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Abstract
Convexity has played a major role in a variety of fields over the past decades. Never-
theless, the convexity assumption continues to reveal new theoretical paradigms and
applications. This dissertation explores convexity in the intersection of three fields,
namely, geometry, probability, and optimization.

We study in depth a variety of geometric quantities. These quantities are used
to describe the behavior of different algorithms. In addition, we investigate how
to algorithmically manipulate these geometric quantities. This leads to algorithms
capable of transforming ill-behaved instances into well-behaved ones. In particular,
we provide probabilistic methods that carry out such task efficiently by exploiting the
geometry of the problem.

More specific contributions of this dissertation are as follows. (i) We conduct
a broad exploration of the symmetry function of convex sets and propose efficient
methods for its computation in the polyhedral case. (ii) We also relate the symmetry
function with the computational complexity of an interior-point method to solve a
homogeneous conic system. (iii) Moreover, we develop a family of pre-conditioners
based on the symmetry function and projective transformations for such interior-
point method. The implementation of the pre-conditioners relies on geometric random
walks. (iv) We developed the analysis of the re-scaled perceptron algorithm for a linear
conic system. In this method a sequence of linear transformations is used to increase
a condition measure associated with the problem. (v) Finally, we establish properties
relating a probability density induced by an arbitrary norm and the geometry of its
support. This is used to construct an efficient simulating annealing algorithm to test
whether a convex set is bounded, where the set is represented only by a membership
oracle.

Thesis Supervisor: Robert M. Freund
Title: Theresa Seley Professor of Operations Research,
Sloan School of Management
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Chapter 1

Introduction

1.1 Motivations and philosophy

Convexity has played a major role in a variety of fields over the past decades. Never-

theless, the convexity assumption continues to reveal new theoretical paradigms and

applications. This dissertation explores convexity in the intersection of three fields,

namely, geometry, probability, and optimization.

In all likelihood, the fundamental result in convex analysis is the Hahn-Banach

Theorem. Most of its versions pertain very general vector spaces, including infinite-

dimensional ones. Here we focus on a geometric version of the Hahn-Banach Theorem

for finite dimensional spaces.

Theorem 1 Assume S is a nonempty, closed, convex subset of R n . If x E IRn but

x V S, then there exists s E IRn such that

(s,x) < (s,y) for all y S.

We say that the hyperplane defined by (s, (s, x)) separates x from S.

The importance of this result cannot be overstated. Theorem 1 is the driving force

underlying many fundamental results including convex duality theory for optimiza-

tion.
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Given the geometric nature of this result, we expect many connections between

convex analysis and convex geometry, where the latter studies the geometry of convex

sets and related geometric inequalities in finite dimensional Euclidean spaces. Herein

we will be dealing with both bounded and unbounded convex sets. Among unbounded

convex sets, convex cones play an important role. In particular, convex cones are the

convex analysis the counterpart of subspaces in analysis. Although most of our results

hold for arbitrary convex cones, we are particularly interested on the non-negative

orthant, on the second order cone, and on the cone of positive semi-definite matrices.

These three cones form the backbone of modern convex optimization theory and

methods.

A remarkable property of convexity is its close relation with computational com-

plexity both in theory and in practice. The subject of computational complexity has

its roots in the effort in the 1930's to classify problems into decidable or undecidable.

Over the next decades, the focus changed to further classify decidable problems into

computationally tractable or untractable. In the 1970's these notions were formalized

by many NP-completeness results mainly for discrete problems. Roughly speaking,

a method is said to be efficient for a problem if its computational time to solve any

instance is bounded by a fixed polynomial on the size of the instance. We point out

that the size of the instance is usually measured in bits due to the discrete nature of

the problems.

In real number algorithms, like Newton Method, several additional issues need to

be addressed. First one needs to accept real numbers as input and the bit model no

longer applies. Moreover, many problems cannot be solved exactly even assuming

exact arithmetic. In such cases we need to introduce an additional parameter < 1

which captures the error between the desired and the computed solution. Finally,

there are instances, called ill-posed, where many algorithms simply fail. To deal with

that one defines a condition measure u for each instance; the larger p is, the more ill-

posed the instance is. In this context, a method is said to be efficient if its complexity

is bounded by a function that grows at most polynomially in the size of the instance,

and logarithmically on the approximation error and on the condition measure.

18



Probabilistic methods, such as simulated annealing, represent a different paradigm

with respect to computational complexity. In fact, these methods are capable of effi-

ciently solving a broader class of problems by allowing a positive probability of failure

6 < 1 which can be made arbitrarily small. In addition to the previous requirement,

the dependence of the computational complexity on 1/6 should be logarithmic for a

method to be considered efficient. A celebrated example of that is the computation

of the volume of a convex set, see [59] and the references therein.

As mentioned before, convexity still plays a central role in defining the frontier of

polynomial time algorithms. Interior point methods for conic programming, ellipsoid

method for convex feasibility, and sampling random points according to log-concave

densities are examples where convexity plays a crucial role to establish efficiency. In

other contexts, we are interested in the computation of certificates whose existence

is equivalent to a desired property being true. Important examples are certificates of

infeasibility, Farkas Lemma, S-Lemma, Nullstellensatz, and Positivstellensatz. Sur-

prisingly, convexity is fundamental for the existence of such certificates in many im-

portant cases. With that in mind - and since convexity is the unifying theme herein

- the development of efficient algorithms to compute different quantities is also an

object of interest in this dissertation.

In the chapters to come we will propose several methods combining deterministic

and probabilistic algorithms. These methods will be applied to solve the homogeneous

linear conic feasibility system

AxE K
(1.1)

and its alternative system

A*y=O (1.2)

y E K*.

That sets the stage for this thesis. We propose several methods to solve (1.1) and

(1.2) and study their computational complexity. The condition measures associated

with these algorithms are geometric objects whose properties are also investigated

here. As opposed to most of the literature which has a passive approach with respect

19



to the condition measure, we show how to algorithmically improve these condition

measures to obtain a better behaved instance. Remarkably, probabilistic methods

play a central role in the implementation of such algorithms.

1.2 Organization and contributions

1.2.1 Symmetry of convex sets

We develop properties and connections between the symmetry function of a convex set

S C IRn sym(x, S), where sym(S) = maxx sym(x, S), and other arenas of convexity

including convex functions, convex geometry, probability theory on convex sets, and

computational complexity.

There are many important properties of symmetric convex sets; herein we ex-

plore how these properties extend as a function of sym(S) and/or sym(x, S). By

accounting for the role of the symmetry function, we reduce the dependence of many

mathematical results on the strong assumption that S is symmetric, and we are able

to quantify many of the ways in which the symmetry function influences properties

of convex sets and functions.

The results include functional properties of sym(x, S), relations with several con-

vex geometry quantities such as volume, distance, and cross-ratio distance, as well

as set approximation results, including a refinement of the Ldwner-John rounding

theorems, and applications of symmetry to probability theory on convex sets. We

provide a characterization of symmetry points x* for general convex sets. Finally, in

the polyhedral case, we show how to efficiently compute sym(S) and a symmetry

point x*.

1.2.2 Projective pre-conditioners for IPM

The traditional strategy for speeding up the performance of modern interior-point

methods for solving convex optimization problems has been to focus on pre-conditioners

to try to improve the numerical performance of the equation systems solved at each

20



iteration. In contrast, we present a methodology for mapping the entire problem to

one that is better behaved (geometrically and in other respects) in order to actually

reduce the number of interior-point iterations that are required to solve the problem.

This is achieved by improving a condition measure associated with the problem.

We present a general theory for transforming a normalized homogeneous conic

system

Ax = O

F x 1

E C

to an equivalent system via projective transformation induced by the choice of a

point in the convex set H = v : - ATV E C*} associated with the system

F. Such a projective transformation serves to pre-condition the conic system into a

system that has both geometric and computational properties with certain guarantees.

We characterize both the geometric behavior and the computational behavior of the

transformed system as a function of the symmetry of v in H° as well as the complexity

parameter 9 of the barrier for C. Under the assumption that F has an interior

solution, H' must contain a point v whose symmetry is at least 1/m; if we can find a

point whose symmetry is Q(1/m) then we can projectively transform the conic system

to one whose geometric properties and computational complexity will be strongly-

polynomial-time in m and . We present a method for generating such a point 

based on sampling and on a geometric random walk on H ° with associated complexity

and probabilistic analysis.

1.2.3 Efficiency of a re-scaled perceptron algorithm for conic

systems

The classical perceptron algorithm is a simple and intuitive row-action/relaxation

algorithm for solving a homogeneous linear inequality system Ax > 0, x O. A

condition measure associated with this algorithm is the Euclidean width of the cone

of feasible solutions. In fact, the complexity of the perceptron algorithm is bounded

21



by 1/T2 which is inefficient in general since we would like a logarithmic dependence

on the condition measure.

Recently, Dunagan and Vempala have developed a re-scaling version of the per-

ceptron algorithm with an improved complexity of O(n ln(1/r)) iterations (with high

probability), which is notable in that it is theoretically efficient, i.e., polynomial-time

in the bit-length model. We explore extensions of the concepts of these perceptron

methods to the general homogeneous conic system Ax E C, x A O. We provide a

conic extension of the re-scaling perceptron algorithm based on the notion of a deep

separation oracle of a cone, which essentially computes a certificate of strong separa-

tion for cones. We propose an implementation of this oracle which makes use of new

properties developed here. In the case of linear, second-order, semi-definite cones, as

well as certain other cones, we show that the resulting re-scaling algorithm is efficient.

1.2.4 Norm-induced densities and testing the boundedness

of a convex set

The geometry of convex sets has been extensively studied during the past century.

More recently, the interplay between convex geometry and probability theory has

been investigated. Among many possible research directions, log-concave probability

measures provide an interesting framework that generalizes uniform densities on con-

vex sets but preserves many interesting properties. Here we will focus on a subset of

logconcave functions called norm-induced densities.

In this chapter we have two goals. The first one is to explore relations between

a variety of geometric quantities associated with convex sets and norm-induced den-

sities. The second is to develop an efficient algorithm to test if a given convex set

K C R n is bounded or unbounded.
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Chapter 2

On the symmetry function of a

convex set

We attempt a broad exploration of properties and connections between the symmetry

function of a convex set S C Rn and other areas of convexity including convex

functions, convex geometry, probability theory on convex sets, and computational

complexity. Our starting point is the definition of our object of interest. Given a

closed convex set S and a point x E S, define the symmetry of S about x as follows:

sym(x, S) := max{a > O : x + a(x - y) E S for every y S }, (2.1)

which intuitively states that sym(x, S) is the largest scalar a such that every point

y E S can be reflected through x by the factor a and still lie in S. The symmetry

value of S then is:

sym(S) := max sym(x,S) , (2.2)
xES

and x* is a symmetry point of S if x* achieves the above maximum (also called a

"critical point" in [25], [27] and [44]). S is symmetric if sym(S) = 1. There are a

variety of other measures of symmetry (or asymmetry) for a convex set that have

been studied over the years, see Griinbaum [25] for a survey; the symmetry measure

based on (2.2) is due to Minkowski [44], which in all likelihood was the first and most
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useful such symmetry measure.

We explore fundamental properties of sym(x, S), and we present new results in

other areas of convexity theory that are connected to the symmetry function. In Sec-

tion 2.1 we examine analytical properties of the function sym(x, S). We show that

sym(x, S) is a quasiconcave function, and more importantly, that sym(x, S) is a log-

concave function and therefore inherits some of the strong results of logconcave func-

tions related to sampling on convex sets (Theorem 2). We also show that sym(x, S)

is the infimum of linear fractional functions related to the supporting hyperplanes of

S (Proposition 1). In Proposition 3 we explore the behavior of sym(x, S) under basic

set operations such as intersection, Minkowski sums, polarity, Cartesian product, and

affine transformation. Furthermore, we completely characterize sym(x, S) when S is

symmetric in Proposition 2.

In Section 2.2 we focus on connections between sym(x, S) and a wide variety

of geometric properties of convex bodies, including volume ratios, distance metrics,

set-approximation and rounding results, and probability theory on convex sets. It is

well-known that any half-space whose bounding hyperplane passes through the center

of mass zs of S will cut off at least 1/e and at most 1 - /e of the volume of S, see

Griinbaum [24]. In a similar vein, in Section 2.2.1 we present lower and upper bounds

on ratios of volumes of S to the intersection of S with a half-space whose bounding

hyperplane passes through x, as a function of sym(x,S) (Theorem 3), as well as

lower bounds on the (n - 1)-dimensional volume ratios of slices of S defined by the

intersection of S with a hyperplane passing through x, as a function of sym(x, S)

(Theorem 4).

If S is a symmetric convex body, then it is a straightforward exercise to show that

the symmetry point of S is unique. Furthermore, if S is nearly symmetric, intuition

suggests that two points in S with high symmetry values cannot be too far apart. This

intuition is quantified Section 2.2.2, where we present upper bounds on the relative

distance (in any norm) between two points x, y E S as a function of sym(x, S) and

sym(y, S) (Theorem 5) and upper bounds on the "cross-ratio distance" in Theorem

6.
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Section 2.2.3 examines the approximation of the convex set S by another convex

set P. We say that P is a -approximation of S if there exists a point x E S such that

/P c S - x C P. In the case when P is an ellipsoid centered at the origin, then the

statement "P is a ,-approximation of S" is equivalent to "P provides a -rounding

of S." We examine the interrelationship between the symmetry function and bounds

on /3-approximations for S. We show that for any x E S there exists a v/sym(x, S)-

rounding of S centered at x (Theorem 8). A classical example of P-approximation

is given by the Lbwner-John theorem [30], which guarantees a 1/x/j-approximation

for a symmetric convex body and a 1/n-approximation for general convex body using

ellipsoids. Unfortunately, the theorem does not provide more precise bounds for case

when S is nearly symmetric, i.e., sym(S) = 1-E for E small. This is partially rectified

herein, where we prove a slightly stronger rounding results using sym(x, S) (Theorem

10). We also show that if two convex sets are nearly the same, then their symmetry

must be nearly the same (Theorem 9). Moreover, we show how to construct a norm

based on sym(S) that yields the optimal P-approximation of S among all symmetric

convex bodies (Lemma 1).

Subsection 2.2.4 is concerned with connections between symmetry and probabil-

ity theory on convex sets. Let X be a random vector uniformly distributed on S.

We show that the expected value of sym(X, S) is nicely bounded from below (by

sym(S)/(2(n + 1))) and we present lower bounds on the probability that sym(X, S)

is within a constant M of sym(S). Furthermore, in the case when S is symmetric,

these quantities have closed-form expressions independent of the specific set S (The-

orem 11). We also present an extension of Anderson's Lemma [1] concerning the the

integral of a nonnegative logconcave even function on S, to the case of non-symmetric

convex sets (Theorem 12), which has many statistical applications.

Since symmetry points enjoy many interesting properties, it is natural to explore

methods for computing a symmetry point and for computing sym(S), which is the

subject of Section 2.4. As expected, the representation of S plays a major role in any

computational scheme. While the problem of simply evaluating the sym(x, S) for a

given x E S is a hard problem in general, it turns out that for polyhedra, whose most
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common representations are as the convex hull of points and as the intersection of half-

spaces, computing a symmetry point can be accomplished via linear programming.

When S is given as the convex hull of m points, we show that determining a symmetry

point can be computed by solving a linear program in m2 nonnegative variables,

or as non-differentiable concave maximization problem where supergradients can be

computed by solving m decoupled linear programming subproblems with only m

nonnegative variables each. The more interesting case is when S is given as the

intersection of m half-spaces. Then a symmetry point and sym(S) can be computed

by solving m+1 linear programs with m nonnegative variables. We present an interior-

point algorithm that, given an approximate analytic center xa of S, will compute an

approximation of sym(S) to any given relative tolerance in no more than

10m1.5 In ()10) 1

iterations of Newton's method.

This work also contains a variety of discussions of open questions as well as un-

proved conjectures regarding the symmetry function and its connection to other areas

of convexity theory.

2.0.5 Notation

Let S C IRn denote a convex set and let (., ) denote the conventional inner product

in the appropriate Euclidean space. int S denotes the interior of S. Using traditional

convex analysis notation, we let aff(S) be the minimal affine subspace that contains

S and let S be its orthogonal subspace complement. The polar of S is defined

as S° = y E IR : (x,y) < 1 for allx E S}). Given a convex function f(.), for

x E domf(.) the subdifferential of f(.) is defined as af(x) := s E IR : f(y) >

f(x) + (s, y - x) for all y E domf(.)}. Let e = (1,.. ., 1)T denote the vector of ones

whose dimension is dictated by context, let e denote the base of the natural logarithm,

and let dist(x, T) := minYET Ily - xl be the distance from x to the set T in the norm

I 11I dictated by context.
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2.1 Analytical properties of sym(x, S)

We make the following assumption:

Assumption A: S is a convex body, i.e., S is a nonempty closed bounded convex

set with a nonempty interior.

When S is a convex set but is either not closed or is unbounded, then certain

properties of sym(S) break down; we refer the interested reader to Appendix B.1 for

a discussion of these general cases. We assume that S has an interior as a matter

of convenience, as one can always work with the affine hull of S or its subspace

translation with no loss of generality, but at considerable notational and expositional

expense.

There are other definitions of sym(x,S) equivalent to (2.1). In [52], sym(x,S)

is defined by considering the set C(x, S) of all chords of S that pass through x. For

L E £(x, S), let r(L) denote the ratio of the length of the smaller to the larger of the

two intervals in L n (S \ {x}), and define

sym(x, S) = inf r(L) . (2.3)
LEC(x,S)

Herein it will be convenient to also use the following set-containment definition of

sym(x, S):

sym(x, S) = max {a > 0: a(x - S) C (S - x)} . (2.4)

It turns out that this definition is particularly useful to motivate and prove many of

our results.

Intuition suggests that sym(x, S) inherits many nice properties from the convexity

of S, as our first result shows:

Theorem 2 Under Assumption A,

(i) sym(., S) : S -- [0, 1] is a continuous quasiconcave function,
sym(x, S)

(ii) h(x, S):= 1 + sym(x, ) is a concave function on S, and

(iii) sym(., S) is a logconcave function on S.

Regarding part (iii) of the theorem, note that logconcave functions play a central
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role in the theory of probability and sampling on convex bodies, see [41]. The proof

of this theorem will use the following proposition, which will also be useful in the

development of an algorithm for computing sym(S) in Section 2.4.

Proposition 1 Let S be a convex body, and consider the representation of S as the

intersection of halfspaces: S = {x E Rn : ax < bi ,i E I} for some (possibly

unbounded) index set I, and let 6j := maxxEs{-aTx} for i E I. Then for all x E S,

- 'sym(x,S) = inf - at }X

Proof Let a = sym(x, S) and y min bi - . Thenforall y E S x + a(x
iEI 5 +ax ' Th n f r aye$,x+a(-

y) E S, so

a Tx + ai x + (-a y) < b, i E I .

This implies that

aTx + aaTx + a6 < bi, i E I ,

whereby a < y. On the other hand, for all y E S we have:

bi - ax > Y(6 + a) > y(-aTy + aTx) .

Thus aTx + 7aiTx + 7(-aTy)< bi, and therefore aT(x + y(x - y)) < bi which implies

that a > y. Thus a = y.O

Proof of Theorem 2.

Proof We first prove (ii). It follows from Proposition 1 that

i i aTx } bi-aTx

h(x, S) = = min = m
b + iE { 1 ieaJ iI bi + XJMiZIiEI 6*+a7x 1 l b

which is the minimum of linear functions and so is concave.

To prove (i), first observe that sym(x, S) is monotone in the concave function

h(x , and so is quasiconcave. To prove the continuity of sym(x, S) it suffices to
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prove the continuity of h(x, S). It follows from concavity that h(x, S) is continuous

on intS. For x E AS it follows from (2.1) that sym(x, S) = 0 and hence h(x, S) = 0.

Because S is a convex body there exists a ball of radius r > 0 that is contained

in S. Now suppose that xi --+ , whereby dist(xj, S) - 0. It follows from (2.4)

that sym(xi, S) r < dist(xi, AS), whereby sym(x, S) - 0 = sym(x, S), showing

continuity of h(x, S) and hence of sym(x, S) on S.

To prove (iii) define the following functions:

f(t) = +t and g(t)=ln(ltt).

For these functions, we have the following properties:

(i) f is monotone, concave and f(sym(x, S)) E [0, 1/2] for any x E S;

(ii) g is monotone for t E (0, 1) and concave for t E (0, 1/2];

(iii) g(f(t))= lnt.

Now, for any a E [0, 1], x, y E S,

ln (sym(ax + (1 - a)y, S)) = g (f (sym(ax + (1 - a)y, S)))

> g (af (sym(x, S)) + (1 - a)f (sym(y, S)))

> ag (f (sym(x, S))) + (1 - a)g (f (sym(y, S)))

aln sym(x, S) + (1 - a) ln sym(y, S) ,

where the first inequality follows from the concavity of h(, S) = f(sym(,S)) and

the monotonicity of g, and the second inequality follows from the concavity of g on

[0,1/2]. 

It is curious that sym(-, S) is not a concave function. To see this, consider S =

[0,1] c IR; then a trivial computation yields sym(x, S) = min { (x); (x) , which
is not concave on S and is not differentiable at x = . Part (ii) of Theorem 2 shows

that a simple nonlinear transformation of the symmetry function is concave.

For a symmetric convex body S, i.e., sym(S) = 1, it is possible to prove a stronger

statement and completely characterize the symmetry function using the norm induced
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by S. Suppose S is a symmetric convex set centered at the origin. Let 11. Ils denote

the norm induced by S, namely lixils := min{: x E yS}.

Proposition 2 Under Assumption A, let S be symmetric and centered at the origin.

Then for every x E S,
- llssym(x, S)= 1IIXI

Proof We start by observing that for any y E S, Ills < 1. For any x E S, consider

any chord of S that intersects x, and let p, q be the endpoints of this chord. Notice

that IpIls = Ilqlls = 1 and using the triangle inequality,

IIP - xljs < IIxljs + IIIpIs and IIqlis < ]]q - xjls + lxlls

Thus,
Ilq - xlljs > llls - Ilxlls 1 - lxlls

IIp - XIIs - IIXIIs + IIpllI 1 + IIXIISl

Finally, the lower bound is achieved by the chord that passes through x and the

origin. Z

The next proposition presents properties of the symmetry function under basic

set operations on S.

Proposition 3 Let S, T C IR' be convex bodies, and let x E S and y E T. Then:

1. (Superminimality under intersection) If x E S n T,

sym(x, S n T) > min{sym(x, S), sym(x, T)} (2.5)

2. (Superminimality under Minkowski sums)

sym(x + y, S + T) > min{sym(x, S), sym(y, T)} (2.6)

3. (Invariance under polarity)

sym(0, S - x) = sym(0, (S - x)°) (2.7)
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4. (Minimality under Cartesian product)

sym((x, y), S x T) = min{sym(x, S), sym(y, T)} (2.8)

5. (Lower bound under affine transformation) Let A(.) be an affine transformation.

Then

sym(A(x), A(S)) > sym(x, S) (2.9)

with equality if A(.) is invertible.

Proof To prove 2.5, without loss of generality, we can translate the sets and suppose

that x = 0. Let a = min{sym(0, S), sym(0, T)}. Then -aS C S, -aT C T which

implies

-a(S n T) = -aS n -aT C S n T,

and (2.5) is proved.

To prove (2.6), again, without loss of generality, we can translate both sets and

suppose that x = y = 0, and define a = sym(0, S) and P = sym(0, T). By definition,

-aS C S and -T C T. Then it follows trivially that

-aS- T C (S + T)

Replacing a and by the minimum between them, the result follows.

In order to prove (2.7), we can assume x = 0, then

sym(0, S) = a = -aS C S.

Assuming sym(0, S °) < a, there exist y E S° such that - ap 4 S°.

Thus, there exists x E S, -ayTx > 1. However, since -ax E -aS C S, then

-oyTx = yT(-ax) 1 , since y E S°,
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which is a contradiction. Thus

sym(0, S) < sym(0, S°) < sym(0, S°°) = sym(0, S).

Equality (2.8) is left as a simple exercise.

To prove inequality (2.9), we can assume that A(.) is a linear operator and that x =

0 (since sym(x, S) is invariant under translation), and suppose that a < sym(x, S).

Then, -aS C S which implies that A(-aS) C A(S). Since A(.) is a linear operator,

A(-aoS) = -A(S) C A(S). It is straightforward to show that equality holds in

(2.9) when A(.) is invertible. E

Remark 1 Unlike the case of affine transformation, sym(x, S) is not invariant un-

der projective transformation. For instance, let S = [-1, 1] x [-1, 1] be unit cube, for

which sym(S) = 1, and consider the projective transformation that maps x E 1R2 to

x/(1 + x2/3) E 1R2. Then, the symmetric set S will be mapped to the trapezoid

for which sym(T)4, 4 4 1. This lack of invariance is used 2' 2Charter in the develop-

for hich sym(T) < 1. This lack of invariance is used in Charter 3 in the develop-

ment of a methodology designed to improve the symmetry of a point in a set using a

projective transformation.

2.2 Geometric properties

Whereas there always exists an n-rounding of a convex body S C IRn, a symmetric

convex body S possesses some even more powerful geometric properties, for example

there exists a v/n-rounding of S when S is symmetric, see [30]. The geometric flavor of

the definition of the symmetry function in (2.4) suggests that sym(., S) is connected

to extensions of these geometric properties and gives rise to new properties as well;

these properties are explored and developed in this section. We examine volumes of

intersections of S with halfspaces and halfplanes that cut through x E S in Section
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2.2.1, notions of distance and symmetry in Section 2.2.2, set approximation results

in Section 2.2.3, and results on probability and symmetry in Section 2.2.4.

2.2.1 Volumes and symmetry

We start with two theorems that connect sym(x, S) to bounds on the n-dimensional

volume of the intersection of S with a halfspace cut through x, and with the (n - 1)-

dimensional volume of the intersection of S with a hyperplane passing through S.

Similar results have been extensively used in the literature. For example, if S is

symmetric around some point x*, it is clear that the intersection of S with a halfspace

cut through x* contains exactly one half of the volume of S. Moreover, it is well known

that a halfspace cut through the center of mass generates a set with at least 1/e of the

original volume, and this fact has been utilized in [6] to develop theoretically efficient

probabilistic methods for solving convex optimization problems.

Let v E IRn, v yi 0 be given, and for all x E S define H(x) := {z E S: vTz = vTx}

and Ht(x) := {z E S : VT <i vT}. Also let Voln(.) denotes the volume measure

on IRW. We have:

Theorem 3 Under Assumption A, if x E S, then

sym(x, S) < Voln(H+(x)) 1' < - < (2.10)
1 + sym(x, S)n Voln(S) - 1 + sym(x, S)n

Proof Without loss of generality, assume that x is the origin and a = sym(x, S).

Define K1 = H+(x) and K2 = S\K 1. Clearly, Voln(K1 ) + Voln(K2 ) = Voln(S).

Notice that -aK 2 C K1 and -aK 1 C K2. Therefore

Voln(S) > Voln(K1) + Voln(-aKl) = Voln(K1)(l + an)

which proves the second inequality. The first inequality follows easily from

Voln(S) = Voln(K1) + Voln(K2) < Voln(K1) + vo(KI)an
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For the next theorem, define the function f(x) = Voln_1(H(x)) 1/(n- 1) for all

x E S.

Theorem 4 Under Assumption A, for every point x E S,

f(x) > 2sym(x, S)
maxyes f(y) - 1 + sym(x, S)

Proof Let a = sym(x, S) and let y* satisfy y* e arg maxy f(y). Note that

x+ a(x-H(y*)) C S,

and the set on the left in this inclusion passes through x + a(x - y*), and so x + a(x -

H(y*)) C H(x + a(x - y*)). Next, recall that the (n - 1)-dimensional volume of a

set S is invariant under translations and Voln-l(aS) = an-1 Voln-_(S) for any set S

and positive scalar a. Therefore

af(y*) = (Voln1(x + a(x - H(y*))))1/ (n- l )

< (Voln-1(H(x + a(x - y*))))l/(n-l) (2.12)

= f(x + (x - *))

Note that we can write

a 1
X =l y* + 1+ (x + (x -y*)).

where x + a(x - y*) S.

Noting that f(.) is concave (this follows from the Brunn-Minkowski inequality

[20]), we have:

a ~1
f(x) > f(y*)+ f(x +a(x- y*))+a + af (

a a fy
> f(Y*) + 1- f ( y *)

1+a 1+a

2a
f(y*) ,1+a
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where the second inequality'follows from (2.12). 1

Remark 2 We conjecture that any symmetry point x* satisfies

f(x*) 2
maxyes f(y) -

2.2.2 Distance and symmetry

If S is a symmetric convex body, then it is a straightforward exercise to show that

the symmetry point of S is unique. Furthermore, if S is nearly symmetric, intuition

suggests that two points in S with high symmetry values cannot be too far apart.

The two theorems in this subsection quantify this intuition. Given x, y E S with

x =/ y, let p(x, y), q(x, y) be the pair of endpoints of the chord in S passing through

x and y, namely:

p(x, y) = x + s(x - y) E OS where s is a maximal scalar
(2.13)

q(x, y) = y + t(y - x) E OS where t is a maximal scalar.

