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Abstract

CHAPTER 1: Fluorescent Sensors for the Biological sensing of Zinc(II)

A variety of fluorescent techniques have been developed for the in vivo sensing of Zn2+.
This chapter presents a brief overview of techniques used to image chelatable zinc(II) in
neuronal cells. Ratiometric sensors have been developed for more precise zinc sensing. These
sensors exhibit differentiable changes in fluorescence in the presence and absence of zinc.

CHAPTER 2. An Esterase-Activated System for the Ratiometric Sensing of Biological Zinc

A ratiometric two-fluorophore sensing system has been developed by coupling Zinpyr- 1,
a zinc-sensitive fluorophore, to the zinc-insensitive coumarin-343. The two fluorophores are
bound by an ester linkage, which allows cell permeability; cytoplasmic esterases hydrolyze the
sensor into its parent fluorophores.

CHAPTER 3: Syntheses of Zinpyr Derivatives for Localized Applications in Zn2+ Sensing

This chapter describes the preparation of reactive Zinpyr-1 derivatives for the direct
functionalization of biological targets. A Zinpyr alkyne has been synthesized as a click chemistry
substrate to couple to azides, and a Zinpyr succinimidyl ester has been developed to couple to
amines. Applications of these derivatives include directly coupling the derivatives to glutamate
receptor antagonists and small peptides for more localized sensing applications.

CHAPTER 4: Conjugated Polymer-Based Sensors for the Biological Imaging of NO

A variety of monomers featuring hydrophilic constituents have been synthesized for use
in polymer synthesis via Pd-catalyzed cross-coupling reactions. CP-transition metal complexes
have been made, using a variety of CPs including poly(p-phenylene vinylenes) (PPVs) and
poly(p-phenylene ethynylenes) (PPEs). Metal binding functionalities have been incorporated into
the conjugate polymer main chains. The optical properties of the CPs have been examined, as
well as the interactions of these CP-metal complexes with NO.
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CHAPTER 1: Fluorescent Sensors for Biological Zinc(II) Sensing

Zn2+ is one of the most important first row transition metals in biology. It is highly

regulated under normal physiological conditions.1 Prolonged deficiencies may result in problems

such as impaired physical growth and severe immune defects.2 Intracellular Zn2+ is found tightly

bound to metalloproteins, or present as cytosolic free zinc at the subfemtomolar level.3' 4

Unexpectedly high levels of zinc are present in the synaptic vesicles of the mossy fiber region of

the hippocampus.5 Presynaptic Zn2+ has been implicated in the exacerbation of excitotoxic

neuron injury and acceleration of plaque formation in Alzheimer's disease.6

Due to the spectroscopically silent nature of zinc, it is difficult to study. Zn2+ has no

unpaired electrons for EPR or d-d transitions for optical studies.7 The zinc nucleus has poor

NMR sensitivity, and radioactive methods cannot be used, due to low turnover rates of zinc in

the brain. Autometallographic and fluorescence techniques have been developed to image free or

loosely bound Zn2+. The use of fluorescent biosensors provides several advantages over

autometallography, in that unlike the latter process, fluorescent sensors do not involve

irreversible processes or relatively harsh conditions.8

The following criteria have been defined for the development of fluorescent zinc

sensors.7 The sensors must be stable, highly fluorescent, and selective for zinc in the presence of

other biological cations (ex. Na+, K+, Ca2+, and Mg2+). When standard one-photon excitation is

used, the excitation wavelengths of the sensors should exceed 340 nm to avoid UV wavelengths

i Vallee, B. L; Falchuk, K. H. Physiol. Rev. 1993, 73, 79-118
2 Hambridge, M. J. Nutr. 2000, 130, 1344S-1349S
3 Kambe, T.; Yamaguchi-Iwai, Y.; Sasaki, R.; Nagao, M. Cell. Mol. Life Sci. 2004, 61, 49-68
4 Outten, C. E.; O'Halloran, T. V. Science 2001, 292, 2488-2492
5 McLardy, T. Acta Neurochir 1970, 23,119-124
6 Frederickson, C. J.; Bush, A. I. BioMetals 2001, 14, 353-266
7 Kimura, E.; Koike, T. Chem. Soc. Rev. 1998, 27(3), 179-184
8 Danscher, G.; Juhl, S.; Stoltenberg, M.; Krunderup, B.; Schroder, H. D.; Andreasen, A. J. Histochem. Cytochem.
1997, 45, 1503-1510
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of light, and the dissociation constants of these probes should be near the median concentration

of the desired analyte.

A landmark discovery in biological zinc sensing was the development of TSQ (Figure

1).9 It is a quinoline-based fluorescent sensor that can stain frozen and fixed tissues; however, it

cannot be used with live cells. To become cell-permeable, molecules are often esterified. Cell-

permeable TSQ-analogs such as Zinquin (Figure 1)10 have been among the first to use this

strategy; Zinquin incorporates an ethyl ester moiety for cellular uptake, and consequent

intracellular retention of the hydrolyzed species. This intensity-based probe has been

successfully used in imaging live cells; however, its excitation wavelength lies in the ultraviolet

range, which can potentially harm the cells. Studies of the coordination chemistry of Zinquinl 

have found that the sensor forms non-stoichiometric complexes with Zn2+ , making the

quantitation of zinc difficult.

Following the independent syntheses of Zinpyr-1 and Zinpyr-2 in 1999,12 our laboratory

has significantly developed the Zinpyr (ZP) family of sensors (Figure 5). The Zinpyrs are PET-

based (Figure 4) zinc sensors with two dipicolylamine (DPA) binding sites. Zinpyr compounds

are excited at visible wavelengths of light and have a high (sub-nanomolar) affinity for Zn2+ . The

first binding event causes the fluorescence of the compound to increase. The probes have

relatively high background fluorescence, possibly due to the high pKa values (8.4 and 9.4) (3a

9 Frederickson, C. J.; Kasarskis, E. J.; Ringo, D.; Frederickson, R. E. J. Neurosci. Methods 1987, 20, 91-103
10 Zalewski, P. D.; Millard, S. H.; Forbes, I. J.; Kapaniris, O.; Slavotinek, A.; Betts, W. H.; Ward, A. D.; Lincoln, S.
F.; Mahadevan, I. J. Histochem. Cytochem. 1994, 42, 877-884.
i Fahrni, C. J.; O'Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 11448-11458.

'2 Walkup, E.; Burdette, S.; Lippard, S.; Tsien, R. J. Am. Chem. Soc 2000, 12, 5644-5645
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and 3b) of their benzylic amines. Cell-permeable and cell-impermeable versions of these sensors

are readily available. 13

Several strategies have been employed in the recent development of zinc sensors. A

carbonic anhydrase-based sensor has been synthesized which binds Zn2+ with picomolar affinity

(Figure 2).14 Ratiometric sensors have also been of interest; these sensors have easily

differentiable fluorescent signals in the presence and absence of analyte. Fahmi and coworkers

have reported ratiometric benzimidazole-based probes (Figure 3) which undergo a fast excited-

state intramolecular proton transfer (ESIPT) (Figure 4) to their tautomers with high quantum

yields (0.5).'5 This sensing system suffers several drawbacks, in that it is only ratiometric in

alcoholic environments, and cannot be used under physiological conditions.

In efforts to expand the capability of our sensors, Zinpyr- 1-based ratiometric probes have

been recently studied by our group for more precise measurements of intracellular zinc

concentration. These probes incorporate zinc-sensitive and zinc-insensitive fluorophores that are

coupled through ester linkages. Derivatives of Zinpyr- have also been sought for more localized

sensing applications, such as zinc flux at receptor sites and specific intracellular regions.

Recently developed methods such as click chemistry16 have been investigated in coupling the

Zinpyr to small molecules with localization capability, such the RGD peptide. Activated, isolable

intermediates of Zinpyr- 1 have also been investigated and found to be effective when coupled to

amines-particularly NMDA antagonists. Coupled Zinpyr-antagonist products may be used to

monitor zinc flux at receptor sites, for more specific elucidation of the concentrations and

13 Chang, C. J.; Nolan, E. M.; Jaworski, J.; Okamoto K.; Hayashi, Y.; Sheng, M.; Lippard, S. J. Inorg. Chem. 2004,
43, 6774-9.
14 Fierke, C. A.; Thompson, R. B. BioMetals 2001, 14, 205-222.
15 Henary, M. M.; Fahrni, C. J. J. Phys. Chem. A 2002, 106, 5210-5220.
16 Hartmuth C. Kolb, Dr., Finn, M. G., Sharpless, K. Barry. Angewandte Chemie International Edition 2000, 40(11),
2004-2021
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pathways of zinc in synaptic regions. The employment of these strategies will be discussed in

further detail in the following chapters.
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Figure 1: Early zinc sensors: TSQ (1)9 and Zinquin l ' l (2).

1 2
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Figure 2: A High-Affinity Carbonic anhydrase-based Sensor.14

(A) Ribbon diagram, (B) Its active site, which involves coordination by three imidazoles

Ee I -E

Figure 3: TPBI, a benzoimidazole-based probe. Conversion from between cis (Ec) and trans
(Et) forms of enamines through rotation of the carbon-oxygen bond allows ESIPT to

occur 15

Gk*
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Esterase-Activated Two-Fluorophore System for Ratiometric Sensing of

Biological Zinc(ll)

Carolyn C. Woodroofe, Annie C. Won, and Stephen J. Lippard*

D)elmcimiIcnr o f('JChentisrv. Alfassachuserts Istiute of Technolo.o. Cambridge. Masslcinsetts 02139
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Intracellular ester hydrolysis by cytosolic esterases is a common strategy used to trap fluorescent sensors within

the cell. We have prepared analogues of Zinpyr-l (ZP1), an intensity-based fluorescent sensor for Zn
2

, that are
linked via an amido-ester or diester moiety to a calibrating fluorophore, coumarin 343. These compounds, designated

Coumazin-1 and -2, are nonpolar and are quenched by intramolecular interactions between the two fluorophores.
Esterase-catalyzed hydrolysis generates a Zn2-sensitive ZP1-like fluorophore and a Zn2 -insensitive coumarin as
a calibrating fluorophore. Upon excitation of the fluorophores, coumarin 343 emission relays information concerning
sensor concentration whereas ZP1 emission indicates the relative concentration of Zn2'-bound sensor. This approach
enables intracellular monitoring of total sensor concentration and provides a ratiomelric system for sensing biological
zinc ion.

Introduction

D:)ivalent zinc plays many important rolces in biology.' Zn2*
is the second most abundant metal in the body and is a
structural or catalytic component of more than 300 enzymes.
Intraccllular concentrations of frec Zn2 + are closely controlled
by complex and effective system of zinc transporters and
zinc-specitic solute carriers,' such that the free or loosely
bound Ztn ' concentration in the cytosol is subfemtomolar.4

Much higher cytosolic concentrations of free Zn2 are
observed in cells that have undergone oxidative stress.5

1The synaptic vesicles in the mossy fibers of mammalian
hippocampus are of interest because accumulation of loosely
bound Zn:. up to 0.3 mM in concentration, occurs in these
iltracellular compartments.6'7 An overriding justification for
the cntropic cost of this system has not been determined. in
part because of the lack of an intrinsic spectroscopic signature
wilh hich to study Zn" and its physiological roles. The

* 1i x1l111' I)rrcqlO)1dcnlnc, shIlld he ad.IJdrck. i-lmtil: lippalnd!.
,,, it.utl.

iI Vallee. . ..: Falciuk. K. II. Pha'hitI. Rei,. 1993. ?, 79-118.
2) PahltLr. It. ).; I unng. I.. lIr,is .'rstrch. Ir.: J.. PI. ! il. 2O04. 447.

744 -7 .
3 IbnI,. T.: Yamaguchl-:wai. Y.: Sasaki. R.; Nagao. M. (Cll. lI.

Lil¢ Sci. 2004, 61.4Jg-68.
(4j1 (uticn. . F.1: ()'-lailoeran. . V. c-ienrce 2001. 292. 2488-X 2492.
15) ('l:lg. C. J.; Jaworski. J.: Nolan. E. NM.; Sheng, M.; Lippard, S. J.

PI'. . . Sadi. .U.S.A. 2004, 101. 1129'--1134.
IM IFredcricklson. C. J. Ilit. RKt. eurohiol. 1989. 31. 145-238.
( m
7

l-tdejricklon. C. J.: Suh. S. W.; Silva. ).; Frederickson, C. J.:
Tlhompsonl . R. . J. utr,: 2000. 130, 147IS- 1483S.

