure 4-3 plots the slopes of three different 

occupations of the oxygen-cation tetrahedron cluster (3Y-Zr, 2Y-2Zr, Y-3Zr). The 

plot shows that (1) the 3Y-Zr occupation becomes more stabilizing and the Y-3Zr 

and 2Y-2Zr occupations less stabilizing as yttrium concentration increases and (2) 

except at 33 % YOlB5, the slopes of Y-3Zr and 2Y-2Zr occupations have the opposite 

effect from each other on the stability of a particular composition. 

In the first result, the probability deviation from random shows that the 3Y-Zr 

occupation around an oxygen is present in more stable structures at higher Y composi- 

tion. At each composition, either 3Y-Zr or 2Y-2Zr is the most stabilizing occupation, 

except at 33 % Y where 2Y-2Zr and Y-3Zr are nearly equal. The stabilizing nature 

of Y occupying sites next to oxygen may be a consequence of yttrium and vacancies 

prefering to be second nearest neighbors to each other. As the vacancy concentration 

increases, the yttrium occupy more sites next to oxygen. 

The second result is a more surprising outcome. The Y-3Zr occupation has the 

opposite trend with yttrium composition to the 3Y-Zr occupation; the 2Y-2Zr oc- 

cupation, however, does not remain constant across compositions. It oscillates with 

the Y-3Zr occupation stability. The figure shows, except at 33 % Y, that when the 

2Y-2Zr cluster is stabilizing, the Y-3Zr occupation is either destabilizing or has no 

effect. The reverse is true when Y-3Zr is stabilizing. One possible reason for this is 

that a constraint imposed by the number of primitive cells at each composition may 

force particular occupations to form to maximize vacancy separation in the struc- 

tures. Another possible reason is that either the Y-3Zr or the 2Y-2Zr occupation 

allows oxygen to relax in the structure more readily depending on the geometry of 

the unit cells. 

A comment is necessary on the data points for the 22 % Y structures since those 
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formation energy \eV 

Figure 4-2: Each point represents one 75 % Y01.5 structure. The 0-2Y-2Zr cluster 
is less likely to occur in the low energy structures. 

magnitudes are relatively large. The range of energies of 22 % Y structures is small 

(0.1 eV) compared to the ranges of energies for most of the other structures. The 

slopes associated with relaxation and oxygen coordination are twice as large as for 

the other compounds. Structures with potentially higher energy were excluded from 

the analysis because they had ions with very large (1 A) displacements after re- 

laxation and could no longer be considered the same structure. The configurations 

that maintained their structures did have large relaxat ions (section 4.2.2 has further 

discussion). 

4.2.2 Relaxation of cations around oxygen 

Similar to the analysis involving the probability of a particular cation coordination 

is an analysis of the relaxation of cations around oxygen. The average absolute value 

of displacement of the cations from the unrelaxed cubic fluorite positions to their 

fully relaxed positions gives the relaxation of the coordination around each oxygen in 

the unit cell. The average of the relaxations for all oxygen in the unit cell gives the 



% Y composition 

Figure 43: The three curves indicate the slope of the probability deviation from 
random for a particular cluster occupation versus formation energy. The clusters are 
the three occupation types of a cation tetrahedron around an oxygen. Plus marks 
on a solid line indicate the tetrahedron with three ytrrium and one zirconium, X 
marks on a dashed line indicate the tetrahedron with two yttrium and two zirconium, 
and an asterisk on a dotted line indicates a tetrahedron with one yttrium and three 
zirconium. 

40 60 
% Y composition 

Figure 4-4: An analogous plot to figure 4-3 for the occupation of the cation tetrahe- 
dron around a vacancy. 



relaxation for a structure: 

average relaxation = 2 l';,idealcubic - @,relaxed 
i=l 

where R is the distance from a cation in the tetrahedron to the center oxygen. Figure 

4-5 gives an example for the structures at 50 % YOlm5. Plotting the slopes of relaxation 

versus energy at all compositions gives the plot in figure 4-6. Just as in section 4.2.1, a 

negative slope indicates that more relaxation is present in more stable structures, and 

a positive slope indicates that the more relaxation is present in less stable structures. 

The main conclusion from figure 4-6 is that the effect of relaxation, whether it 

is stabilizing or destabilizing, decreases with increasing yttrium composition. One 

possible explanation is that at high yttria concentration, the vacancies cause such a 

large distortion in the cubic lattice that the relaxations are largely the same across 

structures of the same composition; hence, the stabilization of structures comes from 

maximizing electrostatic separation of the vacancies and yttrium or satisfying some 

other electronic driving force. At low yttria concentration, disruptions to the simple 

cubic oxygen framework due to only a few vacancies may have a large effect on the 

energies. In 22 % YOl.5 structures, the relatively large stabilizing effect of relax- 

ations may be related to the observation of maximum ionic conductivity occuring at 

18 % YOlm5. A large degree of instability would be expected in compositions near 18 

% because small binding energies and tendency towards allowing disorder would be 

conducive for ionic conductivity. In the 33 % Y structures, the opposite relaxation 

effect is present. More relaxation occurs in higher energy structures. At this compe 

sition, the lowest energy structure is a ground state structure. The ground state is 

the optimum structure such that any further deviation from this structure would be 

unstable. 



formation energy \eV 

Figure 4-5: Each point represents one 50 % Y01.5 structure. The average relaxation 
around the oxygen in a structure decreases toward higher energy structures. 

0 20 40 60 80 100 

% Y composition 

Figure 4-6: Each point represents the slope of the average cation relaxation around 
oxygen versus formation energy at the six compositions. 



4.3 Ground state crystal structures 

Section 4.2 looked at the ordering affects on the scale of individual atom coordinations. 

The analysis of the cation occupations showed that oxygen coordinated by one or two 

yttrium is largely dominant at low yttrium compositions while oxygen coordinated by 

three yttrium is dominant at high yttrium concentration. Another analysis showed 

that the effect of relaxation decreases with increasing yttrium content. This section 

looks at the system by considering the arrangments of all the ions in the ground state 

crystal structures obtained in chapter 3. A description of each of the four ground 

states draws out common ordered features. 

4.3.1 Ground state descriptions 

Tables 4.1 and 4.2 give the primitive cells of the intermediate composition ground 

states. The structures have several configurational elements in common, and the 

descriptions of the structures are given with respect to cubic settings, except where 

noted. In each of the ground states at 25, 29, 33, and 57 % Y, the yttrium and 

vacancies are aligned in chains in the [l 1 21 direction within (1 1 1) planes, and the 

yttrium are in double chains (two chains at first nearest neighbors). Figure 4-7 shows 

these orientations. Another description of the ground state with 57 % Y is discussed 

below. The light grey lines outline the and c' lattice vectors of the primitive cell. 