Theorem 5 Under Assumption A, let 11. I1 be any norm on ]Rn. For any x, y E S

satisfying x -7 y, let a = sym(x, S) and , = sym(y, S). Then:

li-x ,( 1 +o1+1 3 + ) Ip(x, y) - q(x,y) 1

Proof For convenience let us denote the quantities p(x, y), q(x, y) by p, q, and note

that the chord from p to q contains, in order, the points p, x, y, and q. It follows from

the symmetry values of x, y that

IIp-xll > aliq-xll = a(lly-xJl+laq-yJJ ) and IJq-yll > P3Ip-ylJ = (IY-XI+II+P-XlI)

Multiplying the first inequality by 1 + 3, the second inequality by 1 + a, adding the
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result and rearranging yields:

(1 + a + + aP)x-yy < (1 - ce)(IIp - xll + llx - yll + llq - yll) = (1 - /)jp --q,

which yields the desired result. O

Another relative measure of distance is the "cross-ratio distance" with respect to

S. Let x, y E S, x t y, be given and let s,t be as defined in (2.13); the cross-ratio

distance is given by:

ds(x, y): ( + t + s)
ts

Theorem 6 Under Assumption A, for any x, y E S, x ~ y, let s, t be as defined in

(2.13). Then
1

ds(x, y) --1.
sym(x, 5) . sym(y, S)

Proof Let a = sym(x,S) and /3 = sym(y,S). By definition of symmetry, t >

p(1 + s) and s > a(1 + t). Then

ds(x,y) - (1+ t + ( (+ t + s)
ts - a(1 + s)0(1 + t)

1 (1+ t + ) 11 (2.14)
ao (1 + s t + st) a3 1 +

Thus ds(x, y) < L - 1. [1

We end this subsection with a comment on a question posed by Hammer in [27]:

what is the upper bound on the difference between sym(S) and sym(xC, S), where

xc is the centroid (center of mass) of S? It is well known that sym(xC, S) > l/n, see

[27], and it follows trivially from the L6wner-John theorem that sym(S) > 1/n as

well. Now let S be the Euclidean half-ball: S := {x IR : (x,x) < 1,x1 > 0). It

is an easy exercise to show that the unique symmetry point of S is x* = (/2 - 1)e1

and that sym(S) = , and so in this case sym(S) is a constant independent of the

dimension n. On the other hand, sym(x, S) = Q () (see [3), and so for this class

of instances the symmetry of the centroid is substantially less than the symmetry of

36



the set for large n. For an arbitrary convex body S, note that in the extreme cases

where sym(S) = 1 or sym(S) = 1/n the difference between sym(S) and sym(xC, S)

is zero; we conjecture that tight bounds on this difference are only small when sym(S)

is either very close to 1 or very close to 1/n.

2.2.3 Set-approximation and symmetry

In this subsection we examine the approximation of the convex set S by another

convex set P. We say that P is a -approximation of S if there exists a point x E S

such that PP C S -x C P. In the case when P is an ellipsoid centered at the origin,

then the statement "P is a P-approximation of S" is equivalent to "LP provides a

n-rounding of S." We examine the interrelationship between the symmetry function

and bounds on -approximations for S in the following three theorems.

A classical example of f-approximation is given by the Ldwner-John theorem [30],

which guarantees a 1/Jv-approximation for a symmetric convex body and a 1/n-

approximation for general convex body using ellipsoids. Unfortunately, the theorem

does not provide more precise bounds for case when S is nearly symmetric, i.e.,

sym(S) = 1 - e for E small. This is partially rectified in the fourth result of this

subsection, Theorem 10.

Theorem 7 Under Assumption A, let P be a convex body that is a P-approximation

of S, and suppose that sym(0, P) = a. Then, sym(S) > Oa.

Proof By definition we have iP C S - x C P for some x E S. Since sym(., ) is

invariant under translations, we can assume that x = 0. Since sym(0, P) is invariant

under nonzero scalings of P, we have

-aPS C -aPP c iP C S .

Theorem 8 Under Assumption A, suppose that x E int S. Then there exists an

ellipsoid E centered at 0 such that
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E C S - x C ( iV/ ) E. (2.15)ECS-xC ( r)sym(x,S ) (2.15)

Proof Suppose without loss of generality that x = 0 (otherwise we translate S), and

let a = sym(0, S). Clearly, -aS C S, and aS c S. Consider a y/n-rounding E of

S n (-S). Then aS C Sn (-S) c -#E C v/inS. O

Theorem 9 Let 11 II be any norm on IR, and let B(x, r) denote the ball centered at

x with radius r. Under Assumption A, suppose that

B(x, r) C S c P c S + B(O, ) (2.16)

for some r and 6 with 0 < 6 < r. Then

6 < sym(xS) < ( 1-/
1- -sym(x, P) - J

Proof Let a = sym(x, P). Consider any chord of P that passes through x, dividing

the chord into two segments. Assume that the length of one segment is A, then the

length of the other segment must be at most A/a. It then follows that the length of

the first segment of this chord in S must be at least A - 6, while the length of the

second segment of this chord in S must be at most A/a. Since these inequalities hold

for any chord, it follows that

sym(x,S) > /a = a - 1 -> a 1-(2.17)

where the last inequality follows since A > r, thereby showing that sym(x, S) >

sym(x, P) (1 - ) . Note also that:

B(x, r) c P c S + B(O, 6) c P + B(O, 6).

Letting P play the role of S in (2.16) and S + B(O, 6) play the role of P in (2.16), it
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also follows from (2.17) that

sym(x, P) > sym(x, S + B(0, )) (1- 

However, using the superminimality of of sym(-, ) under Minkowski sums (2.6) of

Theorem 3, we have

sym(x, S + B(O, 6)) > min{sym(x, S), sym(O, B(O, 6))} = sym(x, S),

which when combined with the previous inequality completes the proof. 

The center xL of the minimum-volume ellipsoid E containing S is called the

Lowner-John center of S, and John showed in [30] that E provides a \v-rounding of

S in the case when S is symmetric and an n-rounding of S when S is not symmetric.

The following theorem provides a sharpening of this result:

Theorem 10 Under Assumption A, let E be the minimum volume ellipsoid contain-

ing S, and let xL be the Lowner-John center of S. Then E provides a sym(xS)

rounding of S.

Remark 3 It follows from Theorem 10 that

sym(xL,S) > sym(xLS)
n

and hence sym(xL, S) > 1/n. This in turn yields the Lowner-John result [23] that

the rounding in the theorem is an n-rounding, and hence sym(S) > sym(xL, S) >

1/n. Noting that when S is symmetric the Lwner-John center must also be the

symmetry point of S, it also follows from Theorem 10 that S admits a /ni-rounding

when sym(S) = 1.

Remark 4 Theorem 8 is valid for every point in S and Theorem 10 focuses on the

Lowner-John center. We conjecture that Theorem 10 can be strengthened to prove

the existence of a (sy())-rounding of S.

39



The proof of Theorem 10 is based in part on ideas communicated by Earl Barnes

[4] in 1998. We start with the following two elementary propositions:

Proposition 4 Let wl, . . , Wk be scalars and define Wmin, Wmax to be the smallest and

largest values among these scalars. For any p E IRk satisfying p > 0 and eTp = 1

define Ip = pTw and 02 = ikl pi(Wi - )2. Then (wma,, - )(t - Wmin) > a 2 .

Proof Clearly, i=pi(W m - wi)(wi - Wmin) > 0. Therefore Wmax + Wmin -

ik=l pi - WminWma > O. It then follows that (wmax - )( - Wmin) = I~Wmax +

/IWmin -- 2 WminWmax > _1 Piwi2- 2 = 2. [l

Proposition 5 Let yl,... yk E Rn be given, let p E IRk satisfy p > 0 and eTp = 1,

and suppose that C piy 0 and l pyi(yi)T = I. Then for any b E IRn with

11b112 = 1 it holds that

max bTyi > ~/sym(0, conv({yi}k))
i=l,...,k n

Proof Let b E IRn satisfying 11b112 = 1 be given, and define wi = bTyi. Then

k k k

/ EPW' = p ibTyi = bT Ipyi i = 0
i=-1 i=l i=

and
k k k 1

U2 Epi(wi _ )2 piwi2 1Ti(i)Tb = - i 1

i=1 i= i=1

It then follows from Proposition 4 that (maxi wi)(- mini wi) = (max wi - )( -

mini Wi) > j0
2 = 1. Let a := sym(0, conv((yi}ik)), and notice that - mini bTyi <n

l maxi 6Tyi. Therefore

< max Wi min Wi < max wi K max wi) = a

from which the result readily follows. []

Proof of Theorem 10: We first suppose that S is the convex hull of finitely many

points, and we write S = conv((vi)k 1). The minimum volume ellipsoid containing
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S is obtained using the solution of the following optimization problem:

minQ,c

s.t.

- n det Q

(vi - )TQ(Vi _ C) < 1, i = 1,..,k (2.18)

If Q,c solves (2.18) then E ° := {x E IR' : (x - c)TQ(x - c) < 1} is the minimum

volume ellipsoid containing S and c is the Lowner-John center. Letting E' := {x E

R n : ( - C)TQ(x - c) < } where a := sym(c, S), we need to show that E' C S.

Equivalently, for every b E Rn we need to show that

max{bT x : x E EI'} max{bT x: x E S} .

The KKT conditions for (2.18) are necessary and sufficient, see John [30], and can

be written as:
-Q- + kA Xi(vi - C)(i - C)T = O

Ei1 AiQ( - c) = 0

Ai > O, i = l,...,k

(v - )TQ( i - C) < 1, i = 1,...,k

Ai(v - c)TQ(vi - c) = Ai, i 1, . .. , k

& sO .
Defining yi = Q 1/ 2 (vi - c) and Pi = i we have p > 0, and using the KKT conditions

we obtain:

n = trace(I) = trace(Q1/2Q-1Q1/2 )

-l Aitrace (Q1 /2(vi - c)(v i - C)TQ1/2 )

= --=1 Aitrace ((vi - c)TQ1/2Q1 /2(vi _ c))

= il Ai(V - c)TQ1/2 Q1 / 2 (Vi _ C)

= Eikl Z i = eT,
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and it follows that eTp TA = 1. Furthermore,n

k k

ZpYyi = 1Q-1/2 E AiQ(vi - C) = 0
z=1 i=l

and
k k

piyi(yi)T = E Q/2(Vi - C)(Vi -- C)TQ1/ 2

i=l i=l

Q-1/2b and note that 1112-yk,For any b E IRn, b # 0, define b and note that I/bi2 = 1. Then p,yl,.

and b satisfy the hypotheses of of Proposition 5, and so

max{bT x:x E S = maxibTv i

= bTc + /bTQ-b(maxi TQl/2( i - c))

= bTc + bTQ-lb(maxi bTyi)

> bT d+ I-Vfx -lb,

where the inequality is from Proposition 5, and we use the fact that

sym(0, conv({vi}k=l)) = sym(0, conv({yi}k=l))

which follows from the invariance of sym(-, ) under invertible affine transformation,

see (5.) of Theorem 2. On the other hand we have:

max{b x: x E' =max b x: (x-c) Q(x-C) -= b + bQ-

which then yields max{bTx : x E E'I} max{bT x: x E S}, proving the result under

the hypothesis that S is the convex hull of finitely many points.

Finally, suppose S is not the convex hull of finitely many points. For any 6 > 0

there is a polytope P that approximates S in the sense that S C P6 c S + B(O, 6),

where B(O, 6) is the ball of radius 6 centered at 0. Limiting arguments can then be

used to show the result by taking a limiting sequence of polytopes P6 as 6 - 0 and

noticing from Theorem 9 that lima_0 sym(0, Ps) = sym(0, S). [
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We close this subsection by discussing a norm closely related to the symmetry

function that was also used in [13]. Without loss of generality, assume that x* = 0 is

a symmetry point of S and define the following norm associated with S:

llxlls = min{t : x E t(s n -s) , (2.19)

and let Bs(c, r) denote the ball of radius r centered at c using the norm defined in

(2.19).

Lemma 1 Under Assumption A, suppose that x* = 0 is a symmetry point of S.

Then

Bs(O, 1) C S C Bs(0, 1/sym(S)).

Proof By construction, Bs(O, 1) = S n -s c S. For the second inclusion, ob-

serve that -sym(S)S C S, which then implies that S C - S. Therefore

sy c ()(s -s). o

Remark 5 The norm defined by (2.19) induces the best 0-approximation among all

norms in IRn. That is, (0, 1, 1/sym(S), 11 Ils) solves the following optimization prob-

lem

mnRn ll : B. (x, r) c S C B, . (x, R)

Proof Suppose that there exists a norm I. , r, R, and x, such that

Bll.11(x, r) c S c B1. (x, R)

and < y (). Using Theorem 7, we have sym(x, S) > > sym(S), a contradic-

tion. O

2.2.4 Probability and symmetry

This subsection contains two results related to symmetry and probability. To set the

stage for the first result, suppose that X is a random vector uniformly distributed on
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the given convex body S C Rn. Theorem 11 gives lower bounds on the expected value

of sym(X, S) and on the probability that sym(X, S) will be larger than a constant

fraction 1/M of sym(S). Roughly speaking, Theorem 11 states that it is likely

that sym(X, S) is relatively large. The second result, Theorem 12, is an extension

of Anderson's Lemma [1] concerning the integral of a nonnegative logconcave even

function on S, and has many statistical applications.

Theorem 11 Under Assumption A, let X be a random vector uniformly distributed

on S. Then

(i) E[sym(X, S)] > sym()
2n + 1

(ii) For any M > 1, P (sym(X,) s m S) > (1 M+ 1)

(iii) Among symmetric sets S, E[sym(X, S)] and P (sym(X, S) > ) are functions

only of the dimension n and are independent of the specific set S, and satisfy:

1 1
(iii.a) E[sym(X,S)] 

2(n + 1) (n±+ )(n + 2)

(iii.b) For any M > 1, P (sym(X, S)> = (1 M+

Proof Without loss of generality we assume for convenience that x* = 0 is a symme-

try point of S. Let t E [0, 1]. For any x E tS, consider any chord of S that intersects

x, and let p, q be the endpoints of this chord. Note that IIPiIs < 1/sym(S) and

IIxlls < t/sym(S), where 11 Ils is the norm defined in (2.19). Also, it follows from

basic convexity that tS + (1 - t)Bs(O, 1) C tS + (1 - t)S c S, where Bs(0, 1) is the

unit ball centered at the origin for the norm 11 Ils. This then implies that if x E tS

and q E OS then llq - xljs > 1 - t. Therefore

IIq -xls l-t i l-t
lip - XIIs - IIPIIs + IlxIIs - 1/sym(S) + t/sym(S)
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which implies that
1 -t

sym(x, S) > sym(S)-
1-+t

(2.20)

Now suppose that X is a random vector uniformly distributed on S, and consider

the random variable t(X) defined uniquely by the inclusion X E (tS). Then

P(t(X) < t) = P(X E tS) = Vol(tS) = tn
Vol(S)

which implies that the density

using (2.20) we have:

E[sym(X, S)]

of t(X) is given simply by f(t) = nt n- l. Therefore

> E m(s) I- t(X)

sym(S) 1 ltntnldt- 1+t
= nsym(S) - ndt

> nsym(S) jtn-l (i - Vit) dt

- sym(S)
2n+1 '

where the second inequality follows from the observation that t > 1 - for

t E [0, 1]. This proves (i).

To prove (ii), let M > 1 be given and define t := 1-2 and note the relationship

1-t 1
l+t M

Since {x E S: x E S} C {x e S: sym(x, S) > ym(S) } from (2.20), we have:

P (sym(X,S) > sym(S)) > P(X E tS) = (tn,

which establishes (ii). To prove (iii) notice from Proposition 2 that (2.20) holds

with equality in this case, whereby the above derivations yield E[sym(X,S)] =

+n -ttn-ldt and P (sym(X, S) > Ž ) = (t)n, which are functions of n and areI +o 
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independent of S, thus showing (iii) and (iii.b). Noting that t 1 -1 t + t2 for

t E [0, 1], we obtain in the symmetric case that

1 3 1 1 1
E[sym(X, S)] < yn 1 - -t+ t2 tn-ldt -2( -1) + ( + 1)(n 2) '

2 2 2(n + 1) (n + )(n + 2)

which shows (iii.a). l

Corollary 1 Let X be a random vector uniformly distributed on S C IRn for n > 2.

Then

P(sym(X, S)>sym(S)) > (1- 2 ) > 1/9

and the lower bound goes to 1/(e) 2 as n -- oo.

The following is an extension of Anderson's Lemma [1], whose proof relies on the

Brunn-Minkowski inequality in the symmetric case.

Theorem 12 Let S C IRn be a compact convex set which contains the origin in its

interior, and let a = sym(0, S). Let f () be a nonnegative quasiconcave even function

that is Lebesgue integrable. Then for 0 < P < 1 and any y E IRn,

f (x + O)dx > an f (X+ Y) d . (2.21)

Proof We refer to [10] for a proof in the symmetric case a = 1. Suppose that f(.) is

an indicator function of a set K. This implies that K is convex and sym(O, K) = 1.

Therefore:

fs f(x + 3y)dx > fsn-s f(x + y)dx
> fsn-s f(x + y)dx
= Vol,((S n -S) n (K - y)) = Vol,((S n -S) n a(f ))

> Voln(aS n o(K - i)) = anVoln(S n (K -))
(2.22)

where the second inequality follows from Anderson's original theorem [1], and the

third inequality holds simply because aS C S n -S and K C K. Thus the re-

sult is true for simple quasiconcave even functions, and using standard arguments
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of dominated and monotone convergence, the result also holds for all nonnegative

quasiconcave even Lebesgue-integrable functions. O

The following corollary shows the potential usefulness of Theorem 12 in proba-

bility theory. We note that the density function of a uniformly distributed or an

n-dimensional Gaussian random vector with mean = 0 satisfies the functional con-

ditions of Theorem 12.

Corollary 2 Let X be a random variable in Rn whose density function f(.) is an

even quasiconcave function. In addition, let Y be an arbitrary random vector inde-

pendent of X, and let P E [0, 1]. If S C Rn is a compact convex set which contains

the origin in its interior and a = sym(O, S), then

P(X + YES)>an (XY+-ES)
oa

(2.23)

Proof Noting that a does not depend on Y, we have:

P(X + Y E S) = f fs-_p f(x)dxdP(y) = f fS f(x - fy)dxdP(y)

> an f fS f(x - 2)dxdP(y) = anP(X + Y E S) .

2.3 Characterization of symmetry points via the

normal cone

Let Spt(S) denote the set of symmetry points of the convex body S. In this section

we provide a characterization of Sopt(S). From (2.4) and (2.2) we see that Spt(S) is

the x-part of the optimal solution of:

sym(S)= max
XLa

s.t.

a

(x>- S) (S - x)
a>O.

(2.25)
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For any given x E S let a = sym(x, S). Motivated by the set-containment

definition of sym(x, S) in (2.4), let V(x) denote those points v E aS that are also

elements of the set x + a(x - S). We call these points the "touching points" of x in

S, namely:

v(x) := as n (x + a(x - )) where = sym(x, S). (2.26)

Let Ns(y) denote the normal cone map for points y E S. We assemble the union of

all normal cone vectors of all of the touching points of x and call the resulting set the

"support vectors" of x:

SV(x) = s E IR : 11S12 = 1 and s E Ns(v) for some v E V(x)} . (2.27)

The following characterization theorem essentially states that x* E S is a symmetry

point of S if and only if the origin is in the convex hull of the support vectors of x:

Theorem 13 Under Assumption A, let x* E S. The following statements are equiv-

alent:

(i) * E St(S)

(ii) 0 E convSV(x*)

The proof of Theorem 13 we will rely on the following technical result:

Lemma 2 Suppose that S is a convex body in a Euclidean space and x E int S and

a > O. Then a < sym(x, S) if and only if r(x - S) C int (S - x).

Proof (=) The case a = 0 is trivial. For a > 0, since x E int S and S is a convex

body, a < sym(x, S) implies that

a(x - S) c sym(x, S)int (x - S) C int (S -x) .

() For a fixed value of a, rearrange the subset system to be: x+a(x-S) C int S.

However, S is a compact set, whereby a can be increased to a + E for some small
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positive value of e and still maintain x + (ca + e)(x - S) C int S C S, which by (2.4)

is equivalent to sym(x, S) > a + e. 

The proof of Theorem 13 will also use the following construction:

Lemma 3 Consider the function f(.) : R n -, IR defined as

f(x) = sup (s,x - y) . (2.28)
y E aS

s E Ns(y)

118112 = 1

Then

(i) f(.) is convex,

(ii) f(x) = 0 for x E AS,

(iii) f(x) > 0 for x 0 S,

(iv) f(x) < O for x E int S, and

(v) {( : 11s112 = 1, S E Ns(x)} C convaf(x) for x E S .

Proof As the supremum of affine functions, f(.) is convex, which shows (i). For

x e S, f(x) > 0. For (y,s) feasible for (2.28), (s,x - y) < 0 for all x E S by

definition of the normal cone, whereby f(x) = 0, which shows (ii). For x E int S,

there exists 6 > 0 such that B 2(x, ) C S. Let (y, s) be feasible for (2.28), then

(s, x - y) = (s, (x + s - y) - s) < (s, -5s) = -, which then implies that f(x) -6

and shows (iv).

For x 0 S, there exists a hyperplane strictly separating x from S. That is, there

exists satisfying IISll2 = 1 such that (,x) > maxy{((s,y) : y E S}, and let be

an optimal solution of this problem. Then (, s) is feasible for (2.28) and it follows

that f(x) > (,x - y) > 0, showing (iii). For x E OS and any s E Ns(x) satisfying

11 112 = 1, it follows that for all w that f(w) > (s, w - x) = f(x) + (s, w - x), thereby

showing (v). O
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Proof of Theorem 13. Suppose that x* E Spt(S). From (2.4) and Lemma 3 it

follows that x* is a solution together with a* := sym(S) of the following optimization

problem:

sym(S) = max a
IZCa (2.29)

s.t. f(x-a(y-x))<O forall y ES.

The necessary optimality conditions for this problem imply that

0 E Z AvSv

vEV(x*)

where s, E 9Of(v) for all v, for some A satisfying A > 0, A z4 0. Observe for v E OS

and s E Of(v) that 0 > f(w) > f(v) + (s, w - v) = (s, w - v) for all w E S, which

implies that s E Ns(v), and so

0 E E XAsV
vEV(x*)

where s E Ns(v) for all v, which implies (ii).

Conversely, suppose that a* = sym(x*,S), and note that for any v E V(x*),

0 0 Of(v) (otherwise f would be nonnegative which contradicts Assumption A and

Lemma 3). Therefore 0 E convSV(x*) implies that coneSV(x*) contains a line. Let

y E S be given and define d := y - x*. Since SV(x*) contains a line, there exists

s E SV(x*) for which (s, d) > 0. Let v be the touching point corresponding to s, i.e.,

v E V(x*) and s E Ns(v); then v E aS and v = x* - a*(w - x*) for some w E S

(from (2.4)). From (v) of Lemma 3 we have s E Of(v), whereby s E f (v). Thus,

using the subgradient inequality,

f(y-a*(w-y)) = f(v+(y-a*(w-y)-v))
> f(v) + (s,y - a*(w -y ) (2.30)

= (s,d)(1+ a*) > O,
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which shows that y - a* (w - y) 0 int S. This implies that

-l* (S- y) int (S- y)

Then Lemma 2 implies sym(y, S) < c* for all y E S proving the optimality of x*. l

We close this subsection with some properties of the set of symmetry points

Sopt(S). Note that Sopt(S) is not necessarily a singleton. To see how multiple symme-

try points can arise, consider S := {x E IR3 Xl >_ 0, + 20, X 1, 0 < x 3 < 1},

which is the cross product of a 2-dimensional simplex and a unit interval. Therefore

sym(S) = min{, 1} = and Sopt(S) = {x E IR3 : x = X2 =,x 3 E [1, ]}.

Proposition 6 Under Assumption A, Sopt(S) is a compact convex set with no inte-

rior. IfS is a strictly convex set, then Sopt(S) is a singleton.

Proof The convexity of Sopt(S) follows directly from the quasiconcavity of sym(., S),

see Theorem 2. Let a := sym(S), and suppose that there exists x E int Sopt(S). This

implies that there exists d > 0 such that sym(x, S) = ac for all x E B(I:, d) C Spt(S).

Then for all d satisfying Ildll < 1 we have:

a(x + d - S) C S - ( + 6d)

which implies that

a(±- S) + B(O, (1 + )) C S - .

Using Lemma 2, this implies a < sym(:, S), which is a contradiction.

For last statement, suppose xl, x2 E Sopt(S) and xl 7 x2. Since any strict convex

combination of elements of S must lie in the interior of S, for any y E (0, 1) it follows

that

(TX1 + (1 - 7)x2) - (S - (xl + (1 - )x2)) C int S .

Again using Lemma 2, it follows that sym(yxl + (1 - y)x 2, S) > a, which is also a

contradiction. 

51



Remark 6 In 35], Klee proved the following notable relation between sym(S) and

the dimension of Sopt(S):

) + dim(Sopt(S)) < nsym(S)

which implies that multiple symmetry points can only exist in dimensions n > 3.

2.4 Computing a symmetry point of S when S is

Polyhedral

Our interest in this section lies in computing an -approximate symmetry point of S,

which is a point x c S that satisfies:

sym(x, S) > (1 - )sym(S)

We focus on the polyhedral case; more specifically, we study the problem in which

the convex set of interest is given by the convex hull of finitely many points or by the

intersection of finitely many half-spaces.

Although the symmetry function is invariant under equivalent representations of

the set S, the question of computing the symmetry of a point in a general convex set

is not, as the following example indicates.

Example 1 Let Cn = IR : lxlloo < 1} be the n-dimensional hypercube. Let

v be a vertex of Cn, and define H = {x E IRn : (x,v) n - 1/2}, and define

S := Cn n H. Then sym(0, S) = 1 - 1/2n is obtained by considering the vertex

-v. Assume that S is given only by a membership oracle and note that H cuts off

a pyramid from S that is completely contained in exactly one of the 2n orthants of

IRn. Since we can arbitrarily choose the vertex v, in the worst case any deterministic

algorithm will need to verify every single orthant to show that sym(0, S) < 1, leading

to an exponential complexity in the dimension n.
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We point out that the convex set S defined in Example 1 could be represented by a

separation oracle and the same conclusion would also follow. This suggests that more

structure is needed for the representation of S in order to compute an e-approximate

symmetry point of S. In the following two subsections we consider the cases when S is

given as the convex hull of finitely many points (Section 2.4.1), and as the intersection

of finitely many half-spaces (Section 2.4.2).

2.4.1 S Represented by the Convex Hull of Points

In this subsection we assume that S is given as the convex hull of m given points

w,l... ,Wm E n, i.e., S = conv{w1,...,wm}. Given x E S and a nonnegative

scalar a, it follows from (2.4) that sym(x, S) > a if and only if

(1 + a)x-oaw E S = conv{wj: j = ,...,m} for every i = ,...,m,

which can be checked by solving a system of linear inequalities. It follows that sym(S)

is the optimal value of the following optimization problem:

max a
o,z,A,v

m

s.t. (1 + a)x - wi = ZA wk, i = , .. .
k=1

m = E kw (2.31)
X - Vk

wk

k=1

eT i = 1, i> , i = 1,..., m

eTv = 1, > 0 ,

which is almost a linear program. Note that the constraints "x = MLl VkWk, eTv =

1, v > 0" of (2.31) simply state that x must lie in the convex hull of the points

wl,..., wIw. However, dividing the first set of constraints by (1 + a) one obtains for

a given i:

= -a i + 1 E k=l
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which shows that these constraints themselves imply that x is in the convex hull

of w l, ... ,wm, and so the former set of constraints can be eliminated. Furthermore,

setting y = (1+a)x, it follows that sym(S) is the optimal value of the linear program:

max a
ct,yA

m

s.t. Y- awi= EAiwk, i =1,...,m (2.32)
k=l

eT i = 1, Ai > 0, i = 1, ... m ,

and that any optimal solution (a*, y*, A*) of (2.32) yields sym(S) = a* and x* =

y*/(l + a*) is a symmetry point of S.

Formulation (2.32) has m2 nonnegative variables and mn + m equality constraints.

Moreover, the analytic center for the slice of the feasible region on the level set

corresponding to a = 0 is readily available for this formulation by setting

k = , i=l,...,m,m m
k--1

and therefore (2.32) lends itself to solution by interior-point methods so long as m is

not too large.

If m is large it might not be attractive to solve (2.32) directly, and in order to

develop a more attractive approach to computing sym(S) we proceed as follows.

Based on (2.31) we can compute sym(x, S) by simply fixing x. Thus, for each i =

1,..., m define

fi(x) = max ai
m

s.t. (1 + ai) - iwi = E iWk (2.33)
k=1

eTAi = 1, Ai > 0 ,

and it follows that sym(x, S) = mini=1,...,m fi(x). Dividing the first constraint by (1 +

ai) and defining Oi = 'i and noting that maximizing i is equivalent to maximizing
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ai, it follows that (2.33) is equivalent to:

hi(x) = max i
m

s.t. jiwi + E A'wk = x (2.34)
k=1

eTXi = 1 - , Ai > 0.

Now note that hi(x) is a concave function, whereby

h(x) := min hi(x)

is also a concave function, and furthermore

sym(x, S) = min hi(x) = h(x)
1 + sym(x, S) i=l ... m

Moreover, given a value of x, the computation of h(x) and the computation of a

subgradient of h(.) at x is easily accomplished by solving the m linear programs (2.34)

which each have m nonnegative variables and n + 1 equality constraints. Therefore

the problem of maximizing h(x) is suitable for classical nondifferentiable optimization

methods such as bundle methods, see [29] for example.

2.4.2 S Represented by linear inequalities

In this subsection we assume that S is given as the intersection of m inequalities, i.e.,

S := {x E R n : Ax < b where A E IRm x n and b E Rm. We present two methods

for computing an e-approximate symmetry point of S. The first method is based on

approximately solving a single linear program with m2 + m inequalities. For such

a method, an interior-point algorithm would require O(m 6) operations per Newton

step, which is clearly unattractive. Our second method involves solving m + 1 linear

programs each of which involves m linear inequalities in n unrestricted variables.

This method is more complicated to evaluate, but is clearly more attractive should

one want to compute an -approximate symmetry point in practice.
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Let : E S be given, and let a < sym(, S). Then from the definition of sym(-, S)

in (2.1) we have:

A(x+v)<b A(-av) < b,

which we restate as:

(2.35)

Now apply a theorem of the alternative to each of the i = 1, ... , m implications (2.35).