3112 Inorganic Chemistry, Vol. 44. No. 9, 2005

development of fluorescent sensors for loosely bound Zn:
is thus of interest in elucidating its movemcnts and futnctions.

The application of fluorescent sensors to biological systems
has traditionally been complicatced by an inability to assess
the local concentration of die probe. A localized bright
fluorescenrt signal may reflect a large amount of analyte in
that area, or it may be an artifact of high local dye
concentration. Ratiometric sensors that display two distinctly
difflrent measurable signals in the presence and absence of
analyte are thus of great interest and utility because they
can eliminate such ambiguities.

Several rtiometric fluorescent probes for biological
zinc(ll) ion have recently been described. 'he majority of
these are based on fluorophorcs requiring relatively short-
wavelength. high-energy excitation sources, such as 2-aryl
benzimidazoles." benzoxazoles."' and indoles andl benzo-
furans.' -

'' Binding of Zn2 afflrds a wavelength shift in
excitation or emission. based on interruption ol Iluoroplhore
conjugation or on excited-state intrnolecular proton transfer
(ESIPT. [.xcitation wavelengtis tor these probes range from
about 300 to 3X( nin. and emission waxelengthis ary

(t) Tsien, R. Y.: POlei. M. Tlondi hu-he, .i. 1986, /1. 450-455.
(9) tlena. M. M.: Wu. V.; :alili. (. J. C(hai. Eir. .1. 2H14. n1, 3015

3025.
(10) 'laki. .i.; Wolfird. J. L. O)'ialloran. I. V. J. lr ., (IcmSle. 21)04.

12.4, 712-713.
(I ) (Gee, K. R.; Zhou, . 1. I..; I on- hl at. I).: Sn,i. S. ., WCI.sS. J, I (,I

Calcium 2002. .1, 245-251.
(12) Marnyaima S.; Kikuchi, K.: Ilirino. I'.; UnlrMo. Y.: NgaoiiTO. '. i.1

Chent. S*c. 2(11, 124. 1. 65I
~

O 106 I

10.1021/ic048789s CCC: S30.25 © 2005 American Chemical Society
Published on Web 03i3112005
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betweetn 395 and 532 nm. ZNP-I. a ratiometric probe with
visible excitation. has recently been reported.5 A highly
sensitive (K,, < 10 pM ) carbonic-anhydrase-based zinc sensor
that operates by a FRET mechanism is also available.3

We envisioned a ratiometric two-fluorophore sensing
system in which a zinc-sensitive component was linked to a
zinc-insensilive reporter in such a manner that the two would
separate upon entering the cell. An ester-linked system
scetned ideal for this application because carboxylate es-
terification is a conmton strategy in preparing cell-permcable,
trappable sensors. The lipophilic esterified sensor can pas-
sivelyv difuse across the cell membrane, and once inside the
cell the esters can be hydrolyzed by cytoplasmic esterases.
regenerating the nmemlbrane-impenneant parent carboxylate
3 and compounds 4 and 5, which are expected to exhibit
good intracellular retention.5t4 ~' ? Scheme I illustrates the
stntegy.

The synthesis of ZPI species containing carboxylate
llictionalities on the bottom ring has been reported else-

where.-"' ZP PI is a fluoresccin-based Zn2 sen.sor that is cell-
permcable without prior modification; 1' however, fluorcscein-
based colmpoutnds are typically membrane-impermeable
owing to the predominance of a charged tautomer in aqueous
solutions at neutral pl. Such fluorescein species are per-
mneabilized by protecting the phenolic hydroxyl groups as
hydrolytically labile acetates. ' trapping the Iluorescein
nmoiety in the cell-permeable lactone form.'' Esterification

..3 Tmpson R. ; .; ('amor. M. 1 l_ . R.: Fierke. C. A , Biomed.
Opt. 2002. ?, 555 -60.

141 Wol.oft. ('. C.: i.Lippard. S. J.J. Am. Chemn .w. 2003. 125. 11458-
I 1145 .

1151 Wlolsofe. ( . .. : Mawmha. R.: arnme.. K. R.; I:rtderickson. . J.:
I.l.ppard. S. J. J. i( . 21Bfil. 114, 16. 6 -1666.

(161 Wa;lkup. , K.; Burdeurc. S. C.; L.ippard. S. J.; I'sien. R. Y. J. A4J.
(lh.-n S:. 2000. 122. 5644 5645.

t 17 IlurdtuL. S. (C.; Walkup. G. K.: Sping.lel; B.: '[icn. Rt. Y.: Ilppard.
. J. J. A.rt. ( mern. .S,. 2011. 12.¢ 7831 7841.

IS) Admnzu.k. M.; Chun. C. . M.: I:ino. 1. R.: Manligly, P. G. J. 0,rg.
(.'Il1. 1 .2 6), 6 65, 50"' 'W(1.

I g9J I Isuland. R. P1. .rwhllk ti.A , FhtluTes't.tu P!'hes sntd Resettrch
I'ru.'i,. 'N. rt Edih,,n: Molteuilal Pl'roahs, Ins:.: Iugenec, )R. 200(2.

4 X:: Nil
5X N-O

o .2

3

Zinc(ll)-insensitiv

It 
"~
445 i ll

Iv 488 ini

of carboxylates with alkyl or functionalized alkyl groups is
widely used for sensors in which the carboxylate is an
integral part of the analyte-binding system or is introduced
to increase solubility. Acetoxymethyl esters are particularly
susceptible to hydrolysis,'"' but ethyl esters', 2 2 are also
commonly used, implying that simple alkyl esters are
acceptable substratcs lir cytoplasmic esterases.

Coumazin-L and -2 (CZI. I; CZ2, 2 are ZPI analogues
containing coumariln 343 (3) as the reporter fluorophorc
bound via a hydrolyzable alkyl-amidoester or diester linker.
Permeation of 1 or 2 into the cell and subsequent cleavage
by intracellular esterases thus regenerates the parent fluo-
rophores 3 and 4 or 5, enabling two-fluorophore ratiometric
sensing of Zn . as shown in Scheme I. We report here the
synthesis and physical characterization of these molecules
as well as biological applications. A preliminary communica-
tion describing CZI has appeared previously.'4

Experimental Section

Materials and Methods. Reagents were purchased fiom Aldrich
and used without further purification except tor counmarin 343,
which was rcryslallized irom MeOll and CIICI 2 belore use. The
pyridinium salt of 3',6'-diacelyl-2',7'-dichloro-6-carhoxyfltl(urescin
(6) was prepared as described.' A xrcine liver esterase (PI..E)
suspension was purchased lRn Sigma and used as supplied. SDS-
P.AGE gel analysis indicated the esteras solution to be a mixture
of two major protein conponents. which we take as a cde estinmatc
of what might be present in cells. The Michaelis-Menten constants
reflect average values from PLE treatment. Acetonitrile and
dichloromethane were obtained from a dry-still solvent dispensalion
system. Fluorescence spectra were acquired on a litlachi F;-3010
or a Photon Techllology International (I.;awrenceville, NJ} Quall:
Master 4L-tomr:i scanning fluorlimter. he latter w:as equipped

i20) Isieu,. R. Y.. ozzanz. .: Rink. . J.. (IU Bi. 1982. 9'1. 392 .334.
121) Zalewski. P.:).: Millard. S. 11,; I;oles. I. J.: Kapanii, 0).: Sl;votink.

A.: BRetts. W. I}.: Ward. A. D.: Lincoln. S. Fr.: Maluldevan. i. /.
fistoIhte. (trhem. 1994. 42. 87'.. 84.

122) Nasir. M. S. I:Falmli, C. J.; Suriy. ). A.; Kololsick,. K. .: Singcr. C(.
P.; O'ltalloan, 1. V. .. i¢l. Inor,. C'lmn 199 . 4. 775 ?373.

Inorganic Chemistry, Vol. 44. No. 9. 2005 3113
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willh anrl I'S-22013 75-W xenon l;lmp and power suppl. an
\-1(tlt)l1 lamip houslingt with integraled igniter a switlclable 814
phliion-cliltnti nig inalog I'MI detector. and all MD-5020 motor
di.t A Prkin-Ehnlit er A Analyst-3X) atomic absorption spectro-
phottimeter A\AS) ith a Pe'rk-i-lier I ( A-8XX) iGraphic Fur'iace
(.;-.\A\S) was uised for tomic iabsorption AA) spectroscopy
tlllsilSelnrtclt.. [U'-V isiblc aibsorptlon spectra were recorded onl a

(ar IF' I:V-visible spectrophotomecler at 25 C. oth were
tanalyzed by utliteg Kalidagraph 3.0 tfor Windows. II and ''( NMR

apcctra wser .icqlired o)t I Varian 30 or 500 Mllz or a i3nrkcr
4(H) \11 Iz spcciroctlr Itigh-rcsolutili mass splctra were recorded
oi ln i lIMS lcctrospray apparatus by personnel at the MIT
l)epartllment of ('hicilnsry Islrulntlation Facility. I.(MS analysis
w\\as pribrinetd on an Ai gilett 'Iechnologies I 1(X) Series I.('MS ith
;: /orbai, L tendl ('-I 8 (colutlll using a liner gradient of It)o'" .\
('15:5 l.O eCN 0; 1 1(.N. 0 115' to 10("o1 i (95: M'N:II:():
11)05", 1 (O)-H1 ) over 3 t Iin ( ; 1low rte of' (.250 nill,til.
I )tleltor :avelenigtls wcre st at 240 and 500 in. :land the MS
delectoil :.s sel to Ix)sitiv iol tllR odie I.allitiig tlh ranlge Im 
1 (1, 20i).

S nt htic Procedures. (a) -12-IIdroxycth) )-3',6'-diactyl-
2'.7'dichlorofuiuorescin-6-amide (9). The pyridinium salt of 3',6'-
diacctyl-2'.7'dichilro-Ocarhttixyluorescii (16. 1.22 g, 2 tritol) w as
dli,solved i Ilry ('I 2( 1 collaitng 400 tl of D)MF and stirrei in
a dty ice-acetone hbath. Oxalyl chloride (15 l., 2 M solution in
('11 .:1) wa ddluleil with 25 iI of dry C1-('- an adadde drpwisc
xer 30 mini. lhe react n wis lirreid lor aiidditional 30 lin atnd

thcle cotnccitralfed nder reduuced prssure. Ihe resulting relidiue
% as disols cd in ('C1 (1 2 l, Ni-l( ) (336 me, 4 mintol) was added.
ild tl he stispensillsl wa;s sli red at -78 '(' s a solltion of

cilhal lailine (i 90 ' l.. 4019 mg, 6f 6 reiol) in 15 nil, of (f1('1-
w is added dtopise. lihe reaction iwas stirred overnight, at which
Ilitle 4() til of -1:0 wasL atddd thed lw lafye rs were sparated. he
:tiLuous layer I as washed with 2 x 40 tmi C('II-(12; the combined
oglllci l yers, were alied wifti satlurated NaCI solution, dried
o\cr MS()., and evalporated, The rsuilling residue wa purified
by Il.sh chrolniatography on silica gel ltitg ssith 98:2 -- 96:4
C (ICI ; eOI( I t give 450 it (41'o0) of 9 as a color-lss solid. ill
NNIR (t1 (1, ): 7 811 (I, 2 I1): 56(s. I ; 7.11 (s. 2 ); 7.08
t. I 1: 6f,.84 (s, I II 3.7 (I, 2 II); ' .49 (in, 211): 237 (s, 6 .
( N\NR 1(1l): A 168.4(. 16 7,79, 166.32, 152.42. 149,72.