The ground state structure with 25 % Y01.5 has the formula Y2Zr6OI5. Figure 4-8 

shows two pictures of the structure. In figure 4-8(a), the cation (1 1 1) planes alternate 

between pure zirconium planes and planes with half yttrium and half zirconium. The 

mixed cation planes show double rows of yttrium next to double rows of zirconium 

in the [I 1 21 direction. Each yttrium has eight oxygen in nearest neighbor sites. 

Each vacancy's closest four vacancy neighbors are at sixth nearest neighbors on 

the anion cubic sublattice (see figure 3-3). Two of the neighbors and the central 

vacancy form part of a vacancy chain in the [l 1 21 direction. In figure 4-8(a), a 

single small orange sphere shows the perpendicular view along the axis of one [l 1 

21 chain. The two other vacancy neighbors in the structure are in parallel vacancy 



Table 4.1: Table (a) contains the fully relaxed unit cell and atom positions of the 
25 % ground state structure. Table (b) contains the fully relaxed unit cell and atom 
positions of the 29 % ground state structure. 



Table 4.2: Table (a) contains the fully relaxed unit cell and atom positions of the 
33 % ground state structure. Table (b) contains the fully relaxed unit cell and atom 
positions of the 57 % &ground state structure. 



cation fcc lattice anion simple cubic 
lattice 

Figure 4-7: Yttrium and vacancies align in the [l 1 21 directions in (1 1 1) planes in 
the ground states. The figure on the left shows the cations on an fcc lattice, and the 
figure on the right shows the [l 1 21 direction on a simple cubic lattice. 

chains on either side of the original vacancy chain, and these three vacancy chains are 

in one plane. In the same figure, two of the three vacancy chains are visible within 

one horizontal anion plane. The next nearest vacancies to the original vacancy are 

7.5 A away in another horizontal anion plane. Each vacancy has four zirconium ions 

around it. 

The ground state structure at 29 % Y01.5 has the formula Y2Zr5OI3. Vacancies 

reside in [l 1 21 chains such that vacancies are at sixth nearest neighbor to each 

other in the chain. A given vacancy has four vacancies a t  sixth nearest neighbors 

on the anion sublattice in the adjacent vacancy chains, as shown in figure 4-9(a). 

The coordination of each vacancy is four zirconium, and the coordination of each 

yttrium is eight oxygen. Each cation (1 1 1) plane shows five zirconium rows in [I  1 

21 alternating with two yttrium rows. 

The ground state structure at 33 % Y01.5 has the formula Y2Zr4OI1 and has space 

group C2/m. This ground state is stable with respect to monoclinic Zr02. Figure 

4-10(a) shows the primitive cell of the structure. The view in to the page is in [I 1 21 

with horizontal (1 1 1) planes. The vacancies in this structure are equally spaced in 

three dimensions such that each vacancy has eight vacancies at sixth nearest neighbors 



to each other on the anion sublattice. The nearest vacancies to a given vacancy are 

in the (1 1 2) direction. Four zirconium coordinate each vacancy at first nearest 

neighbors. 

The cation (1 1 1) planes alternate between a pure zirconium plane and a plane 

with two-thirds yttrium and one-third zirconium. The mixed cation planes have a 

honeycomb pattern such that a zirconium atom has six Y atoms at nearest neighbors 

in the plane. When viewed in the [l 1 21 direction, each cation planes appears to 

be repeated units of two yttrium rows with one zirconium row. Each yttrium is first 

nearest neighbors on the cation sublattice to two other yttrium in the nearest chain. 

The coordination of each yttrium is eight oxygen. 

The ground state structure at 57 % YOls5 has the formula Y4Zr3012 and is called 

the 6-structure. The earliest description of the S structure for YSZ is from Scott 

[14], and Bogicevic and Wolverton previously reported the atomic coordinates of the 

6 structure [40]. The structure in table 4.2(b) is an alternate setting. 

Vacancies form [I 1 11 chains in the structure with a zirconium between every other 

vacancy pair. This corresponds to vacancies being in chains along cube diagonals of 

the simple cubic anion framework. The nearest neighbor vacancies in a chain closest 

to a given vacancy are in the [0 1 21 and [l 1 21 direction. Vacancies are therefore 

third nearest neighbors within the chain and fifth and sixth nearest neighbors to the 

vacancies in the closest chain. Each vacancy has two yttrium and two zirconium ions 

at nearest neighbors. The view in the primitive cell in figure 4-1 1 (a) shows horizontal 

(1 1 1) planes viewed along the [l 1 21 direction. Each plane shows four yttrium rows 

and three zirconium rows. Each yttrium has seven oxygen and one vacancy as nearest 

neighbors. 

4.3.2 Ordering features 

The unrelaxed cubic cells of the ground state structures at 25, 29, and 33 % YOl.5 all 

have yttrium in &fold coordination by oxygen and vacancies in 4-fold coordination 

by zirconium. The ground state structure at 57 % Yola5 has yttrium coordinated by 

seven oxygen and one vacancy, and the vacancy has two zirconium and two yttrium 



Table 4.3: The table lists the average relaxed metal-oxygen bond lengths for each Zr 

] 
' 

and Y in a ground state structure. 

at nearest neighbors. The description of microscopic ordering found by Goff agrees 

with the ordering found in the 6 structure (section 4.1.3) [lo]. 

ground state (% Y01.5) 
0 % (monoclinic) 
0 % (cubic) 
25 % 
29 % 
3 3 %  
57 % 
lo0 % 

In the relaxed ground state structures, the bond distances vary from the exact 
9 

cubic lattice values. The unrelaxed nearest neighbor bond length for cations and 

anions is 2.30 A in a cubic fluorite cell of lattice parameter 5.3 A. Table 4.3 gives 

Zr-0 (A) 
2.19, 2.19, 2.19, 2.19 
2.24 
2.18,2.18,2.19,2.22,2.30,2.32 
2.19, 2.19, 2.19, 2.22, 2.33 
2.18, 2.19, 2.19, 2.21 
2.14, 2.29, 2.29 
- 

the average relaxed zirconium-oxygen bond length for each zirconium position in the 

ground state unit cells. In the ground states with 25, 29, and 33 % Y, the Zr-0 bond 

lengths are nearly all 2.18-2.21 A, which is the same as the monoclinic Zr-0 bond 

length. One or two Zr-0 bond lengths at  2.30-2.33 A are larger than the monoclinic 

bond length. All Y-0 bond lengths are larger than the C-type YOlm5 bond length. In 

the ground state with 57 % Y01.5, all Zr-0 bondlengths deviate from the monoclinic 

Zr-0 bond length, but the Y-0 bond length is closer to C-type Y01.5 than the lower 

composition structures. 