Then (2.35) is true if and only if there exists an m x m matrix A of multipliers that

satisfies:

AA = -aA
A(b- A) < b- At

A>o.

(2.36)

Here "A > 0" is componentwise for all m 2 components of A. This means that

sym(i, S) a if and only if (2.36) has a feasible solution. This also implies that

sym(S) is the optimal objective value of the following optimization problem:

max a
x,A,a

s.t. AA= -aA

A(b- Ax) < b- Ax

A > O ,

(2.37)

and any solution (x*, A*, a*) of (2.37) satisfies sym(x*,S) = a*. Using the first
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equalities constraint, we can reformulate the inequalities as:

max a
x,A,ci

s.t. AA=-aA (2.38)

Ab - aAx < b - Ax

Notice that (2.38) is not a linear program. In order to solve this problem, we

propose a potential reduction interior point method similar to [63, 56]. The overall

computational complexity bound obtained for this method was O(m8 ln(m/e)) which

is not satisfactory. The details of the analysis can be found in the Appendix C.1.

To convert (2.38) to a linear program, we make the following change of variables:

1 1 1+aY=-, =-A, y=--x,a a a

which can be used to transform (2.38) to the following linear program:

min y
Yn,7

s.t. HA = -A (2.39)

rb + Ay - b7y 0

ri>O. .

If (y*,nl*,-y*) is a solution of (2.39), then a* := 1/y* = sym(S) and x* := 7y* E

Sopt(S). Notice that (2.39) has m2 + m inequalities and mn equations. Suppose

we know an approximate analytic center Xa of S. Then it is possible to develop

an interior-point method approach to solving (2.39) using information from Xa, and

one can prove that a suitable interior-point method will compute an -approximate

symmetry point of S in O (m n ( mi)) iterations of Newton's method. However, due to

the m2 + m inequalities, each Newton step requires O(m 6) operations, see Appendix

C.1.1.

In order to improve on the previous approach, we define the following scalar
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quantities 56, i = 1,..., m:

d := max -Ai.x
x (2.40)

s.t. Ax < b,

and notice that bi + 5 is the range of Ai.x over x E S unless the ith constraint

is never active. We compute 6', i = 1,...,m by solving m linear programs whose

feasible region is exactly S. It then follows directly from Proposition 1 that

sym(x,S) = min bi - A (2.41)

We now use (2.41) to create another single linear program to compute sym(S) as

follows. Let d* := (6*, ... , 5m) and consider the following linear program that uses *

in the data:
max 6
X,o (2.42)

s.t. Ax + (6* + b) < b .

Proposition 7 Let (x*, 0*) be an optimal solution of the linear program (2.42). Then

x* is a symmetry point of S and sym(S) = 1*

1 > 5~ + biProof Suppose that (x,0) is a feasible solution of (2.42). Then Ai,9 ' bi - Ai.x'
whereby

1-0 1 1 + Ai.x
a -8 - bi- Ai.x

and so
bi- Ai.x 
6i* +Ai.x - 1 ,m

It then follows from Proposition 1 that sym(x, S) > which implies that

sym(S) > 1--. The proof of the reverse inequality follows similarly. ]

This yields the following "exact" method for computing sym(S) and a symmetry

point x*:

Exact Method:
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Step 1 For i = 1,..., m solve the linear program (2.40) for 6i*.

Step 2 Let 6* := (6*,..., I~). Solve the linear program (2.42) for an optimal solu-

tion (x*, *). Then x* E Sopt(S) and sym(S) = 1 .

This method involves the exact solution of m + 1 linear programs. The first m

linear programs can actually be solved in parallel, and their optimal objective values

are used in the data for the (m + 1)st linear program. The first m linear programs

each have m inequalities in n unrestricted unknowns. The last linear program has m

inequalities and n + 1 unrestricted unknowns, and could be reduced to n unknowns

using variable elimination if so desired. The details can be found in the Appendix

C.1.2.

Remark 7 Although sym(S) can be computed via linear programming when S is

represented either as a convex hull of points or as the intersection of half-spaces, the

latter case appears to be genuinely easier; indeed, the Exact Method solves a sequence

of m + 1 linear programs of size m x n when S is given by half-spaces, instead of a

single linear program with m2 inequalities when S is represented as the convex hull of

points. It is an open question whether there is a more efficient scheme than solving

(2.32) for computing sym(S) when S is represented as the convex hull of points.

Table 2.4.2 summarizes the complexity results of the three approaches mentioned

before. Their analysis can be found in the appendix.

Computational Complexity (O*(.))
Method outer inner overall Comments
potential reduction m 2 m6 m8 quasi-convex

primal-dual m m6 m
7 linear program

dual m 1.5 m 3 m 4 5 decomposable
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Chapter 3

Projective pre-conditioners for

improving the behavior of a

homogeneous conic linear system

In this chapter, our interest lies in behavioral and computational characteristics of

the following homogeneous convex feasibility problem in conic linear form:

Ax = O
F' < (3.1)lx E C\{0},

where A is a linear operator and C is a convex cone.

It is well known that the standard form conic feasibility problem

Ax = b

x E K

is a special case of F under the assignments C - K x R+, A - [A, -b] and the

qualification that we seek solutions in the interiors of the cones involved. Furthermore,

this setting is general enough to encompass convex optimization as well.

In the context of interior-point methods (IPMs), the system F has good compu-

tational complexity if an IPM for solving F has a good iteration bound. We also say
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that F has good geometric behavior if the width of the cone of feasible solutions of F

is large, equivalently if F has a solution x whose relative distance from aC is large.

Choose a point E intC*, and note that F is equivalent to the normalized problem

Fg: Ax = 0, sTX = 1, x E C. We show that both the computational complexity

and the geometry behavior of F can be bounded as a function of only two quantities:

(i) the symmetry of the so-called image set Hg := Ax : Tx = 1, x E C} of Fg

about the origin, denoted by sym(0, Hg), and the complexity value ?9 of the barrier

function for C. These results are shown in Section 3.2 after some initial definitions

and analysis are developed in Section 3.1.

In Section 3.3 we present a general theory for transforming the normalized homo-

geneous conic system Fg to an equivalent system via projective transformation. Such a

projective transformation serves to pre-condition the conic system into a system that

has both geometric and computational properties with certain guarantees; we use

the term "projective pre-conditioner" to describe such a projective transformation.

Under the assumption that F has an interior solution, there must exist projective pre-

conditioners that transform Fg into equivalent systems that are solvable in strongly-

polynomial time in m and W. The quality of a projective pre-conditioner depends on

the ability to compute a point v that is "deep" in the set Hi° = {v : - ATv E C*).

Several constructive approaches for computing such points are discussed, including a

stochastic method based on a geometric random walk.

The geometric random walk approach is further developed in Section 3.4, with

associated complexity analysis. In Section 3.5 we present results from computational

experiments designed to assess the practical viability of the projective pre-conditioner

method based on geometric random walks. We generated 300 linear programming

feasibility problems (100 each in three sets of dimensions) designed to be poorly

behaved. We present computational evidence that the method is very effective; for

the 100 problems of dimension 1000 x 5000 the average IPM iterations decreased by

46% and average total running time decreased by 33%, for example.

Section 3.6 contains summary conclusions and next steps.

We point out that a very different pre-conditioner for F was proposed in [13] that
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is a linear (not projective) transformation of the range space of A and that aims to

improve Renegar's condition measure C(A) (but does not improve the complexity of

the original problem or the geometry of the feasible region).

3.0.3 Notation

Let e = (1,..., 1) T E IRd denote the vector of ones in dimension d. Given a closed

convex set S C Rd with 0 E S, the polar of S is S° := y E IRd: yTx < 1 for all x E

S) and satisfies S" = S, see Rockafellar [53]. Given a closed convex cone K C IRd,

the (positive) dual cone of K is K* := y E Id yTx > 0 for all x E K} and satisfies

K** = K, also see [53]. For a general norm II, let B(c, r) and dist(x, T) denote the

ball of radius r centered at c and the distance from a point x to a set T, respectively.

3.1 Normalization and s-norm, behavioral measures,

and barrier calculus

Regarding the conic feasibility problem (3.1), we make the following assumptions:

Assumption 1 C is a regular cone, i.e., intC 0 and C contains no line.

Assumption 2 F has a solution, i.e.,

F:={x E Rn : Ax=0, xEC\(O) 0

Assumption 3 rankA = m.
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3.1.1 Normalization of F and a class of norms that are linear

on C

Let E intC* be chosen, then x E C\{0 if and only if x E C and §Tx > 0, whereby

we can write F equivalently as the normalized problem:

Ax = 0

F: gTX = 1

x E C,

whose feasible region is F := {x E IRn : Ax = 0, x E C, sTX = 1.

Given the regular cone C and S E intC*, the linear functional:

f(x) := STx

behaves like a norm when restricted to x E C, namely f(x) is (trivially) convex and

positively homogeneous on C, and f(x) > 0 for x E C\{0}. The natural norm that

agrees with f(x) := sTx on C is:

Ixllg := min gT(x + x2)
X

1
,X

2

s.t. x 1- 2 = x

x2 EC,

and note that Ilxlla = §Tx for x E C. We refer to this norm as the "s-norm." Indeed,

llxlls is an exact generalization of the L1 norm in the case when C = R+ and S = e :TUI ll a IC 1+

llxli := min1
,X

2

s.t.

eT(x I + x2)

X1 - X2 = X

xl E IRn

x 2 E IR+ .
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We will make extensive use of the family of norms 11 [ I herein. In the case when C

is a self-scaled cone, both 11 I and its dual norm have convenient explicit formulas,

for details see Section 2 of [18].

3.1.2 Measuring the behavior of F: geometry and complexity

A natural way to think of "good" geometric behavior of F is in terms of the existence

of a solution x of F that is nicely interior to the cone C. However, due to the

homogeneity of F any solution x E intC can be re-scaled by a positive constant to

yield a solution that is arbitrarily far from the boundary of C. Given a norm I 11 on

IRn , we therefore consider the following measure of distance of x from the boundary

of C that is invariant under positive scalings:

reldist(x, C) := i(, ) (3.2)
II2II

where dist(x, S) := infYes llx - Y. We define the "width" or "min-width" of the

feasible region F under the norm 11 II to be the quantity TF defined by:

TF = max{reldist(x, AC)} = max {reldist(x, AC)} . (3.3)
xE A = o

x E C\{O}

Note that TF is larger to the extent that F has a solution of small norm whose distance

from the boundary of C is large. TF is a variation on the notion of the "inner measure"

of Goffin [22] when the norm is Euclidean, and has also been used in similar format

in [19, 17].

As is customary, we will measure the computational behavior of F using a worst-

case computational complexity upper bound on the number of iterations that a suit-

ably designed interior-point method (IPM) needs to compute a solution of F.

We will show that both the geometry measure TF and the computational complex-

ity can be bounded as simple functions of the symmetry of the origin in the image set

of Fg, which we now define.
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The image set H = HA of Fg is defined as:

H = H := {Ax: xE C, TX = 1} .

Note that the assumption that F has a solution implies that 0 E H.

We consider the symmetry of a point in a convex set as presented in Chapter 1.

For the reader convenience, we recall its definition. Let S C Rd be a convex set.

Define:

sym(x, S) := max{t y E S - t(y - ) E SI ,

which essentially measures how symmetric S is about the point x. Define

sym(S) := max sym(t, S) ,
tES

and x* is called a symmetry point of S if sym(x*, S) = sym(S).

3.1.3 Logarithmically-homogeneous barrier calculus

We presume that we have a 0-logarithmically homogeneous (self-concordant) barrier

function f(.) for C, see [46].

Remark 8 We will use the following properties of a -logarithmically homogeneous

barrier:

(i) i E intC if and only if -Vf(u) E intC*

(ii) f*(s) := -infxeintc{s T x + f(x)} is a '0-logarithmically homogeneous barrier for

C*

(iii) E intC* if and only if -Vf*(S) E intC

(iv) -Vf(f)TU = 0 and -Vf*(s)T = O for u E intC and gs E intC*

(v) Vf(ai) = -H(Ui) for ai E intC, where H(.) is the Hessian of the barrier f()

(vi) i = -Vf*(s) if and only if S = -Vf(u)

(vii) _Vf(i)Ty > VyTH()y for U E intC and y E C.
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Properties (i)-(vi) above are restatements of results in [46] or [52], whereas (vii) is

borrowed from the proof of Lemma 5 of [48].

3.2 Behavioral bounds on F

Let E intC* be chosen, and let F be as defined in Section 3.1.1 with image set

H = H as in Section 3.1.2. The following result shows that the width TF of the

feasible region F is linearly related to the symmetry of 0 in the image set H.

Theorem 14 Let E intC* be chosen. Under the norm 11, · I the width TF of F

satisfies:
1 sym(0, H) sym(0, Hg)
Z9 1 + sym(O, H) - - 1 + sym(0, Hg)

In particular, ssym(0, Hg) < rF < sym(0, Hg).

Remark 9 The left-hand bound in the theorem depends on the complexity parameter

9 of the barrier function f(.), which seems a bit unnatural since the width TF is a

geometric object that should not directly depend on the barrier function. If we use the

universal barrier of Nesterov and Nemirovskii 46], we can replace 02 by CONST x n

for the large absolute constant CONST of the universal barrier. Alternatively, we can

replace by the complexity value 0* of an optimal barrier for C.

Our next result shows that the computational complexity of a standard interior-

point method (IPM) for computing a solution of F also depends only on sym(0, H)

and . In order to establish this result we first develop the model that will be solved

by the IPM.

Let E C* be chosen, and assign x - - Vf*(). It follows from Remark 8 that

x E intC and STX = 1. Construct the simple optimization problem:

OP: * := max 0
x,6

Ax +(At)6 = 0 (3.4)

sTx = 1

x E C,
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and note that (x, 0) = (, -1) is a feasible solution of OP. Furthermore, (, -1) is

the analytic center associated with OP for the barrier function f(.), i.e., (, -1) is

the optimal solution of the problem of minimizing the barrier function f(x) over the

feasible region of OP. We will therefore use (, -1) as a starting point with which to

initiate a standard primal feasible interior-point method for approximately following

the central path (x(l), 0(ar)) of the parameterized barrier problem:

OP,: max -f(x) +r .0
,0

Ax +(A2)9 = 0 (35)

sTx =1

x E intC

for an increasing sequence of values of 7 > 0, until we have computed a point (x, 0)

that satisfies 0 > 0, whereby (x + 02) is a feasible solution of F. The details of the

algorithm scheme are presented in Algorithm A in the Appendix, where we also prove

the following complexity bound for the method:

Theorem 15 Let EC intC* be chosen. The standard primal-feasible interior-point

Algorithm A applied to (3.5) will compute x satisfying Ax = 0, ~ E intC in at most

[9V'ln (1 (1+ sym(0, H))))l

iterations of Newton's method. Furthermore, under the norm I1 Es, will also satisfy

1
reldist,(, dC) > ·1.2 0 F ·

- 1.20 + 0.2

(Note that the complexity bound is trivially valid even when sym(0, Hg) = 0, using

the standard convention that 1/0 = oo.) Taken together, Theorems 14 and 15 present

bounds on both behavioral measures that are simple functions of the complexity

value 9 of the barrier function and the symmetry of 0 in the image set H = Hg.

Furthermore, Algorithm A will compute a feasible point whose relative distance from

AC is within a factor of 0(0) of the maximum relative distance from dC over all
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Figure 3-1: The image set Hg and the points Ax, 0, and -O*At.

feasible points.

Figure 3-1 can be used to gain some intuition on the complexity result of The-

orem 15. The figure portrays the image set Hg, which by assumption contains 0.

Furthermore, Ai E Hg by design of . The optimal value * of (3.4) is the largest

value of 0 for which -Ait E Hg. Also notice in Figure 3-1 that * > sym(0, Hg),

and so * will be large if sym(0, Hg) is large. Since the interior-point algorithm starts

at the analytic center (, -1) where 0 = -1 and will stop when the current iterate

(x, 0) satisfies 0 > 0, it follows from the linear convergence theory of interior-point

methods that the iteration bound will be proportional to the logarithm of the ratio of

the initial optimality gap divided by the optimality gap at the stopping point. This

ratio is simply (1 + 0*)/0*, which is bounded above by 1 + 1/(sym(0, Hg)).

Note that one can view sym(0, Hg) as a condition number of sorts associated with

Fg, see [13]. In the next section, we will show how projective transformations can

be used to modify sym(0, H) and hence improve the behavior (both geometry and

computational complexity) of Fg.

3.2.1 Proof of Theorem 14

The proof of Theorem 14 is derived from the following two lemmas which we will

prove in turn. For i E intC define the ellipsoidal norm induced by H(ii) by lvll :=

vvTH(U)v. Let Bg(c,r) and Bf(c,r) denote the balls centered at c of radius r in

the norms 11 ig and II' * Jf, respectively. Note that Ba(c,r) is an ellipsoid whereas
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Bg(c, r) is not ellipsoidal, i.e., these two norms are not part of the same family. The

following lemma shows that I · Is and 11 Il are within a factor of O of one another if

f = -Vf*(s9)

Lemma 4 Let S E intC* be chosen, and define u :=-Vf*(s). Then

1
B (O, 1/9) C B(O, 1) C B(O, 1) and reldist(u, AC)> .

Lemma 5 Let E intC* be chosen and define := -Vf*(s)/0. Then under the

norm I - ig,

sym(0, Hg) O*
reldist(, 0C) (1 +sym(O, H) < reldistg(±, 0C) <( -F and

sym(O, Ha) 0*
1 + sym(0, H) - 1 + 0*

Proof of Theorem 14: Define x := -Vf*()/9. Then x is a positive scaling of

ii defined in Lemma 4, and so reldistg(t, AC) = reldistg(i, AC) > . Substituting

this inequality into the first inequality of Lemma 5 yields the first inequality of the

theorem, and the second inequality of the theorem is simply the third inequality of

Lemma 5.E

Proof of Lemma 4: Suppose that x satisfies xjj_ < 1. Then xl := (4 + x) and

X2 := (U -x) satisfy x1,X2 E C from the theory of self-concordance, and x1 -x 2 = x,

whereby from the definition of the S-norm we have IIxllg < T(xl + x2) = T = g.

Therefore Bfi(O, 1) C B(O, 0), which is equivalent to the first set inclusion of the

lemma.

Let L := {x E C: STx = 1}. For any x E L we have 1 = Tx =--Vf(U)Tx >

VxTH()x = llxllu, where the second equality and the inequality follow from (vi)

and (vii) of Remark 8, respectively. Similarly, if x E -L then IIxilf < 1 as well.

Noticing that Bg(O, 1) is the convex hull of L and -L, it follows that x E B(O, 1)

implies Ilxllu < 1, or equivalently, Bg(O, 1) C Ba(O, 1).
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Last of all, it follows from the theory of self-concordance that i + Bu(O, 1) c C,

whereby U + B,(O, 1) C u + Ba(O, 1) C C. Therefore

reldistg(u, C) > 1 _= 1 1

where the last equality follows from (iv) of Remark 8. 0

We are grateful to Nesterov [45] for contributing to a strengthening of a previous

version of Lemma 4 and its proof.

Proof of Lemma 5: Recall from Remark 8 that x - -Vf*(s) satisfies x E intC

and TX = 1. Therefore A E Hg and hence -sym(O, Hs)At E Hg, whereby there

exists x E C satisfying Tx = 1 and Ax = -sym(O, Hg)At, and therefore * of (3.4)

must satisfy:

0* > sym(O, H) . (3.6)

Therefore the second and third inequalities of the lemma imply the first and fourth

inequalities of the lemma. To prove the second inequality, let (x*, 0*) be an optimal

solution of (3.4), and let x = B. Then x E C, IxIg = STx = 1, and Ax = 0, and

by construction

Bg 1 + odist(i, aC) c C,

whereby we have

TF > reldist(x, dC) > O* dist(±, aC) = , reldist(i, AC)- 1+ * 1 + '*

which demonstrates the second inequality. To prove the third inequality of the lemma,

let x E C satisfy the maximization for which TF is defined in (3.3), whereby without

loss of generality lls = T = 1, Ax = 0, and Bg(, TF) C C. Let y E Hg be given,

whereby y = Ax for some x E C satisfying IIxII = sTx = 1, and define:

X-TFX
1 -TF
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and it follows that x E C, STX = 1, and hence

_ F y = A E H.
1 - F

Therefore sym(, H1 ) > ~-, and rearranging this last inequality yields the third

inequality of the lemma. E

3.3 Pre-conditioning F by projective transforma-

tion of Fg

Herein we present a systematic approach to transforming the problem Fg to an equiv-

alent problem Fg for a suitably chosen vector E intC*, with the goal of improving

the symmetry of 0 in the associated image set Hg. Recall the following relevant facts

about the symmetry function sym(.) presented in Chapter 1:

Remark 10 Let S C Rm be a nonempty closed bounded convex set. The following

properties of sym(.) hold:

(i) Let A(x) := Mx + g, M nonsingular. If t E S, then sym(A(±), A(S)) =

sym(i, S).

(ii) If 0 E S, then sym(0, S) = sym(0, S°).

(iii) sym(S) > 1

Under Assumption 2, 0 E Hg, whereby Hg is a closed convex set containing the

origin. Therefore H°, the polar of Hg, is also a closed convex set containing the origin,

and H-° = H1. In fact, there is a simple form for H. given by the following:

Proposition 8 Let S E intC* be chosen. Then H.' = {v E IRm : - ATv E C*}.
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Proof We have:

H = {v: vTy < 1 for all y H}

= {v: vTAx < 1 for all x that satisfy Tx = 1,x E C}

= {v : TAx < Tx for all x that satisfy STx = 1, x C}

= {: (s- ATv)Tx > O for all x E C}

= v: S- AT E C*}.

It is curious to note from Proposition 8 that while checking membership in H is

presumably not easy (validating that 0 E Hs is an equivalent task to that of solving

F), the set H' is in fact easy to work with in at least two ways. First, 0 E intH °-, so

we have a known point in the interior of intH,'. Second, checking membership in H'

is a relatively simple task if we have available a membership oracle for C*.

Motivated by Theorems 14 and 15 which bound the geometric and computational

behavior of F in terms of the symmetry of the origin in Hg, we now consider replacing

S by some other vector E intC* with the goal of improving sym(0, Hg). We proceed

as follows. Taking E intC* as given, suppose we choose some E intH °o = {v E

Rm : - ATv E C*}, and define := - ATi, therefore E intC*. We replace by

§, obtaining the modified normalized feasibility problem:

Ax = O
Fg :{ Tx = 1

x E C,

with modified image set:

H, = {Ax: x e C, Tx = 1}

and polar set:

H = {v E R m : - ATv C*} .
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The following shows that sym(0, Hg) inherits the symmetry of v in the original

polar image set H,.

Theorem 16 Let E intC* be given. Let v E intH. be chosen and define :=

s-AT. Then

sym(0, Hg) = sym(9, H')

Proof We have:

Hs-{ = {u = v - : s9-ATv E C*} = {u: S-AT-ATu E C*}

= {u: -ATu E C*} = H.

It then follows from (ii) of Remark 10 that

sym(0, Hg) = sym(0, Hs') = sym(O, H' - {}) = sym(O, H.),

where the last equality above readily follows from (i) of Remark 10. O

Note that the following projective transformations map F§ and Fg onto one an-

other:

X ndand x (3.7)

Furthermore, Theorem 16 has an interesting interpretation in the context of projective

transformations and polarity theory which we will discuss in Subsection 3.3.2.

Our present goal, however, is to use Theorem 16 constructively to develop a

method for transforming Fg. Suppose we can compute a point E H,° with good

symmetry in H°; letting a := sym(, H') we seek v for which a > sym(0, Hg) and

is relatively large, for example, a = Q(1/m). Then replace S by := - AT9 and

work instead with with Fg. Theorem 16 states that the transformed system will have

sym(0, Hg) = a, i.e., the transformed system will take on the symmetry of v in H'.

This is most important, since it then follows from Theorems 14 and 15 that the trans-

formed system Fg will have geometry and complexity behavior that will depend on a

as well. We formalize this method and the above conclusion as follows:
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Figure 3-2: Projective transformation of the image set Hg to improve the symmetry
of 0 in the transformed image set.

Projective Pre-conditioning Method (PPM)

Step 1. Construct H' := {v E IRm : - ATv E C*)

Step 2. Find a suitable point E Hi° (with hopefully good symmetry in Hi)

Step 3. Compute s := - ATi

Step 4. Construct the transformed problem:

Ax = 0

Fs' { TX = 1 (3.8)

x E C

Step 5. The transformed image set is Hg := {Ax E R m : x E C , gTx = 1), and

sym(0, Hi) = sym(v, Hi).

Figure 3-2 illustrates the strategy of the Projective Pre-Conditioning Method. On

the left part of the figure is the image set Hg, and notice that H3 is not very symmetric

about the origin, i.e., sym(0, Hg) << 1. However, under the projective transforma-

tion given by the projective plane in the slanted vertical line, Hg is transformed to a

box that is perfectly symmetric about the origin, i.e., sym(0, Hs) = 1. (In general,

of course, we can at best attain sym(0, Hi) = 1/m.)

The following corollary follows from Theorem 16 and the above discussion, using

Theorems 14 and 15:

Corollary 3 Let s E intC* be chosen, and suppose that the Projective Pre-conditioning
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Method has been run, and let a := sym(6, H'). Under the norm I[ lai, the width rF

of F satisfies:
a

(I-- ) < TF <?9 l+a - l+a
and the standard primal-feasible interior-point Algorithm A applied to (3.8) will com-

pute : satisfying Ax = 0, x E intC in at most

9Vln ( (1 ) )1

iterations of Newton's method. Furthermore, under the norm 11. I, x will also satisfy

1
reldist(,&C)Ž12+ TFreldist(, C) > 1.20 + 0.2

Let us now presume that F has an interior solution, whereby 0 E intH§ and H °

will be bounded and sym(0, Hs) = sym(0, H °) > 0. Furthermore, we know from

(iii) of Remark 10 that there exists a point v whose symmetry value in H.' is at least

1/m. Notice that if we can generate a point E H ° with very good symmetry in Hg°

in the sense that a := sym(, H °) = Q(1/m), we can then compute x of Corollary

3 using at most O (l In ( . m)) Newton steps, which is strongly polynomial-time.

And even if we merely satisfy a := sym(O, H °) > sym(0, Hg), we still may improve

the computational effort needed to solve F by working with Fh rather than Fg.

Of course, the effectiveness of this method depends entirely on the ability to effi-

ciently compute a point v E Hi° with good symmetry. The set H° has the convenient

representation H = {v E IRm : - ATv E C*} from Proposition 8; furthermore, we

have a convenient point 0 E intH.° with which to start a method for finding a point

with good symmetry; also, testing membership in H.° depends only on the capability

of testing membership in C*. Thus, the relative ease with which we can work with

H. suggests that excessive computation might not be necessary in order to compute

a point v with good symmetry in Hf?. We explore several different approaches for

computing such a point in the following subsection.
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3.3.1 Strategies for computing points with good symmetry

in H'

In this subsection we presume that F has an interior solution, whereby 0 E intHg

and H° will be bounded and sym(0, H.) > 0. Recall that a symmetry point of a

convex set S C IRm is a point x* whose symmetry is optimal on S. From (iii) of

Remark 10 we know that sym(x*,S) > 1/rm. When C = 1R+, a symmetry point

of H' can be computed by approximately solving n + 1 linear programs using the

method developed in Section 2.4.2 of Chapter 1. Thus even for the case of C = 1Rn

the computational burden of finding a point with guaranteed good symmetry appears

to be excessive. In fact, the seemingly simpler task of just evaluating sym(x, S) at

a particular point x = might be hard for a general convex body S, see Section

2.4 of Chapter 1. Therefore, one is led to investigate heuristic and/or probabilistic

methods, or perhaps methods that compute other types of points that lie "deep" in

a convex body. Table 3.1 presents the symmetry guarantee for several types of deep

points in a convex body; the computational effort for C = ]R+ (H is the intersection

of n half-spaces) is shown in the third column of the table. We now briefly discuss

each of these three possible choices for such points.

Analytic center approach

Starting at v = 0, we could use the damped Newton method outlined in [46] to

compute an approximate analytic center of H° using the barrier function b(v) :=

f* ( - ATv). We know from the theory of self-concordant barriers that the analytic

center va of H has symmetry value at least 1/ /( -- 1) (see Lemma 5 of the

Appendix of Nesterov, Todd, and Ye [48]). Each iteration of the algorithm would be

of comparable computational burden as an interior-point iteration for the problem

OP, and so it would probably be wisest to perform only a few iterations and hope

that the final iterate vf would have good symmetry value in H nevertheless.
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L6wner-John center approach

The Ldwner-John theorem guarantees the existence of an m-rounding of H', i.e., an

ellipsoid E centered at the origin and a point vj with the property that vj } + E C

H C (v j } + mE, see [23]. Such a point vi is called a Lowner-John center and

it follows that sym(vJ,H ° ) 1/m. In the case when C is either the nonnegative

orthant R+ or is the cartesian product of second-order cones, we can compute such an

approximate Lowner-John center by computing the center of the maximum volume

inscribed ellipsoid in H° ' via semidefinite programming (see Zhang and Gao [64], for

example, for the case when C = R+). The problem with this approach is that

the computational effort is likely to be substantially larger than that of solving the

original problem Fg, and the approach is limited to the case when C is the cartesian

product of half-lines and/or second-order cones.

Center of Mass Approach.

The center of mass (or centroid) of a convex body S C IRm will have guaranteed

symmetry of at least 1/m, see [27]. Even when C = IR+, computing the center of

mass of H. is #P-hard, see [12]. However, if we instead consider nondeterministic

algorithms, then the recent work of Lov6sz and Vempala [41, 39, 42] points the way to

computing points near the center of mass with high probability with good theoretical

efficiency. This approach will be developed in more detail in Section 3.4.