148.x82 141,52, 137 1 7 129.15, 12 2 126.27. 123.09, 122.53.
17.,09, 1. .( (80. 7.61 7'. 43.1320,8 18. p 159-162 ,'. IRM S

INI 1 I: cilticJ ltr C :11,CI : NO.,. 572.0515 Ibtoald 572.1)529.
(I) Mitsunolitt Reactitn of r-(2-lldroxseth yl')-3',6'-di acetyl-

2'.7'-dlicl iru-fluorescein-ll-6-a ide. N2- lydroxyuthyl )-3'.6'-di-
:ctyl-'72','- ldichlorolltiosciin- -amimid 9, 55 Ing, (. l nol) )was
ioithilbed itlh cuinl'il 343 (2 9 mg 0. I mnmoll), triphenylphos-
phtinc 13(1 mi, 0. I I tnol), and A121) (1 tIl., 0.1 mmol) i dry
CII '('l, and lirred 45 mitl at RT. The reaction was concentrated
in vae,. tellc residue swas dissosed in minimal i-('111, and ll?0O
v,, ;iddetd. Ih le resiilting orange crystalline solid swas filtered off
,1itd otc-hlall l Otlh lirate waa s loaded onito a preparatie scale '1..
Ilalc. (' otiipouttl i 10 was isolated as the maor produict (17 ing.
cm'rresp'ntd, s o 64" overall yield). f1t NMIR ( 'I ,): 8.28 ( d
I 11) 8.12 (d. I 11:7.76 (s . 1) 7.16 Is 2 i) 6.87 s, 2 ): 4.47
III 2 11i; 4.(18 (t, 2 II12.3X 8 (s. 6 11. IRMS IN fI Na): cald for

I( A (': 1 ,N )Na: 576,1229: fld ti 576.(0216.
el C :outiarin 343 4-Hydrou!lbutyl Esfer (). 'oumarin 3.143

I3. 285 tm I retiol was combined with 4-benyloxy-l-butamnol
I 1 90 . 3 t niil), triphenyl pho sphini (28it m1 1) , 7 1tulol ),
:Itd II IA I) 211 ! I , I (1 I ino l ini 2( til, of fdr ( H C. T he
rlcactionl wa, stirred at R'l for 90 iinll ad then queniched with 20
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il. of McO). 'd (' was added ind Ih suspnsiolln as stirred untder
i H almnospIlkre f)r 2 h, then lillered through (elite. and
conccentraited in Vacu. ' he viscous residue w:i purilicd by 11lash
chrolnatogiphy on silica gel clting with 93;7 (1 ,:MCOI I and
then crsltatlizd 1romn ('t('1 layered with l:t:(). I:iltaltionll a
277 g o 11 (78" yild. I N\tR ('(I ): ) .36 (s. I l):
6.95 (s. I i) 4.35 (1. 2 1): 3.74 t(. 2 I): 3.34 (n. 4 11); 2.7 f. 2
H): 2.77 (1.2 H): 1.98 m. 4 1H): 1.75 I. 4 tl). '' NMR ((tIXI: ):
*S 165.11, 159.20, 153(,64. 149.76. 14.82. 127.19. 19.47. 1117.71,.
107.1;, 105.82, 65,..) (12.(. 50.43, 50.04. 29.91. 27.57. 25.00.
21.27. 2).29 20(.18. mip 13 5-1.7 '('. IIRMS (.M1 + Na) calcd for
(':ll:,INOsNa: 8().1474: fliund 3S).1463.

(d) Coulna'lin 343 4-(6-Carbox -. ',6'-ditce1yl-2',7'-dichlro-
nfuorescimn)bul I Estir 12). ('. Utllit in 343 4-iydro.xyhilyl ester
(II. 28 Ig, (.Il,75 Irtl) ll s combined witl (6-cahoxy-2',7'-
dicilorollhrre.sccin-3',('-diicttal pridinium ;salt (479 ig., .?78
niol). triphetlnylphosphline l206 ig, I78 inol), atnd D)IA) ( 158

1lI..) in 0 nil, of dl ( C('l ait RI' and stirred oernighl, M.\ore
DIA) 7') itl.) was then added. Afler 24 h the reaction was
concentrated in vacun and the desired prolhuct was isolated by lash
chromatography on silica gel eluting with '8:2 - 90.1() (11('1
McOll, Ibllowed by ritralion itil MO)ll to give 185 nig (12'.)
of 12. II NMR ((WDI): 8.38 (d. I I- 8.31 is. I II) 8.1 4 d.
i 11); 7.4 Is, I II): 7?.1iX (s. 2 II): 6.94 (s. I 1): 6.85 (s 2 I11: 4.42
(t, 2 1I): 4.35 (t . 2 I; 3. 34 il , 4 11I): 2.8 11 . 2 11: 27( ( t. 2 11 :
2.38 (s. 6 11; 1-2.0 i., 8 11). ( NNIR ('1DC): ,) I6t8.0.
16 7,78. (4.8. 15881X , 153.7, 1521?.l 149 86. 149.49. 148.8.,
148.78. 137.57 132.16. 129.17. 129.06, 127.18, 126i02. 125.39,
123.02. 119.'),37. 117.(9, 113.11. 117.71. 1107.38, 1)5.93. 8(.95.

65.1)3. 64.44. 50.46. 5.07. 2(,61. 24,. 24. 24.21.33. 2().83, 2035.
21, 5. p Jdec > 159 (. 1Il,1RMS iM Na: calcd ir ('4 hilCl'-
NO,,Na: 891).1383; loiund 891.1414.

(e) Coumazitl-2 (2). DipicolylainiL (128 g, 0.64 tuiol) and
paralinnlaldehyde (4) g. 1.32 iriolt were comhtined in 1(0 ilIl.
of dry Me('N and hatcd to rellux fir 45 min. A portion of 12 (87
Ing. . I nilo)l was sitspended i 5 ii , of Mc(.'N and added to the
refluxig solulion, Illowed by 5 ml. i'f 11,. 1he ricactil ti was
healed at reflux for 24 h. at which ti it wa cooled to RI.
clnctratc d in vacuo. acidilicd xith 5 drops ot-glacial aceic :acid.
.lid stored al 4 ':.' overnight. 'hc rcsltig red precipitat'e wa,
tiltered to aflford 87 mg (72i of 2. fI NM R (('1(,): 8,60 ((d.
4 1); 8.3 (d. 2 11); 8.33 (s. I II); 8.11((d. I 11)1:7.85 (s. II: 7.6,7
(lid. 4 ): 7.36 (d 4 11); 7.20 (m. 4 11: 6.97 (s. I 11); 6.60 s. , 2 II):
4.40 (t. 2 11); 4.32 .2 Ii ) 420 s, 4 ): 4.11 ti. 8 1): 3.34 (it.
4 I):. 2.86 X t 2 11): 2.75 (t,2 1 Ii: .x(}- 1.98 tin. 1 ). tnp deec -
151 C. IRMS M + 11): calcd or C' 1ll( ,,(l N- , 1206.3571:
firuntl 12(1(,.354.

(i) 6-C:aroxy-2'',7'-dichloroflaollrseia-3','-diacettaesiircin-
inildyl Ester (15). The pyridinitiunl satl o.l 6-arblxy-2',7'-diiello
rofluorcscein-3'.(,'-di cctlevc t6. 945 n1 , 15 Irit ol I as combined
with 13 -(dliLmclhyl ninolpropl]- hydrocihlo-
ride t li)(:) (300) i. 1 . ,i miol) I ttl n lydroyuccli v ii de (20illl
mg 174 ninol ) i II til, of 1:1 cll aci lalc:i:l)MF and il itred t
RT for 6 h. rine 75 ll[.) tl CI ' ( (511 mi.) w:rc added, and
the layers wcr. separated. 'I li aqutous laycr was extracted with 2
: 50 il. (('12. the combined orgaics were wasled wih l 2,

5 ml . (if 1, I N 11(I I and I , 50 ml, of brrin. dried over MgS),.
and eaoat ed. 'lh resuilingg residue was pun lic d by flash
chromatography ist silica gel elut ing with 99:1 (l H( Ie: Ml11 Ito
give 647 mg (0.48 ret ol, 69',s) off 15 a,, a glassy Iatn. NM IR
(((IX)T): A 8.44 (d, I II) 82 Id. I III; 7.93 {, I 1 1): 7.19 . 2
H) 6.84 Is. 2 1); 2 .9 (4 1 ; .3 7 Is. (ll)' MR ((I'{.0lf:
,) 168,901, 167.(, 167.00, 162,6 1. 160.43. 152.17, 149,62. 148.88,
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132.72. 132.07. 130.66. 128.89, 126.30, 123.07, 116.36. 113.06.
80.84. 25.61. 20.67. mp 84-86 C. IRMS (M + H): ealcd for
C'-.IIC 2N() : 626.0257: found 626.0220.

(g) N-(4-Hiydroxsbutyl)-2',7'-dichlorofuorescei-6-amide (16).
(.-('arboxy-2'.7'-dichlorfluore.sein.3',6'-diacetate slccinimidyl es-
tcr (15. 312 img. 0.5 mmol) was dissolved in 1:1 CtI:Cl::McOll
and stirrl at R' with 4-aminobulanol (230 p1.. 222 mg, 2.5 mmol)
overnight. ''he resulting red solution was concentrated on the rotary
evapor:tor, taken up in I0 ml. of 1. acidified with concentrated
1('1. and iltered to afiord an orange solid, which was dried

overnight to give 235 mg of 16 (91% yield). 'I NMR (McOl-Id):
) . 15 (s. 2 H); 7.62 (s. I 11). 6.85 (s. 2 I1): 6.68 (s. 2 1H): 3.57 (It.

2 Ill: 3.35 (it. 2 11): 1.50-1.65 (mi 4 H). mp 179-180 C (dee).
FIRMS (M I I: caled for C2sliSCI2N0.: 514.0460: found
514.0474.

(h) ZPI(6-CONII(CIIz).01) (4). I)ipicolylamine (256 mg. 1.3
molnll was combined with paralbrnmaldchyde (36 mg, 2.6 ramol)

i 10 niml. of dry Mc'N and heated to rellux for 45 min. N-(4-
I Iydroxybutyl)-2',7'.-ichlonfliurcsciin--amile 103 mg. 0.2 mmol)
wais suspendled in 15 ml, of 1:1 McN:I-O( and added to the
reaction, anld rellux was continued for 24 Ii. The reaction was cooled
to R'. acidified with 0.5 ml.. of glacial acetic acid, anld concentrated
under reduced pressure. The residue was iluted with MeOH andml
II-() and stored at 4 :C ovenight. Filtration affordedl the desired
prxluct (19 mg. 10%*). 'I NMR (MOH-d 4): () 8.53 (d, 4 11): 8.12
(s, 2 11; 7.63 (s. I HI): 7.48 (d, 4 H): 7.30 (it. 4 Ill); 7.26 (t, 4 11):
6.67 (s. 2 I1): 4.34 s. 4 11): 4.18 (, 8 H1): 3.52 (t, 2 1): 3.37 t.
2 It); 1.52--1.68 (m. 4 11). mp 157-159 °C (dec), IRMS (M +
11): calcd for Cl.a,,CIaN-O7: 938.2836: found 938.2843.

Spectroscopic Measurements. All glassware was washed
sequentially with 20% I NO., deionized water, and ethanol before
use. P'urllied water (resistivity 18.2 MQ) was obtained liom a
Millilxre Milli-Q water purification system. I'luorophore stock.
solutiotns in D)MS) were made tip to concentrations of I mM and
kept al 4 X*C in 100-500 if. aliquols. Portions were thawed and
diluted to the required concentrations immediately prior to each
experiment. Fluorescence and absorption data were measured in
!IEPES buftir (50 mM. pH 7.5. KCI 100 mM) except for
Iluorometric pK, titrations. which were performed in 100 mM KCI.
pH 12.5, anid for the Iluorescein standard in quantum yield
mcasurements. which was measured in 0. N NaOIl. The 1IEPES
bluffer. prepared with Millipore water, contains 20 : 2 mg/l. (0.3
i 0.03 #IM) of zinc as determined by flameless atomic absorption
(:AA) spectroscopy. Solutions were stored in clean, dry propylene
containlrs and were filtered (0.25 rtln) before data acquisition.
Iluorescence spectra were recorded lirom 425 to 650 nm. Ixtinction
coefitcients, quantum yields, fluorescence-dependent pK. values.
and dissociation constants were measured as previously described."'
All measurements were performed in triplicate.

(a) Zn
2
' Response of Eslerase-'reated CZ Dyes. A 10 mi.

pontiol of a 4 tM solution of C(Z1 in pHl 7.5 IIEPES bulTer was
incubated with a 10 , aliquot of PI..E (10 mg/lml.. in 3.2 M (Nl 4)r:-
S() at R'l' for 12 h. A 2 ml. aliquot was withdrawn and the
Iluorescencc spectrum from 425 to 650 nlm was acquired with
excitation first at 445 imn and then at 505 nmi. A 4 #L aliquot ofl'
10 mIM ZnCI: was added and the fluorescence sxctna were recorded
a;s hetlbre. ''he procedure wats repeated ir C'2 with incubation
times varying from I to 6 Ih.

