AN INTRODUCTION TO INTELLIGENT TRANSPORTATION SYSTEMS

1.212

SPRING 2003

Professor Joseph M. Sussman

Mon/Wed 1-2:30

BLOCK 2

(Lecture 7)

ADVANCED TRAVELER INFORMATION SYSTEMS

Trafficmaster

Reliability

Driver Behavior

SPEAKER: Joseph M. Sussman MIT

TRAFFICMASTER UK (1)

- Components
 - Network of traffic sensors
 - Communication network
 - In-vehicle information units
 - National Traffic Data Center (operated by Trafficmaster) (NTDC)

TRAFFICMASTER UK (2)

- Public-Private Partnership
 - General logistics on UKDOT (now DETR)
 - Originally M25
 - Now 15-year commercial license
 - ♦ England
 - Scotland
 - ♦ Wales
 - Initiated September 1900
 - ◆ March 2000
 - 2400 infrared motorway sensors (wireless, batteries)
 - 7000 passive traffic flow sensors for truck roads

TRAFFICMASTER UK (3)

- Motorway Sensors
 - Measure speeds (averaging 6 vehicles)
 - If < 48 km, sensors communicate to NTDC
 - NTDC communicates to vehicles using wireless paging

TRAFFICMASTER UK (4)

- Truck Roads (Arteries)
 - ♦ A lot of variation, unlike motorways
 - Use passive target flow measurements (image processing of license plate)

TRAFFICMASTER UK (5)

- Information Delivery
 - ♦ Trafficmaster freeway
 - ◆ Traffic alert 1740
 - Trafficmaster YQ

FREIGHT RELIABILITY

DRIVEN BY INVENTORY AND STOCK-OUTS

WHAT CAN GO WRONG?

Delays along the way -- service reliability

ISSUE: Stock-outs

WHAT CAN GO WRONG? (CONTINUED)

So, perhaps the customer at B keeps a day's worth of inventory

Problems: Bigger Inventory Warehousing Costs Insurance Costs

A BIG ISSUE -- STOCK-OUTS

- WHAT DOES A STOCK-OUT COST?
 - Examples
 - GM Assembly Plant
 - ♦ Retail Store
 - Blood Bank

INVENTORY MINIMIZATION

- If one needs a greater amount of inventory because of unreliability in the transportation system or probabilistic use rate, you generate costs as a result of needing larger inventory to avoid stock-outs.
- We try to balance the costs of additional inventory with the costs of stock-outs.

TOTAL LOGISTICS COSTS (TLC)

Total Logistics Costs (TLC) = f (travel time distribution, inventory costs, stock-out costs, ordering costs, value of commodity, transportation rate, etc.)

TRAVEL TIME DISTRIBUTION FROM SHIPPER TO RECEIVER

- This probability density function defines how reliable a particular mode is.
- TLC is a function of the travel time distribution.
- As the average travel time and variance grows, larger inventories are needed.

TRAVELER RELIABILITY

NOW IT IS TIME UTILIZATION AND NOT INVENTORY WE ARE CONCERNED WITH

How can you deal with uncertainty in travel times?

- Choose time when conditions are stable
- Choose routes with stable conditions
- Choose routes you know
- Build knowledge through experiment
- Minimize consequences safety margins
- Get better information before the trip or en route

Bonsall, Peter, "Travellers' Response to Uncertainty", Chapter 1 in *Reliability of Transport Networks*, Bell and Cassir, eds., Research Studies Press Ltd., Baldock, Hertfordshire, England, 2000.

Think we should design unreliable systems for the thrill-seekers?

Yin, Yafeng and Hitoshi Ieda, "Assessing Performance Reliability of Road Networks Under Nonrecurrent Congestion", *Transportation Research Record* 1771, National Academy Press, Washington, DC.

What is the overall travel time distribution composed of?

With no traveler information, how would you decide when to leave?

Suppose at 7:30, while still at home, you can find out what kind of a day it is

- ♦ Regular
- ♦ Terrible

What do you do, based on that information?

So, do you really save *actual* traffic time?

Maybe a little, but not much.

Does that mean there is no value to ATIS?

Figure ES-2: ATIS User Route Choice and Trip Timing

Wunderlich, Karl, Matthew Hardy, James Larkin, Vaishali Shah, "On-Time Reliability Impacts of Advanced Traveler Information Services (ATIS): Washington, DC Case Study", Mitretek Systems, McLean, VA, January 2001.

MITRETEK CONCLUSIONS

- ATIS benefits are grossly understated if only travel time savings are included.
- The value of improved on-time reliability is not easily nor directly monitized, but it is clear that many types of travelers can benefit from ATIS.
- Trucks delivering auto parts in a just-in-time manufacturing process may highly value any improvement in on-time reliability or reduction in early schedule delay.
- Commuters face an on-time requirement not only on the home-to-work leg of their daily trip-making, but increasingly on the work-to-home return trip in order to meet daycare pickup requirements and other commitments.
- Improved reliability and predictability of travel are also likely good surrogates for reduced commuter stress.

Wunderlich, Karl, Matthew Hardy, James Larkin, Vaishali Shah, "On-Time Reliability Impacts of Advanced Traveler Information Services (ATIS): Washington, DC Case Study", Mitretek Systems, McLean, VA, January 2001.

MITRETEK CONCLUSIONS (2)

- Overall, ATIS use proved advantageous in efficiently managing the traveler's time. Specific quantitative examples selected from the Washington, DC, case study include:
 - Peak-period commuters who do not use ATIS were three to six times more likely to arrive late compared to counterparts who use ATIS;
 - Cases where ATIS clearly benefits the user (e.g., ATIS user on-time, non-user late) outweighed cases where ATIS clearly disadvantages the user by five to one;
 - ATIS users in peak periods are more frequently on-time than conservative non-users, yet they experience only two-thirds as much early schedule delay as non-users;
 - Late shock, the surprise of arriving late, is reduced by 81% through ATIS use.

Wunderlich, Karl, Matthew Hardy, James Larkin, Vaishali Shah, "On-Time Reliability Impacts of Advanced Traveler Information Services (ATIS): Washington, DC Case Study", Mitretek Systems, McLean, VA, January 2001. Llaneras, Robert E. and Neil D. Lerner, "The Effects of ATIS on Driver Decision Making", *ITS Quarterly*, Washington, DC, Summer 2000.

- ♦72 drivers
- ◆ Ages 18-86
- Equal number of males and females
- Familiarity with actual roads (but this was a simulation)

THREE LEVELS OF ATIS

No ATIS

- Basic ATIS
 - Descriptive information about incidents and congestion
 - Location, type of incident
- Enhanced ATIS
 - Basic plus the following
 - Alternative route
 - Incident details
 - Real-time traffic map
 - Live video traffic images

TWO TRAFFIC LEVELS

Light

Moderately Heavy

So, Six Experimental Conditions, Twelve Participants per Condition

Also, incidents built into the simulations

CONCLUSION

- ATIS influences en route driver decisionmaking
- Drivers will divert
- Travel time savings occurred as a function of ATIS features
- Same drivers did worse by diverting
- Travel level (light vs. moderately heavy) had little effect on driver behavior
- Maps work