Central Point Symmetry Guarantee Computational Effort when C = IR+

Symmetry Point 1/m LP x (n + 1)
Analytic Center 1 LP

Lowner-John Center 1/m r SDP
Center of Mass 1/m #P-Hard (deterministic)

' polynomial-time (stochastic)
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3.3.2 Polarity and projective transformations in Theorem 16

While it is obvious that F and F are related through the pair of projective transfor-

mations (3.7), it is perhaps not so obvious that the image sets HA and HA are related

via projective transformations: H maps onto HA with the following projective trans-

formations between points y E HA and y' E Hg:

y =T(y) - y and y = T-l(y' ) Y (3.9)

This pair of projective transformations results from a more general theory concern-

ing the polarity construction, translations, and projective transformations as follows,

see Griinbaum [26] for example. Let S be a closed convex set containing the origin.

(S = HA in our context.) Then S° is a closed convex set containing the origin and

Soo = S. Let E intS ° be given. Then (S ° - {})) is the translation of S by v, and

also is a closed convex set containing the origin, and its polar is (So - {}))° . It is

elementary arithmetic to show that S and (S ° - {)})° are related through the projec-

tive transformations (3.9), namely (S° - {i})° = T(S) and S = T-((SO - {})°). In

other words, translation of the polar set corresponds to projective transformation of

the original set, see Figure 3-3. This correspondence was previously used in [15, 16].

3.4 Approximate center of mass of Hs and its sym-

metry

In this section we present some general results about sampling from the uniform

distribution on a given convex body S C Rd, which are relevant for our particular

case where S = H and d = m. We proceed as follows. A function f: Rd - R+

is said to be logconcave if log f is a concave function. A random variable Z E Rd

is called a logconcave random variable if the probability density function of Z is a

logconcave function. Note that logconcave random variables are a broad class that

includes Gaussian, exponential, and uniformly distributed random variables on convex
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Figure 3-3: Translation of the polar set corresponds to projective transformation of
the original set.

sets.

The center of mass (or centroid) and covariance matrix associated with Z are

given respectively by

Hz := E[Z] and Ez := E[(Z - z)(Z - z)T].

The matrix Ez is symmetric positive semi-definite. If Ez is positive definite it can

be used to define the ellipsoidal norm:

11v [Ez := /VrEz v-

The following are very useful properties of logconcave random variables.

Lemma 6 [36, 50, 51] The sum of independent logconcave random variables is a

logconcave random variable.
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Lemma 7 [41] Let Z be a logconcave random variable in Rd. Then for any R > 0:

P (liZ-zllE> R ) < e

Now let X be a random variable in Rd uniformly distributed on a convex body

S, i.e., the probability density function of X is given by

1
f(x) = Vl(s) ls(x, (3.10)

where s(.) is the indicator function of the set S. For simplicity, we denote its center

of mass and covariance matrix respectively by p/ and 2, and note that E is positive

definite since S has a non-empty interior. Let Br(x, r) denote the ball centered at x

with radius r in the norm 11- 1l.

Lemma 8 [41] Let X be a random variable uniformly distributed on a convex body

S C Rd. Then

BE , V(d +2)/d) c S c B ( d d(d+)

Assume that we are given M independent uniformly distributed random points

1,2 Mvl, v ,... ,v on the convex body S. We define the sample mean the usual way:

M

L:=ev M .
i=1

Lemma 9 Let be the sample mean of M independent uniformly distributed points

on the convex body S C lRd. Then

sym(i, S) > /(d + 2)/- 
/d(d + 2) + 0 j- -,11e

Proof Consider any chord of S that passes through v. It is divided by v into two

segments of length s, and s2. From Lemma 8 it follows that BE ( , (d + 2)/d) c
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S BE ( d(d + 2)). Thus, we can bound the ratio of si to s2 by

S /(d + 2)/d-li - IE
82 )+ -+ ll1 - 1

Theorem 17 Let be the sample mean of M independent uniformly distributed

points on the convex body S C Rd. Then for any t > 0 it holds that P(ll - u1jrE >

t)< e-tv.

Proof Let Y = v-M9. Since v1, v2 ,..., vM are independent uniformly distributed

random variables on S, E[Y] = v/Mu and E is the covariance matrix of Y. Moreover,

using Lemma 6, Y is a logconcave random variable since it is a sum of independent

logconcave random variables. Applying Lemma 7 using R = t - we obtain:

P (11 - /IE > t) = P (11vM - V'MI11-E- tv )

= P (IY - E[Y]IE > Red) e-R = e-t f.

Corollary 4 For any 6 E (0, 1) and setting M = 4d (ln(l/6)) 2 , we have

1
sym(v, S) > 2d 3

with probability at least 1 - 6.

Proof Using Theorem 17 with M = 4d (ln(1/6)) 2 and t = 1/2 we obtain P(jII0-/llE >

1/2) < 6, whereby P(1i9 - rlle < 1/2) > 1 - 6. Finally, using Lemma 9 we obtain:

sym ,S) > 1- 1/2 1
d + 1 + 1/2 2d + 3

with probability at least 1 - 6. O
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Remark 11 The proof of Corollary 4 can be extended to show that setting M =

(1+ ) d (ln(l/6))2) we obtain sym(i, S) > with probability at least 1 - 6.

Keeping in mind the fact that sym(S) can only be guaranteed to be at most lid

(and this bound is attained, for example, for a d-dimensional simplex), Corollary 4

gives an upper bound on the number of points that must be sampled to obtain a point

i whose symmetry is bounded below by Q(1/d) with high probability. Specializing

to the case of S = H and d = m and presuming that F has an interior solution

(and hence H' is a convex body), Corollary 4 provides a mechanism for achieving

sym(. Hi) = Q(1/m), and hence achieving sym(O, Hs) = Q(1/m) with high prob-

ability (from Theorem 16). It follows from Corollary 3 and Corollary 4 that in the

context of the Projective Pre-conditioning Method presented in Section 3.3, with high

probability (i.e., probability at least 1 - ) we attain a complexity bound for solving

F of

[9vln (11t (2m + 4))]

iterations of Newton's method. This iteration bound is strongly polynomial-time

(with high probability). In order to make Corollary 4 constructive, we need a method

for sampling on a convex body that obeys an approximate uniform distribution, which

is discussed in the following subsection.

3.4.1 Sampling from the uniform distribution on a convex

body

Herein we outline some relevant theory about uniform sampling on a convex body

S C ]Rd , see [41], [39], and [42] for recent results on this problem. We describe

a standard sampling algorithm specialized to the structure of our application. To

generate a random point distributed approximately uniformly on S, we will use a

geometric random walk algorithm on S. The implementation of the algorithm requires

only the use of a membership oracle for S and an initial point X° E S. In the context

of the Projective Pre-conditioning Method of Section 3.3, where S = H° and d = m,
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the initial point is 0 E H°. The requirement of a membership oracle for S = H is

met if we have a membership oracle for the dual cone C* as discussed earlier.

The geometric random walk algorithm known as "Hit-and-Run" generates iterates

X 1, X 2 ,..., as follows:

Geometric Random Walk Algorithm

Step 1. Initialize with X0 E S, k = 0

Step 2. Choose s uniformly on the unit sphere Sd-l in IRd

Step 3. Let Xk+1 be chosen uniformly on the line segment S n {Xk + ts : t E IR}

Step 4. Set k - k + 1, goto Step 2

It is a simple and well known result that this random walk induces a Markov chain

whose stationary distribution is the uniform distribution on S. The rate of conver-

gence to the stationary distribution depends on the spectral gap, i.e., the difference

between the two largest eigenvalues of the transition kernel. Suppose that we run the

algorithm for N iterations. In [39] it is proved that to achieve an e-approximation to

the uniform distribution density function (3.10) in the L1 norm, it is sufficient that

N=O d3( n (dist2(, aS) )

where r, R satisfy B2(w, r) c S c B2(v, R) for some w, v E S, and B2(c, 6), dist2(v, T)

are the Euclidean ball centered at c with radius 6 and the Euclidean distance from v

to T, respectively.

Note that Step 3 of the algorithm requires that one computes the end points

of the line segment in S that passes through Xk and has direction s. This can be

done by binary search using a membership oracle for S. In our case S = H =

{v : S - ATv E C*} and the required membership oracle for S is met if we have a

membership oracle for C*. For self-scaled cones the endpoints computation in Step 3

is a standard computation: when C = Rl+ the endpoints computation is a min-ratio

test, when C is the cross-product of second-order cones the endpoints computation

uses the quadratic formula, and when C is the positive semidefinite cone the endpoints
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computation is a min-ratio test of the eigenvalues of a matrix obtained after a single

Cholesky factorization.

3.5 Computational results on randomly generated

poorly-behaved problems

We performed computational experiments to assess the practical viability of the pro-

jective pre-conditioning method (PPM). We tested the PPM on 300 artificially gen-

erated homogeneous linear programming feasibility problems (i.e., C = R). These

300 problems were comprised of 100 problems each of dimensions (m, n) = (100, 500),

(500, 2500), and (1000, 5000), and were generated so as to guarantee that the result-

ing problems would be poorly behaved. Each problem is specified by a matrix A

and the chosen value of S. We first describe how A was generated. Given a pre-

specified density value DENS for A, each element of A was chosen to be 0 with

probability 1 - DENS, otherwise the element was generated as a standard Normal

random variable. We used DENS = 1.0, 0.01, and 0.01 for the problem dimensions

(m, n) = (100,500), (500,2500), and (1000,5000), respectively. The vector s was

chosen in a manner that would guarantee that the problem would be poorly behaved

as follows. Starting with so = e, we created the polar image set HO = v : ATv < e}.

We randomly generated a non-zero vector d E Rm and performed a min-ratio test to

compute t> 0 for which tATd E 0H%. Then S is determined by the formula:

s = s - (1 -4 x 10-5)tATd .

This method is essentially the reverse process of the PPM, and yields sym(0, H§) <

4 x 10- 5, with resulting poor geometry from Theorem 14.

We implemented the projective pre-conditioning method (PPM) using the follow-

ing simplified version of the stochastic process described in Section 3.4: starting from

v° = 0 E intH. we take K steps of the geometric random walk algorithm, yielding

points vl,..., vK, and computed v := vi, and then set s = - AUT. We set
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K = 30. It is also well known that this simple method yields -,/i as K -+ oo and

that the convergence results are similar to those described in Section 3.4. Nonethe-

less, the theoretical analysis is more technical and requires additional notation and

so is omitted here. See [14] and [21] for discussion and further references.

We solved the 300 original problem instances of OP (stopping as soon as 8 > 0), as

well as the resulting instances after pre-conditioning, using the interior-point software

SDPT3 [58]. Tables 3.2 and 3.3 summarize our computational results. Because these

problems are feasibility problems the number of IPM iterations is relatively small, even

for the original problems. Notice that average IPM iterations shows a marked decrease

in all three dimension classes, and in particular shows a 46% decrease in average IPM

iterations for the 100 problem instances of dimension 1000 x 5000. The total running

time (which includes the time for pre-conditioning using the geometric random walk)

also shows a marked decrease when using the projective pre-conditioning method,

and in particular shows a 33% decrease for the 100 problem instances of dimension

1000 x 5000. The last two columns of Table 3.2 shows the average value of O*. Given

that (x, ) = (, -1) is a feasible starting point for OP (and for SDPT3), * is a

good measure of the computational difficulty of a problem instance - a problem is

poorly behaved to the extent that * is close to zero. Here we see, regardless of

any IPM, that * increases by a factor of roughly 400, 800, and 600 for the problem

dimensions (m, n) = (100,500), (500, 2500), and (1000, 5000), respectively. These

results all demonstrate that by taking only a small number of steps of the geometric

random walk algorithm, one can greatly improve the behavior of a poorly-behaved

problem instance, and hence improve the practical performance of an IPM for solving

the problem instance.

We also explored the sensitivity of the computational performance of the PPM

to the number of steps of the random walk. Figure 3-4 shows the median number

of IPM iterations as well as the 90% band (i.e., the band excluding the lower 5%

and the upper 5%) of IPM iterations for the 100 problems of dimension 100 x 500

before and after pre-conditioning. Notice that only 10 steps of the random walk are

needed to reduce the median and variance of the IPM iterations to a very low level.
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Table 3.2: Average Performance of SDPT3 on the 300 Problem Test-bed of Linear
Programming Feasibility Problems. Computation was performed on a laptop com-
puter running Windows XP.

Table 3.3: Average Performance of SDPT3 on the 300 Problem Test-bed of Linear
Programming Feasibility Problems. Computation was performed on a laptop com-
puter running Windows XP.

As the number of random walk steps increase, the number of IPM iterations quickly

concentrates and converges to a value below the 0.05 quantile for the original problem

instances.

Figure 3-5 shows the median value of 0* as well as the 90% band of 0* values

for the 100 problems of dimension 100 x 500 before and after pre-conditioning. As

discussed earlier, * is a good measure of problem instance behavior: larger values of

0* indicate that the problem instance is better behaved, especially for computation

via an IPM. The figure indicates that there is almost no improvement in of median

value of 0* after 50 steps of the random walk.

Figure 3-6 shows the median total running time as well as the 90% band of to-

tal running times for the 100 problems of dimension 100 x 500 before and after

pre-conditioning. Notice that the median running time of the system with pre-

conditioning rapidly decreases with a flat bottom in the range 10-100 steps of the

random walk, after which the cost of the random walk steps exceeds the average ben-
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Dimensions Average IPM Iterations Average Total Running Time (secs.)
Original After Original After

m n Problem Pre-conditioning Problem Pre-conditioning
100 500 8.52 4.24 0.5786 0.2983
500 2500 9.30 5.17 2.4391 2.0058
1000 5000 9.69 5.20 22.9430 15.3579

Dimensions Average Value of 0*
Original After

m n Problem Pre-conditioning
100 500 0.0020 0.8730
500 2500 0.0012 1.0218
1000 5000 0.0019 1.1440
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Figure 3-4: IPM iterations versus number of steps of the geometric random walk for
the 100 problem instances of dimension 100 x 500.

efit from computing a presumably better pre-conditioner. Also notice, however, that

the variation in running time decreases with the number of random steps, which may

offer some advantage in lowering the likelihood of outlier computation times by using

more random walk steps.

3.6 Summary/Conclusions/Other matters

In this chapter we have presented a general theory for transforming a normalized ho-

mogeneous conic system Fg to an equivalent system F9 via projective transformation

induced by the choice of a point v E H.'. Such a projective transformation serves to

pre-condition the conic system into a system that has both geometric and computa-

tional behavior with certain guarantees. We have given a characterization of both the

geometric behavior and the computational behavior of the transformed system as a

function of the symmetry of v in the image set H° = {v : s- ATv E C*}. Because H

must contain a point v whose symmetry is at least 1/m, if we can find a point whose

symmetry is Q(1/m) then we can projectively transform the conic system to one

whose geometric and computational complexity behavior will be strongly-polynomial

in m and the complexity value 0 of the barrier function f(.) of the cone C. We have
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Figure 3-5: log(6*) versus number of steps of the geometric random walk for the 100
problem instances of dimension 100 x 500.

presented a method for generating such a point using sampling on geometric ran-

dom walks on Hi' with associated complexity analysis. Finally, we have implemented

this methodology on randomly generated homogeneous linear programming feasibility

problems, constructed to be poorly behaved. Our computational results indicate that

the projective pre-conditioning methodology holds the promise to markedly reduce

the overall computation time for conic feasibility problems; for instance we observe a

46% improvement in average IPM iterations for the 100 problem instances of dimen-

sion 1000 x 5000. The next step in this line of research will be to develop a suitable

adaptation of the methods developed herein to solve conic optimization problems,

and to test such an adaptation on conic optimization problems that arise in practice.

3.6.1 Infeasible case

The theory presented herein is based on the assumption that F has a solution. When

F does not have a solution, then one can consider the alternative/dual system:

Fa' ATv+Cs = \s E C*\{0
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Figure 3-6: Total running time versus number of steps of the geometric random walk
for the 100 problem instances of dimension 100 x 500.

This system can then be re-formatted as:

Bs = 0

E C*\{0},

for a suitably computed matrix B whose null-space is the orthogonal complement of

the null-space of A. Note that F is of the same format as F and the results for

F can be easily adapted to F'. (Actually, the computation of B is not necessary.

Given x E intC, consider the analogous image sets for Fa and F. defined as H :=

{ATv + : s E C*,TS = 1, v E Rm } and H' := {Bs: s E C*,Ts = 1}. Then

sym(0, Hz) = sym(O, Hz) even though Hz is unbounded, and one can work with

Hz and problem Fa directly.) Nevertheless, it may be more fruitful and revealing to

develop a different projective pre-conditioner theory designed directly for the dual

form F,, and this is a direction for future research.

3.6.2 Related complexity matters

Nesterov [45] has suggested the following "dual approach" to solving (3.1): starting

at v° = 0 compute an approximate analytic center va of H° , which is the essentially
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unconstrained problem minv{f*(s - ATv): S- ATv E intC*}. It is elementary to

show from the barrier calculus that as soon as a point v is computed whose Newton

step (Av, As) satisfies (As)TH*(s)As < 1 (where s = s- ATv and H*(s) is the

Hessian of f*(.) at s), then the Newton step multipliers yield an interior solution of

F. Regarding the complexity of this scheme, it follows from an analysis that is almost

identical to that yielding inequality (2.19) of [52] that the number of Newton steps of

a short-step IPM to compute an approximate analytic center is:

O (/ln (sym, Hp))) O (vn (sym(, H)))

(from (ii) of Remark 10), which is of the same order as the complexity of Algorithm

A from Theorem 15. These complexity bounds depend on sym(0, Hg) to bound the

complexity of traversing the central path via a short-step method. As is shown in

Nesterov and Nemirovski [47], a generically more accurate complexity bound can

be found by analyzing the central path via its Riemannian geometry. However, as

is demonstrated in the current work, sym(O, Hg) lends itself to analysis, character-

ization, and ultimately manipulation and reduction via the constructive projective

pre-conditioning method shown herein. An interesting research challenge is to de-

velop analogous tools/methods to work with and reduce the Riemannian distance of

the central path as developed in [47].
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Chapter 4

Efficiency of a re-scaled perceptron

algorithm for conic systems

In this chapter, the object of interest is to compute a solution of the following conic

system

Ax E int K
(4.1)xEX

where X and Y are Euclidean subspaces, K C Y is a regular closed convex cone, and

A: X - Y is a linear operator. The goal is to compute an interior element in the

cone of feasible solutions denoted by F = {x E X: Ax E K}. Important special cases

of this framework includes feasibility problems for linear programming (LP), second

order cone programming (SOCP) and semidefinite positive programming (SDP).

The ellipsoid method ([34]), random walk method ([6]), and interior-point meth-

ods (IPMs) ([32], [46]) are examples of methods which solve (4.1) in polynomial time.

Nonetheless, these methods differ a lot in their practical performance and representa-

tion requirements. For example, a membership oracle suffices for the ellipsoid method

and random walk method, while a barrier function for K is required to implement

an IPM. The latter is by far the most successful algorithm for conic programming in

practice. In particular, applications of SDP range over several fields such as optimal

control, eigenvalue optimization, combinatorial optimization and many others.
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In the case of X = IRn and K = R+, we recover the well studied case of a system

of linear inequalities. Within this context, the simple perceptron algorithm provides

a convergent procedure whose complexity depends on the square of the inverse of the

width of the cone of feasible solutions r of (4.1). In [11], the perceptron algorithm

is combined with a sequence of re-scalings which gradually increase r (on average).

These re-scalings are constructed based on near feasible points. This improved algo-

rithm reduces the dependence on 1/r from polynomial to logarithmic.

We will extend [11] to the conic setting. Although the probabilistic analysis is

not affected, this is not the case for the remainder of the analysis. The improvement

obtained in [11] can be seen to arise from a clever use of a deep separation oracle,

which is stronger than the usual separation oracle used in the classical perceptron

algorithm. The deep separation oracle is the most notable difference between the

linear case and the general case. Under the linear programming framework, there is

no difference between the implementation of both oracles. Thus, several important

issues were not required to be resolved in [11].

Here we investigate in detail the deep separation oracle and reveal its properties

and structure. Based on these properties, we propose an iterative scheme for general

convex cones which exploits the particular structure of the deep separation oracle. We

show that it solves the deep separation oracle in polynomial time, while requiring only

a deep separation oracle for the dual cone of K (which is readily available for many

cones of interest such as the second order cone and the cone of positive semi-definite

matrices).

We start with properties of convex cones that will be used throughout the chap-

ter. Section 4.2 generalizes the classical perceptron algorithm for the conic setting

while Section 4.3 extends the re-scaling phase of [11]. In Section 4.4, we go over the

probabilistic analysis for sake of completeness. Sections 4.5 and 4.6 are devoted to

properties and construction of the deep separation oracle in general.
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4.1 Preliminaries

4.1.1 Notation

We will confine our analysis to finite dimensional Euclidean spaces. Let X and Y will

be Euclidean spaces with finite dimension n and m. Denote by 11 11 their Euclidean

norms, and (., ) their Euclidean inner product. For x E X, B(i, r) will denote the

ball centered at x with radius r; analogously for Y. Let A : X - Y denote a linear

operator, and A*: Y - X denote the adjoint operator associated with A.

4.1.2 Convex Cones

Definition 1 A set C is said to be a cone if for every t > 0 we have tC C C.

Moreover, it is a convex cone if C is also convex.

Now we introduce several standard concepts associated with convex cones, see

[53]. The dual cone of a convex cone C is defined as

C* = {d: (x, d) > O, for all C} (4.2)

while ext C denote the set of extreme rays of the cone C. A cone is pointed if it

contains no lines. We say that C is a regular cone if C is a pointed closed convex

cone with non-empty interior. It is elementary to show that C is regular if and only

if C* is regular.

Given a regular convex cone C, we use the following conditioning measure.

Definition 2 If C is a regular cone in X, the width of C is given by

TC = max { B(xr) C C

Among convex cones, we will be particular interested in the non-negative orthant

IR, the second order cone denoted by Qn = {x E IRn II(xl,x 2,... n-) 11 <

x,}, and the cone of positive semi-definite matrices SkXk = {XE IRkXk XT =
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X, (v, Xv) > 0, for all v E IRk}). Recall that these three cones are self-dual and their

width are respectively 1/ , 1/vf, and 1/vk.

Next we establish a few properties of convex cones. These properties are well-

known but they are presented in the format needed for our analysis.

Lemma 10 Suppose C is a regular convex cone. Then

int ( n C*) 0.

Proof We proceed by contradiction assuming that int (C n C*) = 0. Since C is

regular, C* is also regular. Thus, both cones have non-empty interior. In this case,

int (C n C*) = 0 implies that int C n int C* = 0. Therefore, there exists h, lll 0,

(h,x) > 0 forall x E C and (h, y) < 0 for all y E C*

By definition of C*, h E C*. On the other hand, (h, h) < 0 by the second property

above. Therefore, h = 0 (a contradiction with ilhll = 1). O

The following characterization will be used in our analysis.

Lemma 11 Let T = {A*A : A E C*}. Then cl (T) = {x: Ax E C}*.

Proof Denote M = {x: Ax E C}*. We will prove cl (T) = M.

(C) Let A E C*. Then for every x satisfying Ax E C, (x, A*A) = (Ax,A) > 0,

since Ax E C and A E C*. Thus, cl (T) C M since M is closed.

(D) Assume that there exists y E M\cl (T). Thus, there exists h, hl 0,

satisfying

(h,y) <0 and (h, w) > 0 for all w E cl (T).

Notice that (h, A*A) > 0 for all A E C*. Thus, Ah E C. On the other hand, since

y E M, (h, y) > 0 contradicting (h, y) < 0. []

The question of sets of the form T being closed has been recently studied by

Pataki [49]. Necessary and sufficient conditions for T to be a closed set are given in

96



[49] when C* belongs to af class called "nice cones", a class which includes polyhedra

and self-scaled cones. Nonetheless, the set T may fail to be closed even in simple

examples.

Example 2 Let C* = Q3 = {(A1 , A2, A3 ) I II(A1, A2)11 < A3} and A = o 1 . In

this case, T = ATA I e C*} = {(-A 1 + A3 ,A 2 ) I (A1, 2)l < A3}. It is easy to

verify that (0, 1) ~ T but (E, 1) E T for every E > 0 (set Al = 21- , A2 = 1, and

A3 = 21 + 2) which shows that T is not closed.

Let 2 be a unit vector which achieves the width of a cone C as defined in Definition

2. The next two lemmas characterize points that are deep in C.

Lemma 12 If y C- az, there exists d E C*, Ildl = 1, and (d, y) < -arc.

Proof Since y + az- 0 C, there exists d, IldIl = 1, such that (d, y + z-2) < 0 and

(d, x) > 0 for all x E C. This automatically implies that d E C*. Since - rd E C,

(d, - Tcd) > 0 which implies that (d, 2) > Tc. Thus, (d, y) <-a (d, z) < -ac. 

Lemma 13 B(z, r) C C if and only if (d, z) > rlldll for all d E C*.

Proof Suppose B(z,r) C C. Let d E C*. Then, z - r E C and since d E C*,

Kd, z - rii) > . Thus, (d, z) > rd = rldi . Conversely, suppose (d, z) > rlldll
for every d E C*. Let v such that Ijv I < r. Assume z + v C, then there exists

d E C*, (d, z + v) < 0. Therefore

(d,z) <-(d,v) < rld,

which contradicts (d, z) > rlldll. 

4.1.3 Oracles

In our complexity analysis, we will distinguish three different types of oracles.
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Definition 3 A membership oracle for a convex set S C WRn is a subroutine that

given a point x E ERn, identifies if x E S or if x 0 S.

Definition 4 A separation oracle for a convex set S C Rn is a subroutine that given

a point x E IRn, identifies if x E S or returns a vector d E IRn, dll = 1, such that

(d, x) < (d, y) for all y E S.

Definition 5 For a fixed positive scalar t, a deep separation oracle for a cone C C IRn

is a subroutine that given a non-zero point x E IRn , either

(I) correctly identifies that (d ,Ix- > -t for all d c ext C*

or

(II) returns a vector d E C*, ildil = 1, satisfying d x)l <-t.

Definitions 3 and 4 are standard in the literature while Definition 5 is not. The

notion of a deep separation oracle was motivated by the need to proper extend the

analysis in [11] for conic systems. For instance, we point out that conditions (I) and

(II) are not exclusive.

4.2 Perceptron algorithm for conic systems

We use the following notation to represent respectively the feasible cone of solutions

for (4.1) and its dual cone

F = {x EX: Ax E K} and F* = {s E X* : (s, x) >0, for all x E }.

Also, let (y, ) E argmax {r: lxil = 1,B(x,r) C F; Tr is the width if the feasibility
rX

cone and is the center of F.

The perception algorithm was proposed to solve a homogeneous system of linear

inequalities ((4.1) with K = IR+). It is well-known that it has finite termination in

at most 1/: iterations. Nonetheless, this bound can be exponentially large in the

bit model.
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Our starting point in this study is to show that the perceptron algorithm can be

easily extended to the case of conic systems like (4.1).

Perceptron Algorithm for Conic Systems

Step 1. Let x be the origin in X.

Step 2. If Ax E int K Stop.

Step 3. Call separation oracle for F at x.

The oracle returns d E *, Ildll = 1, such that (d, x) < 0, set x -- x + d.

Step 4. Goto Step 2.

Lemma 14 The perceptron algorithm for conic systems returns a feasible point in at

most L1/-rJ iterations.

Proof Consider the potential function (x, z) /IIxII < 1. If the algorithm does not

stop at Step 2, we update x to x + d, whereby

(x + d, z) = (x, 2) + (d, z) > (x, z) + rT,

and

IIx + dll2 = (x, x) + 2 (x, d) + (d, d) < (x, x) + 1,

since (x, d) < 0, (d, d) = 1, and (d,z ) > r, from Lemma 13.

After k iterations, the potential function is at least k7r/vk. After more than

L1/irJ iterations, the potential function would be greater than one, a contradiction.

Thus, the algorithm must terminate after at most 1/.J] iterations returning a fea-

sible x E int F. O

In the linear case (K = R'), the separation oracle it suffices to check each

constraint individually. In the general case, we cannot consider one component of Ax

at a time and the complexity of the separation oracle will depend on the structure

of the cone K. Using a separation oracle for K itself, if Ax ¢ K one can find a

non-zero vector h E Y* separating Ax from K, i.e. (h, Ax) < 0 and h E K*, therefore

d = A*h E X* is a non-zero vector which separates x from the cone of feasible solution

99



.F. Thus, the perceptron algorithm can be properly implemented if a separation oracle

for K is available.

Example 3 Consider the case of K = Skxk being the cone of positive semi-definite

matrices and A: IRn - Skxk a linear operator. In order to compute a direction d E

F*, we start by computing any eigenvector v of the symmetric matrix Ax associated

with a non-positive eigenvalue. Then the vector d = A*(vvT) is such that

(d,x) = (A*(vvT),x) = (vvT, Ax) = tr(vvT Ax) = tr(vT(Ax)v) < 0,

and for all y E F we have:

(d, y) = (VVT, Ay) = tr(vT(Ay)v) > 0,

i.e., d E F*, and (d, x) < O. If (4.1) has a solution it easily follows that d $ 0 whereby

d/lldl can be used in Step 3 of the Perceptron Algorithm.

4.3 Re-scaling the conic system

In order to obtain an algorithm with a better complexity result with respect to the

width of the cone of solutions F, we will systematically re-scale the system (4.1)

through the use of a suitably constructed random vector that approximates z.

For motivation purposes suppose that we are given a point E int (n N F*).

The existence of such point is guaranteed under our regularity conditions, see Lemma

10. Now, for ji > 0, let A = A o (I + pVVT) define a new conic system (4.1) where

solutions are denoted by F. Then for any x E F, we have that

A(I + 1pvVT)x = Ax + pAv(VTx) E K.

That is, the set of solutions J contains the set of solutions F of the original conic

system. In fact, one can easily show that if TrF > 0 we have > . Actually, letting

p -, oc, T, can be made arbitrary close to one as pointed out in [11] for the linear
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case. Nonetheless, that approach is not practical since one must know a solution for

the original system to implement it. Surprisingly, it turns out that nearly feasible

solutions will suffice to construct transformations which will increase the width of F.