(b) .Nlichaelis-Menten Kinetics of Esterase Hydrolysis of
CZ2. A 5 tl.. aliqluot of Pl'1. was added to a fluorescence cuvette
containing 2 ril.. ol'pll 7.5 IIEIPES bufiTr and various concentra-
fions (0.5 nM - 25 pM ) ofC7.2. The cuvente was shaken vigorously

land the emission itensity at 488 nm (excitation 445 nm) was

monitorel for 5 rain at 25 "C. ITh rate of increase in emission
intensity tetween 100) and 200 s was determined and converted to
/tmol/min of coumnarin 343 produced using a standard curve. 'The
rate of increase in concenlration of coumarin 343 was plotted as a
function of substrate concentration and fit by using a Michaelis-
Menten model.

(e) ICMS Determination of CZI and CZ2 Ister Hlydrolysis
Products. A 10 M solution of (CZI .20 ,l. of a I mM I)MSt.)
stock solution ofClI and 5 !.. Pl.E suspension in 2 n.. IIEP.ES
bullffer (50 mM, pi 7.5)) was incuhated 19 h at 22 "( in a
polystyrene tube covered with aluminum foil. liltered, and anallyzedl
by .CMS. The maior peaks observed were at 10.8 lin tno
assignable mass). 13.0 mill (tr:- 469.9). and 18.4 nrin (,;z -=
593.1). A 10 pM solution of CZ(2 was similarly prepared and
incuhbaed for I h before I.XCMS analysis. Tlhe major peaks observed
were at 14.8 rain (nil: - 939.2) and 18.1 min ( - 593.1).
Retention times were determnnined for 10 uM standard solutions of
expected metabolites for comparison and were as Ibllows: 3 18.5
min (: .-= 593.1: calcd for 2M + Nin - 593.2); 4 12.9 min (l
= 469.2; calcd for (M + 211)2 = 469.2); 11 17.2 min (/ =
380.3: calcd lbr M + Na = 3811.2).

(d) Absorption Spectroscopy of PE-'l'reated CZI and CZ2.
A 2tPl. aliquot ot 1i mM CZI stock solution (DMSO) was added
t 2 ml. of EPES buffer. A 10 p. aliquot of PI.E suspenlsiOnl
was added, and the absorbance spectrum was acquired periodically
over 6 h. The procedure was repeated fbr CZ2.

Imaging. lel.a cells were grown :la 37 "C under a 5, CO)
atmosphere in Dulbecco's modified Eagle's mIediul (DIMEM.
Gibeo/BRL) supplemented with 10%IY fetal bovine seruni. Ix
penicilliV/strepltomycin. and 2 mM c-glutaminte. Coutazii-l and
Coumazin-2 were stable in EMEM and DMEM over 4 h at 37 C
under conditions used for cell studies. as monitored by Iluorescence
at both excitation wavelengths (445 or 505 nm). C(ells were plated
24 h before study into 2 ml. imaging dishes. Cells were ap-
proxitnately 50% confluent at the titme of study. A 20) yL aliquot
of dye (I mM DMSO) was added to each 2 mli dish, and the cells
were incubated fr 4 h at 37 (C. at which point the medium was
aspirated and the cells were wasiltd twice with phosphate-buffered
saline solution (PBIS). resuspended in dye-free EMEM (Mediatech),
and examined on a Zeiss Axiovert 200M inverted epi luorescceec
microscospe with a 40x oil immersion, a mercury lamp light source,.
and difermtial interference contrast (DIC),. operated by O(penl-ab
software (Improvision. Lexington. MA). Samples were maintained
at 37 'C over the course of the imaging experiment. he alrtount
of zinc in the cell growth medium was 20 :12 g/l. (0.3 ± 0.03
,uM) and 60 2 lgL (0.9 ± 0.03 pM) for DMEM and EMEM.
respectively, as determined by flameless AA spectroscopy. Images
were collected at 30 s intervals tfor 30 min during the course of the
experiment. as a 10lO.I aliquot of a solution containing I ptM ZnCIl:
and 9,tM sodium pyrithione was added. The fluorescence rcsponse
reac:hed a maximum at about 10-15 min llter addition of ZnCl2 ,
at which time a 10tl. aliquol of lO/tM TPEN was added. At each
time point, four images were collected in rapid succession: a DIC
image (775DF50 emission) and three fluorescnce images using a
CFP filter 420DF::) excitation. 450DRl.P dichroic. 475DF40
eiissiontl, a FR. E'T lilter (42)DF20 excitation, 450DRI, l dichroic,.
530DR30 emission), and a YFP filter (495Dt:10 excitation,
51S)DRLP dichroic, 530DI30 emission). Fluorescence images were
background-corrected. Acquisitiom tilmes were in the range of 100 -
250 ti. A control experiment ill which a IO tl aliquol of lO1tM
TPEN was added to the imaging dish without prior addition of'
exogenous ZnCI: was performed using a similar protocol.
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Results and Discussion
Synthesis. IThe compounds Coumazin-I and -2 were

synthesizcd as shown in Scheme 2. "ihe choice of an n-butyl
tinker i tile s ntheis of (.714 " was not arbitrary. Our initial
alpproach ovoe d the hydroxycthylamidc 9; however. the
Mlit.unobu condCllcnsation conditions gave primarily the in-
trlmoleculir cyclization product 10, a shown il Scheme 3.
()xaolc fimnation (:i' /t-hydroxyethyl amids under it-
,.tiut col C.lllitions is wcIl precdC ted i thetlC literatuireC,: ;

notably in synllneses of' paclitaxcl and relaltedt compounds.
Similar problems wrcle ncountret d with a propyl linker (data
not hownl). Tlhe butyl linkecr would form a thcmnnodynami-
c;lly unrlavorablc scvcn-nicmbcrcd ring as the product of
such an intramolecular condensation, allowing the desired
intermolecular reaction to dominate.

The approach to ('oumazin-2 (CZ2) was slightly difterent.
Nlitsunobu condensation of couniarin 343 with 4-bcnzyloxyl-
I -butanol lolowed by hydrogenation futnished the coumlarin
hydrox!hyuly ester I1 in 78';. yield over two steps. Removal
of the diisopropyl hydrazldodicarlboxylate byproduct from
the intermediate hcnzyl ethr was extremely difficult and

123 Id tm ilslo . it: tttMauce , V. A.: Kiltiotoi. NI.: Iltaashi. N.. lsioi.,
I 7 ./.lhi'o .l. lst,,st('lr 2000. . 4485--4407.

2.1' (i¢,hA ' Rs. R..; kVlaA. A: Rs .R; Prcs M. A: Rior A.
trh,dir,,l 4.:Di)nswt, 24til4H. / 1, 4407'-441ii.

t.. tMis . 1.: K ,,rsla, A.: ()kunliot. [I.; Nakanihi. K,: ikuni, K..
Illra.., K . i/ra., K. I 1.tr,,h'drm , .,tt 1999. 1, 24.1 246.
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reduced the overall yield; hence. lhe most expedient route
was to carry the undesired byproduct through and remove it
from the deprotccied 11 by crystallization. A second Mit-
sunohu reaction 1of 1 wilth the dcliacelvIdilii)rofluorcsccin
carboxylate 6 was slugish. procceedin onlly to 28¼) conver-
sion. The reaction yield was not improved by using the frei
acidt of the luorescein lmoietiy Ither tllhan the pyridllmrn sailt.
The resulting dicster-li nked fluorcsccin-coun marin compound
12 was subjected to standard Mannich conditions and
furnished thie desired coumpound (CZ 12) in 72, yield.

The expected Z hydrolysis produc 4 of (1 sas
synthtsized as sholwn in Schenm 4. )tcrminaltion o11' the

photophysical and Ihennodynvamic propertnics of4 con iriled]
that the extension of the alkyl chain by two methylene units
does not noticcably alter tle fluorescence properties or Zn'
response of 4 as compared with the previously reportcd
analogue 13. Oxalyl chloride activation was employed in tilhe
synthesis of 13: however, this reactoln was sensitive to a
variety of' explclrimenal factors and he extent of conversi n
to the acid chloride was someltwhat variable. leading to
mnixtures that included deprotected starting material. Alterna-
tive methods of activation were tihereref el-c souohl. liI)(-
mediated coupling ot' 6 to N-hydroxysuccinim ide procecdcd
in rcasonable yield to give the succinimlidvl ester 15. an
activated intermediate that can be puritied bS colunn
chromatography. Subsequenlt reaction with a 3-fld (r greater

Coumazin-1 X =I
Coumazin-2 X =

o

i n JN

o

N•~C

I PPh3. DIAD. CHi2Ci2

2 H: PdC

_____________

.

LI) , ,
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excess of amine in mixed CH:CI:/MeOli yielded the
deprotected fluoresceinamidc 16, which can be isolated by
simple precipitation after removal of organic solvents,
providing a straightforward and practical route to simple
tluoresceinamides. Subsequent Mannich reaction of 14
tirnished the desired amide-substituted ZPI adduct 4.
Extinction coefficicnts and quantum yields for 4 with and
without Zn' were measured, and the dissociation constants
andl fluorescence response o' 4 to Zn2 '' are essentially
identical to those of the previously reported 13.14 CZ2
contains two possible sites for ester hydrolysis. Esterase
digeslion can therefore produce ZPI hydroxybutyl ester S
or ZPI(6-CO211) (17). as shown in Scheme 5. The Zn: '-
sensing properties of ester- or acid-functionalized ZPI'
carhoxylates have been described elswhere.': Measured
constants for putative C Z fragments or analogues thereof are
listed in Table . All of these ZPI-like hydrolysis products
may be expected to fiunction effectively as Zn2' sensors.

Photophysics and Thermodynamics. The photophysical
properlies of CZ I and CZ2 have been examined. and relevant
data are listed in Table . Both coumazin compounds
Iluoresce extremely weakly prior to esterase processing.
regardless of the fluorophore excited. Whereas a Frstcr
resonance energy transfer (FRET) mechanism might account

I110

CI NI - _1

0 1an·4nN 1/>CO.4i0 13n-4.n13

NN *"',"

N',.-I C

0 0

3

Table 1. Pholochemical l'rperlies of' CZ Dyes nd Their l:xpeclved
Cleavage Fragments

4
4 + Zn!

'

13
13 +, Zn:,
17"
17 Zn -

('ZI"

ZI , Z:1"

(2

('z. + Zn2'

(M em )
62000
65000
71100
786110
761()
1110()

t 1000l
7200(0
37200
38600
4 1(1)O
38100
261410
224110
26567
24333

tom)
alntba)we ¢bzv;

519 0.22
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for quenching of the putative donor, such a process would
require a concomitant increase in the fluorescence emission
of the putative acceptor, which is not observed. ZPI
fluorescence in both cases is similarly quenched. implying
that the Frster interaction is not the major mechanism of
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Figure 3. I;lulorcsccnce rsiXne of estera-.ttrated CZI (A and (Z72
IB). Aliqulols 10 nil..) fH Il'Et'ES buter containing 2 /tM dye were treated
with porcine liver csterase Ibr 19 h (CZ I. A) or 4 h (CZ2. B) and emission
sLpeira were recorded with excitation at 445 wm (red solid circlet and 505
nl Iblle .slid sqnares). A O uM ipoion of ZnChi was added, and emission
spectra were again recorded with excitation at 445 nm (green open circles)
:in1l 505 nm (black open slunres).

Na)/2 = 593. 1), corresponding to 5 and 3, respectively. These
products are expected fiom hydrolysis at the coumarin estcr
(Scheme 4). Since no peak or signal for 17 could be observed
during a standard run, its absence in the CZ2 product mix is
not conclusive. However. the lack of detectable amounts of
the complemenlary product 11, which gives a clear signal
att 17.2 min (ntz(M + Na) = 380.3) when run in a control.
is strong circumstantial evidencc that the coumarin ester is
clcaved first with good selectivily. Thus, the increase in rate
ol hydrolysis appears to sem primarily from enhanced
activity of the enzyme on 2 over I. LCMS analysis of CZI
atier 19 h exposure to PLE showed products of hydrolysis
at the single ester functionality, as expected (4, 13.0 min.
(M + 211) = 469.9 and 3, 18.4 min, (2 M + Na) = 593.1).