Y-0 (A) 
- 

- 

2.41,2.42 
2.39, 2.40 
2.43, 2.43 
2.36, 2.36, 2.37, 2.37 
2.32 (all 16 ions) 

4.4 Density of States 

I 

The descriptions of the ground states provide atomistic models of the structures, 

and the density of states of the ground states gives information about the electronic 

structure of the materials. The density of states for pure ZrOz and YOl.5 and the 

intermediate composition ground state structures show degrees of hybridization de- 

pending on the amount of zirconium in each structure. Figure 4-12 gives the DOS 



for each structure. 

For cubic Zr02, the DOS for Zr d and 0 p states are split in to two peaks both 

above and below the Fermi level. Below the Fermi level, the trough between the two 

0 p peaks and the trough between the two Zr d peaks are at the same energy, and 

the Zr peaks maximize at the same energy as the 0 peaks. The coinciding troughs 

and peaks suggest that the 0 and Zr states hybridize. Metal-oxide eg and tzg orbitals 

are expected to give single peaks of density. Above the Fermi level, however, the 

splitting of the peaks indicates that the cubic symmetry of the Zr orbitals is also 

broken. The ground state of Zr02 is the monoclinic phase, which is a distortion of 

the cubic fluorite phase, giving Zr atoms sevenfold coordination by oxygen. The Zr 

d peaks may be split due to electronic driving forces towards monoclinic while the 

structure maintains the unstable cubic phase. 

Looking at the ground state structures with intermediate composition, the Zr d 

states above the Fermi level consolidate to a single peak upon the addition of Y. 

The majority of the yttrium density of states is in unfilled states above the Fermi 

level. Below the Fermi level, the filled Zr d DOS shift to the lower energy peak while 

the oxygen peaks combine towards the higher energy peak. This suggests the Zr-0 

hybridization decreases as yttrium concentration increases. 

In the Y01.5 DOS below the Fermi level, the oxygen p states are nearly a single 

peak and the yttrium d states are also a single peak indicating that the metal-oxygen 

hybridization is not present. Comparing the intermediate composition and pure YOle5 

DOS shows that the spread of the oxygen DOS decreases and the median 0 p state 

energy increases as yttrium content increases. Zirconium bonding with oxygen pulls 

the oxygen p states down in energy to stabilize the structures. 



4.5 Monte Carlo simulations 

4.5.1 Cooling 

While earlier sections of the chapter concentrated on static ordering features, Monte 

Carlo simulations can lend insight in to how ordering evolves across a temperature 

range. Monte Carlo simulations of the YSZ system require a coupled sublattice ap- 

proach to model the ordering of anions on the simple cubic lattice and cations on the 

fcc lattice. The coupled approach is the same as traditional Monte Carlo simulations 

except that three sites (two cations and one anion) are chosen together to potentially 

switch to the alternate species rather than one site being chosen to potentially switch 

as in traditional Monte Carlo. The three sites must be a charge balanced combina- 

tion, and the eligible combinations are either two yttrium plus one vacancy or two 

zirconium plus one oxygen. Two cation sites and one anion site are chosen at random 

from the cell, and when an eligible combination is found, it is tested for whether the 

energy decreases by changing those sites to the alternate species or whether to accept 

a higher energy change with a statistical probability. 

An import ant problem of coupled sublat tice simulations is the low acceptance rate. 

At 1000 K, the grand canonical acceptance rate for sites to alternate species is lo-* 

and the canonical acceptance rate is 10-l. Due to the low acceptance rates of grand 

canonical simulations, the number of passes to equilibrate and sample the cell was on 

the order of lo6. To accelerate some calculations, a combination of grand canonical 

steps with intermediate nearest neighbor exchange steps allowed equilibration of the 

local arrangement after each grand canonical step. 

Using the cluster expansion of chapter 3, an interesting property of the Monte 

Carlo simulation on a cell of 33% YOls is that the cations and anions order at dif- 

ferent temperatures. Comparing the results of two types of simulations generates 

this conclusion. From canonical nearest-neighbor exchange simulations, cooling of 

the ground state structure at 33 % Y give a peak in the heat capacity at 1500 K 

(figure 4-14). The peak suggests a phase transition is present. In figure 4-15, compar- 

ing the correlations of the structures before and after cooling shows that the cation 



correlations change markedly on cooling. The clusters with the largest change in 

correlations between 500 K and 3500 K came fiom the cation-cation second nearest 

neighbor cluster, the cation-cation fourth nearest neighbor cluster, two triplets with 

one cation and two anion sites, and nine clusters with two cation and one anion site. 

The peak in the heat capacity may be attributed to ordering of cation sites. 

In a second type of simulation, the cation sites were fixed in each structure, and 

the ground state structure with 33 % YOlss cooled and allowed anion nearest neighbor 

exchanging only. In the simulation, the heat capacity peak occured at  1750 K for the 

vacancy ordering, and the resulting vacancy configuration is similar to the ground 

state configuration with some stacking faults. The different ordering temperature of 

cations and vacancies supports the conclusion that ordering of oxygen and vacancies 

is dependent on both cation and anion interactions. 

4.5.2 Lowest excitation energy 

To clarify how the energy of a structure changes by diffusion of an oxygen to  a vacant 

site, the lowest excitation energy is the energy difference, on average, that would occur 

from switching an oxygen and a vacancy on the anion sublattice. Calculating the 

lowest excitation energy requires a supercell of the ordered structure and completing 

one Monte Carlo iteration using the cluster expansion as the energy Hamiltonian. At 

each randomly selected anion lattice site, the change in energy for switching an oxygen 

with a nearest neighbor vacancy, whether or not the switch is accepted, is recorded. 

The average energy difference over all recorded anion sites is the lowest excitation 

energy. Figure 4- 16 shows that the excitation energy increases with composition, 

which suggests that as Y composition increases, diffusion of oxygen is more difficult. 

The ground state with 33 % Y is an exception to the trend. Vacancies are distributed 

homogeneously across the lattice in the ground state with 33 % Y, and, in comparison 

to the ground state with 29 % Y, switching an oxygen and a vacancy may not greatly 

perturb the energetics of ordering in the 33 % Y ground state. 



4.6 Conclusions 

The analysis of 269 ordered YSZ compounds and the ground state structures provides 

insight in to the driving forces for ordering and phase stability in YSZ. With the 

269 ordered structures, the calculation of the probability deviation from random for 

the occupation of the cation tetrahedron surrounding oxygen shows that the 3Y-Zr 

tetrahedra are more likely in stable compounds at high compositions than the 2Y- 

2Zr or Y-3Zr tetrahedra. The probability for a particular cation coordination around 

oxygen has a compositional dependence. The average relaxation of cations around 

oxygen similarly have a compositional dependence; relaxation around oxygen has less 

of an impact in structures with high Y content. 