The linear transformation that will use was first proposed in [11] for the case of

linear inequalities. Here, we will extend these ideas to our conic setting. In Table 4.3

we describe a generalization of the algorithm proposed in [11].

The perceptron improvement phase requires a deep separation oracle for YF* in-

stead of the separation oracle as required by the perceptron algorithm. We point out

that now one needs to balance the values of Ildll and (d, i) at the same time. This

suggests that additional work is required beyond a deep separation oracle for K itself

which is usually easier to implement. Again, in the linear case investigated in [11],

there is no difference between the separation oracle and the deep separation oracle

due to the particular structure of the cone R+. A more detailed study of the deep

separation oracle is deferred to the Sections 4.5 and 4.6.

In this section we assume that a deep separation oracle is available and proceed

to analyze the impact of the re-scaling phase on the width of the cone of solutions.

The next lemma quantifies such impact.

Lemma 15 Let r:~, r,- be the width of the feasibility cones F, F of two consecutive

iterations of the re-scaled perception algorithm and A, A are the respective linear

operators. Then

> a A

where i = + 2 - K Z)) , and x is the output of the perceptron improvement

phase.

Proof At the end of the perception improvement phase, we have a vector x satisfying

(d, l )> -a for all d E ext F*.
ldljjxj -

101



Step 1 Initialization
Step 1.1 Set B = I and a = 1/(32n).

Step 2 Perceptron Algorithm for Conic Systems
Step 2.1 Let x the origin in X. Repeat at most (1/a 2) times.
Step 2.2 If Ax E int K Stop.
Step 2.3 Call separation oracle for .F at x.

The oracle returns d E F*, Ildll = 1, such that (d, x) < 0, set x *- x + d.

Step 3 Stop Criteria
Step 3.1 If Ax E int K then output Bx and stop.

Step 4 Perceptron Improvement Phase
Step 4.1 Let x be a random unit vector in X
Step 4.2 Repeat at most (1/a 2 ) ln(n) times:

Call deep separation oracle for Y at x with t = a.
If oracle returns condition (I), end Step 4.
If oracle returns a vector d E F*, Ildll 1, such that (d,x) < -alixl,
set x - x (d, x/I 1xI) d.
If x = 0, go back to Step 4.1.

Step 4.3 Call deep separation oracle for F at x with t = a.
If oracle returns condition (II), restart at Step 4.1.

Step 5 Stop Criteria
Step 5.1 If Ax E int K then output Bx and stop.

Step 6 Re-scaling the System

Step 6.1 Update A A o I+ ( ) and B -B o (I,+) )

Step 7 Loop
Step 7.1 Goto Step 2.

Table 4.1: One iteration of the re-scaled perceptron algorithm is one pass of Step
2-6.
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Let x = x/ixIjI. Then (d,.) > -ajldlI for all d E ext F*. From Lemma 13, it

holds that
(d,x) (d, ) > r,
Idjljljl - jldj> - for all d E *,

i.e. (d, z) > rjll d for all d E F*.

From Lemma 11 it holds that

(A, Az) = (A*A, ) > r.FlIA*All for all A E K*.

Note that = 2 + (r: - (, Z))X and let T := (7.

We want to show that

(v, >) > vllvll for all v E ext y*. (4.3)

If condition (4.3) is true then, by convexity of the function f(v) = lvll - (v, >),

it will also be true that (v, i) > llvll for any v E F*. Then from Lemma 13 it follows

that B(i, T) C , whereby

T > -~l as desired.

Let v be an extreme ray of F*. Using Lemma 11, there exist a sequence {Ai}i>l,

Ai E K*, A*Ai - v as i o. Since (4.3) is trivially true for v = 0, we can assume

that v f 0 and hence A*Ai # 0 for i large enough.

Next note that

lA*A'i112 = A*,i2+)2+(,) (A*, 2i, )2 = lA*Aill2 1 + 3 ((A*Aid)) )

and

(A* A', ) = ( *i,+ (x(A*X, x A )A',:)

= (A*Ai, ) + (-s -( ,)) (A*hi,.X) + (X,') (A*g,x)
(4.4)

> rllA*All + TrF(A*A,x)

= (1 + i(XA*Ail I)A*A i.

103



Therefore > + 3 i where t = lA'il . Note that ti < 1 and
iA*Aiji 1 + IIA*i

(v,x) -llvi since v E ext 7F

and so I{-l > -a and by continuity, for any E > 0, there exists i such that ti >

-a - e. Thus, ti E [-a - e, 1] for i large enough.

For t E [0, 1], we have that X > 1t = 1.

For t c [-a - E, 0], the function g(t) = 1+t > l-a-E since
1/-;RT- /l+3(o+e) 2

dg(t) 1 - 3t

dt (1 + 3t2)3/2 -

for t E [-a - E, 0], that is, g(t) is increasing on [-a - e, 0].

Therefore, for i large enough we have

(AAi, z (1 - -E)

IiA*Aill - T+ 33(o+a )

Passing to the limit on i -- oo, so Ai - v, we have

(V, '> (1 - a- E)

11 /1 + 3( + )

and so

(v, > (1- a)
> T T

Ilvi _ 1 +3o

4.4 Probabilistic analysis

As mentioned before, the probabilistic analysis of our conic framework is similar to

the analysis with linear inequalities in [11]. Although a few changes are required, all

the main ideas are still valid. For sake of completeness, we go over some results of [11].
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Our exposition intentionally separates the probabilistic analysis from the remanning

sections.

The first lemma of this section was established in [7] to the linear case and here is

generalized for the conic framework. Roughly speaking, it shows how the perceptron

improvement phase can generate near feasible solutions given that it is started with

a good initial point, which happens with at least a fixed probability.

Lemma 16 Let z be a feasible solution for (4.1) with norm one. With probability at

least , the perception improvement phase returns a vector x, jlxli < 1, such that

(i) (d, x) > -ixill for every d E ext F*, lidl = 1;

(ii) (z,x/llxll > ,.-

Proof If x°0 is a random unit vector in Rn, that is the initial value of x at Step 4.1,

then with probability at least 1/8 we have (z,x °) > 1/v/'- [11]. Notice that in the

perceptron improvement phase

(x - (d, x) d, z) = (x, z) - (d, x) (d, z) > (x, z)

since (d, x) < 0 and (d, z) > 0 (since d E F* and z E F). Thus, the inner product in

(z, x) does not decrease. Also, in each inner iteration of the perceptron improvement

phase (Step 4), the norm of x does decrease by at least a constant factor:

(x- (x, d) d, x- (x, d) d) = (x,) - 2 (d, X)2 + (d, X)2 (d, d)

(x,x) - (d, X)2 = (x,x) - (d, X/Ixll) 2 (X, x)
< (x, X) (1- 2 ).

where we used that 0 > (d, x/lIxI) > - and ldll = 1.

Thus, after [(1/u2 ) ln(n)] iterations, we would have that (ic) > 1 which is a con-

tradiction since z is a unit vector. Therefore, we terminate with a vector x satisfying

(i) and (ii) with probability at least 1/8. 
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Lemma 16 establishes that points obtained after the perceptron improvement

phase are near feasible for the current conic system. The next lemma clarifies the

implications of using these near feasible points to re-scale the conic system.

Lemma 17 Suppose that T, o < 1/32n and A is the linear operator of the current

iteration. Let A be the linear operator obtained after one iteration of the perceptron

improvement phase. If we denote by 7Tf the width of the cone of feasible solutions for

the new system associated with A, then

(i) T > 1- 32n - 512n2 j T;

(ii) With probability at least 8, ' > 1 + 3n 'T.

Proof Let x be the output of the perceptron improvement phase. For simplicity, let

T := rT, T := T, and t = x/llxll. Using Lemma 15, we have that

,A> (1-o) 
- V/1 + 3 ^11z

where 2 = +2 (7 - (i, Z)). Next note that

1 T2||J12 = 1 + (7-( Z- < + 7 - 1 + + x - (x
Following [11], consider two cases. First assume that I (, x) < 1/ / which happens

with probability at most 7/8. Then viewing the above as a quadratic function in

(z, x) which is maximal when (, x) = T/3

I2 <1 + 2 1 T2
l _1 q- + q- --1-

4 12 3

Thus, we have that

> (1 ) (- 2 )(I- 6 32n - 512n2) 

since r and o are less or equal to 3- and > I- 32 106 - 2'
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The second case assumes that (, ) > 1/v/, which happens with probability at

least 1/8. In this case, the quadratic function in (z, x) will be maximal at (, t) = 

which yields
3 T 

2

<12_ 4n 2 + 4'

Now we have (again using > 1- ) that

>T(1-a) 1- +) (1 )
8n 4x/ 8 3n

Before proceeding to the main complexity result, we establish that each perceptron

improvement phase will terminate rapidly with high probability.

Lemma 18 The perceptron improvement phase terminates in at most [8 n -} itera-

tions with probability at least 1 - 6.

Proof Note that if we start with a vector x such that (z, x) > , we terminate

the procedure, and this happens with probability at least 1/8. Thus, the probability

of not terminating after k iterations is at most (7/8 )k. A simple computation yields

k = 8 In 1/6 to bound this probability by 6. 1

The following theorem bounds the number of overall iterations and the number

of oracle calls made by the algorithm.

Theorem 18 Assuming that (4.1) is feasible, the algorithm properly terminates in

at most

T = max {4096 In ), 1000n n (32n) } = ( n + In 

iterations of the re-scaled algorithm with probability at least 1 - 6. Moreover, the

algorithm makes at most O(T n2 In(n) ln(1/6)) calls of a deep separation oracle for

.F and at most O(T n2) calls of a separation oracle for .F with probability 1 - 6.
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Proof This proof will follow closely the proof of Theorem 3.4 in [11]. Let Tk denote

the width of the feasible cone after k iterations and let zk denote a unit vector that

achieves this width. Moreover, let T denote the total number of iterations, and set

a = 1/(32n).

Note that if Tk > , the (classical) perceptron algorithm will produce a strictly

feasible solution in at most (1/a 2) = 1024n2 iterations, where each iteration makes

only one call to the separation oracle. For each perceptron improvement phase, with

probability 1 - 6, we need at most 81n(1/6)1 trials to succeed by Lemma 18. In

each trial the number of deep separation oracle calls is bounded by (1/a 2 ) ln(n) =

1024n2 ln(n). Thus it suffices to bound the number of iterations T until which T >

1/a2.

Let Ui = l(x zk)> , where x is a random unit vector on X, be a binary random

variable and U = ET=1 Ui. Note that Lemma 17 (ii) implies that Ui = 1 yields

ri+1 > i(1 + 1/(3n)). Furthermore, Lemma 17 (ii) implies that P(Ui = 1) > 1/8

whereby E[U] > T/8. Now, the Chernoff bound yields

P(U < (1- c)E[U])< e- 2E[U]/2 < e-C2T/16

In order to bound this probability by a and setting e = 1/16, we need T > 4096 ln(1/6).

Thus, with probability at least 1 - 6, using Lemma 17 (i) and (ii), we have

zr > ro (1 + )U ( 1 1 1 )T-UT 3n 32n 512n2

> 0 (1 + )T(1-e)/ (1 1 _ 1)T-T(1-e)/8
15T 113T

> To( + 3)1 ( 32n 512n2) 128

> To eT/OOOnn.

Setting T > 1000nln(1/(32n-o)) we obtain rT > 1/32n. 1
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4.5 Properties of the deep separation oracle for F

Up to now we assumed that a deep separation oracle for F was readily available.

Here, we will study in more detail this crucial step of the perceptron improvement

phase.

Although it is tempting to try to solve this problem by constructing the following

optimization problem

min (d,x)
d

11dl < i (4.5)

d E F*,

this is far from being necessary. In fact, any algorithm that approximate (4.5) within a

constant factor (or a factor bounded by a polynomial in the dimension) would lead to

an efficient algorithm. Moreover, even in the case of linear inequalities considered in

[11], this approach would lead to a nontrivial problem. This has important algorithmic

implications since it is sufficient to verify each constraint individually, in contrast to

consider all possible normalized convex combinations of the constrains.

Another strong evidence for that is the dual problem associated with (4.5). This

dual can be formulated as the following projection problem

max -- /||
Af K (4.6)

P X.

This suggest that both problems (4.5) and (4.6) are no easier than our original problem

(4.1).

From the definition of the deep separation oracle, it suffices to search only over

the extreme rays of F*. In fact, any set U that contains ext F* also suffices. A fun-

damental question is how to choose a set U which leads to an efficient implementation

of the oracle. An elementary result that has important algorithmic consequences is

the following.
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Proposition 9 If the cone of interest can be written as K = K1 x K2, then

ext F* C {A*(ext K 1 x {O}),A*({O} x ext K 2 )}.

This property is particularly interesting since in many cases we can rewrite the

cone K as the cartesian products of simpler cones (as is the case for linear inequalities).

Thus, one can decompose the problem for each one of these simpler cones.

Example 4 Consider the following system

Aox E R+

Aix E Qni i = 1,. . . ,L

x E Skxk.

The implementation of the deep separation oracle decomposes into smaller cones. For

Alx E R, we recover the setup of [11] and one can check each constraint individually.

For each Aix E Qni, we show in Theorem 19 how to solve it efficiently. Finally,

x E SkXk reduced to the computation of the minimum eigenvalue of the matrix x.

Example 5 We consider the implication of the previous theorem for a deep separa-

tion oracle in the case of SDP. Recall the maximum separation oracle (4.5). Using

the representation of Lemma 11, we have that (4.5) is

min (A, Ax)

IIA*AI < 1 (4.7)

where A is a positive semi-definite matrix. As suggested before, this is not easier than

our original problem. We can restrict the minimization to the extreme rays of F'*. In

particular, it would be sufficient to consider only rank one matrices in (4. 7):
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min vT(Ax)v

n 1 (VTAi)
2 < 1 (4.8)

V E R m .

Although this seems to be a simpler problem, we were not able to solve it (or approx-

imate its solution) efficiently via a simple method.

4.6 A deep separation oracle for general cones

The results of the previous section suggest that there is no simple deep separation

oracles for general cones. Moreover, the deep separation oracle can be cast as a conic

system of the form of (4.1). Motivated by these reasons, we propose to implement the

deep separation oracle based on simple iterative methods. In particular, we have two

candidates: the perceptron algorithm, and the re-scaled perceptron algorithm itself,

the first being more convenient if we can ensure that the width of the system (HS)

is large and the latter when no such guarantee is available.

Of course, we need to provide oracles needed to implement each one of these

methods for the new system (HS). It turns out that we will be able to implement

this new deep separation oracle efficiently requiring only a deep separation oracle for

the cone K*. We point out that for the second order cone and the cone of positive

semi-definite matrices these oracles are simple to construct.

The problem of interest is to compute an interior solution of the following feasi-

bility system,

-(, Ax)- t > 0 (a)

(HS)(t) A > 0 (b) (4.9)
A E K* (c)

(A, ) E YxIR

where t is associated with the violation of the first inequality. The perceptron im-

provement phase has been using t = a, but it will be convenient to work with a
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generic t instead.

We start by converting (4.9) to the standard form of (4.1). Define the following

linear map A: Y x R - R x Qn+ x Y as follows.

- (Ax, ) - t

A )=A

Thus, the system (4.9) is equivalent to

A (A) E K = l+ x Qn+l x K* (4.10)

Note that given an interior solution (A, fi), one can easily construct a solution for

the original deep separation oracle using . This is well defined because we must have

i > IIA*Al > 0 in any feasible solution due to the constraint (a) in (4.9).

4.6.1 Separation oracle for (4.10)

The construction of a separation oracle for (HS)(t) is simple. Since the cone of

interest K is the cartesian product of three simpler cones, we can consider each one

separately. It is clear that if a point cannot be separated for each cone individually,

this point must be feasible.

* Cone (a): this cone is associated with a linear inequality and the normal vector

associated with it is (-Ax, -t)T.

* Cone (b): this is a second order cone constraint. We can derive the following

normal vector
(0, 1 )T, if IIA*All = 0,

IIA( *A1 ,) otherwise.
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* Cone (c): the last cone is K* itself and, by assumption, we have a deep sepa-

ration separation oracle.

4.6.2 Deep separation oracle for (4.10)

In order to construct a deep separation oracle for (HS) we will take advantage of the

particular structure of the problem. The new cone of interest is K = IR+ x Qn+l x

K*. Thus, based on the Corollary 9, the deep separation oracle for (4.10) can be

implemented for each cone independently.

* Cone (a): this cone is associated with a linear inequality and its normal vector

is (-Ax, -t)T.

* Cone (b): this is a particular second order cone constraint. By assumption,

we have IIA*AI > otherwise the constraint is not violated. In order to solve it we

will formulate the following optimization problem

minv, (v,A*\) + w

IIAvl2 + 2 < 1

11vll < w.

Since we can restrict to the extreme rays of the second order cone, we can assume that

the last inequality is binding. This problem simplifies to the following optimization

problem:

minv (v,A*X) + llvl (4.11)

vT(A*A + I)v < 1

We obtain the following result based on Newton's method and binary search. We

extend the analysis of Ye [62], which in turn was based on a work of Smale [55], to

the problem (4.11).

Theorem 19 We have three cases for the problem (4.11) with a precision of > 0:

(i) if = 0, (4.11) can be solved in 0(n 3 );

(ii) if f > 0, (4.11) can be solved in O(n3 + n2 n Iln(1/e));
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(iii) if [i < 0, (4.11) can be solved in 0(n 4 + n2 Inln(1/e)).

The proof of Theorem 19 can be found in the Appendix E.2.

Remark 12 Note that one does not need to consider the case of ft < O. Let y =

(a, Cf)T be the current point to be separated. In the case of P < O, we can (weakly)

separate y by the hyperplane defined by d = (0, 1). After making the update, we have

the next iterate q+ = --(d, Y) d = (A, O)T. However, if z achieves the width associated

with the cone of solutions of (HS)(u-), we have

(z,+) = (z, > -(d, ) (d, z) > (z, ) and 1IY+112 < II112.

Thus, the algorithm can continue to operate as is as long as we do not count this

simple update to the total of updates made in the perceptron improvement phase.

Since the number of these updates is bounded by (1/u 2 ) ln(n), we can make at most

(1/U 2) ln(n) simple updates during each perceptron improvement phase.

* Cone (c): the last cone is K* itself. A deep separation oracle is available for

K* by assumption.

4.6.3 Bounding Complexity and Infeasibility

One needs to address the complexity of solving each one of these problems. In fact, we

need to deal not only with the inconvenient case of the system (HS) being infeasible,

but also the cases where the width of the cone of solutions might be arbitrary close to

zero. It turns out that is possible to efficiently solve both cases simply by exploiting

the structure of our problem.

Consider the following "basic" feasibility conic system

-IIA*Al + > 0 (a)

(B) A E K* (c) (4.12)

(A, ) E Y x R,

which will be the same for all x that we encounter in (HS).
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Lemma 19 Let r(B) be the width of the cone formed by the solutions of (4.12). Then,

TK*
T(B) > 4max{lA*ll ,1}

Proof Let (,TrK*) E argmaxr,x{r: IIxlI = 1,B(x,r) C K*).

Letting a = 4max{liA*1, 1}, define Z(B) = (zk/a, V/1 - 1/a 2), IIZ(B)II = 1. Then,

for any (h, v) E Y x R, i(h, v)l < 1,

A* ( -+ K <h)[ < IK-1-l <[h 1 /a2 TK* l4

Thus, every point in B Z(B), 4m {KI * 1}) is feasible for (4.12).0

The previous lemma shows that the conic system (B) cannot have an arbitrary

bad conditioning. In turn, we show that if the conic system (HS)(a) is feasible, the

conic system (HS)(a/2) also cannot have an arbitrary bad conditioning. This will

lead to a efficient approximation algorithm for the deep separation oracle.

Lemma 20 Let r be the width of F. Assume that (HS)(a) is feasible and let t E

(0, a). The width of the cone associated with (HS)(t) is at least

-K*(a -t)
T(Hs)(t) > r32 max{llA*II, 1} max{llAll, 11

Proof Denote as F(B) (respectively IF(HS)(t)) the cone of solutions for the (B) conic

system (respectively (HS)(t) conic system). Let = (, i) E F(HS)(,) be a point with

norm one and let Z(B), iiZ(B)11 = 1, be such that B (Z(B), r(B)) C Y(B).

We have that F(HS)(t) C F(HS)(a) C F(B). Thus is also feasible for (HS)(t) and

(B). Therefore, for any ca E [0, 1]

B ((1 - c) + aZ(B), QT(B)) c T(B).

Next consider the linear constraint in (HS)(t), denoted here by p(z) > 0. By

definition, p(i) > (a-t)fi. Therefore, any element z E B (, m(a{ll ust satisfy

p(z) > 0.
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By choosing a = 4m(-ax{ti)Ai,1 we have

B ((1 - a) + aZ(B),a(B)) C B (, (II(B)II + II l) + aT()) C B , max(llAll 1} () 

since IIZ(B)II + 11[z[ < 2 and T(B) < 1.

Thus, any element z E B ((1 - a)2 + aZ(B), aT(B)) is feasible for (HS)(t). Note

that A > IIA*AII where A*A E F* and ,2 + 11112 = 1. Let z* be a unit vector that

achieves the width r of the cone F . Using Lemma 13 with z = z*, C = F and

d = A*A E F*, we have that

> IA*lI > (z*, A*>) > TIXI.

In fact, it holds that > r/2 since and I II cannot be both less than 1/2.

Therefore,
(o - t)

T(HS)(t) > at(B) = T8max IA , 1}(B).

The result follows from Lemma 19. 0

Several important remarks should be made with respect to this result and its

implications to the re-scaled perceptron algorithm. The conditioning of the system

(HS)(t) is comparable to the conditioning of the original system. The key difference

is that the deep separation oracle is implementable for (HS)(t) as long as a deep

separation oracle is available for K*. As a side note, we point out that one can

always re-scale A so that IIAII = 1 without affecting the analysis.

Remark 13 Suppose we choose to use (HS)(t) for some t < a instead of (HS)(a).

This will increase the number of inner iterations in the perceptron improvement phase

to (1/t 2)ln(n).

An important issue is to detect infeasibility of the system (HS)(a). The algorithm

to solve (HS)(t) can be run for a pre-specified amount of iterations. It will perform

correctly, with high probability, if we pre-specify correctly a bound for the width of
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the original system. On the other hand, if one does not find a solution for the global

system, we have an upper bound on the width of the original system.

We point out that as we re-scale the original system (4.1), we are also improv-

ing the conditioning of the system (HS)(t) when (HS)(a) is feasible. Finally, the

following corollaries summarize the complexity results to solve the deep separation

oracle.

Corollary 5 Let t < a be fixed. Suppose that the conic system (HS)(a) is feasible.

Then the perceptron algorithm will find a feasible solution for (HS)(t) in at most

K32 maxjllA* 1, l}max{llAllj, 1 21

|(V Ir TK. (a -t)
iterations.

Corollary 6 Let t < a be fixed. Suppose that the conic system (HS)(a) is feasible.

Then the re-scaled perceptron algorithm will find a feasible solution for (HS)(t) in at

most

( nn max{llA*Il, 1} max{lAII, 1 1+ 
T TK(0a - t)

iterations with probability at least 1 - 6.

Corollary 7 Let t < a be fixed. Suppose that the re-scaled perceptron algorithm can-

not find a solution for the system (HS)(t) after k iterations and (HS)(a) is feasible.

Then the width of the original system is at most

/ max{A*I, 1 max{IAll, 1} e-k/n

(mV {IIl/nrK*( - t) 

with probability at least 1 - .
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Chapter 5

Norm-induced densities and testing

the boundedness of a convex set

We say that a probability density function f is norm-induced if

e-tllxlldx

ft(x) = fKe-tllYlldy x E K (5.1)
0, x K

for some norm j I, where K is a convex set in IRn, and t > 0 is a parameter. In

this chapter we will explore the connection between these densities and geometric

properties of the convex set K itself (usually as a function of the parameter t). Our

results make use of the geometry of unbounded convex sets. For instance, given

an arbitrary unbounded convex set we show that most its points are contained in

any enlargement of its recession cone. That simple geometric phenomenon motivates

many of our results.

Moreover, a density function of the form (5.1) is logconcave and proper by con-

struction. Thus, a random variable whose density distribution function is ft can be

efficiently simulated (at least approximately) by geometric random walk algorithms

[40]. In turn theoretical results on ft can be used to construct (implementable) algo-

rithms to test properties of K itself.

Herein we develop an algorithm to test if a given convex set K C Rn is bounded or
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unbounded. In either case the algorithm will provide us with an associated certificate

of boundedness or unboundedness based on the properties established in Section 5.2.

We emphasize that algorithms for this problem will be closely related to the repre-

sentation used to describe the set K. Our interest lies in cases in which the convex

set is given only by a membership oracle. This (minimal assumption) framework is

the standard framework in several applications in the Computer Science literature.

Furthermore, it covers many other problems of interest like convex feasibility.

The decision problem of testing for boundedness has a variety of interesting con-

sequences. In recent years, several probabilistic methods have been proposed to com-

pute quantities of interest like centroid, volume [43], convex optimization [31], and

many others [6], in the context of convex bodies. In all these cases, boundedness of

a convex set is a fundamental assumption for whose testing our algorithm provides

a constructive approach. Khachiyan establishes the equivalence between a strongly

polynomial algorithm for linear programming and a strongly polynomial algorithm

for testing unboundedness of a convex set associated with a system of inequalities

[33]. Moreover, linear homogeneous conic feasibility problems of the form

{ Ax E R \{O} (5.2)

can be converted into our framework by defining

K = {x E IRn: Ax + h E C} (5.3)

for any h E int C. In this case, 0 E int K, and the recession cone of K coincides

with the set of feasible solutions of the original system (5.2). In this case, only a

membership oracle for the cone C would be required to conduct the algorithm.

The implementability of our algorithm relies on the ability to sample random

variables distributed according to a probability density ft. Over the last decade

many important developments on sampling from log-concave densities, most notably

via geometric random walks, have been observed. In particular, the hit-and-run
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random walk has been extensively analyzed and polynomial rates of convergence have

been established for this particular random walk under the log-concavity assumption

[37, 41, 42, 40]. Besides, the homotopy analysis proposed here is similar to the analysis

done by Lovdsz and Vempala in [43] of the algorithm they called Reverse Annealing,

which was applied to the problem of computing the volume of a (bounded) convex

body. However, our approach differs from [43] with two respects: by using a different

density family, and by dealing explicitly with the possible unboundedness of K.

In the presence of additional structure, other algorithms are available in the lit-

erature. For example, assuming that a self-concordant barrier function is available

for K, minimizing such function leads to appropriate certificates of boundedness or

unboundedness (note that the minimum is finite only if K is bounded). That idea

was used first by de Ghellink and Vial in [9] for linear programming and more recently

by Nesterov, Todd and Ye on [48] for nonlinear programming problems. Moreover, if

K is given explicitly by a set of linear inequalities, one can identify an element of the

recession cone by solving a linear programming problem.

We emphasize that none of these approaches extends to the membership oracle

framework. In fact, negative results do exist for approximating the diameter of a

convex set, which is a closely related problem. Lovgsz and Simonovits [38] show

that no polynomial time algorithm (deterministic or probabilistic) can approximate

the diameter of a convex set within a factor of Jv in polynomial time under the

membership oracle framework. Thus, it is notable that, as we show, testing if a

convex set is unbounded is solvable in polynomial time.

An outline of the Chapter is as follows. Section 5.1 illustrates the geometric

intuition underlying many results. Then we establish many properties relating the

density functions (5.1) and the convex set K in Section 5.2. The algorithm to test

boundedness is presented in Section 5.3 and its analysis is presented in the following

sections. Finally, Appendix F contains the details on how to implement the hit-and-

run geometric random walk efficiently for the density functions used in the algorithm.
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5.0.4 Preliminaries, definitions, and notation

Recall that a real-valued function ·· IRn -- R+ is said to be a norm if:

(i) Ixljjl = only if x = 0;

(ii) lltxjl = Itllxlj for any t E IR;

(iii) Iix + yll < lxii + III + for any x, y E IRn.

For a given norm, we can define a unit ball

B11. 1(x, r) = B(x, r) = {y E R : I1l - xli < r}, (5.4)

and a unit sphere S" - l = {y E rn: IIYII = 1}.

The Euclidean inner product is denoted by (., ) while 11' 112 = ( denotes

the Euclidean norm induced by it. For x E R" and r > 0, let B 2(x, r) denote the

Euclidean ball centered at x with radius r, i.e., B 2(x, r) = {y E : - Y1 2 < r}.

The unit Euclidean sphere of IR" is denoted by S2-1, i.e., S2 - 1 = {y E IRn': 1Iy1 = 1}.

The dual norm of I · I induced by (, ) is defined by

IIsll* = max{(s, x) : x E B(O, 1)}, (5.5)

for which we can also define an unit ball B,(s, r) = w E R : l w - sl,* r} and

an unit sphere Sn-. Note that we have that I (s,x) I < Ilsllllxxll. The dual norm

completely defines the original norm, since we have

Ilxii = max(s,x) : s E B,(O, 1)}. (5.6)

That is, the dual norm of the dual norm is the original norm. Recall that the dual

norm of the Euclidean norm is also the Euclidean norm, which is said to be self-dual.

A set K is convex if x, y E S implies ax + (1 - a)y E S for every a E [0, 1]. C is

a cone if x E C implies ax E C for every a > 0. If C is a convex cone, the width of
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C is given by

TC = max{T: B(x, ) C C, lixII = 1}, (5.7)

the largest ball contained in C centered at a unit vector (in the appropriate norm).

L is a subspace of IRn if x, y E L implies that ax + y E L for every a, P3 E R.