'I he fluorescence responses of esterase-treated CZ I and
C'72 were also examined. As expected. excitation at 445 nm
allbrtled coumarin fluorescence at 491 tim, and the coumariin
emission spectrum was largely unaltered upon addition of
excess ZnC12. Calibration curves of zinc chloride addition to
(CZI and (72 reveal a linear response for excitation at 505
nm and none when the excitation wavelength was 445 nim
(I:igures SI and S2, Supporting Liformalion). Some ZPI
fluorescence at 535 tnn is observed for both compounds and
increases significantly after addition of Zn2 . This contribu-
tionI can be excluded by measuring Iluorescence intensity at
489 nm or by instituting a cutoff' of 5)00 nm in measuring

1.1
Figure 4. Fluorescence ratlio images of tkLa cells mtated with (Z2 after
addition of ZnCIl and sodium pyrithione A, 0 min: i1, 8 tmin). and after
subsequent trcatmlent with TPE.N (C, 8X iil). D: DI iage. layages werc
nclitired at 40x nagnilicatimn, al the fatu-color ratio range was 1.1
(blue)--2.2 (red).
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Flgure . Intensiy ratios ofZI' emission divided by cumnarin emission
as a fuml.tion of time. 'nliee separate regions of interest were defiled at tite
start of the experiment atnd total integrated emissiotn of ZPI divided by
integrated emission of coumarin 343 was mnceatred at 3t1 s intervals. ZInC-l
(5 ItM final conltration) and sodium pyfithione (45 lfM) were added at
S nmin. and TPEN 150 pM) was added at 17 min

integrated fluorescence emission area for cournarin. This ZP I
emission batnd arises from the ability of fluorescein to absorb
some photons even when excited at 445 nm. Excitation at
505 nm affords a classic ZP I emission band, which increases
several-fold in response to addition of ZnCI2. Surprisingly,
addition of saturating ZnCI2 to esterase-treated CZ2 results
in only a 4-fold increase in the ratio of ZPI integrated emis-
sion to coumarin 343 integrated emission compared with the
ratio in the absence of Zn' '. whereas an 8-fold increase is
observed for CZ I (Figure 3). The ratio of ZPI:coumarin
fluorescence for CZ2 remains relatively constant over several
hours.

Biological Imaging. HeLa cells were stained by addition
of an aliquot of I mM CZ2 in DMS)O, to give a final
concentration of 10 mM dye in the mediym. After incubation
lor 4 h, the cells were washed and resuspended in dye-free
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Figure 6. l'PEN decrears. itlensity ratios of ZPI emtissioa divided y
c.mmallllr emission in (.2-stained iteL.a cells witlllut exogenously added
/mll. Iclur scpar.ale reginls of ilternvst were decficd at Ihe sart of the
experientl alld total integrated emission of ZPI divided by itegraled
clnisson ol' counman 343 as Isc:lsured at 30 intervals. TPEN (50 M)
nras added at 5 rill.

medium, and tle area immediately surrounding the site of
application was imaged (Figure 4). The introduction of
Zn(Cl::-sodium pyrilthione resulted in a hyperbolic increase
in Z' I emission over approxinlately 10 in with no change
in courarin enlissionl (Figure 5). TPEN was added after ZPI
emission had reached an apparent maximum, and the ZPI
emission decreased to slightly lower than initial levels.
('oumarin emission was not affected throughout the experi-
nmenl. The intracellular distribution of the two dyes appears
to be reasonably consistent, as assessed by the images after
treatment with zinc-pyrithione and after treatment with
TPEN. Both dyes are concentrated in the perinuclear area.
and relatively good colocalization is observed, based on the
Zn> - and T"IPEN-treated images (Figure 4B.C). An exception
to this general observation is an oval-shaped area in each
cell. which displays slightly different intensity ratios com-
pared to its surroundings and probably corresponds to the
cell nucleus. This result may arise from dilTerent partitioning
ot'the nuclear membrane by the ZPI and cournarin hydrolysis

Woodroofe et al.

products. with a corresponding dli'terence in luorescence
ratios. The TPEN-induced decrease in tilhe ZPIl:ounmarin
fluorescence ratio to values below the initial levels probably
reflects the presence of some Zn:'-bound dye before
exogenous zinc ion anti the ionophore arc added, because
addition of l'PEN to CZ2-treatcd cells without prior addition
of Zn't and pyrithione also decreased the intensity ratio,. as
shown i Figure 6.

Summary and Conclusions

We describe a new approach to ratiometric sensing of'
intracellular Zn-' based on the well-known phenomenon of
intracellular hydrolysis of csterases. The compounds ('I
and (7Z2 are based on ZPI sensors linked to the Zn:'-
insensitive reporter fluorophore couniriln 343 by an amideo-
ester or diester moiety. TIhe CZ compounds have very low
fluorescence. but upon treatment with porcine liver esterase
the ZPL-based Zn sensor and reporter fluorophore fluo-
rescence is regenerated. CZ2 is activated more rapidly than
CZI, although the same ester moiety is hydrolyzed first in
both cases. CZ2 has been applied to image exogenous Zn: '

in HeLa cells and displays an increase in fluorescence ratio
upon treatment with Zn- and an ionophore. The fluorescence
ratio decreases below initial levels upon treatment with
TPEN, a result in accord with other recent reports."
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Supporting Information Available: igures SI and S2 dis-
playing the fluorescence response of (Z1 and C'Z2 over a zinc
concentration range following excitation at 445 or 505 tlni. I'his
material is available ftee o' charge via the Internet at
ttp:lipubs.acs.org.
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Figure Captions

Figure S : Post-hydrolytic fluorescence response of 2 tM CZI to zinc(ll) chloride in
HEPES buffer (see Experimental Section) when excited at the coumarin (445 nm) or
fluorescein (505 nm) wavelength. The zinc-induced response maximizes at slightly less
than 1:1 stoichiometry since no attempt was made to remove zinc impurities that are
known to exist in the buffer (A. G. Tennyson and S. J. Lippard, unpublished results).

Figure S2: Post-hydrolytic fluorescence response of 2 M CZ2 to zinc(1) chloride in
HEPES buffer (see Experimental Section) when excited at the coumarin (445 nm) or
fluorescein (505 nm) wavelength. The zinc-induced response maximizes at slightly less
than 1:1 stoichiometry since no attempt was made to remove zinc impurities that are
known to exist in the buffer (A. G. Tennyson and S. J. Lippard, unpublished results).
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Figure SI

Calibration Curve (Coumazin-1)
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Figure S2

Calibration Curve (Coum azin-2)
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CHAPTER 3: Syntheses of Zinpyr Derivatives for Localized Applications in Zn2+ Sensing

Introduction

Two strategies have been developed for the sensing of biological zinc in specific cell

regions and receptor sites. Recent interest has sprung regarding the role of extracellular zinc

inhibition in N-methyl-D-aspartate (NMDA) receptors.' NMDA receptors have been found to be

involved in not only neuronal development and synaptic plasticity,2 and in neurological disorders

and neurodegeneration.3 Elucidation of the role of Zn2+ in NMDA-R inhibition may provide

some insight regarding the role of NMDA receptors in the above processes and disorders.4

Current methods of studying NMDA receptors involve the excitation of hippocampal slices and

subsequent monitoring of zinc release. Unfortunately, the synaptic cleft is narrow, making it

difficult for these methods to provide specific information regarding the activity and

concentrations of synaptically released zinc.5

Zinpyr-1 sensors functionalized with NMDA antagonists can bind to the NMDA receptor,

and the coupled products could be used to monitor Zn2+ concentrations and activity in synaptic

regions. Since many NMDA antagonists are functionalized with amines, we have investigated

Zinpyr derivatives that couple directly to these moieties.

As demonstrated in Chapter 2, succinimidyl esters react readily with amines to create

stable amide linkages. We therefore aimed to synthesize and isolate a Zinpyr-5-carboxy-

succinimidyl ester (ZPOSu) intermediate, which can be coupled to diaminopimelic acid, a

commercially available NMDA antagonist. After the coupled products are synthesized, they can

be used in cell studies to label the NMDA receptor and monitor zinc flux at the receptor channels.

'Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi, DW. Science 1996, 272, 1013-1016
2 McBain CJ, Mayer ML Physiol Rev. 1994, 74, 723-760

Choi DW. Science 1992, 258, 241-243
4Peters S, Koh J, Choi DW Science 1987, 236, 589-593
5Assaf, SY, Chung SH Nature 1984, 308, 734-738
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An additional approach involves the use of Zinpyr derivatives that couple to small

peptides for intracellular applications. The RGD peptide localizes to epithelial cells and has been

selected because of its commercial availability and facile synthesis. Recent developments in

click chemistry6 have suggested that a Zinpyr alkyne and an azide-functionalized peptide may be

readily coupled with this method. Preparation of an azido amino acid has been demonstrated in

the literature, by combining a-amino acids with a triflyl azide reagent.7 An azido-RGD peptide

could be similarly prepared. A Zinpyr alkyne (2) has been synthesized, as an orthogonal click

chemistry substrate.

Synthesis

We have tried several routes to synthesize a Zinpyr succinimidyl ester (ZPOSu), and have

found that the reaction of 4 with disuccinimidyl carbonate in the presence of Et3N and 6:1

MeCN/DMF achieves ZPOSu (5) in 52% yield (Figure 2). Compound 5 is a good activated

intermediate and couples readily to diaminopimelic acid to give 6. This preparation demonstrates

that ZPOSu can be used to readily couple to other primary amine-containing NMDA antagonists.

It should be noted that care must be taken with the isolated ZPOSu intermediate to avoid

decomposition; ZPOSu should be stored under anhydrous, inert conditions, to avoid hydrolysis

to the Zinpyr acid.

A Zinpyr alkyne (Figure 1) (2) and an azide-functionalized RGD peptide (7) have been

investigated as potential click chemistry substrates. Click chemistry methods have been

developed by Sharpless, et al,8 to create 1,4-triazoles stereoselectively from the 1,3-dipolar

cycloaddition of alkynes and azides. These reactions involve a Cu(I) catalyst generated by the in

6 Hartmuth C. Kolb, Dr., Finn, M. G., Sharpless, K. Barry. Angewandte Chemie International Edition 2000, 40(11),
2004-2021
7 Rijkers, D. T. S.; van Vugt, R.; Jacobs, H. J. F.; Liskamp, R. M. J. Tet Lett 2002, 43, 3657-3660
8 Hartmuth C. Kolb, Dr., Finn, M. G., Sharpless, K. Barry. Angewandte Chemie International Edition 2000, 40(11),
2004-2021
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situ reduction of a Cu(II) salt (such as CuSO4'5H 2O). Click chemistry reactions are generally

very high-yielding, ranging from 90-100%. Compound 2 has been synthesized and couples

readily to an alkyl azide 9 to generate 3 (Figure 1). Due to the fact that 3 binds the copper catalyst

more strongly than it binds zinc, products were treated with Chelex resin to remove residual

copper.

Compound 8 is generated by coupling an RGD azide (7) to 2 under click chemistry

conditions. This azide-functionalized peptide can be generated by addition of a triflyl azide

reagent to the RGD peptide, which selectively transforms its N-terminal xt-amino group into an

azide (Figure 1).7 To functionalize the RGD peptide with an azide group, triflyl azide is

synthesized and added to the resin-bound RGD peptide. Non-resin-bound products were isolated

by treatment with a 95% trifluoroacetic acid (TFA) solution. The Zinpyr alkyne was then added

under click chemistry conditions in a 1:1 mixture of MeOH/H20, to produce a copper-containing

product. Chelex is added to remove copper. Unfortunately, LCMS analysis shows no evidence of

Zinpyr-RGD coupled product, before or after Chelex resin addition. This is probably due to the

presence of residual TFA, from triflyl azide synthesis; TFA may have caused decomposition of

the Zinpyr alkyne to its parent fluorescein compound.

Conclusions

Syntheses of Zinpyr-RGD coupled products have failed. One explanation for this is that

the triflyl azide reaction may not have worked. It is also possible that traces of strong acid,

specifically TFA, used in the synthesis of triflyl azide, may have caused Zinpyr decomposition,

before click chemistry coupling could occur. To avoid decomposition of the Zinpyr moiety, the

9 Badiang, J.; Aub6, J. J. Org. Chem. 1996, 61(7) 2484-57



33

triflyl azide solution should be neutralized before attempting the synthesis of a Zinpyr-RGD

coupled product.

The Zinpyr alkyne has been synthesized and found to be an effective click chemistry

substrate. Under Sharpless conditions, the alkyne effectively couples to an alkyl azide. Copper-

free products have been isolated in low (10%) yield. After click-chemistry coupling, the resulting

residue is treated with Chelex in dichloromethane (DCM) to remove residual copper from the

Zinpyr moiety. Unfortunately, the coupled products are minimally soluble in DCM. After

filtration, the Chelex was fluorescent, when illuminated with a UV lamp, indicating that some

Zinpyr-containing product had not been isolated in dichloromethane. The copper-containing

products are somewhat soluble in methanol; however, MeOH also dissolves the Chelex resin,

making the isolation of copper-free products more difficult. Centrifugation and dialysis methods

will be investigated to facilitate isolation of coupled products.