Considering only the ground state structures, the low Y structures have bonding 

similar to the parent Zr02 compound. A comparison of the ground state bond lengths 

shows that the ground states with low Y composition (25,29, 33 % Y) have a bimodal 

distribution of Zr-0 bond lengths. The shorter bond lengths are nearly the same as 

the monoclinic Zr02 bond length. The ground state with 57 % Y also shows bimodal 

bond lengths in both Zr-0 and Y-0 bond lengths, but neither bond type matches 

exactly with the bond lengths in monoclinic ZrOz or Y203. The density of states for 

each of the ground states show changing degrees of hybridization between Zr-d and 

0-p states across the composition range. 

To further understand ordering in the YSZ systen, Monte Carlo simulations show 

cation and anion ordering changes with temperature. Monte Carlo simulations of the 

ground state with 33 % Y indicate that cation ordering is necessary to fully order the 

vacancies of the structure upon cooling. Despite the common practice of modelling 

cations with a random distribution about fcc sites, these Monte Carlo simulations 

indicate that cation ordering cannot be ignored in analyzing the ordering of anions. 



Figure 48: Large red ions are oxygen and small orange spheres represent oxygen 
vacancies. The middle sized ions represent cations. The dark grey Zr and light 
green Y cations are on face centered cubic positions. The figure shows the unrelaxed 
cubic positions. Figure (a) shows a supercell of the ground state at 25 % Y01.5. The 
horizontal planes are (1 1 I),  and the viewing direction in to the page is [l 1 21. Figure 
(b) shows a supercell of the primitive cell with some cubic cell vectors included. 

85 



Figure 4-9: The key is the same as in figure 4-8. This structure is the ground state 
a t  29 % Yo1.5. 
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Figure 410: The key is the same as in figure 48 .  This structure is the ground state 
at 33 % Yo1.5. 



Figure 411: The key is the same as in figure 4-8. This structure is the ground state 
at 57 % Yo1.5. 
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Figure 4-12: Figure (a) is the density of states for cubic ZrOz. Figures (b) and (c) 
show the density of states for the ground states at 25 and 29 % YOl.s, respectively. 
The thick grey dashed lines are Zr d states, and the thin green lines are Y d states. 
The thin dashed-dotted red lines are 0 p states. The units of energy are eV. 
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Figure 4-13: Figures (a), (b), and ( c )  are the' density of states for the ground states 
at 33, 57, and 100 % YOlm5, respectively. The units of energy are eV. 
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Figure 4-14: In canonical Monte Carlo cooling of the 33 % Y ground state, the peak 
in heat capacity differs depending on the type of site exchange. For nearest neighbor 
site exchanging on both cation and anion sublattices, the peak is at 1500 K. With a 
fixed cation sublattice and only nearest neighbor anion site exchanges, the peak is at 
1750 K. 
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Figure 415: The plot contains one data point for each cluster in the cluster expansion. 
The ordinate value for each point is the difference between the correlations in the 
cooled 500 K Monte Carlo state and the starting 3500 K state for a canonical nearest 
neighbor exchange simulation. The points are sorted by decreasing magnitude. The 
labels of the first thirteen clusters are in the order of decreasing absolute magnitude 
and correspond to the cluster list in appendix B. 



Y composition 

Figure 4-16: The lowest excitation energies for the ground state structures are 0.695, 
1.038, 0.984, and 1.568 eV, in order of increasing Y composition. 





Chapter 5 

Relaxat ion, coordination, and 

cation radii 

5.1 Driving forces for stability 

The literature on yttria stabilized zirconia proposes factors that influence the pres- 

ence of short and long range ordering in the material. The calculations of this chapter 

provide a closer study of several mechanisms that impact the stability of the ordered 

ground states reported in this thesis. The three main factors investigated are ionic 

relaxation, vacancies arrangements in pure Zr02, and the differences between zirco- 

nium and yttrium cation radii. Before discussing the main topics, two additional 

factors also require mention: the roles of electrostatics in ordering and the covalency 

of the zirconium-oxygen bond. 

5.1.1 Electrostatic interaction 

The most basic force between ions is the electrostatic attraction and repulsion between 

charged species. In YSZ, the formal valence of the species gives Zrf 4 ,  Y+3, and 0-2. 

Within a material, a vacancy (0) in an 0-2 site has a relative +2 charge with respect 

to the lattice. From electrostatic interaction, one would expect the Y-• nearest 

neighbor configurations to be more stable than Zr-0. In all the ground states, the 



latter configuration is present. 

5.1.2 Zirconium-oxygen covalency 

Zirconia's ground state configuration is a monoclinic structure with zirconium in 

seven fold coordination by oxygen. One explanation for the stabilization of mono- 

clinic rather than cubic fluorite is that zirconium is a small ion that is ionically bonded 

with oxygen. The most satisfactory zirconium-oxygen bonding is seven oxygen coor- 

dinating zirconium with shorter, stronger bonds rather than zirconium being in eight 

fold coordination with longer, weaker bonds. By this argument, doping with a larger 

metal ion forces oxygen apart putting the metal in eight fold coordination and hence 

yielding a cubic fluorite structure. 

DFT studies reproduce the relative stability of the experimentally observed monoclinic- 

tetragonal-cubic ZrOz structures [go, 911, but attempts to model structures with semi- 

empirical models require successively more complex pictures of bonding [92, 93, 94, 

95, 111. The basic assumption that the bond between zirconium and oxygen is ionic 

does not reproduce the monoclinic-t etragonal-cubic order of phase st ability. Initial 

studies found that including the polarizability of oxygen is necessary to accurately 

reproduce the zirconia polymorphs [94]. Finnis, et. al. present a more elaborate 

model and conclude that covalency is more important than polarizability in their 

self-consistent tight-binding model for obtaining the experimental order (95, 111. 

The degree of covalency between the oxygen and metal ions in the YSZ ground 

state structures may contribute to driving the system to order. A calculation of 

the electron localization function in the ground state with 33 % Y shows that the 

localization of the charge is quite similar for yttrium and zirconium in the (1 1 1) plane 

(figure 5-1) [96, 971. Given this result, the analysis of the ground state structures does 

not focus on the electronic differences between Y and Zr but instead focuses on steric 

effects. 



Figure 5-1: The plot of the electron localization function in the (1 1 1) cation plane 
of the ground state structure with 33 % Y shows rings around cation positions and 
circles of red where charge localizes on oxygen sites from neighboring (1 1 1) planes. 
Red indicates the fullest degree of localization and green indicates delocalized charge. 
The degree of localization for Zr and Y is similar, with the Zr localization extending 
closer to the neighboring oxygen than the Y localization. 



5.2 Relaxat ion 

The defining feature of yttria stabilized zirconia is the stabilization of a cubic form 

of zirconia upon addition of yttrium. YSZ, however, is not uniformly cubic. Local 

distortions around ions and vacancies are present across dopant compositions and 

play a role in stabilizing an overall cubic fluorite structure on the scale of 10-lo2 A 
1671. Using the energetics of relaxation and bond valence summation, we explore the 

nature of this stabilization. 