For a set S, the operations conv(S), cone(S), ext (S), int (S), cl (S), diam(S),

and Vol(S) denote, respectively, the convex hull, conic hull, extreme points, interior,

closure. diameter, and volume of S (see [53] for complete definitions). Also, for

x E IR, let dist(x, S) = inf{x -YI : Y E S} denote the distance of x to S. For a

scalar u, set (u)+ = max{0, u}, and for a matrix M denote by ma,,(M) (respectively

Amin (M)) its maximum (respectively minimum) eigenvalue.

A membership oracle for a set S is any algorithm, that given any point x E Rn,

correctly identifies if x E S or not. Let s denote the indicator function of the set S,

that is, ls(x) = 1 if x E S and ls(x) = 0 otherwise.

With respect to the complexity notation, g(n) is said to be O(f(n)) if there exists

a constant M such that g(n) < Mf(n), while g(n,m) is O*(f(n,m)) if there exists

constants M and k such that g(n) < Mf(n, m) Ink n.

5.0.5 Logconcave densities: concepts and notation

We define rf as the probability measure associated with a probability density function

f (i.e, rf(S) = fs f(x)dx), Ef[.] as the expectation with respect to f, and zf as the

mean of a random variable whose probability density function is f. The following

class of functions plays a central role in the sampling literature.

Definition 6 A function f: IR - IR+ is logconcave if for any two points x, y E IRn

and any A E (0,1),

f(Ax + (1 - A)y) > f(x)xf (y)1-.

Definition 6 implies that In f is a concave function and, in particular, the support of f

is a convex set. We say that a random variable is logconcave if its probability density

function is a logconcave function. Gaussians, exponential and uniforms densities are

a few classical examples of logconcave densities.
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There are a variety of metrics available for probability densities. Here, we will

make use of two of them: the total variation norm, defined as

llf - 911Tv = If(x) - g(x)dx,

and the L2 norm of f with respect to g, defined as

IIf/91g = Ef [(Z)] = f ( x)dx = (( ) g(x)dx

The following useful concept is associated with the covariance matrix induced by f.

Definition 7 A density function f with expectation zf is said to be C-isotropic if for

every vector v,

IIV 112 (V ,x - f) 2 f(x)dx < II2C,
C -- n

1
equivalently, any eigenvalue A of the covariance matrix of f satisfies: - < < C.C -

A function f is said to be in isotropic position if it is 1-isotropic, that is, its co-

variance matrix is the identity. Thus, any density can be made isotropic by a linear

transformation of the space.

5.1 On the geometry of unbounded convex sets

In this section we revisit a classical representation theorem for closed convex sets and

we provide a new set inclusion characterization for such sets which will be key in our

analysis.

Let K C Rn be a closed convex set. As a matter of convenience, assume K is full

dimensional, as one can always work with the affine hull of K, but at considerable

notational and expositional expense. For the sake of exposition, in this section we

will assume that K contains no lines (in the upcoming sections we will drop such

assumption).
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As is standard in convex theory, the set of all directions of half-lines contained in

K defines the recession cone of K denoted by CK, i.e.,

CK = {d E IR: K + d C K, (5.8)

which is a closed convex cone ([53] Corollary 8.3.2). Moreover, it is well-known that

K is unbounded only if CK # {0} ([53] Theorem 8.4).

Under this framework, K contains at least one extreme point ([53] Corollary

18.5.3). Thus, the "Minkowski-Hirsch-Hoffman-Goldman-Tucker theorem" for rep-

resenting closed, line-free, convex sets applies to K.

Theorem 20 Any closed line-free convex set K C IRn can be decomposed into the

sum of two sets, the recession cone of K and the convex hull of extreme points. That

is,

K = CK + conv (ext (K)). (5.9)

In order to develop intuition on the relation between high-dimensional convex sets

and volume, we need to understand how to draw pictures of what high-dimensional

convex sets look like. The intuition for convex bodies (bounded convex sets with

nonempty interior) was first suggested by Milman. The fact that the volume of

parallel intersections of half-spaces with K decays exponentially fast after passing the

median level must be taken into account. As suggested by Milman, small dimensional

pictures of a high-dimensional convex body should have a hyperbolic form, see Figure

5-1.

However, our concern here is to extend such intuition to unbounded convex sets. In

this context a similar (concentration) phenomenon will also be observed. Assuming

that the recession cone has positive width, "most of the points" of the set are in

the recession cone. (Note that one needs to be careful when quantifying "most of

the points", since the volume is infinite.) Again small dimensional pictures of high-

dimensional unbounded convex sets must have a hyperbolic form, see Figure 5-2.

In fact, even if the recession cone has zero width, "most of the points" of K will
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)nential
ecay

Figure 5-1: High-dimensional bounded convex sets and volume. Exponential decay
as we move away the median cut.

K.

Figure 5-2: High-dimensional unbounded convex sets and volume. Most of the mass
concentrates around the recession cone.
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be contained in an -enlargement of the recession cone, where the latter is formally

defined as:

CK = cone {S n - l n(CK + B(0, e))} . (5.10)

The following properties of the c-enlargement of the recession cone follow directly

from the definition.

Lemma 21 For e > 0 sufficiently small, we have that:

(i) CK is a closed convex cone;

(ii) if CK = {O}, then Ck = {0};

(iii) if CK $ {0}, then TCK > TCK + 

Now we are in position to obtain a set inclusion characterization of the aforementioned

geometric phenomenon. That will motivate most of the analysis in the sections to

come.

Theorem 21 Let K be a convex set. Then, for any e > O, there exists a finite number

R, such that

K C Ck + B(0, R). (5.11)

Proof Without loss of generality, assume 0 E K. Suppose that there exists a se-

quence {xi} of elements of K such that dist(xi, CK) > j. The normalized sequence

has a convergent subsequence, {dkj = xkj/llxk 11}, to a point d. Since K is convex,

closed and 0 E K, dkj and d are in K. In fact, d E CK. For any e > 0, there exists a

number jo such that

IIdk3- d l < e for all j > jo.

Therefore, we have dkj E CK for j > jo. In addition, xkJ E CK, since Ck is a cone,

contradicting dist(xi, Ck) > j for every j. O

The -enlargement of the recession cone captures all points of K except for a

bounded subset. Thus, assuming that K is unbounded, such geometric phenomenon
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implies that "most points" of K will be contained in K n Ck. Moreover, if cK > 0,

most points of K will actually be contained in CK itself.

Theorem 22 Let CK be a convex cone with strictly positive width rCK. Then,

Voln- 1 (k n s n - 1 ) < (1 + -) Voln-1 (CK n Sl)

Proof By definition of TCK, B(z, rcK) C CK for some z E Sn- l. Since CK and Ck

are cones,

Vol_-1 (C< n S n - l1) Vol (C< n B(O, 1)) Vol ((CK n B(O, 1)) + B(O, ))

Voln-1 (CK nS n- l) Vol(CK n B(O, 1)) - Vol(CK n B(O, 1))

since (Ck n B(0, 1)) C CK n B(O, 1) + B(O, c). Next, we have B(z/2, rcK/ 2 ) C

CK n B(0, 1), so that

(CK nB(, 1)) +B(O,) C (CK n B(O, 1)) +- (C K n B(O1) -

and the result follows. [1

Corollary 8 Let X be a random variable uniformly distributed on a set A, where the

latter satisfies

CK n S-1 C A C n Sn-1.

Then,

P(X E CK)> (1- -)

Taken together, Theorem 21 and Corollary 8 imply that for c < TcK/8n a constant

fraction of the points in Ck are also in CK. Thus, finding points in CK is easily

achieved by finding random points in Ck n K.

5.2 Probabilistic Properties

In this section we will establish several properties relating a random variable Xt,

whose density function ft is given by (5.1), and a variety of geometric properties of
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the set K itself. For the sake of exposition, we will assume the following:

Assumption 4 K is a closed convex set that contains the origin and has nonempty

interior.

Assumption 5 There exists a positive number R such that K C CK + B(O, R).

Assumption 4 is needed to ensure that K has positive n-dimensional volume (pos-

sibly infinite). Nonetheless, one can always work with the affine hull of K if one uses

the appropriate k-dimensional volume. As expected, the origin could be replaced by

any other point in K. All results could be restated for that particular point (if we

translate the density ft appropriately).

The focus on convex sets that satisfies Assumption 5 is not restrictive. In light

of Section 5.1 we know that such inclusion can always be obtained if the recession

cone is properly enlarged. In the case of unbounded convex sets whose recession

cone has positive width, Corollary 8 shows how to relate the enlarged cone with the

original recession cone. On the other hand, for unbounded convex sets whose recession

cone has zero width, we know that the recession cone has zero measure for any ft.

Finally, we point out that Assumption 5 is satisfied by any bounded convex set with

R = diam(K) and CK = (0), or any polyhedral convex set.

As anticipated, we will show that the probability of the event Xt E CK} will

be large for "small" values of t. To do so, we exploit the spherical symmetry of ft

(i.e., ft(x) = ft(y) if IIjjx = IYlI) and the geometric phenomenon induced by the

representation of Assumption 5. That symmetry will allow us to connect the volume

of relevant sets with the probability of the event Xt CK}. Lemma 22 below

properly quantifies this notion.

Lemma 22 Suppose that K is an unbounded convex set, let Xt v ft as in (5.1), and

let p > 6R/TcK. Then

P(Xt E CK I XtI = P) (l - CK P

129



Proof Note that restricted on IIXt I = p, the density ft is constant. Thus, we have

P(Xt E CK I XtIl = P) =
Voln-1(CK n (psn- 1 ))
Vol-_l(K n (pSn-l)) '

For any a, b, define the sets K[a,b] := {y E K : a < I(IYI < b} and Ka K[a,a] =

(aS n- l) n K. Set = p/3 > 2R/rcK, and consider the following set inclusions

I[,p] := { E CK: P < II pYI < P}C C O,p] := {y E B(O, R)+CK: P < jlyj J< p}.

We first show that O[p,p] C I,pj + B(O, 2R). For y E O[,p], we have y = v + w,

where 11Iv11 < R, w E CK, Iv + wlI E [, p], and hence llwll E [p - R, p + R]. Therefore

W E I[p-R,p+R C Ip,p] + B(O, R), and the result follows since v E B(O, R).

Now, take z E CK, IlzIl = 1, such that B(z, rcK) C CK. Thus,

B ((P P) (P + ) C CK

Observe that p > 3p implies that p < +P)- -(+) and (P+2 + (P+2 < p, so we have-2 4 2 4 -

(P+ p) )
4 CKB (P+ P) z,

where = ~(+P) . Thus, B (w, 2R) C KI[,p] for w = z.8 R · 2 z.

Vol(I[,,p]) Vol(I[O,p]) > Vol(I[O,p)

Vol(K[P,p]) - Vol(O[p,p]) -Vol(I[,p] + B(O, 2R))

= B (P + Pz, 2R) [,p],

Vol(I[,p] + I[p,p])
-(1+1)__> 1

(I+ 

We will complete the proof in three steps. For s E [, p], consider the sets I, and 0,.

First note that

Voln-1 (Is) 
Voln-1 (0s) Sn- l ) Volnl(CK + B(O, R/s) n Sn-l)
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Voln-1(CK + B(O, R/s) n

Vol(I[P,p])

V01n-1 (CKn Sn-1) VOln-(CK n Sn-1)



is a nondecreasing function of s. Second, observe that

Vol(I[p,p]) _
Vol(O[f,pl)

f Vol,_l(I)ds
f; Voln-l(O)ds'

Next, we will make use of the following remark.

Remark 14 For any a < b and any two positive functions g and h such that

g(s) is nondecreasing for s E [a, b], we have g(a)h(s) h(a)
< g(b)
- h(b)'

< f ds
Xf h(s)

Third, applying Remark 14 with g(s) = Voln-l(Is), h(s) = Voln-l(0 8 ), a = and

b = p to obtain

P(Xt E CK I IXtIl
-= _ = Voln-l (Ip)

Voln-l(Kp)
=P ) o._(p > Voln-l(Op)

> Vol(I[p,p])
Vol(O[,p])

Finally, since pi = p/3 we have = cKP. El

Proof (OF REMARK 14) Simply note that (S) < (b) for s E [a, b]. Thenh(s) - h(b)

g(s)ds = b hs(s)h( s <f b n~~s~h--s _
g(b)?\
kh(b)J

h(s)ds,

and a similar argument yields the lower bound. O

Since the bound obtained in Lemma 22 is monotone in p, we have the following

useful corollary.

Corollary 9 For unbounded K, we have

P(Xt E CK I Xtl > p) (1
6R P)

TCK 'P +

The previous results used conditioning on the event that the random points have

large norm. It is natural to bound the probability of these conditional events as well.
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Lemma 23 Suppose that K is unbounded, and that ft is given by (5.1). For a random

variable Xt distributed according to ft we have that

P (IIXtI > >p) 1 - 4etp.

Proof We can assume that tp < 1/4e, since the bound is trivial otherwise. We use

the notation introduced in the proof of Lemma 22, K[a,b] = y E K: a < IIYI < b}.

Assuming that K is unbounded, there exists z E CK, liZiJ = 1. Then,

K[o,p] + ( + 2p)z C K[,K+ 3 p] for any K E IR+, (5.13)

since for each x E K[o,pl, we have

IIx + ( + 2p)zll

IIx + ( + 2p)zlJ

< Illl + (K + 2p)llzlI

> (c ±+ 2 p)llzlI - lxi

and x + ( + 2p)z E K (the latter follows from z E CK).

(m-1)/2

So, for any odd integer m > 3, K[p,mp] = U K[(2i-)p,( 2i+l)p], where the union
i=1

is disjoint (except on a set of measure zero), and by (5.13) we have

(m-1)/2 ( -
Vol(K[,mp]) Vol(K[(2i)p,(2i+lp] > 1)Vol(K[,p).

i=l

Now, define m such that t = m__ By assumption we have tp < 1/4e, which impliesmp
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m > 4e (again, we assume that m in an odd integer for convenience). Thus,

P(llXtlI > p)
fKt,- e- tllzl l dx

fK-o,l e-tllxlldx + fK[,, e-tllxlldx

fK[, e-tllzlld
> K[p,mp

fKo,p I e -t llxlldx + fK[p,mp] e-t llxl1dx

Vol(K[p,mp] )e-mtP
- Vol(K[o,p]) + VOl(K[p,mp)e-mtp

(m - 1)Vol(K[p,mp])e-mtP
- 2Vol(K[p,mp]) + (m - 1)Vol(K[p,mp)e-mtP

> (m - 1)e-mtP
- 2 + (m- )e- mtP '

Using the definition of m, we have

P(lIxtI > p)
(- 1)e- 1

2 + ( - )e-
(1 -1)

2e +( - 1)

2e
> 1 -1

tp

2etp
= 1- 1 - tp

Lemma 22 quantifies the geometric notion mentioned earlier (motivated on Figure

5-2), that most points in K outside a compact set are in CK if its width is positive.

On the other hand, Lemma 23 shows that the norm of Xt is likely to be greater than

0.01/t. Taken together, they lead to a lower bound on the probability of the event

{Xt E CK}.

Theorem 23 Suppose that K is unbounded, and ft is defined as in (5.1). Let

t < 6 CK
- 96enR'
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and let Xt be a random variable distributed according to ft. Then

P (Xt E CK) 1 - 6.

Proof All that is needed is to combine Lemmas 22 and 23. Clearly,

P (Xt E CK) > P(IIXtl > P) P (Xt E CK I IXtl > p).

By Lemmas 22 and 23, we have

P (Xtl p) > 1-4etp and P(Xt E CK I Xt|I > P) > (1 - PT )

It is sufficient to ensure that

61 - 4etp > 1 - -
2

and (1- > CK --
rCK P 2

for some p > 6R/-rcK. Noting that (1 - ) 1/n < 1 - - for all x E

relation also holds since if

[0, 1], the second

6R 61- >1-
'TCK P 2n

It suffices to choose p = 12_R for the second relation to hold, and the first relation
T-CK

holds since
462rcCKe2nR 6
96enR6TcK 2

Theorem 23 characterizes the behavior of random variables Xt - ft for values of

t that are "relatively small" with respect to its support K. It is natural to ask what

kind of behavior one should expect for values of t that are "relatively large" with

respect to the support K. An answer to this question is given in the next lemma.

Lemma 24 Assume that there exists v E K such that JJVJJ = R. If t > Vr/R, then

max P (s Xt) > - 3
s.n-1 x(4et) 3
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Proof Since R = IV 1 = max{(s, v): s E B,(O, 1)}, we can always find v E Sn -1 such

that (v, v) = R.

By obtaining a lower bound for v we automatically obtain a lower bound for the

maximum over the dual sphere. So,

EmaxS P (s,Xt) IsES$~-1 > /i(4et))

It will be convenient to define the following sets

A= {xE K: and B= {

1
where a = <

2etRVi- 2en

Note that for any y E B, y E K since x and v e K and a E (0, 1). Moreover,

I (v, y) I > (v, y) = (1 - a) (v, x) + a (v, v) > t./
4etx/-

1
± R

2etRv/
1

4et/n' '

Thus, y 0 A.

Since 11(1 - a)x + av11 < (1 - )llxll + allv11 < Ilx11 + ai11v11, we have

P(Xt E K\ A) > P (Xt E B)= K e-tlllldz

fK t zdz| e- t(-a)x+aVI(1 - ao)ndx

e-tlll(1 -dz) n

fK e-tllzll dz
e -tllldx - e-tall(1 - a)nP(Xt E A)

> P(Xt E A) = (1- P(Xt E K \ A))

and we have P(Xt E K \ A) > 1/3.
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Note that we have used that under our definitions

e- t allll (1 - a)n > 1/2

for any n 1. Indeed this is the case since

= e - 1/(2eV') (1-

> e-1/ 2 e
. e- 1/(2 e- 1) > 0.664 > 1/2.

[

This result allows us to construct several useful corollaries.

Corollary 10 Assume that there exists v E K such that JIVIl = R.

then

max E [(s, Xt)2] > 1
sES -n(7et)

2

If t > Vfi/R,

Proof Let v c Sn - 1 as in Lemma 24. Thus,

E [(v, Xt)2 ] 1> IeP
- n(4et)2 I (v,Xt) >

Vin(4et))

i 1

n(4et)2 3
1

n(7et)2'

Corollary 11 Suppose that K is unbounded. For every t > O, we must have

max E [(v,Xt)2] >
VES7_ - n(7et)2

Proof For every t > 0, let R = . Since K is unbounded, there exists E K with

11j11 = R and t > . Thus, Corollary 10 can be applied and the result follows. 

As a byproduct, we will be able to provide a bound on R in the case of bounded

K.
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Corollary 12 Suppose that for some t > 0 we have that

max E [(s, Xt)2 ] < (7
8sn-I n(7et) 2'

Then K is bounded and K C B(O, R) for R = t

Proof Suppose there exists E K, with 1J11V > v. Let R := IIll > -vr/t. Then

t > v/,iR and lvll = R, so by Lemma 24 we have a contradiction. O

Corollary 13 If 11 11 = .11 112 and K is unbounded, for every t > 0

max, (E [XtXt]) > 1n(7et)2 '

Proof If one is using the Euclidean norm, we have 11 112 = 11 11 = 11 · II. Moreover,

we have that

Amax (E [XtXt]) = max (s, E [XtXt] s)sESn-'
= max E [(s, Xt)2] 

sESn-1

and the result follows from Corollary 10. 0

A similar result can be established for small values at t. Intuitively we will recover

results known for the uniform density as we let t goes to zero.

Lemma 25 Assume that there exists E K such that 11VII = R. If t < n/R,

max P (s, Xt) I > R
1

3

Proof The proof is similar to the proof of Lemma 24 if one defines

A = {x K:

EO
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Corollary 14 Assume that K has diameter D and t < n/D. Then,

D
E [lXt1] > 12en

Proof If K has diameter D, there exist two points v, w E K such that 1lv - il- = D.

We can assume 'I to be the origin, which implies that JI[vl = D. The result follows

from Lemma 25. 0

We close this section with a simple observation with respect to the entropy of a

density function

Ent(f) =- f(x) Inf(x)dx.

Corollary 15 If ft is a norm induced density function, we have that

Ent(ft) = tE[IIXt ll

and Lemmas 24 and 25 can be used to bound the entropy.

Proof The result follows by noting that -f(x)In f(x) = tlxile -tll ll . El

5.3 Testing the Boundedness of a Convex Set: a

Density Homotopy

The algorithm we propose is a homotopy procedure to simulate a random variable

which has desirable properties with respect to K. Motivated by the geometry of

unbounded convex sets, the uniform density over K would be an interesting candidate.

Unfortunately, as opposed to most frameworks in the literature, a random variable

which is uniformly distributed over K will not be proper in the unbounded case and

cannot be used. Instead, we will work with a parameterized family of densities,

= {ft : t E (0, to]}, such that ft is a proper density for every t. In addition, for

any fixed compact subset of K the parameterized density uniformly converges to the

uniform density over that compact set as t -O 0. As mentioned earlier, the algorithm
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must provide us with a certificate of boundedness or unboundedness. Any nonzero

element of the recession cone of K is a valid certificate of unboundedness. We will

assume that a membership oracle for the recession cone of K itself is available.

On the other hand, the certificate of boundedness is more thought-provoking. If

K is described by a set of linear inequalities, K = {x E IRn : Ax < b, K will be

bounded if and only if positive combinations of the rows of A span IRn. More gen-

erally, if K is represented by a separation oracle, a valid certificate of boundedness

would be a set of normal vectors associated with hyperplanes returned by the sepa-

ration oracle whose positive combinations span Rn. Note that a membership oracle

provides much less information and we cannot sensibly extend the previous concept

to our framework. Instead, our certificate of boundedness will be given by the eigen-

values of the second moment matrix associated with the random variables induced

by the family F. In contrast with the previous certificates, it will be a "probabilistic

certificate of boundedness" since the true second moment matrix is unknown and

must be estimated via a probabilistic method.

5.3.1 Assumptions and condition measures

In addition to Assumption 5, we make the following assumptions on the set K:

Assumption 6 K is a closed convex set given by a membership oracle.

Assumption 7 There exists r > 0 such that B(O, r) C K.

Assumption 8 A membership oracle is available for CK, the recession cone of K.

We point out that the closedness of K could be relaxed with minor adjustments

on the implementation of the random walk. Assumptions 5 and 8 specify how K is

represented.

Assumption 7 is stronger than Assumption 4. It requires that we are given a point

in the interior of K, which is assumed to be the origin without loss of generality. That

is standard in the membership oracle framework, since the problem of finding a point

in a convex set given only by a membership oracle is hard in general. Finally, we
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emphasize that only a lower bound on r is required to implement that algorithm.

Section 5.4.3 gives a simple procedure to obtain an approximation of r within a

factor of v/.

In our analysis, besides the dimension of K, there are three geometric quantities

that naturally arise: r, R, and TCK. Not surprisingly, the dependence of the com-

putational complexity of our algorithm on these geometric quantities differs if K is

bounded or unbounded (recall that the case of rCK = 0 is fundamentally different if K

is bounded or unbounded). Nonetheless, in either case the dependence on these quan-

tities will be only logarithmic. An instance of the problem is said to be ill-conditioned

if TCK = 0 and K is unbounded, otherwise the instance is said to be well-conditioned.

5.3.2 The algorithm

In order to define the algorithm, let ft be defined as (5.1) with | . II = 112 (the

Euclidean norm). Let E (0, 1) and let hit-and-run be a geometric random walk

which will simulate the next random variable (see Section 5.5 for details). This yields

the following "exact" method to test the boundedness of K:

Density Homotopy Algorithm (Exact):

Input: r such that B(0, r) C K, define to = tinitial, $' E (0, 1), and set k - 0.

Step 1. (Initialization) Simulate Xto "- fto(x).

Step 2. (Variance and Mean) Compute the covariance and mean: zk and Vk.

Step 3. (Testing Unboundedness) If Xtk E CK \ 0}, stop.

Step 4. (Testing Boundedness) If Amax (Vk + Zkz ) < n(e)2 stop.

Step 5. (Update Density) Update the parameter: tk+l = (1 - 0) tk.

Step 6. (Random Point) Draw Xtk+1 hit-and-run( ftk+, Xtk, Vk)

Step 7. (Loop) Set k +- k + 1, goto Step 2.

This (exact) method requires r, the exact simulation of Xtk+l, and the exact

computation of the covariance matrix Vk+1 and mean Zk+l of the random variable

Xtk+l. In order to obtain a implementable method, we can use only approximations

of these objects.

Detailed bounds on the computational complexity of the hit-and-run procedure,
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on the estimation of Zk+l and Vk+1, and r are provided in Sections 5.5, 5.6, and 5.4.3.

Moreover, the use of an approximated covariance matrix and approximated mean

must be taken into account on the test of boundedness (Step 4), which is done in

Theorem 24. That is done by showing that the maximum eigenvalue of the second

moment matrix, Qk = 17k + ZkZk, will be estimated up to a factor of three.

Each loop of the algorithm (Steps 2-7) is called an iteration throughout this Chap-

ter. Thus, the work per iteration consists of (i) performing the hit-and-run random

walk, (ii) computing an approximation for the covariance matrix, (iii) testing if the

current point belongs to the recession cone, and (iv) computing the largest eigen-

value of a definite positive matrix. Although a highly accurate approximation for the

covariance matrix is not needed, the probabilistic method used to estimate such ma-

trix requires at least O*(n) samples. Such estimation will dictate the computational

complexity per iteration.

Letting tfinal denote the final value of the parameter t when the algorithm stops,

the total number of iterations of the algorithm will be

in · ( tinitial ) 

Next we state the main theorem of the section.

Theorem 24 Let K be a convex set satisfying Assumptions 5, 7, 8, and 6 and con-

sider the homotopy algorithm using a family of densities .F = {ft(x) - 1K(x).e - tl]lxl2 :

t E (O, to]}. Then:

(i) If K is unbounded, the algorithm will compute a valid certificate of unboundedness

in at most

O(v/-ln -)) iterations with probability 1 - 6,

where each iteration makes at most O* (n41 n n (1K R))) calls to the member-

ship oracle.

(ii) If K is bounded, the algorithm will compute a valid certificate of boundedness in
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at most

O (iln (nR )) iterations with probability 1 - 6,

where each iteration makes at most O* (n4 In In ())) calls to the membership or-

acle.

The proof of Theorem 24, which is provided in Section 5.9, is built upon the

analysis of the next sections.

5.4 Analysis of the homothopy algorithm

5.4.1 Stopping criteria: unbounded case

An appropriate certificate of unboundedness for a convex set is to exhibit a non-zero

element of the recession cone of K. Assumption 8 allows us to correctly verify if a

point is an element of CK. For example, in the case of linear conic systems (5.3), any

membership oracle for C itself can be used to construct a membership oracle for K

and CK.

We point out that if the algorithm terminates indicating that K is unbounded,

a nonzero element of the recession cone was found (a certificate of unboundedness).

Thus, the algorithm always terminates correctly in this case. The following corollary

of Theorem 23 ensures that we can find such certificate, which provides a desirable

stopping criteria in the case of K being unbounded.

Corollary 16 Suppose K is unbounded. After

T 1 (t 96enR)

iterations of the exact algorithm, we have P (XtT E CK) > 1 - 6.

Proof We start the algorithm with t = to, and after T iterations, we obtain tT =

962R'. The result follows by applying Theorem 23 to XtT. 
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5.4.2 Stopping criteria: bounded case

In contrast with the unbounded case, we lack a straightforward certificate for the

case of K being bounded. In addition, unbounded sets whose recession cone has zero

width should not be wrongly classified as bounded. That is, our analysis should cover

those ill-conditioned cases as well.

On the search for an appropriate certificate, the mean of the random variable Xt

appears as a natural candidate. Assuming that the set K is unbounded and line-

free, its norm should increase as the parameter t decreases. On the other hand, if K

is bounded, the mean will eventually be bounded no matter how much t decreases.

Unfortunately, that analysis breaks down for sets that contain lines. For example, if

K is symmetric the mean of Xt is zero for every t > 0, whether K is bounded or not.

In order to overcome that we consider the second moment matrix Qt of the random

variable Xt. The matrix Qt will be large, in the positive definite sense, if either the

covariance matrix or the norm of the mean of Xt is large. Again, if K is unbounded

the maximum eigenvalue of Qt increases as the parameter t decreases. Otherwise, K

being bounded, the maximum eigenvalue will eventually be bounded. That provide

us with a nice criterion which is robust to instances where K contains lines and/or

TCK = 0. We emphasize that the second order information is readily available, since

we are required to compute the covariance matrix and the mean of Xt to implement

the hit-and-run random walk for ft (see Section 5.5 for details on the sampling theory

and the reasons why we need to compute the covariance matrix to keep ft in near

isotropic position). Next corollary provides the desirable stopping criteria.

Corollary 17 Suppose K is bounded. The exact algorithm will detect boundedness

for all t < ev, and will bound R by . Moreover, this will happen in at most

T = In (to 7eRVi) iterations.

Proof If t < A then Ama,, (E[XtXt]) < 77,; from Corollary 13. From Corollary

12, this means that K is bounded and R < nt'

Moreover, starting with t = to, after T = In(to 7eRV/) iterations we obtain

tT < 7eR- 
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To generate a certificate of boundedness, the maximum eigenvalue of the second

moment matrix must be estimated (Section 5.6 covers the necessary theory for that).

Since it will be estimated via a probabilistic method, there is a probability of failure on

each iteration which must be properly controlled (see Section 5.8 for details). Thus,

in contrast to the unbounded case, if the algorithm terminates indicating that K is

bounded, there is a probability of failure associated with that decision which can be

made smaller at the expense of computational time.

5.4.3 Initialization of the algorithm: unknown r

This section clarifies how to start the algorithm. As is usual under the membership

oracle framework, it is assumed that we know a point in the interior of K, which

is taken to be the origin for convenience (Assumption 7). In some applications of

interest such points are readily available, for example 0 E int K in the conic system

(5.3).