A Zinpyr succinimidyl ester (4) has been synthesized in decent yield. Coupling of the

isolated ZPOSu with diaminopimelic acid affords a single adduct (5) that is easily isolated by

preparative HPLC. It is probably more facile to react the succinimidyl ester intermediate directly

with a diamine, followed by purification. This alternative, involving no direct isolation of the

ZPOSu intermediate, may occur in fewer steps with better overall yields.

Experimental

Materials and Methods.

Reagents were purchased from Aldrich and used without further purification, except for

pyBOP, which was obtained from NovaBiochem, and Chelex resin, which was obtained from

Sigma. Azidopropanol was prepared as previously described.'° 3',6'-Diacetyl-2',7'-dichloro-6-
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carboxyfluorescein pyridinium salt and ZP1(6-CO2H) (5) were synthesized as described in

Chapter 2. Acetonitrile was obtained from a dry-still solvent dispensation system. H NMR and

13C spectra were acquired on a Bruker 400 MHz or a Varian 500 MHz spectrometer. LCMS

analysis was performed on an Agilent Technologies 1100 Series LCMS with a Zorbax Extend C-

18 column using a linear gradient of 100% A (95:5 H20:MeCN, 0.05% HCO 2H) to 100% B

(95:5 MeCN:H20; 0.05% HCO2H) over 30 min at a flow rate of 0.250 mL/min. Detector

wavelengths were set at 240 nm and 500 nm, and the electrospray MS detector was set to

positive ion mode scanning the range m/z = 100-2000. Low-resolution MS spectra were

acquired on the same instrument. Preparative high-performance liquid chromatography (HPLC)

was performed on a Waters 600 pump with a Waters 600E systems controller monitored by a

Waters 486 tunable absorbance detector, using a Higgins Analytical, Inc. reverse-phase C18

column measuring 250 mm x 20 mm. Solvents A and B were purified water (resistivity 18.2

Ohms) obtained from a Millipore Milli-Q water purification system, or low-water acetonitrile

(Mallinckrodt), respectively, each containing 0.1 % v/v trifluoroacetic acid. Isolated compounds

were stored at 4 C or -25 C. The Zinpyr acid (4) was prepared as described in Chapter 2.

Synthetic Procedures

3 ',6'-Diacetyl-6-carboxy-2',7'-dichlorofluorescein propargylamide (1). 3 ',6'-Diacetyl-2',7',-

dichlorofluorescein-6-carboxyfluorescein pyridinium salt (0.524 g, 1 mmol), pyBOP (0.781 g,

1.5 mmol), triethylamine (0.140 mL, 1 mmol), and propargylamine (0.110 g, 2 mmol) were

dissolved in dry dichloromethane and stirred at room temperature for two hours. The solution

was then washed with water (lx100 mL), 0.1M HCl (lx100 mL), and saturated NaCl (lx100

mL), dried over MgSO4, and concentrated. The reaction was then purified by flash

chromatography, eluting with 98:2 chloroform:methanol, to give 0.327 g (58%) of light yellow
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foam. 'H NMR (CDC13): 8 8.2 (q, 2H); 7.6 (s, 1H); 7.2 (s, 2H); 6.9 (s, 2H); 6.4 (t, 1H); 4.2 (m,

2H); 2.4 (s, 6H); 2.3 (t, 1H). HRMS(M-H): Calcd for C28H16C12N08: 564.0253; Found 564.0242.

ZP1-6-(CONHCH 2CCH) (2). Di-(2-picolyl)amine (DPA) (0.23 mL, 1.3 mmol) and

paraformaldehyde (0.256 g, 2.6 mmol) were added to dry acetonitrile and heated to reflux for

forty-five minutes. Compound 1 (0.113 g, 0.2 mmol) was added in 10 mL acetontrile and 10 mL

H20, and refluxing continued for 24 h. The reaction was then concentrated, 10 mL H20 and

about 15 mL acetonitrile were added, after which light pink precipitate formation was observed.

The reaction was allowed to stand at RT overnight and then filtered to give 0.074 g (41%) of

light pink solid. I'H NMR (DMSO-d 6): 6 9.2 (t, 2H); 4H (m, 4H); 8.1 (d, 1H); 8 (d, 1H); 7.8 (t,

4H); 7.7 (s, 1H); 7.4 (d, 4H); 7.3 (d, 4H); 6.6 (s, 2H); 4.2 (s, 2H); 4.0 (s, 4H); 3.4 (s, 8H), 3.1 (s,

iH). Calcd for C50H40C12N70 6: 904.2417; Found 904.2435.

N-[1-(3-hydroxy-propyl)-lH-[1,2,3]triazol-4-ylmethyl]-ZP1-6-carboxamide (3). Compound

(2) (0.010 g, 0.011 mmol), CuSO4'5H 20 (0.003 g, 0.011 mmol), sodium ascorbate (0.022 g in

0.022 mL H20, 0.11 mmol), and azidopropanol (0.002 g, 0.022 mmol) were added to a 6 mL of

1:1 H20/MeOH. The reaction was stirred at RT for 24 hours, after which it was concentrated

and lyophilized. LCMS analysis ([M + 2Cu 2 + - 2H+]/2): calculated 566.6; observed 565.2)

revealed that no starting material remained, and that copper was bound to both Zinpyr binding

sites. To remove the copper, the reaction was stirred vigorously in dichloromethane for two

hours with Chelex (1 g), gravity filtered, and concentrated on the rotary evaporator to yield a

pink residue (0.001 g, 10%). H NMR (CDC13): 8.6 (d, 4H); 8.1 (d, 2H); 8.6 (t, 4H); 8.6 (s, 1H);
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7.4 (d, 4H); 7.2 (t, 4H); 6.6 (s, 2H); 4.2 (s, 4H); 4.0 (s, 8H); 3.8 (t, 4H);* 3.6 (t, 4H);* 3.5 (t,

4H);* 3.5 (t, 4H); 3.5 (s, 1H);* 3.4 (t, 6H);* 1.9 (m, 6H).* (* = residual azide)

ZP1-6-CO2Su (5). ZPI(6-CO 2H) (4) (86.6 mg, 0.1 mmol) was combined with disuccinimidyl

dicarbonate (52.5 mg, 0.2 mmol), activated molecular sieves, and triethylamine (160 gL) in 3

mL of DMF and 15 mL of MeCN. The reaction was stirred for 48 h at RT, and then

concentrated under reduced pressure and quenched by addition of glacial AcOH. The product

was isolated by preparative HPLC eluting with a gradient of 0 -- 100% B over 30 min. The

peak eluting at 19 min was collected and the combined fractions were lyophilized to afford 50.2

mg (52% yield). Remaining starting material (18 mg, 21%) was also recovered (retention time:

16.8 min). H NMR (MeOH-d 4): 8.62 (d, 4 H); 8.51 (dd, 1 H); 8.40 (d, 1 H); 7.96 (td, 4 H);

7.90 (d, 1 H); 7.42-7.55 (m, 8 H); 6.75 (s, 2 H); 4.49-4.58 (m, 12 H); 2.90 (br s, 4 H). MS(M +

H): Calc. for C5 H40C12N70 9: 964.2; Found 964.3.

ZP1-Diaminopimelic Acid (6). ZP1-6-CO 2Su (5) (9.6 mg, 0.01 mmol) was dissolved in 0.5 mL

of DMF and added to a solution of diaminopimelic acid (38.0 mg, 0.20 mmol) and triethylamine

(30 [tL) in 3 mL of H20. The reaction was stirred for 2 h at RT, then quenched by addition of 20

gL of glacial acetic acid. The desired product was isolated by preparative HPLC eluting with a

gradient of 0 -- 100% B over 35 min. Lyophilization afforded 2.5 mg (37.6%) of a pink solid.

'H NMR (MeOH-d 4): 6 8.63 (d, 4 H); 8.31 (d, 1 H); 8.22 (d, 1 H); 7.97 (m, 4 H); 7.66 (s, 1 H);

7.41-7.54 (m, 9 H); 6.73 (s, 1 H); 6.69 (s, 1 H); 4.57 (m, 1 H); 4.48-4.56 (m, 12 H); 3.96 (m, 1

H); 1.89-2.06 (m, 4 H); 1.65 (m, 2 H). MS(M+H): Calc. for C54H48C12N80 10 : 1039.3; Found

1039.2.
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Click Chemistry Coupling of the ZP alkyne and RGD peptide (8). Sodium azide (0.0013 g,

0.02 mmol) is suspended in 1.5 mL water at 0 C. 2.5 mL of dichloromethane is added, and the

solution is stirred vigorously. Triflic anhydride (7 jiL, 0.04 mmol) is added in 2 mL

dichloromethane over five minutes in an addition funnel. The reaction mixture is stirred at 0 °C

for 2 h, and then washed with two 1.25 mL portions of dichloromethane. Organic layers are

combined and dried over MgSO4.

Resin-bound RGD peptide (20 mg, 0.01 mmol) is dissolved in 0.1 mL water.

Triethylamine (2.1 gL, 0.015 mmol), CuSO4 5H20 (0.0024 g, 0.015 mmol), 0.1 mL MeOH, 0.9

mL dichloromethane, and the triflyl azide solution (0.01 mmol) are added. The reaction is stirred

for 18 h, concentrated on the rotary evaporator, washed with MeOH and dichloromethane, and

stirred in a 5 mL solution of 95% TFA, 2.5% TIPS, and 2.5% water (to remove the resin). The

solution is then filtered, the filtrate is concentrated, and cold diethyl ether is added to form a dark

brown precipitate. The Zinpyr alkyne (2) (0.010 g, 0.011 mmol), sodium ascorbate (0.0218 g, 0.1

mmol), CuSO4-5H20 (0.0002g, 0.011 mmol) is then added in 6 mL of a 1:1 solution of

MeOH:water. The reaction is stirred vigorously for 24 hours, diluted with water, and cooled on

ice. The solution is filtered, and the precipitate is washed with cold water and air dried overnight.
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CHAPTER 4: Conjugated Polymers as Nitric Oxide Sensors
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Chapter 4: Conjugated Polymers as Nitric Oxide Sensors

Introduction

Since its identification as the endothelium-derived relaxing factor in biological systems,

much interest in nitric oxide (NO) has been generated.' Nitric oxide is a small neutral free radical

with one unpaired electron and acts as a messenger molecule in the nervous, immune, and

cardiovascular systems. 2, 3 NO is a neurotransmitter4 and plays central roles in memory

formation and learning, as well as zinc release in neurons.5 Much controversy surrounds the role

of NO in cancer and metastasis;6 conflicting studies suggest that NO may either contribute to or

defend against metastases.7 Further evidence suggests that NO is also involved in apoptosis and

necrosis8 . Biological NO is produced in the body by the nitric oxide synthase-mediated oxidation

of L-arginine to L-citrulene and NO. There are three general forms of NOS: endothelial NOS

(eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS).9 Endothelial NOS and neuronal