5.2.1 Energies of cation and anion relaxation 

As shown in section 4.1.1, the literature describes many ways that ions relax away 

from ideal cubic sites. Supercell calculations of ZrOz with a single vacancy show that 

nearest neighbor oxygen ions relax toward the vacancy in (1 0 0) and nearest neighbor 

cations relax away from the vacancy in (1 1 1) when Y (or larger dopant) is second 

nearest neighbor to the vacancy 174, 621. In a computational study of 90 YSZ and 

scandia stabilized zirconias, Bogicevic, et. al. report that the energy of ions relaxing 

counteracts the energy of electrostatic repulsion of like species 1451. They argue that 

this relaxation drives the formation of (1 1 1) vacancy pairs, a short range ordering 

unit observed by Goff, et. al. [lo]. 

Three types of total energy calculations of the ground state configurations clarify 

the role of cation and anion relaxation: calculation of the energy with fixed anion sites 

and cation sites allowed to relax, calculation of the energy with fixed cation sites and 

anion sites allowed to relax, and calculation of the energy with both anion and cation 

sites allowed to relax. For all ground states, the calculation with both anion and 

cation relaxation gives the lowest energy. Figure 5-2 shows the difference in energy 

for each ground state structure between the fully relaxed structure and the structure 

with cation relaxation allowed or the structure with anion relaxation allowed. From 

the figure, the average energy difference between fully relaxed and anion relaxed 

structures across the ground state configurations is 226 meV. The energy difference 

increases with increasing Y01.5 composition. 
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Figure 5-2: The cation relaxation curve gives the difference in energy between the 
ground state with cation sites allowed to relax and anion sites fixed and the ground 
state with anion and cation sites relaxed. The anion relaxation curve is the analogous 
difference in energy but with the first structure being the ground state with anion 
sites allowed to relax and cation sites fixed. 

The differences in energy between the fully relaxed structures and structures with 

cation relaxation and fixed anion sites are less uniform. The energy difference for 

ground state with 33 % Y is 4.34 eV. The large energy change for this case is likely due 

to metal-oxygen bond lengths. Three of the eight yttrium-oxygen distances decrease 

by 0.2 - 0.3 A upon cation relaxation. The zirconium-oxygen distances span a large 

range from 2.03 to 2.48 A. The large energy difference for the ground state at 33 % Y is 

reminiscent of the destabilizing affect of cation relaxation around oxygen for structures 

at this composition in section 4.2.2. The destabilizing nature of cation relaxation in 

this ground state may be a result of the zirconium being in the monoclinic-like seven 

fold coordination in the ground states. The driving force for zirconium to be in this 

coordination may be so great that changes in its position with respect to oxygen 

greatly impact the energy. 



0 atom pair I & (A) I B (A) 1 

Table 5.1: The table lists the bond valence parameters for yttrium, scandium, and 
zirconium with oxygen [I]. 

5.2.2 Bond valence summat ion 

To take a closer look at how the relaxations affect bonding, consider the bond va- 

lence sums for the ions in each groundstate. Bond valence summation is a method 

that describes the nature of bonding between anions and cations by considering the 

coordination and distances between atoms. For a central atom 2, the bond valence 

summation Vi is 

& and B are fitted parameters derived from bond lengths between atoms in the 

Inorganic Crystal Structure Database [I]. Rj is the bond length between a central 

atom and its neighbor j, and is the length of a bond of unit valence. Table 5.1 

gives the parameters for some relevant atom pairs. 

Figure 5-3 shows the bond valence summation for each ground state. Each graph 

contains the bond valence summation from four energy calculations of the ground 

state: the structure with ions in unrelaxed cubic fluorite positions, the structure 

with all cations and anions allowed to relax, the structure with cations in fixed cubic 

positions and anions allowed to relax, and the structure with anions in fixed cubic 

positions and cations allowed to relax. For all ground states, the trend between 

the unrelaxed cubic and fully relaxed states shows that Vi of zirconium changes from 

approximately 2.5 to 3.5 upon relaxation, and Vi of yttrium shifts from approximately 



4 to 2.75 upon relaxation. The increase (decrease) of Vi for zirconium (yttrium) 

towards 4+ (3+) is in agreement with bond valence summation rules. In structures 

where the bonding can be described by localized bonds between atoms, the ions have 

a coordinating environment such that Vi is the same as the formal charge valence 

[981 

When comparing the structures with cations in fked positions and anions relaxed 

and the structures with all cations and anions relaxed, the Vi for the two types of 

structures across the ground states are nearly the same and are closest in the ground 

states with 33 and 57 % Y. The relatively small energy difference between the fully 

relaxed structures and the structures with anion relaxation and cations in fixed cubic 

positions in figure 5-2 show that anion relaxation is an important driving force in the 

stabilization of the ground states. Given that the bond valence sums between the two 

types of structures in the ground state configuration at 57 % Y are nearly the same, 

but the energy difference between the two structures is largest at that composition, 

another factor relating to the cation positions must be an important driving force for 

the stabilization of the fully relaxed ground state a t  57 % Y. 

In the structures with anions in fixed sites and cations in relaxed positions, the 

Vi of the zirconium ions is intermediate between the unrelaxed cubic structures and 

the structures with all anion and cations in relaxed positions. The yttrium ions 

in the structures with cation relaxation have nearly the same Vi as in the unrelaxed 

structures. The main stabilization mechanism in the structures with cation relaxation 

and no anion relaxation is the displacement of zirconium, which may be a result of 

zirconium being a smaller ion than yttrium and having available space within its 

coordinating environment to change posit ion. 

5.3 Vacancy ordering 

An early study by Ho on the coordination of the cations in YSZ claimed that if 

vacancies always coordinate zirconium and not yttrium, the material becomes cubic 

when half of the zirconium cations are seven fold coordinated by oxygen [99]. Half 
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Figure 5-3: Each plot contains Vi for each cation in the unit cell in the unrelaxed, 
fully relaxed, anion relaxed, and cation relaxed structures for ground states with 25 
% (a), 2 9 %  (b), 33 % (c), a n d 5 7 %  (d) Y. 



of zirconium can be seven fold coordinated when 5 % vacancies exist on the anion 

sublattice, which occurs at 20 % YOla doping. The argument further states that 

zirconium in seven fold coordination and yttrium in eight fold coordination by oxygen 

would yield the most stable arrangement of vacancies. With 33 % Y, all zirconium 

can be seven fold coordinated, and the calculated ground state at  33 % Y has this 

arrangement. 

In addition to the sevenfold coordination of zirconium, one may also question how 

the arrangement of vacancies themselves affects the stability of structures. Using 

supercells of Zr02, Fabris, et. al. add four vacancies to a system of 32 Zr and 

64 anions sites [49]. They compare two arrangements of vacancies: vacancies at  

maximum separation and vacancies in a [l 1 11 chain. The latter arrangement is 

lower in energy. The arrangement of vacancies clearly impacts the energy of the 

structure beyond just the energy of electrostatic repulsion. 