The implementation of Step 1 will be done by a simple accept-reject method, see

[8]. Note that it is simple to draw a random variable Xto whose density is proportional

to fto(x) e- t 0ll xz12 on IRn instead of only on K (pick a point uniformly on S2n-l and

then scale using a F(n, to) random variable1 ). If it is the case that Xto E K, we accept

that point; otherwise, we draw another point according to fto and repeat the process

until a point in K is obtained.

Now, we need a constructive approach to bound r from below. Fortunately, a

simple procedure is available for estimating r up to a factor of ,v . That will be

satisfactory since the final dependence on r is only logarithmic. Consider the following

quantity:

r= min max{t : tei E K, -tei E K}, (5.14)
i=l,...,n

where ei E6 R n denotes the ith unit vector of IRn. It is clear that r can be approximated

in O (n In 1) operations (via a simple binary search) and will not increase the order of

the computational complexity of the algorithm. The next lemma provides a guarantee

1A r(a, p) random variable is characterized by the density f(x) = (/alr(a))xa-le - Px for x > 0,
and zero otherwise.
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of the quality of the approximation provided by r.

Lemma 26 Let r be the radius of the largest ball centered at the origin contained in

K and let r be as defined in (5.14). Then > r > /V/ii.

Proof Clearly, > r. Note that ei E K for every i. Thus, the convex hull of

these points contains a ball of radius /ni which is contained in K. Therefore,

> r > __dvr. 

We also need to ensure that the probability of the event {Xto E K} is reasonably

large. The next lemma achieves this by a suitable choice of the initial parameter to

based on the radius r of the largest ball centered at the origin contained in K.

Lemma 27 Assume that the ball centered at the origin with radius r is contained in

K. Let Xto be a random variable whose density is proportional to e-t
0

llIzI 2 for any

x E IRn. Then if to > 2 (n1), we have

P(Xto e K) > 1 - en-(tor/2)

Proof For any y K, fto(y) < fto(O)e- tor = fto(O)e-8n, since IIYI2 > r. Using

Lemma 5.16 of [41] (since tor/(n - 1) > 2), we have

P(Xto ¢ K) < P(Xto B(O,r))= P(fto(Xto) < fto(O)e- t °r) < (en-' tor )n-

n-1 o t, -I n < en-(tor/2)n-1 -

since e-Cc < e-C/2 for every c > 0.

[O

This allows us to efficiently implement the accept-reject method in Step 1 of the

algorithm.

Corollary 18 After computing r as in (5.14), it suffices to initialize the algorithm

with
8n3 /2

to = r
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to obtain that P(Xto E K) > 1 - e-3 .

Proof Recall that Lemma 26 implies that _> r/f/i. By Lemma 27, P(Xto E K) >

1- en-4n3/2 > 1 - e 3n . []

5.5 Sampling ft via a geometric random walk

The ability to sample according to any density of the family F is the driving force

of our algorithm. Although a variety of densities can be perfectly simulated with

negligible computational effort, that is no longer the case if we restrict the support of

the density to be an arbitrary convex set K given by a membership oracle. In fact,

even to generate a random point distributed uniformly over a convex set is an inter-

esting problem with many remarkable applications (linear programming, computing

the volume, etc., see [31],[43],[40]).

Important tools to generate random points proportional to a density function

restricted to a high dimensional convex set K are the so-called geometric random

walks. Starting with a point in K, on each step the random walk moves to a point

according to some distribution that depends only (i) on the current point, and (ii) on

the desired density f to be simulated. Thus, the sequence of points of the random

walk is a Markov Chain whose state space is K. Moreover, there are simple choices of

transition kernels (which is the continuous state space analog for the transition matrix

for a finite state Markov Chain) that make f the unique stationary distribution of this

Markov Chain (for example, the celebrated Metropolis Filter), which automatically

ensures several asymptotic results for arbitrary Markov Chains [8]. Going one step

further, we are interested in the convergence rate to the stationary distribution, which

is a much more challenging question (which could be arbitrarily slow in general). So

we can bound the necessary number of steps required by the random walk to generate

a random point whose density is approximately f.

By choosing F to be a family of logconcave densities, we will be able to invoke

several results from a recent literature which proves the efficiency of one particular

random walk called hit-and-run, see [37, 41, 42]. Roughly speaking, these results
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show that if (i) a relatively good approximation of the covariance matrix is available,

and (ii) the density of the current point is close to the desired density, then only

O*(n 3 ) steps of the random walk are necessary to generate a good approximation for

the desired random point.

In our context, recall that the distribution of interest ftk is changing at each

iteration. The current approximation of the covariance matrix Vk will be used as

the approximation to the true covariance matrix of the next iteration Vk+l, which in

turn will be estimated by Vk+1. In a similar way, the current point Xtk, distributed

approximately according to ftk, will be used as the starting point for the random walk

to approximate a random variable distributed according to ftk+l. The parameter 4',
which dictates the factor by which t is decreased at each iteration, will be the largest

value such that these approximations are valid from a theoretical perspective.

5.5.1 A geometric random walk: hit-and-run

There are several possible choices of geometric random walks. We refer to [59] for a

recent survey. Here we use the so-called hit-and-run random walk. The implementa-

tion of this random walk requires the following as input: a density function f (known

up to a constant), a starting point X°, a covariance matrix V, and a number of steps

m.

Subroutine: hit-and-run(f, X 0, V, m)

Step 0 Set k - 0.

Step 1 Pick a random vector d N(O, V).

Step 2 Define the line e(Xk, d) = {Xk + td: t E IR}.

Step 3 Move to a point Xk+1 chosen according to f restricted to (Xk, d).

Step 4 Set k - k + 1. If k < m, goto Step 1.

Step 5 Report X m .

Although hit-and-run can be implemented for arbitrary densities, we will restrict

ourselves to the case of logconcave densities. In such case, the implementation of
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hit-and-run can be done efficiently, and we refer to the Appendix for a complete

description for the case in which ft is defined as in (5.1) with the Euclidean norm.

5.5.2 Sampling complexity

Here we state without proof results of the literature of sampling random points ac-

cording to logconcave densities. We start with a complexity result for the mixing

time of the hit-and-run random walk.

Theorem 25 ([40] Theorem 1.1) Let f be a logconcave density such that (i) the level

set of probability 1/8 contains a ball of radius s, (ii) Ef [llx - zf 112] < 2, and (iii)

the L2 norm of the starting distribution a with respect to the stationary distribution

7rf is at most M. Let a m be the distribution of the current point after m steps of the

hit-and-run applied to f with V = I. Then, after

m = (n2S2 ln (-) ) steps,

the total variation distance of am and irf is at most e.

Theorem 25 bounds the rate of convergence of the geometric random walk not only

on the dimension but also on the L2 norm of the starting density with respect to the

stationary density ft, and on how "well-rounded" is ft via the ratio S/s. The notion

of "well-rounded" is deeply connected with the concept of near isotropic position.

Next lemma quantifies that connection.

Lemma 28 (/41] Lemma 5.13) Let f be a density in C-isotropic position. Then

Ef [IIX - Zf112] < Cn, and any upper level set U of f contains a ball of radius

rf (U) /eV/.

We point out that any (full dimensional) density can be put in near-isotropic

position by a suitable linear transformation. By using an approximation of the co-

variance matrix V to implement the hit-and-run random walk such that all eigenvalues

of V-1V are between 1/C and C, ft is in C-isotropic position. Thus, the ratio Sis
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can be bounded by 8eC/n (in this case, note that only m = O*(n3 ) steps of the

random walk will be necessary to generate one random sample). Next section sum-

marizes how to compute an approximation Vk which puts ftk in 2-isotropic position.

Moreover, it will be shown that all densities simulated by the algorithm will be at

most C-isotropic for a constant C (independent of the dimension) as we decrease the

homotopy parameter t.

Remark 15 In our analysis we will be assuming independence among different sam-

ples for simplicity (recall that they are separated by m = O*(n3 ) steps of the random

walk). Although this is not the case, independence can be approximated at the cost

of an additional constant factor in the number m of steps of the random walk. Here

we have chosen exposition over formalism since no additional insight is gained if we

work out all the details.

5.6 Estimating the covariance matrix, the mean,

and the second moment matrix

In this section, we recall estimation results for the mean covariance matrix of a log-

concave random variable. Moreover, we show that these estimates can be used to

approximate the second moment matrix with a desired relative accuracy. Herein it

will be assumed that independent identically distributed samples {X i} are available.

We emphasize that these estimations depend only on the samples and not on the

isotropic position of the density function. As stated before, the isotropic position

plays an important role to bound the number of steps of the chain required to obtain

each sample.

First we recall a result for estimating the mean and covariance matrix.

Lemma 29 ([41] Lemma 5.17) Let z and V denote respectively the mean and co-

variance matrix of a logconcave random variable. For any > 0 and 6 E (0, 1),
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using
4 1 N

N > ±nln2 samples and X = N X i

i=l

we have that

P (V-1/2 (X -z)[ 1 ) 5 .

Lemma 30 ([31] Corollary A.2) Let V denote the covariance matrix of a logconcave

random variable. Using N > O(ln3 nl In2 n) samples, where 6 < 1/n,

N

V/ = (Xi - )(xi -X)T
i=1

we have that all eigenvalues of the matrix V-'V are between 1/2 and 2 with probability

at least 1 - 6.

These results yield a useful estimation procedure for the second moment matrix.

In particular the maximum eigenvalue of Q will be estimated up to a (known) constant

factor.

Lemma 31 Let Q denote the second moment matrix associated with a logconcave

random variable. Then for , < 1/4 and using N > O(ln3 nln2n + nln2 a), for

6 < 1/n, the matrix

V + VXXT

is such that all eigenvalues of Q-1~Q are within (1/2 - 2) and (2 + 26 + 62) with

probability at least 1 - 6.

Proof In this proof let 11 II = 11 112. Lemma 29 yields that 11V-1/2(X - z)II < with

probability greater than 1 - 6/2. In this event, there exists d E IRn with Ildll < 1

satisfying

= z + 6V1 / 2d.
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For any w E IRn , we have that

Kw, Qw) =w, w) ± -, wj = Kw, f/w) ( + Vl/ 2d, w)2

= (w, Vw) + (, w)2 + 2 (, w) (d, Vl/2w) + 2 (d, V/2w) 2 (5.15)

> (, Vw) + I (, W)2 -2 (w, Qw) = (2 -2) (w, Qw).

We will use the following corollary in our algorithm.

Corollary 19 Using N = O(nln2 nl n3 ) samples to estimate the second moment

matrix Q, with probability at least 1 - 6 we have that all eigenvalues of Q-1 Q are

between 1/3 and 3.

Proof Set = 1/24 and apply Lemma 31. 0

Thus, with O*(n) samples per iteration one can properly estimate the mean,

covariance matrix, and second moment matrix to conduct the algorithm.

5.7 Updating the parameter t: warm-start

Since the parameter O controls how fast the sequence {tk} decreases, its value is

critical to the computational complexity of the algorithm. Although we are tempted

to decrease t as fast as possible, we still need to use the current density as a "warm-

start" to approximate the next density. That is, the L2 norm of ftk with respect

to ftk+, needs to be controlled. Moreover, the covariance matrix associated with ftk

should also be close to the covariance matrix of the next iterate ftk+1. The trade-off

among these quantities will decide how fast one can decrease the parameter t. Kalai

and Vempala show how to relate the L2 norm of two logconcave densities and their

covariance matrices. To the reader's convenience we state their results here.

Lemma 32 ([31] Lemma 3.8) Let f and g be logconcave densities over K with mean

Zf = Ef[x] and zg = Eg[x], respectively. Then, for any c E IRn

Ef [(c, x - Zf)2] < 16 llf/ II Eg [(c, X _ Z9)2]
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This result implies that it is enough to control the L2 norm in order to guarantee

that the covariance matrices of the densities are relatively close. A simple extension

of Lemma 3.11 of [31] yields the desire result.

Corollary 20 Consider the densities ftk and ftk+l such that tk+l = (1 - )tk =

(1 - )tk. For n 5,

Ilftk/ftk+ll < en/ (n- 1) and Ilftk+l/ftkll -e / (n- 2 ).

Next lemma combines the previous results to ensure that all the densities used in

the algorithm will be in 28-isotropic position.

Lemma 33 Assuming that n > 16, and using N = 0* (c3n) samples in any iteration,

the distribution encountered by the sampling algorithm in the next iteration is 29-

isotropic with probability 1 - 2-.

Proof By using Lemma 30, we have that ftk is 2-isotropic after we estimated its

covariance matrix in Step 2 of the algorithm with probability 1 - 2-K. Using Lemma

32 and Corollary 20, for any v E Sn-1,

Ef,k+l [(V x - Zfk+l < 16 e (n )Eftk [(vX- Zftk )2] < 32 en/(n-2v) < 28

since n > 16. O

Lemma 33 ensures that O*(n) samples suffice to estimate the current covariance

matrix accurately enough to be used as an approximation to the covariance matrix

associated with the next iteration.

5.8 Controlling the overall probability of failure

Before we proceed to the proof of Theorem 24, we prove a technical lemma which

allows us to properly control the overall probability of failure of the algorithm. First

152



note that if the algorithm finds an element of CK it will always stop correctly. Thus,

the algorithm can fail only if it (wrongly) declares that K is a bounded set or if it

does not terminate. The latter concerns with the stopping criteria of the algorithm

and it was already analyzed in Sections 5.4.1 and 5.4.2. The first issue can occur only

if the estimated second moment matrix Qk differs significantly from the true matrix

Qtk. In turn their difference is controlled by the number of samples used to estimate

Qtk, which depends on the probability of failure used for the current iteration. Recall

that we do not know the total number of iterations T a priori (since we do not have

any estimates for R or rcK), and so we cannot simply set the probability of failure

to 3/T for each iteration. Instead of using a constant probability of failure for all

iterations, we slightly increase the number of samples used to estimate Qt k at each

iteration to ensure that the probability of failure will not accumulate indefinitely.

Lemma 34 Let T be the total number of iterations of the algorithm and 1 - f the

desired probability of success. Initializing the algorithm with = 5f/4 and setting the

probability of failure of the ith iteration to i = 5 f/4, we obtain:

(i) the probability of success is at least 1 - f/2;

(ii) The smallest 3 used by the algorithm satisfies 4 > .

Proof (i) By setting a probability of failure of the ith iteration of the algorithm to

(1/i2 )6f/4, we have that the total probability of failure is bounded by

Z i =Z f <4 i2af/2
4i2 - 4 <

i=1 i=1 i=1

since E = r2/6 < 2.

(ii) follows since the algorithm terminates after T iterations.
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5.9 Proof of Theorem 24

Let 0 = fi and let 1 - 6f be the desired probability of success. The algorithm

terminates in T = /iln (tI) iterations. Next we need to: (i) properly bound

tinitial, (ii) ensure that the algorithm terminates, i.e., properly bound tfinal (which

also bounds T), and (iii) control the probability that it wrongly terminates.

(i) Lemma 27 yields tinitial = to > 8n/i > 8n3/2 /r.

(ii) We will use Corollaries 17 and 16 with 6 = 6f/ 2 . Thus, the algorithm will

correctly terminate with probability at least 1 - 6f/2 after

T = x/ln ((8n3 2/r)(96enR)/((6f/2)2TcK))

iterations if K is unbounded, and after T = v/niln ((8n 3/2 /r)21eRvni)) iteration if K

is bounded (note that we use 21 instead of 7 to take into account a factor of 3 in the

approximation of the maximum eigenvalue of Vk).

(iii) Finally, we ensure that the probability of (wrongly) terminating before reach-

ing iteration T is at most f /2. This is achieved by slightly reducing the probability

of failure as described in Lemma 34.

Now we analyze the impact of reducing the probability of failure on the compu-

tational complexity of each iteration. Lemma 34(ii) ensures that it is sufficient to

use
6 = f/2 if

4T 2 32n In2 (tinitial/tfinal)

This will dictate the number of samples needed to estimate the covariance matrix. In

Lemma 33 we will need at most

1 32T 2

n = -in
In 2 6f

on any given iteration (given that we terminate correctly). That leads to a total of

at most

0(nln3 ())
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samples per iteration of the algorithm.

Since each sample is computed by using O*(n 3) steps, and we have T iterations,

the overall complexity is

o* (T n3 n ln3 ( )) = * (n45 In T))

The results of Theorem 24 follow by using the appropriate T on each case as defined

in (ii).

5.10 Conclusions

In this work we study probability densities ft induced by an arbitrary norm with a

convex support K as defined by (5.1). Our goal is to relate geometric properties of

K with analytical properties of ft.

Using these properties, we also develop a test to decide whether a convex set,

given only by a membership oracle, is bounded or unbounded. The computational

complexity of the probabilistic method proposed is polynomial in the dimension of the

set and only logarithmic on other condition measures (such as the width of the reces-

sion cone and the diameter of the set, respectively, for the unbounded and bounded

cases).

Exploiting the geometry of unbounded convex sets was key in developing a prob-

abilistic method to implement that test. A geometric phenomenon guarantees that

most points of an unbounded convex set will be in its recession cone if that cone has

positive width. In such cases, random points with large norms are likely to belong to

the recession cone.

In contrast with probabilistic methods over convex sets in the literature, we need

to explicitly deal with unbounded sets, and additional effort is needed to ensure that

all the densities are well defined. Moreover, if K is unbounded our analysis shows
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that an element of CK can be computed in

O* (vln ((Tc+ ))) iterations.

That is particularly relevant for the ill-conditioned case of Tc, = 0. Although we

cannot find an element of CK (which has zero volume), the algorithm will generate a

direction d, Ildlj = 1, such that dist(d, CK) < in at most

0* (/in (R))

iterations of the homotopy algorithm.
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Chapter 6

Conclusions

In this thesis we explored connections between geometry, probability, and optimiza-

tion under convexity. We demonstrated how geometric quantities can be used to

create efficient algorithms for a variety of interesting problems. In particular, proba-

bilistic tools, such as sampling random points, lend themselves very naturally in the

analysis and implementation of these algorithms. Specifically,

Symmetry Function of a Convex Set: we established many new proper-

ties of this function first proposed by Minkowski [44]. In particular, the log-

concavity of the symmetry function, probabilistic bounds on the distribution of

the symmetry function over the set, etc. Moreover, we characterize its maxi-

mum points in general and provide efficient methods to compute/maximize this

function in the case of polyhedral sets.

Projective Pre-conditioners for IPM: based upon new results that we ob-

tained for the symmetry function, a family of pre-conditioner for interior point

methods applied to homogeneous linear conic systems is proposed. In particular,

we showed that there exists a pre-conditioner that makes the IPM strongly poly-

nomial. We provided a constructive procedure to obtain such pre-conditioner

with high probability.

Efficiency of a Re-scaled Perceptron Algorithm: we developed the analy-

sis of the re-scaled perceptron algorithm, originally proposed in [11] for a system
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of inequalities, for a linear conic system. In the process, we also developed a

new complexity bound for the problem E.1.

Norm-induced Densities and Boundedness of a Convex Set: we investi-

gated properties of random variables whose densities are induced by an arbitrary

norm. We connect the average behavior of these random variable with geomet-

ric properties of its own support. These results motivates a method to test if a

convex set, given only by membership oracle, is bounded or not. Moreover, this

method efficiently provides a certificate of boundedness (associated with the

covariance matrix) or unboundedness (an element of the recession cone) with

high probability.

In addition, we emphasize that in many cases geometric properties can be seen

as condition measures of the problems (e.g., width of a cone, sym(0, H), B(0, r) C

K C B(0, R)). In turn these quantities can bound the behavior of solutions and help

establish robustness properties.

6.1 Future research

There are numerous research questions associated with the themes of this thesis.

The symmetry function could be used in robust optimization to relax the symme-

try assumption which is usually made in this context [28]. Another research question

is to extend the symmetry concept from convex sets to log-concave densities [60].

Finally, the efficient computation of the symmetry function for non-polyhedra sets is

still open.

As indicated in Chapter 3, there are many open questions concerning the projec-

tive pre-conditioners. The counterpart of the projective pre-conditioner for optimiza-

tion problems is currently under investigation. A simple conversion to a feasibility

problem would not exploit the underlying structure of the problem. Moreover, the

use of 8* to bound the number of iterations from below is also of theoretical interest.

With respect to the re-scaled perceptron algorithm, it is interesting to analyze the
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performance of the method in the alternate system. In the case in which the original

system is infeasible, the perceptron algorithm is generating an infeasibility certifi-

cate. It would be interesting to investigate the corresponding infeasibility certificates

generated by the re-scaled perceptron algorithm.

The ability to sample from log-concave densities has already motivated many

interesting algorithms. Although the log-concave case is now well understood, little is

known outside this context. The ability of sampling from different classes of functions

is promising for further developments. A near log-concave case was investigated by

Applegate and Kannan in [2]. Under statistical assumptions, the central limit theorem

can be used to enforce near log-concavity and thus the efficiency of the sampling

method in [5]. An interesting extension of the current literature would be the ability

to sample from the boundary of convex sets, or more generally, from sets with non-

negative Ricci curvature [61].

As shown in this thesis we believe that the combination of probabilistic and de-

terministic methods will lead to better algorithms. Perhaps the most important issue

that has not been addressed here is to map the frontier of problems that are solvable

efficiently by probabilistic methods.
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Appendix A

Hahn-Banach Theorem

Theorem 26 (Hahn-Banach for real vector spaces) Let X be a Banach space

and p a convex functional on X, then there exists a linear functional A on X such

that

p(x) > A(x) Vx E X

Proof Take 0 E X, and define X = {0}, A(0) = p(O).

If 3z E X, z ¢ X, extend A from X to the subspace generated by X and z,

A(tz + .) = tA(z)+ (:).

Suppose xl,x 2 E JX and a > O, 3 > 0.

3,(Xi) + aL(X 2 ) = A(pX1 + aX2 )

= (a+p)o (A l + a 2 )

< (a + p)p (a + X x2)
= (a +f)p([ P] (i az) [ ] (2 Z))

< p(xl - az) + ap(X2 + OZ)

Thus,

P [-p(xl - az) + A(x)] < a [p(x2 + PZ) - (X2)]
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1 1
- [-p(xi - az) + A(Xi)] < - p (X2 + OZ) - A(X2)]

1 1
sup -[-p(xl - az) + A(xl)] < a < inf [p(x2 + 3z) - A(x2)]

xEX,a>O a x2EX,3> P

Define A(z) = a, then assuming t > 0,

A(tz +) = t(z)+ A() = ta + (tx)

< t (lp( + tz) - (i) + A(x)
< p(tz + x)

the case of t < 0 is similar. To extend for X, we will use the Zorn's lemma.

Let £ be a collection of all extensions e of A, e(x) < p(x) for all x E Xe. Where

el - e2 if Xe C Xe2 and el(x) = e2(x) in Xel. Thus, 6 is a partially ordered and

If {es}sEJ is a totally ordered subset of , A = UEJXeS is a subspace (monotone

union of subspaces) and

e A IR, e(x) = e,(x), if x E Xe,.

e is well defined and e -< e for all s E J. Then e is maximal for J. Thus, must

have a maximal element (Zorn's Lemma) A.

So, A must be defined on X, otherwise we could extend it contradicting the fact

that it is maximal.

[O
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Appendix B

Symmetry Function

B.1 sym(x, S) and sym(S) under Relaxed Assump-

tions

All of the results in this paper are based on Assumption A, namely that S is a closed,

bounded, convex set with an interior. Herein we discuss the implications of relaxing

this set of assumptions.

As mentioned earlier, the assumption that S has an interior is a matter of conve-

nience, as we could instead work with the relative interior of S on the affine hull of

S, at considerable notational and expository expense.

The assumption that S is closed is also a matter of convenience, as most of the

statements contained in the body of the paper would still remain valid by replacing

inf - min and sup - max and/or by working with the closure of S, etc.

Suppose that we relax the assumption that S is bounded. If S is unbounded then

S has a non-empty recession cone. In the case when the recession cone of S is not a

subspace, then sym(S) = 0. However, the case when the recession is a subspace is a

bit more interesting:

Lemma 35 Suppose that S = P + H, where H is a subspace and P is a bounded

convex set in H', and x E S; then sym(x, S) is completely defined by P, i.e.,

sym(x, S) = sym(w, P) where x = w + h and (w, h) E H x H.
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Proof Without loss of generality, we can assume that x = 0 since symmetry is

invariant under translation. Trivially, -aS C S if and only if -ac(P + H) C (P + H).

Since P and H lie in orthogonal spaces, for each x E S, there exist a unique (w, h) E

P x H such that x = w + h. Since -aH = H, -ax E S if and only if -aw E P. 

B.2 Standard Interior-Point Method for Linear Pro-

gramming

Consider the following linear programming problem in "dual" form, where M is an

m x k matrix:

P: VAL := maxx,8 cTx

s.t. Mx +s= = f

s>0
x E Rk, s E R m

For E (0, 1), a p-approximate analytic center of the primal feasibility inequalities

Mx < f is a feasible solution xa of P (together with its slack vector sa = f - Mxa)

for which there exists dual multipliers za that satisfy:

Mxa + Sa = f, Sa > o

MTza 0 (B.2)

IISaza-e II < 

where S is the diagonal matrix whose diagonal entries correspond to the components

of s. Following [54] or [57], one can prove the following result about the efficiency of

a standard primal interior-point method for approximately solving P.

Theorem 27 Suppose that = 1/8 and that (a, Sa, Za) is a given /-approximate

analytic center of the feasibility inequalities of P, and that c = MTA for some A E

IRm. Then (a, Sa, za) can be used to start a standard interior-point method that will

compute a feasible solution of P with duality gap at most j in at most
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[(2 ± 4Vm) In ( 10mISaA ,) +1

iterations of Newton method.

Now consider the following linear programming problem format:

: VAL := max,0 0

s.t. Mx+d+s=f (B.3)

s>O
xE Rk, OER, sE IR m

Again following [54] or [57], one can prove the following result about the efficiency of

a standard primal interior-point method for approximately solving P.

Theorem 28 Suppose that 3 = 1/8 and that (a, sa, Za) is a given P-approximate

analytic center of the feasibility inequalities of P, and that dTza > O. Then (Xa, Sa, za)

can be used to start a standard interior-point method that will compute a feasible

solution of P' with duality gap at most g in at most

[(2 + 4i) In ( dNtzom))+

iterations of Newton method.
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Appendix C

Analysis of the Computational

Complexity to compute the

symmetry of a polyhedra

Here we present the details of the computational complexity analysis of the meth-

ods for computing the symmetry of a polyhedra represented by a finite number of

inequalities.

As mentioned in Section 2.4.2 we propose three different methods: a potential

reduction, a primal-dual, and a dual method.

Here "A > 0" is componentwise for all m2 components of A. This means that

sym(x, S) > a if and only if (2.36) has a feasible solution. Thus, we can completely

characterize the a-the level sets, F(a). This also implies that sym(S) is the optimal

objective value of the following optimization problem:

min a
x,A,a

s.t. AA = -aA (C.1)

A(b- Ax) < b- Ax

A > ,

and any solution (x*, A*, a*) of (2.37) satisfies sym(S) = a* and x* E Spt(S).
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Remark 16 Notice that (2.37) is not a linear program.

C.1 Potential reduction

In this section we will use y = E [1, Co). Therefore, we will be interested in reducing

y on each iteration, and we denote the optimal value by y* = 1/sym(S). Consider

the upper level sets defined as

r(y) = {(I7, x, t) E IR+xm x S x HR+: HA = -A, II(b - Ax) + t = y(b - Ax)}.

The following quantities, associated with the set S C Rn, are needed for our

analysis:

LL ° = min min (b- Ax)i, (C.2)
i=l,...,m xEr(n)

LUP = max lib - Axljl < m max max (b - Ax)i. (C.3)
xEr(n) i=l,...,m xEr(n)

These quantities are well defined and strictly positive if S is bounded and has non

empty interior. We note that it is possible to relate LLO and LUP with the number

of bits needed to represent the instance. We start with a simple lemma.

Lemma 36 If S is bounded, F(y) is bounded and has a nonempty (relative) interior

for every n > y > y*.

Proof Since S is bounded, all components of x are also bounded. Note that (b -

Ax) > LL°Oe > O and (b- Ax) LPe. Using the fact t > O and 0, we can

trivially bound
LUP

ik < Y-Lo and ti < LUP.

It is easy to see that the relative interior is non-empty for every y > 'y*. [

Next we define the potential functional that will be used in our analysis.

168



P(y) = min - E log(7rik) - log(ti)
i=1 k=l i=1

s.t. (C.4)

HA = -A
H(b- Ax) + t = y(b- Ax).

We denote by P(x, II, t) = - Eil Z 1l log(7ik) -- z 1 log(ti).

Lemma 37 If yl > 7y2 > y*, then P(yl) < p(y 2 ).

Proof Let x', Ii, ti such that P(x', Hi, t) = P(yi). Then x2 E r(yl) since (II2 , x 2, t 2

(yl - y2 )(b - Ax 2 )) is feasible for the (C.4) with y'. Moreover, yl > 2 implies that

(l -_ 72)(b- Ax 2) > 0. Thus, P(72 ) > P(7l) follows directly. 

Since maxx sym(x, S) > 1/dim(S), we know that r(2dim(S)) has a non-empty

interior and 2dim(S) is a valid starting value for y.

Theorem 29 Given an (< 1/2)-approximation (x, H, t), for the analytical center

with y. It is possible to decrease y by

211S(b - Ax)l 2

where (U, S) are dual variables such that

IIH r0 U - eeT, St - ell2 < 

Proof In order to show that y - Ay > * we will construct a feasible solution for

F(^ - Ay). We can obtain a feasible solution by defining

rI(b - Ax) + t - 7y(b - Ax) = ( - Ay)(b - Ax)

t t-x(b-A

t - A-y(b -Ax).
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Note that by construction we have

lII i U - eel, St- ell2 = 11I 0 U - eeT, S(t - A-y(b - Ax)) - ell2

< Illn I U - eeT, St - e2 + 110, yS(b - Ax) 112

< + AlSIS(b - Ax)112

< 23,

where the last inequality holds if we use

3 3
211S(b - Ax)112 - 2IS(b - AxIll

(C.5)

3

Moreover, since 2 < 1, we still have ti > 0. 