X Ignarro, L. J.; Buga, G. M.; Byrns, R. E.; Wood, K. S.; Chaudhuri, G. J. Pharm. Exper. Therapeutics 1998, 246,
218-26
2 a) Ignarro, L. J. Angew. Chem., Int. Ed. 1999, 38, 1882-1892. b) Furchgott, R. F. Angew. Chem., Int. Ed. 1999, 38,
1870-1880. c) Murad, F. Angew. Chem., Int. Ed. 1999, 38, 1856-1868.
3 a) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418. b) Moncada, S.; Higgs, E. A. Eur. J. Clin. Invest. 1991, 21,
361-74. c) Moncada, S.; Palmer, R. M.; Higgs, E. A. Pharm. Rev. 1991, 43, 109-42.
4 (a) Dugas, N.; Delfraissy, J.-F.; Tardieu, M. Res. Immun. 1995, 146, 707-10. (b) Egberongbe, Y. I.; Gentleman, S.
M.; Falkai, P.; Bogerts, B.; Polak, J. M.; Roberts, G. W. Neuroscience 1994, 59, 561-78. (c) Huang, E. P. Curr. Biol.
1997, 7, R141-143. (d) Yamada, K.; Nabeshima, T. Curr. Top. Pharm. 1998, 4, 77-86.
5 (a) Berendji, D.; Kolb-Bachofen, V.; Meyer, K. L.; Grapenthin, O.; Weber, H.; Wahn, V.; Kroncke, K.-D. FEBS
Lett. 1997, 405, 37-41. (b) Kroncke, K. D.; Fehsel, K.; Schmidt, T.; Zenke, F. T.; Dasting, I.; Wesener, J. R.;
Bettermann, H.; Breunig, K. D.; Kolbbachoffen, V. Biochem. Biophys. Res. Commun. 1994, 200, 1105-1110.
6 (a) Alexandrova, R.; Mileva, M.; Zvetkova, E. Exper. Path. Parasit. 2001, 4, 13-18. (b) Wink, D. A.; Mitchell, J. B.
Free Rad. Biol. Med. 2003, 34, 951-954. (c) Buga, G. M.; Ignarro, L. J. Nitric Oxide 2000, 895-920. (d) Mooschhala,
S.; Rajnakova, A. Free Rad. Res. 1999, 31, 671-679. (e) Wink, D. A.; Vodovotz, Y.; Laval, F.; Dewhirst, M. W.;
Mitchell, J. B. Carcinogenesis 1998, 19, 711-721.
7 Lala, P. K. Cancer and Metastasis Revs. 1998, 17, 1-6.
8 (a) Xie, K.; Huang, S. Free Rad. Boil. Med. 2003, 34, 969-986. (b) Bal-Price, A.; Brown, G. C. J. Neurochem.
2000, 75, 1455-1464.
9 (a) Fischmann, T. O.; Hruza, A.; Niu, X. D.; Fossetta, J. D.; Lunn, C. A.; Dolphin, E.; Prongay, A. J.; Reichert, P.;
Lundell, D. J.; Narula, S. K.; Weber, PI C. Nature Struct. Biol. 1999, 6, 233-242. (b) Charles, I. G.; Palmer, R. M.;
Hickery, M. S.; Bayliss, M. T.; Chubb, A. P.; Hall, V. S.; Moss, D. W.; Moncada, S. Proc. Nat. Acad. Sci. 1993, 90,
11419-23. (c) Garvey, E. P.; Tuttle, J. V.; Covington, K.; Merrill, B. M.; Wood, E. R.; Baylis, S. A.; Charles, I. G.
Arch Biochem. Biophys. 1994, 311, 235-41. (d) Wang, Y.; Marsden, P. A. Curr. Op. Nephrol. Hypertension 1995, 4,
12-22.
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NOS produce low concentrations of NO after activation by calcium and calmodulin. 0l° Higher

concentrations of NO can occur if a cytokine activates iNOS. 

Current NO sensing techniques, such as EPR, chemiluminescence, and the use of

microelectrodes, generally involve irreversible reactions and indirect measurements. Recent

efforts have focused on the development of fluorescent NO sensors which can provide accurate,

quantitative and direct measurements. Previously developed fluorescent sensors include solid-

bound fiber optic-based probes which have specific, micromolar affinity for NO. Unfortunately,

these sensors react with other forms of NO, such as NO+, and often produce irreproducible

results, due to tedious multi-step fabrication techniques.' 2

The Lippard lab has developed several fluorescent NO sensors.'3 Transition metal

complexes have been synthesized with coordinated fluorophores (Figure 1). These complexes

react reversibly with NO; in the presence of NO, the fluorophore dissociates from the

coordination sphere of the metal. A metal nitrosyl complex is formed, and the displaced

fluorophore is no longer quenched. Careful tuning of the complex properties can allow the

fluorophore to rebind the complex, displacing NO. The sensors have been found to detect NO in

the p.M range, but sensors with nM affinity would be useful for more widespread biological

applications. Since water can compete with the fluorophore in binding to the transition metal, the

sensors developed to date are not suitable for direct use in aqueous environments. 14 However, the

'0 (a) Nathan, C. FASEB J. 1992, 6, 3051-64. (b) Hibbs, J. B.; Taintor, R. R.; Vavrin, Z. Science 1987, 235, 4793-6.
" (a) Li. L.; Nicolson, G. L.; Fidler, I. J. Cancer Res. 1991, 51, 245-54.(B) Li, L; Kilbourn, R. G.; Adams, J.; Fidler,
I. J. Cancer Res. 1991, 51, 2531-5. (c) Dong, Z.; O'Brian, C. A.; Fidler, I. J. J. Leuk, Biol. 1993, 53, 53-60.
12 (a) Barker, S. L.; Kopelman, R.; Meyer, T. E.; Cusanovich, M. A. Anal. Chem. 1998, 70, 971-6. (b) Barker, S. L.;

Clark, H. A.; Swallen, S. F.; Kopelman, R.; Tsang, A. W.; Swanson, J. A. Anal. Chem. 1999, 71, 1767-72. (c)
Barker, S. L.; Zhao, Y.; Marletta, M. A.; Kopelman, R. Anal. Chem. 1999, 71, 2071-5.
13 a) Hilderbrand, S. A.; Lim, M. H; Lippard, S. J. J. Am. Chem. Soc. 2003, 126, 4872-4978. b) Franz, K. J.; Singh,
N.; Spingler, B.; Lippard, S. J. Inorg. Chem. 2000, 39, 4081-4092. c) Franz, K. J.; Singh, N.; Lippard, S. J. Angew,
Chem., Int. Ed. 2000, 39, 2120-2122.
14 Hilderbrand, S. A.; Lippard, S. J. Inorg. Chem. 2004, 43, 5294-5301
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sensors can be surrounded by a NO-permeable/water-impermeable membrane (Silastic® Q7-

4565 biomedical polymer) to sense NO without loss of stability (Figure 2).

A novel strategy for detecting NO has evolved in our laboratory using Cu2 + complexes. 15

In the presence of excess NO, Cu2+ complexes are rapidly reduced to Cu+ complexes (Figure 3).

Applying this notion, we have developed fluorescent molecules with copper-binding groups and

studied their reactions with nitric oxide. In the presence of Cu2+, the complexes are quenched.

The Cu2+-bound complexes are reacted with NO, and the fluorescence is measured. 16

Recent efforts in our laboratory have involved the investigation of c-conjugated polymers

(CPs) (Figures 4-5) in NO sensing. These 7r -conjugated polymers can be highly fluorescent and

organic- or water-soluble, with excitation wavelengths ranging from the UV to near-IR range.

Swager, et. al, have found that the emission maxima of CPs can be tuned by changing side chain

substitution, or altering the c-conjugated segments of the CP backbone. Since CPs are effective

fluorescent sensors, 17 they may be developed for the biological imaging of NO.

A nonionic, water-soluble CP has been developed by Swager, et al. 18 This

poly(phenylene ethynylene) (PPE) derivative contains hydrophilic hydroxyl and amide groups to

facilitate dissolution of its hydrophobic backbone in aqueous media. Using this strategy, the

water solubility of our previously developed polymer-based NO-sensing systems can be

improved. 19 Syntheses of the above water-soluble monomers have been undertaken. Future

studies will involve the incorporation of Cu2+-binding groups that will react with NO to afford

Cu'+ complexes, with corresponding changes in fluorescence intensity.

is Tran, D. and Ford, P. C. Inorg. Chem. 1996, 35, 2411-2412.
'6 Smith, R. C. Unpublished results 2004.
7 McQuade, D. T.; Pullen, A. E.; Swager. T. M. Chem. Rev. 2000, 100, 2537-2574.
18 Kuroda, K. Swager, T. M. Chem. Commun. 2003, 26-27
19 Smith, R. C. Unpublished results 2004.
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Results and Discussion

Water-soluble PPE-based polymers (Figures 6-8) have been synthesized by Swager, et al,

by the Sonogashira cross-coupling of monomers A (6) and B (9). Adapting previous routes,

syntheses of 6 and 9 have been undertaken. As seen in Figure 6, IC1 is added to dialkoxybenzene

to give diiodoalkoxybenzene (1) in 85% yield. Compound 1 is then allowed to react with boron

tribromide to afford 10.607 g (88%) of 2,5-diiodo hydroquinone (2). Ethyl bromoacetate is added

to 2 to result in 5.195 g (40%) of (4-ethoxycarbonylmethoxy-2,5-diiodo-phenoxy)-acetic acid

ethyl ester (3). Compound 4 is prepared in 49% yield by reacting 3 with diethanolamine,

followed by triisopropylsilyl chloride (TIPSC1). Compound 5 is subsequently obtained by

Sonogashira coupling of 4 and TMSA in 95% yield. Further applications of compound 5 are

currently under investigation.

Hydrolysis of 3 affords 4.170 g (91%) of 7 as a light tan solid. Compound 7 is stirred

with oxalyl chloride to create an acid chloride intermediate, which is added to diethyl

iminodiacetate, and 8 is isolated in 72% yield. Monomer B (9) is synthesized by the

condensation of Tris base with 8, in an adaptation of Newkome's synthesis of arborols.2 0

Monomer B is very soluble in water, DMSO, and DMF. After Monomer A (6) is synthesized, it

will be polymerized by a Pd-catalyzed cross-coupling reaction with Monomer B and (E, E)-5,5'-

bis(4-bromostyryl)-2-2'-bipyridine to obtain our target, a water-soluble polymer (10) (Figure 8).

The optical properties of this water-soluble polymer, as well as its reactivity with various metal

ions and nitric oxide are currently being studied.

The organic-soluble polymers 13 (Figure 9) and 16 (Figure 10) have also been

synthesized through Suzuki and Sonogashira cross-coupling reactions, respectively. The

quantum yield of 13 has been determined to be 0.17 in 4:1 CH2Cl2/MeOH, using quinine sulfate

20 Newkome, G. R., Lin, X., Yaxiong, C., Escamilla, G. H. J. Org. Chem., 1993, 58, 3123.
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(QS) as a standard. This compound undergoes a 4-fold quenching after the addition of one

equivalent of Cu(OTf) 2 (Figure 11). Compound 16 has a higher high quantum yield ((Dff = 0.27)

than 13 and undergoes 28-fold quenching after the addition of one equivalent of Cu(OTf)2

(Figure 12). No further quenching of CP1 or CP2 occurs after the addition of one equivalent of

Cu2+. Studies of the reactivity of Cu2 +-bound 13 and 16 to nitric oxide are currently in progress.

Conclusions

Two organic-soluble polymers, 13 and 16, have been synthesized. Compound 16 has a

higher quantum yield than 13 and the reactivity of its Cu2+-bound complex to nitric oxide is

currently under investigation. The synthesis of 10, an aqueous-soluble polymer, is in progress,

and will be followed by the characterization of its fluorescence properties and studies regarding

its reactivity to nitric oxide.
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Experimental

Materials and Methods.

Reagents were purchased from Aldrich and used without further purification. THF and

dichloromethane were obtained from a dry-still solvent dispensing system. Anhydrous DMF was

purchased from Aldrich. Syntheses of compounds 1-9 were adapted from previous work by

Swager, et al.'9 Fluorescence spectra were acquired on a Hitachi F-3010 or a Photon Technology

International (Lawrenceville, NJ) Quanta Master 4L-format scanning fluorimeter. Quantum

yields were measured using a quinine sulfate standard (DQs = 0.546) and measurements were

done in triplicate to ensure reproducibility. Fluorescence measurements assessing the reactivity

of NO with polymers 13 and 16 were done using anhydrous, deoxygenated solvents and samples

with an optical density of < 0.05 at the excitation wavelength. UV-visible absorption spectra

were recorded on a Cary 1E UV-visible spectrophotometer at 25 °C. 'H and 13C NMR spectra

were acquired on a Varian 300 spectrometer.

Synthetic Procedures

Diiodoalkoxybenzene (1). Solid ICl (32.400 g, 0.200 mol) was added in portions to MeOH at 0

°C and stirred for five minutes until the reaction turned brown. Dialkoxybenzene (5.515 g, 0.040

mol) was added, and the brown slurry was heated to reflux for 4.5 h. The reaction was slowly

cooled to 0 °C. Filtration and successive rinses with MeOH afforded 13.210 g (85%) of a white

solid. MP: obs: 169.5-170.5 °C, literature: 171-172 °C. 'H NMR (300 MHz, CDCl 3): 6 7.116 (s,

2H), 3.833 (s, 6H).
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2,5-Diiodo Hydroquinone (2). Compound 1 (13.158 g, 0.033 mol) was cooled in 100 mL

CH2C12 under N 2, and a 1M solution of BBr 3 in CH2C12 (67.5 mL, 0.068 mol) was added slowly

while stirring. The reaction was slowly warmed to room temperature and stirred for 48 h. The

reaction was then quenched with 40 mL H20. Aqueous portions were washed with ether, and

organic portions were washed with 2N NaOH, evaporated, and dried under vacuum to afford

10.607 g (88%) of product. 'H NMR (300 MHz, CDC13): 5 7.23, (s, 2H), 4.90 (s, 2H).