To compare their findings to the ground state structures, one can consider the 

vacancy configuration in the ground state with 25 % Yola5. Calculating the DFT 

energy of three Zr02 supercells provides a comparison of vacancy configurations. 

The vacancy configurations considered were the two used in the Fabris study and 

the vacancy configuration of the ground state structure with 25 % YOls5 imposed 

on a supercell of Zr02 (i.e. no yttrium were present). Since the ZrOz supercells are 

not charge balanced due to the presence of vacancies but no yttrium, two electrons 

were removed from the energy calculation for each vacancy. The energy calculations 

indicated that the 25 % Y ground state configuration of vacancies had the lowest 

energy. The [l 1 11 vacancy configuration and the maximum vacancy separation 

are 0.104 eV and 0.127 eV, respectively, higher in energy than the ground state 

configuration. 

The 25 % Y ground state vacancy configuration is similar to the maximum vacancy 

separation configuration. In the former structure, each vacancy has four neighboring 

vacancy neighbors at sixth nearest neighbors and two at seventh nearest neighbors. 

In the latter configuration, the vacancies are all at seventh nearest neighbors. The 

average Vi of zirconium for the three structures are 3.641, 3.626, and 3.628 for the 



25 % Y ground state configuration, the [l 1 11 vacancy configuration, and the max- 

imum vacancy separation. The bond valence sum is the largest for the ground state 

configuration, suggesting that the bond lengths are able to relax to optimal lengths. 

This relaxation drives the stabilization of the vacancy arrangement. Kaiser-Bischoff, 

et. al. propose that a model of rigid Zr-0 entities with short interatomic bonds (2.1 

A) that relax as a unit is important for short range ordering [loo]. 

5.4 Cation radii 

The difference in size between zirconium and yttrium may contribute to the stabi- 

lization of ordered compounds. A variety of studies consider the trends of cation size 

differences on the cubic fluorite structure of doped transition metal oxides. Many 

attempts to predict the formation of the ordered pyrochlore structure with formula 

A2B2O7 exist for fluorite based oxides [loll. A map of six fold coordinated, 4+ valent 

cations versus eight fold coordinated, 3+ valent cations shows that a range of com- 

pounds stabilizes in the pyrochlore structures depending on the size of the cations. 
r A3+ One estimate is that the # ion radius ratio must be at least 1.22 for pyrochlore 

to form [12]. Neutron and x-ray diffraction investigations of pyrochlores find that 

doping the A and B sites with different sized transition metal oxides will drive order 

and disorder of the pyrochlore at the A2B2O7 composition [102, 1031. 

Brisse reports that in stannate oxide compounds, the influence of yttrium in the 

pyrochlore ordering is due to its size and not chemical bonding [104]. If this is true in 

other fluorite oxides, one may consider how the size of yttrium in zirconia influences 

ordering. YSZ does not form a pyrochlore structure, but it does form the 57 % Y- 

6 ground state structure. Brisse suggests that when the ~@9 r ( ~ 4 + )  ratio in A2O3-B02 

compounds is below 1.19, a b compound forms in favor of a pyrochlore compound 

[104]. 

To investigate this phenomenon in YSZ, consider the relative sizes of scandium, 

yttrium, and zirconium. Table 5.2 shows the cation radii in six fold and eight fold 

coordination. The scandium ion is smaller than yttrium and larger than zirconium. 



Table 5.2: The radii of the transition metals vary by their coordination in a compound 

PI . 

Experiments reveal several ordered phases in the Sc203-Zr02 system. Sc203 takes 

the C-type lanthanide structure like Y203, a 6 structure is stable a t  Sc4Zr3OI2 (57 % 

Sc), an experimentally observed y compound is stable a t  Sc2Zr5OI3 (29 % SC), and a 

disputed ,8 phase occurs at Zr50S~120118 (19 % SC) [105]. Bogicevic, et. al. offer unit 

cells and atomic positions of the scandium 6 and y compounds [40, 461. 

ion 

Y3+ 
Sc3+ 

A relevant extension to the observations on pyrochlores is to investigate whether 

the difference in ion sizes has an impact on stabilization at the 25 %, 29 %, and 33 

% compositions where YSZ has ground states. The total energies of the 25 %, 29 %, 

33 %, and 57 % doped structures with scandium rather than yttrium, as well as the 

7 fold (A) 
N/A 
N/A 

6 fold (A) 
0.89 
0.73 

reported 6 and y structures, were calculated. Figure 5-4 shows the formation energy 

8 fold (A) 
1.02 
0.87 

at each composition with respect to cubic Zr02. 

At 57 % scandium composition, the reported Sc-6 structure is lower in energy 

than the YSZ-6 ground state structure by 25 meV. The configurational difference 

between the YSZ-6 and the Sc-6 depends on the coordination of the cations. In the 

YSZ ground state, zirconium is six fold coordinated such that vacancies are a t  the 

body diagonals of a simple cube with zirconium in the middle. All yttrium are seven 

fold coordinated. In the lower energy Sc-6 structure, the scandium is in the six fold 

coordinated sites and zirconium is in seven fold coordination [46]. 

At 29 % scandium composition, the YSZ ground state configuration is lower in 

energy than the reported y structure by 19 meV. The Sc-y structure has half of its 

Sc and Zr ions in seven fold coordination by oxygen. The other half of Sc and Zr ions 

are in eight fold coordination by oxygen, except for one Zr ion, which is in six fold 

coordination by oxygen. The YSZ configuration, in contrast, has all Sc ions and one 

Zr ion in eight fold coordination by oxygen and the remaining four Zr ions in seven 



fold coordination by oxygen. The structure that maximizes the fraction of zirconium 

ions with seven coordinating oxygen ions is the most stable. 

The formation energies of the structures with respect to monoclinic ZrOz show 

that none of the configurations are stable with respect to pure zirconia and pure 

scandia. Bogicevic, et. al. found a similar situation in their study of doped zirconias 

[46]. One possible explanation is that the DFT calculation of monoclinic ZrOz does 

not accurately model the energetics of the material. Another possible explanation is 

that none of calculated configurations at 29 and 57 % Sc are the true ground states 

for this system. 