The next theorem ensures that the potential function must increase by a fixed amount

if we decrease the value of y by Ay.

Theorem 30 Using the previous definitions of A and y, we have

P(y - zAy) > P(y) + 17
72

Proof First we write the increment of the potential function as

P(7y-ay)-P(y) = P(y-Ay)-P(f, t) + P(fi, , t) - P(n, x,t)+ P(I, t) - P() ).
(i) (ii) (iii)

Next we will provide bounds over each of the three pairs.

(iii) we have that P(II, x, t) - P() O0 since (II, x, t) is feasible for 7(-y).

(ii) since (I, x, t) is a 2 approximation for y - Ay, we obtain

p (f (23)2 < P(y - ay) < P(H, , t).2(1 - 23) -

Thus, we have

P(y - Ay) - P(nI, x, t) > - (23)2(1- 2)'
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For (i), we have that (for the reader convenience we include an explanation on the

left hand side in parenthesis)

P(n, x, t) - P(ni, x, t)

(Fik = 7rik)

(log 1 = 0)

(-log(1- x) > x)

(A _ - 2(im1 si(b-A)i) )

(Isiti - 1 < ~ t < 1 )Si

m m

= - log iFk- E logti +
i=l,k=l i=1

m m
1rnnik - ti=-EEog 7rik -log- t

i=1 k=l 7rik i= t
m m m

i ti= -ylog 7r - -_ log
i=1 k=l i=1

= -log (1 _ ti I
i=l

mm m

* log 7ik + 5 log ti
i=1 k=l

- Ay(b - Ax)i
ti

m 5 3 (b- Ax) i

mŽ i(b-Ax)i211S(b-Ax)III ti

m si(b- Ax)i
2(1 + ) IIS(b - Ax)III

{II S(b- Ax) II

2(1 + ) IIS(b - Ax) II

2(1 + )

i=1

(C.6)

Finally, setting P = 1/8, we have that

4P2 /3> - 0 +0
-2(1 - 2) 2(1 +B)

1/16 1/8
+2( 8)2(1-1/4) 2(1+1/8)

(C.7)

= 1/18 - 1/24 = 1/72

The previous theorem leads to the following complexity result.

Theorem 31 If y > y* + , then
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P(y) < (m2 + m) log ()
EE

2 ( 2mLUP
+ m2 log -LLO

Proof To bound the value of P(-y) we will construct a feasible solution based on the

analytical center (II, x, t) of r(1/2(y + y*)) = r(y - 2Ay), where LAy > e/2.

IA = -A
IH(b - Ax) + t = (y - 2Ay)(b - Ax)

(C.9)

The second equation gives us

H(b - Ax) + Ay(b - Ax) + t + Ay(b - Ax) = (b- Ax)

We will introduce a positive perturbation on such that its contribution is

bounded by ay(b - Ax). Consider

LLoP = mLUe ( + I) (C.10)

There are two desired properties in this vector:

L LO
A = LUPeT (II + I)A =

L L

mLUPe (HA
LL

+ A) = e(-A + A) = O
MLUP

LLO
Pi > L----

Consider the following perturbation matrix epT, its contribution in the system is
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= mL-- TeeT(1-I + I)(b- Ax)

= m e(eTII + eT)(b - Ax)

- mvSe(eTH(b - Ax) + jib - AxII1)
< LLO e(neT(b - Ax) + jib - Axll)

= emPe(nllb - AxlIl + b - Axlll) (C.11)
- ;(n + 1)Jlb - Axllle

< Lm (n+ 1)e

n+ (b-Ax)

• (b-Ax)

where we used that n + 1 < m. Thus, by construction, we have that

(H, x t = (II + AyepT, x, t+ y(b - Ax) + Ay(b - Ax - epT(b - Ax))) E F(y).

Next we can now bound the potential of (I, , x, t as follows

P(y) < P(I, , tx )
m m

= E - log(7rik + AYPk)-
i=1 k=l
m

- E log(ti + Ay(b - Ax)i + Ay(b - Ax - pT(b
i=l

m m m

< -E y log(,p) - 1log(Ay(b - Ax)i)
i=l k=l i=l1
m m m

<-EElog (2 Pk) -E log (2(b-Ax))
i=l k=l i=l
m m LLO m (EL LO< -EE l log - 2)
i=1 k=1 i=1

= m2 log LUP) +mlog ( )

Potential Reduction Method:
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Step 0. Let (°,x°, t) a 1/8-approx. of the center of r(n), k = 0, 7k = n

Step 1. Set 7k+1 = k - A7k

Step 2. Compute the new 1/8-approx. for 7k+l using Centering Step

Step 3. If P(yk+1) > m2 log (2 P)+ m log ( ), stop

Step 4. Set k := k + 1 and goto Step 1.

C.1.1 Primal-Dual Method

In this case, it is a standard linear programming problem. The only issue that needs

to be considered is the relative precision. In this case, we know that the sym(S) E

[1/n, 1]. Thus, it suffices to bound the duality gap by eln.

Theorem 32 Let E E (0,1/10) be given. Suppose that n > 2 and xa is a = -

approximate analytic center of S. Then starting with Xa and using a standard feasible

interior-point method to solve each of the linear program, we will compute an -

approximate symmetry point of S in no more than

O(m n (-) ))

total iterations of Newton's method.

C.1.2 Dual Method

As mentioned in Chapter 2, the dual method (Exact Method) is a two-stage method.

From a complexity perspective, it is desirable to consider solving the m + 1 linear pro-

grams of the Exact Method for a feasible and near-optimal solution. Ordinarily, this

would be easy to analyze. But in this case, the approximately optimal solution to the

m linear programs (2.40) will then yield imprecise input data for the linear program

(2.42). Nevertheless, one can construct an inexact method with an appropriately

good complexity bound. Below is a description of such a method.

Inexact Method:
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Step 1 For i = 1,..., m, approximately solve the linear program (2.40), stopping

each linear program when a feasible solution x is computed for which the duality

gap g satisfies g< e(bI4-A . Set 6i -Ai..

Step 2 Let 6 : (1, ... , m). Approximately solve the linear program

max 0
2,O (C.13)

s.t. Ax + (S + b) < b,

stopping when a feasible solution (x, 0) is computed for which the duality gap

g satisfies 0 > ( + g)(1 - ). Then x is an E-approximate symmetry point of

S and T (1 - e/2) < sym(S) < lo_-(1 + 2E/3).

Notice that this method requires that the LP solver computes primal and dual

feasible points (or simply primal feasible points and the duality gap) at each of its

iterations; such a requirement is satisfied, for example, by a standard feasible interior-

point method, see Appendix B.2.

In order to prove a complexity bound for the Inexact Method, we will assume that

S is bounded and has an interior, and that an approximate analytic center xa of the

system Ax < b has already been computed; for details also see Appendix B.2.

Theorem 33 Let e E (0,1/10) be given. Suppose that n > 2 and xa is a = -

approximate analytic center of S. Then starting with xa and using a standard feasible

interior-point method to solve each of the linear programs in Steps and 2, the Inexact

Method will compute an E-approximate symmetry point of S in no more than

10ml5 In (10-) 1

total iterations of Newton's method.

The following proposition validates the assertions made at the end of Step 2 of

the Inexact Method.
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Proposition 10 Let e E (0, 1/10) be given, set := /4.1, and suppose that Steps 1

and 2 of the Inexact Method are executed, with output (, 6). Then

(i) 6 = (1,.. ., ) satisfies (1 - )(bi + *) (bi + i) (bi + A) for i = 1, . . ., m.

(ii) For any given x E S, := mini b-LAi} Satisfies

sym(x, S) E (1

(iii) sym(x, S) > (1 - s)sym(S), and

(iv) (I - e/2) < sym(S) < L_0(l + 2E/3).

Proof For a given i = 1,..., m let 9 denote the duality gap computed in the stopping

criterion of Step 1 of the Inexact Method. Then 6 > i > 6 - p > 56 - 9(bi - Ai.) >

X - g(bi + 6S), which implies

(1 - )(bi + A6) < (bi + Si) < (bi + A*),

thus proving (i). To prove (ii), let x E S be given and let a := sym(x,S) and

0:= mini ab }j . Then from Proposition 1 we have

a = min b, - A 
i 6 + Aiz.xf 1- 

(C.14)

Notice that i < 6i for all i, whereby 0 > 0, which implies that a =- x_ < 0 . We

also see from (C.14) that 0 < 1/2. Next notice that (i) implies that

1/2 > > 0(1 -) . (C.15)
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> (1 -)
-1-6

0(1 - ) 1 - 0
1-0 1-

(1 +-)
1- )

i -0 

>0(1-?) (
- 1- 

> 0(1-/)
- 1-0

-1+8
V 1-61

(1 1 

1-)g 

where the next-to-last inequality follows from 60 [0, 1/2], thereby showing (ii).

Let * denote the optimal objective value of (C.13), and notice that 6 < 6* implies

that 0* > 0*. Now let g be the duality gap computed when the stopping criterion in

Step 2 is met. Then

0 > > ( + )(1 - ) > 0(1 - ) > (1 - ) . (C.17)

From (ii) and (C.17) we have

sym(x, S) > 01-0 1-2)
(1 - _)

0*(1 - ) (1

> sym(S)(1- )

= sym(S)(1 - )

1-g) 1-0*(1-

1 2 (-
V - 1-?,) ,I1-

(1-I) (I-

> sym(S) (1 - 4) > sym(S)(1 - ),
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Therefore

1 -6

0(1- )
1 -0

0i (1- )
1-6

> (1- 1-0(1

(C.16)

> 0*(1 - ) 1
1-2

1 -

1/2
-1/2 +

N'A

(1/2)?)
(C.18)

I -I 

-g)
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where the middle inequality uses the fact that 0* E [0, 1/2], and the final inequality

uses the fact that e E (0, 1/10], thus showing (iii).

To prove (iv), note that

sym(S) > sym(, S)> 1-> (1 - 1 a(1 1 (2)-0 ) > 2

where the second inequality follows from part (ii), the third inequality follows since

E < 1/10, and the fourth inequality uses < 0. Last of all, we have

sym(S)= _ < -== - < 1_+- 
1 -0 - I- g 1- 1-0 1- - 1-0 31-i

where the first equality is from Proposition 7, the first inequality follows from (C.17),

and the last inequality follows since E < 1/10 and (C.15) implies that 0 < 0 < 41/80.

It remains to prove the complexity bound of Theorem 33, which will be accom-

plished with the help of the following two propositions.

Proposition 11 Let E E (0, 1/10) be given, and set £ := E/4.1. Suppose that Xa is a

= -approximate analytic center of S. Then starting with Xa, the stopping criterion

of each linear program in Step will be reached in no more than

[(2 + 4 ) ln (42 -2)1

iterations of Newton's method.

Proof Step 1 is used to approximately solve each of the linear programs (2.40) for

i = 1,..., m. Let us fix a given i, and define A := -e i where ei is the ith unit vector in

IRm. Then from Theorem 27 with (M, f, c) = (A, b, -Ai.) we can bound the iterations

used to solve (2.40) by

(2 + 4v) In ( -Sa)1 (C.19)
9
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Now notice that IS-Ali = sa. Let (, s) denote the primal solution and slack vector

computed in Step 1 when the stopping criterion is met. Also, to keep the analysis

simple, we assume that the stopping criterion is met exactly. We have:

Si = bi - Ai.z > bi + J6 - g > bi + i* - . > bi - Ai.xa - i = Sa -Si ,

whereby s? < Si(1 + ). Therefore

10mIlSaAll _ lmsa < 10m(1 + ) 41m(1 + e/4.1) < 42m
q gSi -E E

since in particular E E (0, 1/10). Substituting this inequality into (C.19) completes

the proof. O

Proposition 12 Let e E (0, 1/10) be given, m > 3 and set E := e/4.1. Suppose that

xa is a p = [-approximate analytic center of S. Then starting with Xa, the stopping

criterion of the linear program in Step 2 will be reached in no more than

[(2 + 4' In (6-) l

iterations of Newton's method.

Proof Let sa = b - Axa and let Za denote the dual multipliers associated with (B.2)

for M = A and f = b. It follows from (B.2) and m > 3 that

(Sa)Tza = eT(Saza - e + e) -' -+ m > 10 (C.20)
8 - 10

Setting (M, f, d) = (A, b, (d + b)) we see that (C.13) is an instance of (B.3), and from

Theorem 28 we can bound the iterations used to solve (C.13) by

(2 + 4/m) In (C.21)
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We have

( + b)Tza> (b + 6*)Tza(l- ) > (sa)TZ.( - ) > 91 )
10

where the first inequality follows from part (i) of Proposition 10, the second inequality

follows from b + * > b - Ax a = sa, and the third inequality follows form (C.20). We

next bound 9. To keep things simple we again assume that the stopping criterion in

Step 2 is satisfied exactly, whereby

1 1-1 1 4.1 1 4.1 4.lm
-= - < - = < (1+ n) <E 0 -9g.6 E sym(S) - () E

Here the first inequality follows from (C.17), the second equality follows from Propo-

sition 7, the second inequality follows from Remark 3, and the last inequality follows

since S is assumed to be bounded and so m > n + 1. Combining the bounds on

(6 + b)Tza and g we then bound the logarithm term in the statement of the proposi-

tion as follows:
1.25m 1.25m 4.lm* 10 6m

9 ' (6 + b)Tza - 9m(1 - ) 
since E E (0, 1/10) implies that £ < 1/41. This completes the proof.E

Proof of complexity bound of Theorem 33: From Propositions 11 and 12 it follows

that the total number of Newton steps computed by the Inexact Method is bounded

from above by:

m (2 + 4-)ln (42m ) + (2 + 4m)ln (6m)1 < 10m15 In (-)1

since m > n + 1 > 3 and £ < 1/10. E
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Appendix D

Projective Preconditioner

D.1 A Primal-feasible Interior-Point Algorithm for

Fg and its Complexity Analysis

Recall the parameterized barrier problem OP7, and let (x, 6) = (xk, 0k) be a feasible

solution of OP, for some r > 0. Then the locally quadratic model of OP. at (xk, ok)

yields the following Newton equation system in variables (d, A, ir, q):

tTAT7r = 7/

H(xk)d +ATr +S q = -Vf(xk) (D.1)

Ad +AtA = O

sTd = 0.

Here Vf(x) and H(x) denote the gradient and Hessian of f(x), respectfully, (d, A)

is the Newton step for the variables (x, 0), and (r, q) are the multipliers on the two

linear equations of OP1.

A primal-feasible interior-point algorithm for solving OP computes a sequence of

approximate solutions (xk, ok) of OPnk for an increasing sequence of values of Ok . Let

(d, A, 2, q) solve the Newton system (D.1) using V = Elk, then the Newton step is

(d, A), and (xk, ok) is defined to be a y-approximate solution of OPk if the norm of d

measured in the ellipsoidal norm induced by the Hessian of f () is not greater than
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y, i.e., (d)TH(xk)d < y. The algorithm starts by setting (x° , 0) - (,-1) and

by computing a value 710 for which it is guaranteed that (x°, 0) is a y-approximate

solution of OPo. Inductively, if (xk, k) is defined to be a y-approximate solution of

OPt, the algorithm then increases rik to k+l = a · r7k for some fixed value of a > 1,

and then computes the Newton step for (xk, 0
k ) for OPnk+1. The algorithm continues

in this manner until Sk > 0 at some iteration k, at which point the algorithm stops

and xk+ := o is a feasible solution of Fg. A formal statement of the algorithm is

as follows:

Algorithm A

Step 1. (Initialization) Set x - -Vf*(s)/t. If A = 0, STOP. Otherwise, set

k = 0, (x°, 90) (, -1), and define the following constants:

1 1 _V1 +fy= -, = -, a = 
9' 4

Temporarily set = 1 and solve (D.1) for (d, , , ) and set

r0 = 

Step 2. (Increase r7) ?rk+l a . rk

Step 3. (Compute and Take Newton Step) Set = qrk+l, solve (D.1) for

(d, A,i,q4). Set (xk+l,0k+) - (xk, k) + (d,A)

Step 4. (Test Solution) If 0k+1 > 0, set x := and STOP. Otherwise set

k - k +1 and go to Step 2.

In order to validate this algorithm, we will need to prove the following results. Let

dk denote the value of d in (D.1) at (xk, 9 k) using r7 = rk. The norm of this Newton

step in the norm induced by the Hessian H(xk) and is given by:

II(dk) llk := x/(dk)TH(xk)dk
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Proposition 13 (d°) lo = y.

Proof Following Step 1 of Algorithm A, let (d, A, *r, q) solve (D.1) using xk = x° = 

and 77 = 1, and set r1° by the prescribed formula. Using the fact that = -Vf ()/0

(from (vi) of Remark 8 and Theorem 2.3.9 of [52]), it follows from direct substitution

that (d°, N, 7r°, q) := (°d r°A, r°r, r7o/° + - r1°) solves (D.1) using xk = x° =

and 7 = r. Therefore Il(d°) o = (d°)TH(x°)(dO) = 1 VdH() = . ]O

Proposition 14 (dk) Ixk < for all k = 1, 2,....

Proof The proof is by induction, and for clarity we suppress the iteration counter k.

Suppose that our current point is (x, 0). Let d, denote the x-part of the Newton step

for the parameter value 77 = . Then d> can be decomposed as d = dC + Aida where dc

is the centering direction and da is the affine scaling direction. It follows from the fact

that f(.) has complexity value 9 that lldCII _< v/ . Furthermore, by assumption of the

induction we have lldjllz < . Then according to Step 2 of Algorithm A we increase 77

by the factor a. We write d, = dc + oa7da = a(d' + Oda) + (1 - a)dc = ad4 + (1 - a)dc,

whereby:

Ild,41l. < alldll + (a - )lldcII < ay + (a - I) = P .

Letting x+ := x + do, denote the new value of x and letting d+ denote the Newton

step at x+ for the parameter value 77 = al it follows from Theorem 2.2.4 of [52] thatcIdo+m p+ e< (1 -= 
completing the inductive proof. 

Proposition 15 770 > I/

Proof Since (x,0) = (, -1) is feasible for (3.4) and from the self-concordance of
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f(.) we have {(} + {d: dTH(x)d < 1} c C, it follows that

6* > -1+ max A
d,A

Ad +(A) A = 0

sTd = 0

dTH(x)d < 1.

Letting (d, A) solve the above maximization problem, to prove the proposition it

therefore suffices to show that A = y/q, which we now do. The optimality conditions

for the maximization problem above can be written as:

.TATnr = 1

pH()d + AT7r + q = 0

Ad + AtA = 0

sTd = 0 (D.2)

p > 0
dTH(x)d < 1

p (1- dTH(t)d) = O .

Following Step 1 of Algorithm A, let (d, A, x, q) solve (D.1) using xk = x° = x and

71 = 1, and set 10 by the prescribed formula. One then easily checks that

(d, A, r, q, p) : TH(~f, -(, /dTH()d

satisfies (D.2) (again using the fact that = -Vf(x)/ from (vi) of Remark 8 and

Theorem 2.3.9 of [52]), and so (d,A) is an optimal solution of the maximization

problem. Straightforward manipulation of the system (D.2) then shows that A =

dTH(i)d, and so from the definition of 710 we have A = -/7. [

Before proving the next proposition, we state a result which is implicit in Renegar
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[52], but is not stated explicitly. Rather than re-develop the notation and set-up of

[52], we simply state the result and give a proof as if it appeared as part of the text

of Chapter 2 of [52].

Lemma 38 (Essentially from Renegar [52]) Under the notation and conditions

of Chapter 2 of Renegar [52], suppose that y is an iterate of the barrier method for the

barrier parameter r and the Newton step n(y) for the function f,(x) := r(c, x) + f(x)

at y satisfies Iln(y)lly < y where y < 1/4. Then

cTy < VAL + 9 1

where 6 = + 3y2

Proof Letting z(l7) denote the analytic center of the function f, ( .), it follows from

Theorem 2.2.5 of [52] that IIy - z(7)ljy < 6, and hence from the self-concordance

property that IIy - z(r7)Iz(,) < 6/(1 - 6). From inequality (2.14) of Section 2.4.1 of

[52] we have:

cTy < VAL+-(1 + IY- z(71)lZ,()) < VAL + - 1 + = VAL -

Proposition 16 Suppose (x, 6) is an iterate of Algorithm A for the parameter value

r7 and > /(0*(1 - 6)) where = y + 3ao. Then > 0.

Proof Converting Lemma 38 to the notation of problem (3.5) and Algorithm A, we

have: 0 > * - 1 > 0* - 0* = .

where the last inequality follows from the supposition that V7 > 9/(0*(1 - 6)). l

Proof of Theorem 15: We first prove the iteration bound. Note that the parameter

values set in Step 1 of Algorithm A imply:

1 1 1
1 --- -- > . (D.3)

c 7.2vr + 1.8 - 9V(D.
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Define 6 as in the hypothesis of Proposition 16. Let

J In (10 (1+sym1(0IHn)1))

From Step 2 of Algorithm A we have r0/r/J = (/a)J and taking logarithms we obtain

ln(r) - ln(r7J) = Jln(l/a) < J(1/a - 1), and rearranging we obtain:

ln(77J ) > ln(7°) + J (1 - 1)

> in ( )+In (l+(-0) + in (1 + sym(ouH))) (from Prop.15 and (D.3))

In (+) + In (11 (0+1)) (from (3.6))\1+O* J!

In (e ('-)) + ln(117(1- 6))In ((_)),

where the last inequality follows since 117(l - 6) > 1 for the specific values of y and

6 given. Then from Proposition 16 it follows that J > 0, and so Algorithm A will

stop.

It remains to prove the bound on reldist(x, aC). For x E intC, define the norm

[.II 1by vlix := vTH(x)v for x E intC, and for x E C define:

B.(c, r) := {y : A(y - c) = O, ST(y - C) = 0, IY - C < r} .

Letting z denote the analytic center of X§ it follows from Lemma 5 of [48] that

Bz(z, O) D Yg. Assuming for simplicity that 0 = 0 for the final iterate of Algorithm

A, we have z - ,IJ < 6 := 'y + 372/(1 - )3 from Theorem 2.2.5 of [52], whereby

Bj(J, 2/(1 - 6) + 6/(1 - 6)) D Yg follows from the self-concordance of f(.). Since

it is also true that Bj(, 1) C Y it follows that a := sym(x, F) > (1 - 6)/(9 +

6) > 1/(1.20 + 0.2) for the specific values of y and 6 herein. Finally, noting that

there exists E Yg satisfying Bg(, TF) C C, where Bg(c,r) is the ball centered
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at c of radius r in the -norm, it follows from the symmetry value of x in F that

Bg( -a(1 -), arF) C C, whereby taking convex combinations with Bg(X, TF) yields

B\ 1.20 +0.2 cB.(I,TF +KB a

B-x2rF i = BS(_-a(_-x), OF)+ i_-Bs( , rF) C C
from which it follows that reldist ) 2 + 2

from which it follows that reldist(, aC) > T/(1.2 0 + 0.2).LJ
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Appendix E

Binary Search and Newton's

Method for solving (4.11)

Here we want analyze the optimization problem (4.11)

0* = minv (v, A*A) + fillvll

vT(A*A + I)v < 1.

to test if 0* < -t, where we usually want t = a/2 = 1/(64n).

To simplify our exposition we will cast (4.11) as follows

min, (c,v) +IIII (E.vl1)

vTMv < 1.

where Ilcll = IIA*II > P, fi E {-1, 0, 1}, and M > I.

Assuming that F, = 0, (4.11) has a closed form solution which can be computed

in O(n3 ) operations. We have that * = vcTM-lc and v* = M-lc//cTM-lc.

We focus our analysis on the case of Pi = 1 since the other case can be addressed

by the same methodology after a suitable preprocessing.

Before we proceed, we briefly review results on [55] and [62] which will be relevant

in our analysis.
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E.1 Combining Binary Search and Newton's Meth-

ods

To introduce the idea, we restrict our discussion to the univariate case, which will

be the relevant case for solving (E.1), but many of the results hold for more general

problems.

Consider the problem of solving the system f(5) = 0, where f is an analytic func-

tion. Following Newton's method, given a starting point z0 we can define inductively

Zk = Zk-i - f(zkl-)/f'(Zk-l)-

Definition 8 We say that zo is an approximate zero of f if

lZk - Zk-l < (1/2)2k-1-1Z 1 - Zo for k > 1.

That is, Newton method starting from zo converges quadratically from the very first

iteration. In fact, we have

Proposition 17 (Smale, [55]) If zo is an approximate zero and zn -, S and n - co,

then

jZn - j < 2(1/2)2k-l zl - zol

In [55] Smale provides sufficient conditions for a point z to be an approximate

zero. The main theorem in [55] is as follows.

Theorem 34 (Smale, [55]) Let f be an analytic function and assume that z is such

that
sup I f(k)(z) /(k- ) 1 f(z)
k>l k!f'(z) - 8 f(z)

Then z is an approximate zero for f.

The assumption in the theorem ensures that the higher order derivatives of f are

small enough so that Newton's Method converges quadratically. Ye [62] builds upon

that result and establishes the following theorem.
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Theorem 35 (Ye, 62])Let f be an analytic, convex, and monotonically decreasing

in [0, oo). Furthermore, for every z > 0 and k > 1 let

k!f'(z) z

for some a > O. If the zero of f lies in the interval E E [, (1 + 1/8)2], is an

approximate zero of f.

Moreover, it is also shown in [62] that f(z) = cT(Q + zI)- 2 c - 1 satisfies the

conditions of Theorem 35 with c = 3/2.

Next, assume that we have upper and lower bounds on the value of the root

O < z < z < . That is, f(z) > 0 and f(z) < 0. We divide the interval [z, ] into

subintervals of the form

Pi = [(1 + 1/8a~)iz, (1 + 1/8Qa)i+lz] for i > 1.

From Theorem 35, if J E Ii we have that (1 + 1/8a)iz is an approximate root.

Therefore, Newton's method can be started from this point and we can obtain a

point ~ such that i - < E in at most O(ln ln(z/E)) iterations.

In order to find the correct subinterval, we first note that the total number of

subintervals is [ln(/z)/ ln(1 + 1/8a)l. Conducting a binary search on these intervals

requires at most

O(lnln(/z) - In ln(1 + 1/8a))

evaluations of f where -n ln(1 + 1/8a) < - In 1/16a = In 16a.

E.2 Solving (E.1): > 0

Recall that we assume without loss of generality f = 1, 1lcll > 1 + a (otherwise the

optimal solution is zero, and in our case we have = 1/32n), and M - I. Let a > 0

denote the Lagrange multiplier associated with the inequality constraint in (E.1).
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The gradient optimality conditions can be written as

v
c + 2aMv = O.

In fact, we have

v* = -v*11 (I + 2a*llv*IIM)- c,

which implies that

1 = cT (I + 2a*llv*IIM)-2 c, or equivalently 1 = cTM - (M - 1 + 2a*IIv*)1- 2 M-c.

Since M > I, there exists a unique value y* = 2a*IIv*11 for the previous equality

to hold. Once By is known, we have that

1 = V*TMv* = IIv*112CT (I + 7*M) - 1 M (I + Y*M)-l c

and the value of IIv*II and a* are easily computed.

In order to efficiently compute 7*, we use the method proposed in Section E.1.

For z > 0, define the function

f(Z) = cTM- 1 (M-1 + zI) - 2 M- 1 C- 1.

In order to bound the value of y*, note that f(O) = llc112 - 1 > > 0 and

f(f(0) 3 ) > 0 from Lemma 3 of [62]. Moreover,

CTM-2c
f(llII) = CT M- 1 (M- 1 + lc lI)-2M- 1 c - 1 < l2 1 0

since M - 1 >- 0 and M >- I. Thus, we have

3 < _* < Icll.

Theorem 36 (Ye [62]) If > , a -solution for y* can be computed in at most
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O(n3 + n2 in in 1/E) arithmetic operations.

This give a new complexity bound for problems of the form (4.11).

The case of f < 0 can be solved via the same method after a proper preprocessing

via Renegar's algorithm as described in [62].

Theorem 37 (Ye, [62]) A E solution fory* can be computer in O(n4+n 2(ln n) ln n 1/e)

arithmetic operations.
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Appendix F

Hit-and-run for f(x) e-11X12

Here we specialize the method for implementing the hit-and-run method for logcon-

cave densities proposed in [41] to the norm-induced density of the form f(x) e- X
1 112

if x E K, and zero otherwise.

Given x0 E K, d E S n - l , define the line segment (xo0, d) = K n {x0 + td: t E IR}

(note that if it is not a line segment, either d or -d belongs to CK). The next iterate

should be chosen from e(xo, d) according to the density f. Let Me = maxyEe(xo,d) f(y)

denote the maximum density on e(xo, d) and, for v E (0, Me), let Le(v) denote the

corresponding level set restricted to e(xo, d).

It is a two step method:

Step 1. Choose v uniformly on (0, Me);

Step 2. Choose y uniformly on Le(v);

To implement this, we need to compute three quantities: Me, and the two end

points of Le(v). It is possible to speed-up the process by using closed-form formulas

since we know the functional form of f (although additional effort is necessary to

adjust it for the support of f).

On (xo,d), f can be written that f(xo + td) e- X/l 2l+2t(o,d)+t 21d 12 . It is

convenient to note that

t*= d) argmax{f(xo + td) : t E R}
Ildl12
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That is, for x* = xo + t*d, f(x*) > ML. If x* E K, we have found Me, otherwise, we

need to make a binary search on [x0 , x*] to find it (note that in the second case we

already have one of the endpoints of Le(v)).

After drawing v E (0, Me), again we can compute the explicit "unrestricted" point

of where the endpoints should be,

t t: v = e-VjxoiI2+2t(.o.d)+t2jIdI2}

or equivalently, the solution for the following quadratic equation

211 dll2 + 2t (xo, d) + IIXo112 + ln 2 v = 0.

Again, if the solutions t lie in K we found an endpoint, otherwise, we need to conduct

a binary search on [o, xo + td].
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