(4-Ethoxycarbonylmethoxy-2,5-diiodo-phenoxy)-acetic acid ethyl ester (3).

Ethyl bromoacetate was added dropwise to a suspension of 2 (10.607 g, 0.029

mol) and K2CO3 (20.401 g, 0.150 mol) in acetone. The reaction was heated to

reflux overnight, evaporated, and recrystallized from EtOH to yield 5.195 g

(40%) of product. H NMR (300 MHz, CDC13): 6 7.167, (s, 2H), 4.623 (s, 2H),

4.302 (q, 4H), 1.321 (t, 6H).

2-(4-{ [Bis-(2-triisopropylsilanyloxy-ethyl)-carbamoyl]-methoxy}-2,5-diiodo-phenoxy)-N,N-

bis-(2-triisopropylsilanyloxy-ethyl)-acetamide (4).

OTIPS Compound 3 (2.000 g, 3.74 mmol) was heated to reflux with diethanolamine

0 (1.580 g, 15 mmol) in 25 mL of ethanol overnight. The reaction was evaporated

OTIPS and dried under vacuum. The solid was suspended in 190 mL of THF, and

imidazole (2.549 g, 37.5 mmol) and TIPSCl (7.200 g, 37.5 mmol) were added.

The reaction was stirred overnight at RT. The solvent was removed by rotary
TIPSO 0

evaporation. The residue was purified through silica gel column chromatography
N

and recrystallization from CH2Cl2/MeOH to afford 2.350 g (49%) of a white

OTIPS
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crystalline solid. 'H NMR (300 MHz, CDC13 ): 6 7.266, (s, 2H), 4.814 (s, 4H), 3.882 (q, 8H),

3.683 (t, 4 H), 3.585 (t, 4H), 1.050 (m, 84H).

Compound 5.

OTIPS

4.82 (s, 4H),

Compound 4 (0.980 g, 0.76 mmol) and CuI (3 mg, 0.02 mmol) were dissolved in

2 mL isopropylamine and 6 mL toluene in a Schlenk flask. The reaction mixture

was degassed by three quick vacuum and back-filled with Ar cycles. Pd(PPh3)4

(36 mg, 0.03 mmol) and TMSA (200 mg, 1.17 mmol) were added to the flask

under Ar. After heating at 50C overnight, the solvent was evaporated. The

residue was dissolved in CH2Cl2, washed with NH4Cl (aq) solution, and dried

over MgSO4. The crude residue was recrystallized with 1:1 CH2Cl2/MeOH to

afford 0.775 g (95%) of product. IH NMR (300 MHz, CD2Cl2): 6 6.88 (s, 2H),

3.85 (t, 8H), 3.63 (t, 4H), 3.55 (t, 4H), 1.05 (m, 84H), 0.24 (s, 18H).

2-(4-{ [Bis-(2-triisopropylsilanyloxy-ethyl)-carbamoyll-methoxy}-2,5-diethynyl-phenoxy)-

N,N-bis-(2-triisopropylsilanyloxy-ethyl)-acetamide (7).

o0 Compound 3 (5.557 g, 0.010 g) was heated to reflux in 194 mL MeOH with

NaOH (11.640 g, 0.291 mol) for 2.5 h. The reaction was cooled to RT and the

-< solvent was evaporated. The resulting residue was acidified with 1 N HC1 (aq),

and a white precipitate formed, which was collected by centrifugation, and

HOa washed with H20 until the solution was pH 4. The residue was lyophilized

overnight to afford a light tan solid (4.170 g, 91%). H NMR (300 MHz, DMSO-d 6): 7.2 (s,

2H), 4.7 (s, 4H).
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2-(4-{ [Bis-(2-hydroxy-ethyl)-carbamoyl] -methoxy}-2,5-diethynyl-phenoxy)-N,N-bis-(2-

hydroxy-ethyl)-acetamide (8).

Compound 7 (3.000 g, 6.3 mmol) was stirred in 20 mL oxalyl chloride and

heated to reflux overnight. Excess oxalyl chloride was evaporated and the

residue was dissolved in 20 mL CH2Cl2. The reaction was cooled to 0 °C, and

a diethyl iminodiacetate solution (4.800 g, 25 mmol in 20 mL CH2Cl2 and 2.7

mL Et3N) was added dropwise. The solution was warmed to room temperature

and stirred overnight. The reaction was then washed with 1N NaOH, 1N HCl, sat. NaCl (aq), and

dried over MgSO4. The solvent was evaporated to afford 3.613 g (72%) of desired product. IH

NMR (300 MHz, CDC13): 8 7.2 (s, 2H), 4.7 (s, 4H), 4.3 (s, 4H), 4.2 (m, 12H), 1.3 (t, 12H).

Monomer B: (4-Carboxymethoxy-2,5-diiodo-phenoxy)-acetic acid (9).

Compound 8 (1.000 g, 1.24 mmol), Tris (0.602 g, 4.97 mmol), and K2CO3

(0.687 g, 4.97 mmol) were suspended in 10 mL DMSO and stirred overnight.

Excess potassium carbonate was filtered and the filtrate was vacuum distilled.

o.~. o·o. The oily brown residue was rinsed with CH2Cl2, and a hefty amount of tan-

colored precipitate formed. The precipitate was collected by centrifugation and dried under

vacuum. The residue precipitates out of dichloromethane as a light pink solid, and appears to be

very hydroscopic. H NMR (300 MHz, DMSO-d6): 6 7.723 (bs, 2H), 7.424 (bs, 2H), 7.246 (bs,

2H), 4.852 (bs, 4H), 4.596 (bs, 12H), 4.073 (bs, 4H), 3.955 (bs, 4H), 3.565 (bs, 24H).
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Polymer Synthesis

Synthesis of Tetrakis(triphenylphosphine) Palladium(O) Catalyst. PdCl2 (1 g) was placed in a

3-neck round-bottom flask with a thermometer and a filter stick attached to a second inverted 3-

necked round-bottom flask. DMSO (68 mL) and triphenylphosphine (7.400 g) were added, and

the reaction was heated to 140 °C with stirring. The reaction was removed from heat, and stirred

for 15 more minutes. Hydrazine hydrate (1.4 mL) was added rapidly, and the reaction was

allowed to cool to room temperature. The apparatus was inverted for filtration, and the solid was

washed with ethanol (2 x 10 mL) and dry ether (2 x 10 mL), producing a yellow solid, which

was dried under vacuum for 3.5 h.

Polymer 1: Suzuki Coupling of (11) and (12). Compound 11 (0.041 g, 0.1 mmol), 12 (0.074 g,

0.15 mmol), 6, 6'-dibromo-2, 2'-6,' 2"-terpyridine (0.0196 g, 0.05 mmol), cesium carbonate

(0.013 g, 0.45 mmol) and Pd(PPh 3) 4 (0.048 g, 0.045 mmol) were combined in DMF under N2.

The reaction was stirred at 100 °C for 48 h. Organic layers were washed with saturated EDTA

(aq), and aqueous layers were washed with CH2C12. The organic layers were combined,

evaporated, and washed with water and MeOH.

Polymer 2: Sonogashira Coupling of (14) and (15). Compounds 14 (0.044 g, 0.1 mmol), 15

(0.033 g, 0.15 mmol), 6, 6'-dibromo-2, 2'-6,' 2"-terpyridine (0.0196 g, 0.05 mmol), CuI2 (0.014

g, 0.045 mmol), and 10% Pd(Ph 3) 4 (0.048 g, 0.045 mmol) were stirred in 2.5 mL of

diisopropylamine and 8 mL of toluene. The reaction was heated in a sealed pressure tube at 800C

for 24h. Organic layers were washed with saturated EDTA (aq), and aqueous layers were washed

with CH2C12. The organic layers were combined, evaporated, and washed with water and MeOH.
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Fluorescence Experiments of Polymers 1 and 2

Titration of (13) with Cu(OTf)2 (Figure 11). A 5.0 gM solution of (13) was prepared in 4:1

CH2Cl2:EtOH. A 3 mL aliquot of the solution was added to a quartz cell with an optical

pathlength of 1 cm. Small (5 - 160 gL) aliquots of a 1.6 x 104 M Cu(OTf) 2 solution were added

to the sample cell, and the fluorescence was monitored at an excitation wavelength of 344 nm.

The integrated fluorescence intensity was observed to have a 4-fold decrease in integrated

fluorescence, upon addition of 1 equivalent of Cu2+. No further quenching was observed after a

second equivalent of Cu2+ was added.

Titration of (16) with Cu(OTf) 2 (Figure 12). A 0.48 pM solution of (16) was prepared in 4:1

CH 2Cl2:EtOH. A 3 mL aliquot of the solution was added to a quartz cell with an optical

pathlength of 1 cm. Small (10 - 110 gL) aliquots of a 1.6 x 10-5 M Cu(OTf) 2 solution were added

to the sample cell, and the fluorescence was monitored at an excitation wavelength of 393 nm.

The integrated fluorescence intensity was observed to have a 28-fold decrease in integrated

fluorescence, upon addition of 1 equivalent of Cu2+. No further quenching was observed after a

second equivalent of Cu2+ was added.
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Figure 1: NO Detection by Fluorophore Displacement
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A

Figure 2: Silastic® Membranes Applied In Aqueous NO Sensing.'4

The left vial contains a 15 mL saturated NO solution in an aqueous environment. Silastic®
membrane separates vials A and B. The right vial contains 1.5 mL of a CH2C12 solution of 40

FtM [Rh2[-O 2CMe)4] and 20 gM Ds-pip.

Cu(dmp)22+ + ROH + NO 0 Cu(dmp)2 + + RONO + H+

Figure 3: Reduction of Cu2+ to Cul+ by Nitric Oxide in an Alcoholic Solvent'5
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Traditional Chemosensor:
Sensitivity related to the equilibrium constant K(eq) =

[ Bound Receptor ]
[ Unbound Receptor ] [ Analyte ]

I
Bound Receptor Creates a
Change in a Measurable Property

Receptors Wired in Series:
Amplification due to a collective system response.

t-f-S-K4 
+0
-0

Only Fractional Occupancy Required

Figure 4: Small Molecule Chemosensors (above) and Conjugated Polymer Sensors (below)21

I

+
* 1

11

Figure 5: Conjugated Polymers as NO Sensors

21 Swager, T. M. Acc. Chem. Res. 1998, 31, 201-207.
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ICI 1. MeOH,C CH3 DCM BBr3 OH B
ici2 1. M.OH, O'C 001"H` 8 DCM, Et K2C 

CHC I HO I
(1) (2)

H3CO 85% 88%

(3)
40%

TIPS

OTIPS

1. TMSA, PdCI2(PPh3)2,
Cul, Benzene, Et3N

2. K 2CO,. MeOH/THF

(4) -

TIPSO 0

(5)
OTIPS 95%

OTIPS

HNON OH 
EtOH, reflux

2. THF, Imidazole, TIPSCI N

OTIPS

TIPSO O

"~N0O49%
?NO

OTIPS

H

HO 00

(6)

OH

Figure 6: Synthetic Route Used to Prepare Monomer A
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NaOH, MeOt
1 1 / reflux

0 0
(3)

1. Oxalyl chloride, reflux
2. Et3N, DCM

91%

Figure 7: Synthetic Route Used to Prepare Monomer B
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Pd(PPh)4, Cul
Morpholine

(6) + (9) 60°C
(E),(E)-5,5'-bis(4- bromostyryl)-2,2'-bipyridine

10

OH

HO" /R N Ol-

O0·

Figure 8: Synthesis Of An Aqueous CP-Based NO Sensor
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CO3, Pd(Ph3)4, DMF

12

+ N

Br Br

Figure 9: Synthesis of 13 Through A Suzuki Coupling Reaction

OHx

OHx

15

Pd(Ph3)4, Cul
6,6'-dibromo-2,2'-6,2"-terpyridine,
toluene

Figure 10: Synthesis of 16 Through a Sonogashira Coupling Reaction
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Cu(ll) Titration of Compound 13
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Figure 11: Cu(II) Titration of Compound 13
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Cu(ll) Titration of Compound 16
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Figure 12: Cu(II) Titration of Compound 16
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