Two questions arise from these calculations. Why are the cation arrangements at 

57 % dopant in opposite oxygen coordination environments between the Y-doped and 

Sc-doped zirconias? Why is the 29 % Sc compound stable on the cubic lattice but not 

the structure at 33 % Sc like the analogous ground state structures with Y doping? A 

possible explanation involves consideration of electronic and relaxation contributions 

to the energy. The electronic contribution is the driving force for zirconium preferring 

to be in seven fold, monoclinic-like coordination by oxygen. The relaxation contri- 

bution is the decrease in energy that occurs when oxygen relax toward vacancies. At 

57 % doping with yttrium, if the yttrium were in the six fold sites, the large size 

of the ion may cause large disturbances in the lattice such that oxygen cannot relax 

evenly. The electronic driving force for zirconium to be in the seven fold sites is less 

than the relaxation driving force for Y to be in seven fold site. The yttrium, hence, 

reside in seven fold sites while zirconium are in six fold sites at 57 % Y doping. In 

scandium doping, scandium is smaller than yttrium and would be expected to cause 

less disturbance to the relaxation. The zirconium's seven fold electronic driving force 

then drives the order and scandium is in the six fold sites. 

For the second question about stabilization with 29 % doping, consider the same 

driving forces. With 33 % Y doping, zirconium is in seven fold coordination, and the 

yttrium are in eight fold coordination. Section 4.2.2 found that additional relaxation 

beyond the ground state relaxation was unstable in structures at 33 % Y doping. 

Zirconium maintains seven fold coordination at 29 % and 33 %, but with Sc doping, 
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Figure 5-4: The plot shows formation energies of structures in the zirconia-scandia 
system with respect to cubic ZrOz and C-type S C O ~ . ~ .  The structures with 25 and 
33 % Sc are the YSZ ground state configurations with Sc replacing Y. Points labelled 
Sc-delta and Sc-gamma show the energies of the reported stable phases at their com- 
positions. Points labelled YSZ-29% and YSZ-delta show the energies of the YSZ 
ground state configurations with Sc in Y sites. 



however, the relaxation characteristics would be expected to be different. The smaller 

Sc ion may allow more oxygen relaxation that would then drive the system to stabilize 

making 29 % be on the cubic convex hull. 

5.5 Conclusions 

Three factors in this chapter examine driving forces for stability in YSZ. Comparing 

the total energy of the ground states with full ion relaxation and with relaxed anion 

positions but fixed cation positions probes the importance of relaxation. Comparing 

the energy difference and the bond valence summation difference for the two versions 

of each ground state leads to the conclusion that at the highest yttrium content (57 

% Y), anion relaxation alone does not fully account for the stability of the structure. 

Another factor considered in chapter 5 is the arrangement of vacancies. The lowest 

energy vacancy arrangement among three ZrOz supercells with the same vacancy 

concentration is the arrangement from the YSZ ground state with 25 % Y. The 

lowest energy arrangement has the maximum average bond valence summation, and 

stability of the configuration may be related to a Zr-0 pair relaxing as a unit. 

The last factor considered is the role of cation size. Using the set of reported 

scandia-zirconia ordered structures and the YSZ ground state structures, incorporat- 

ing scandia in to zirconia creates ground states at 29 % and 57 % Sc on the cubic 

fluorite lattice. The 57 % dopant structures for YSZ and Sc-Zr02 have opposite 

arrangements of cations, but the 29 % dopant ground states are the same. At the 

lower composition, anion relaxation may be the same for both types of dopants hence 

stabilizing the same structures; at higher compositions, though, the difference in sizes 

of Sc and Y may drive the dopants to seek their unique stable configurations. 



Chapter 6 

Conclusions 

6.1 Summary and contributions 

The major contributions of this work are twofold: the discovery of ordered ground 

states at 25, 29, and 33 % YOle5 on the cubic fluorite lattice and an analysis of the 

factors driving order and stability across the composition range of Zr02-Y203. The 

first main contribution was obtained with a coupled cluster expansion of YSZ. The 

implementation of a cluster expansion involves a blend of standard statistical practice 

and heuristic understanding to parameterize accurate DFT calculations. Chapter 2 

offers a guide for navigating the process. The chapter first emphasizes the importance 

of defining an explicit purpose and then offers suggestions to achieve that aim. 

The results of the cluster expansion of YSZ are in chapter 3. By iteratively 

identifying prospective low energy structures, the cluster expansion provided a path 

to find the ordered ground states at 25, 29, and 33 % YOle5. The ground states with 

25 % and 29 % Y are the lowest energy structures in their respective compositions, 

but their energies are higher than the tieline between the energies of monoclinic Zr02 

and &Y4Zr3012. The energy of the ground state with 33 % YOle5 is, however, below 

the tieline of monoclinic ZrOz and 6-Y4Zr3012 energies, making the ground state part 

of the convex hull with respect to monoclinic zirconia. The ground state with 33 % 

Yolm5 has all zirconium in seven fold coordination, which is a hallmark of stability in 

monoclinic zirconia. 



The ECI of the cluster expansion show that anion-anion pair clusters follow repul- 

sive energetics for nearly all terms, and cation-anion pair ECI are repulsive for nearest 

and next nearest neighbors but are negligible for larger pair clusters. The pair ECI 

follow expected behavior for species interacting electrostatically. The large number of 

anion triplets modifying the anion pair terms supports the underst anding that oxy- 

gen relaxation is an integral part of the energetics of this system. Additional cluster 

expansions at single compositions show that cation clusters become more import ant 

in cluster expansions of higher yttria content. 

The second major contribution of this work is the analysis of the factors driving 

order and stability. The driving forces for stability are found to be composition de- 

pendent. At low compositions, oxygen relaxation towards vacancies and zirconium 

in seven fold oxygen coordination is important, while a t  high compositions, the ar- 

rangement of cations is important. The role of cation ordering is not often addressed 

in the literature of YSZ, and most previous studies concentrate on the position of the 

cation dopant with respect to vacancies in a dilute regime. The calculations shows 

that both oxygen relaxation and cation ordering take place across the composition 

range of structures, but the driving force for stability likely shifts from one mechanism 

to the other in the 33-50 % Y doping range. 

Chapter 4 details several studies that lead to the determination that driving forces 

are composition dependent. One investigation involves the cation coordination around 

oxygen in 269 structures. The analysis shows that the probability deviation from 

random of a given occupation of the cation tetrahedron cluster around oxygen changes 

across yttria compositions. The preferred oxygen coordination thus changes with 

composition. A similar investigation on the average relaxation of cations around 

oxygen shows that relaxation becomes less important in higher yttria compositions. 

In all ground state structures, vacancies are nearest neighbors to zirconium, not 

yttrium, and the density of states for each ground state suggest some hybridization 

between Zr-d and O-p states that becomes less prominent as the concentration of Y 

increases. Monte Carlo simulations of the ground state with 33 % Y01.5 show that 

the ordering of the vacancies is not independent of the cation configuration and that 



the vacancy ordering upon cooling is sensitive to the ordering of cations. The role of 

cations must be considered for an accurate analysis of the material. 

Further studies on phase stability in chapter 5 consider three factors: anion re- 

laxation, vacancy ordering, and cation radii. In a study of the ground states, the 

difference in energy between fully relaxed and anion relaxed structures is smallest for 

zirconia rich compounds and largest for yttria rich compounds. Bond valence sums 

of the fully relaxed and anion relaxed structures are nearly the same. The smallest 

difference in bond valence sum between fully relaxed and anion relaxed structures is 

in the most yttrium rich ground state, which suggests a further driving force besides 

the zirconium-oxygen bond lengths is import ant for stabilizing the structure. 

To clarify the importance of vacancy ordering and zirconium-oxygen bond lengths 

in dilute vacancy situations, calculation of the energy of supercells of ZrOz with 

vacancies show that differences in vacancy arrangement impact the energies. The 

structure with average bond valence sum of zirconium closest to the formal charge 

valence 4+ is the most stable structure. The last factor of interest are the cation 

radii. When scandia replaces yttrium in the ground state configurations, a 29 % Sc 

ground state is stable with respect to cubic Zr02 and 6 Sc4Zr3OI2 while the 25 % 

Sc and 33 % Sc configurations are not stable. The lowest energy structures at 29 

and 57 % Sc have zirconium primarily in seven fold coordination. In YSZ, the 57 

% Y structure has zirconium in six fold coordination. Dopants with different sizes 

(whether Sc or Y) impact whether the zirconium will be in seven fold coordination 

and what low dopant compositions are st able. 

6.2 Suggestions for further work 

Further work on this system is necessary to fully quantify the driving forces for order 

and to understand how ordering may influence the diffusivity of oxygen. One way 

to quantify the ordering behavior of the system and the diffusivity of oxygen is to 

create a more accurate cluster expansion. Since relaxation plays a crucial role in the 

stability of YSZ especially at low compositions, quantifying relaxation explicitly and 



including it in to  the expansion would be one approach to further improve the cluster 

expansion. 

The interplay among oxygen relaxation around vacancies, zirconium with seven 

fold oxygen coordination, and atomic displacements due to the size of the yttrium 

dopant (particularly in non-dilute concentrations) requires further study. The factors 

are not necessarily independent. Oxygen relaxation toward vacancies may occur due 

to  neighboring oxygen repulsion and to minimize free volume, or oxygen relaxation 

may occur to put zirconium in seven fold coordination. Seven fold coordination of 

zirconium may be favorable due to covalent bonding between zirconium and oxygen. 

One possible feature of the system may be one zirconium and one oxygen strongly 

bonded and relaxing together as a unit [loo]. Greater insight in to the electronic 

structure of monoclinic zirconia and the impact of yttrium doping on the bonding 

behavior of Zr-0 is necessary. 

This investigation finds a composition dependence in the stabilizing driving forces. 

As more yttria is added to zirconia, the effect of the vacancies may initially be im- 

portant for ordering and coordinating zirconium, but with at least 33 % Y doping, 

enough vacancies are present for all Zr to be seven fold coordinated. Cation configu- 

rations that minimize distortion may be the driving force for phase stability at greater 

Y compositions. Studies that model cation configurations at different compositions 

with several dopant sizes could clarify the cation driving force. Since the factors 

for ordering come from both cation ordering, anion relaxation, and possibly covalent 

bonding of Zr-0, the ultimate driving force may switch from one driving force at low 

compositions to another driving force at high compositions. Further calculations may 

be able to identify the composition where the driving force changes. 



Appendix A 

Derivation of ECI variance 

Consider all possible energies and correlations possible for a system. For the vector 

of all possible y' of energies; X, a matrix of correlations (one row for each structure); 

and a vector 6' of eci to be determined, the following is true. 

The following equality is true if X is a matrix of constants, y'is a column vector, 

and Xy'exists and is a column vector[l06] 

The matrix gives the covariance of the eci: 

. . . 

The diagonal terms are the variance of each eci, and the off diagonal terms are the 

covariance between two eci. The variances may be found from the correlation matrix. 



Using A. 1 

Using A.2 

0" b [(x~x)-~x~]~;[(x~x)-~x~]~ 

Invoking (AB)T=BTAT 

The variances of the eci, o;, therefore depend on the variance of the energies, y'and 

the diagonal elements of the (XTX)-I matrix. 

For a sample subset of all the possible structures, the variance of the eci for the 

sample s;i can be estimated by 
2 2 s- = SfiGi 
bi (A.4) 

where s;i is the variance of the sample energies and cii are the diagonal elements of 

the (XTX)-I matrix. The variance s$i is given by 

N 
2 - xi=, (pi - 9d2 

Sy'i - 
n - k  

where yi is the computed energy of a structure, #i is the cluster expanded energy of 

a structure, n is the number of energies in the fit, and k is the number of eci. 



Appendix B 

Clusters of the YSZ cluster 

expansion 

The cv score minimizing cluster expansion in section 3.3 uses 111 clusters, of which 27 

are pairs in the first table and 82 are the triplets in the second table. The coordinate 

system assumes a cubic fluorite scheme with cations in an fcc cube with anions in 

tetrahedral interstices. The origin is a cation site at one corner of the fcc cube. Sites 

with coordinates of 0 or integer multiples of 0.5 and 1 are cation sites; sites with 

coordinates at integer multiples of 0.25 or 0.75 are anion sites. 



Table B. 1: The table lists the pair clusters of the cv score minimizing cluster expansion 
with their labels (in parenthesis) and the ECI with multiplicity included. 



Table B.2: The table lists the triplets of the cv score minimizing cluster expansion 
with their labels (in parenthesis) and the ECI with multiplicity included. 



Table B.3: Table B .3 is a continuation of table B.2. 
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Appendix C 

Cation coordination clusters 

Each graph in the following six figures plots the probability deviation from random 

for a given cluster occupation versus the formation energies in a set of structures 

having the same composition. Equation 4.1 defines the probability deviation from 

random and section 4.2 discusses the results. The compositions of interest are 22, 33, 

44, 50, 67, and 75 % Yolm5 doping in ZrOz. The clusters are a cation tetrahedron with 

an oxygen or vacancy (V) in the center with the following occupations: V-1Y-3Zr, 

V-2Y-2Zr, V-3Y-lZr, O-1Y-3Zr, 0-2Y-2Zr, and O-3Y-1Zr. 

The last figure in the appendix is the average cation relaxation around oxygen for 

the structures at each composition. 
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Figure C-1: The probability deviation from random for a vacancy coordinated by one 
yttrium and three zirconium. 
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Figure C-2: The probability deviation from random for a vacancy coordinated by two 
yttrium and two zirconium. 
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Figure C-3: The probability deviation from random for a vacancy coordinated by 
three yttrium and one zirconium. 
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Figure C-4: The probability deviation from random for an oxygen coordinated by 
one yttrium and three zirconium. 
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Figure C-5: The probability deviation from random for an oxygen coordinated by 
two yttrium and two zirconium. 
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Figure C-6: The probability deviation from random for an oxygen coordinated by 
three yttrium and one zirconium. 
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Figure C-7: The average relaxation of cations around oxygen for the six compositions 
of interest. 
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