Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2007-016 March 5,2007

Distributed Method Selection and
Dispatching of Contingent, Temporally
Flexible Plans

Stephen Block

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL



Distributed Method Selection and Dispatching of
Contingent, Temporally Flexible Plans
by
Stephen Block

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Author ...
Department of Aeronautics and Astronautics
February 1st, 2007

Certified Dy . ...
Brian C. Williams

Associate Professor

Thesis Supervisor

Accepted Dy . ..o
Jaime Peraire

Professor of Aeronautics and Astronautics, Chair, Committee on
Graduate Students






Distributed Method Selection and Dispatching of
Contingent, Temporally Flexible Plans
by
Stephen Block

Submitted to the Department of Aeronautics and Astronautics
on February 1st, 2007, in partial fulfillment of the
requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Many applications of autonomous agents require groups to work in tight coordination.
To be dependable, these groups must plan, carry out and adapt their activities in a
way that is robust to failure and to uncertainty. Previous work developed contingent,
temporally flexible plans. These plans provide robustness to uncertain activity du-
rations, through flexible timing constraints, and robustness to plan failure, through
alternate approaches to achieving a task. Robust execution of contingent, temporally
flexible plans consists of two phases. First, in the plan extraction phase, the executive
chooses between the functionally redundant methods in the plan to select an execu-
tion sequence that satisfies the temporal bounds in the plan. Second, in the plan
execution phase, the executive dispatches the plan, using the temporal flexibility to
schedule activities dynamically.

Previous contingent plan execution systems use a centralized architecture in which
a single agent conducts planning for the entire group. This can result in a commu-
nication bottleneck at the time when plan activities are passed to the other agents
for execution, and state information is returned. Likewise, a computation bottleneck
may also occur because a single agent conducts all processing.

This thesis introduces a robust, distributed executive for temporally flexible plans,
called Distributed-Kirk, or D-Kirk. To execute a plan, D-Kirk first distributes the
plan between the participating agents, by creating a hierarchical ad-hoc network and
by mapping the plan onto this hierarchy. Second, the plan is reformulated using a
distributed, parallel algorithm into a form amenable to fast dispatching. Finally, the
plan is dispatched in a distributed fashion.

We then extend the D-Kirk distributed executive to handle contingent plans.
Contingent plans are encoded as Temporal Plan Networks (TPNs), which use a non-
deterministic choice operator to compose temporally flexible plan fragments into a
nested hierarchy of contingencies. A temporally consistent plan is extracted from the
TPN using a distributed, parallel algorithm that exploits the structure of the TPN.

At all stages of D-Kirk, the communication load is spread over all agents, thus
eliminating the communication bottleneck. In particular, D-Kirk reduces the peak



communication complexity of the plan execution phase by a factor of O (g), where ¢’
is the number of edges per node in the dispatchable plan, determined by the branching
factor of the input plan, and A is the number of agents involved in executing the plan.

In addition, the distributed algorithms employed by D-Kirk reduce the compu-
tational load on each agent and provide opportunities for parallel processing, thus
increasing efficiency. In particular, D-Kirk reduces the average computational com-
plexity of plan dispatching from O (N3e) in the centralized case, to typical values
of O (N?e) per node and O (Nje) per agent in the distributed case, where N is the
number of nodes in the plan and e is the number of edges per node in the input plan.

Both of the above results were confirmed empirically using a C++ implementation
of D-Kirk on a set of parameterized input plans. The D-Kirk implementation was
also tested in a realistic application where it was used to control a pair of robotic
manipulators involved in a cooperative assembly task.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor



Acknowledgments

I would like to thank the members of the Model-Based Embedded and Robotic Sys-
tems group at MIT for their help in brainstorming the details of the D-Kirk algorithm
and for their valuable feedback throughout the process of writing this thesis. Partic-
ular thanks are due to Seung Chung, Andreas Hoffman and Brian Williams. I would
also like to thank my family and friends for their support throughout.

The plan extraction component of the work presented in this thesis was made
possible by the sponsorship of the DARPA NEST program under contract F33615-
01-C-1896. The plan reformulation and dispatching components were made possible

by the sponsorship of Boeing contract MIT-BA-GTA-1.






Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8

2.1
2.2
2.3
24
2.5
2.6

Motivation . . . . . . . ..o
Previous Work . . . . . .. oo
Problem Statement . . . . . . . ... ...
Example Scenario . . . . .. ..o
Proposed Approach . . . . . . . . . ... ...
1.5.1 Distribution of the TPN across the Processor Network

1.5.2  Selecting a Temporally Consistent Plan from the TPN

1.5.3 Reformulating the Selected Plan for Dispatching . . . . . . ..
1.5.4 Dispatching the Selected Plan . . . . . . ... ... ... ...
Key Technical Contributions . . . . . . . .. ... ... ... .....
Performance and Experimental Results . . . . . . .. ... ... ...

Thesis Layout . . . . . . . . .. .

Robust Execution

Introduction . . . . . ...
Temporally Flexible Plans . . . . . . .. ... ... ... ... ....
Dispatchable Execution . . . . . . . . ... ... 0oL
Temporal Plan Networks . . . . . . . . ... ... ... ... ... ..
Plan Extraction . . . . . . . . . ... Lo

Related Work . . . . . . . .



3 Plan Distribution

3.1 Introduction . . . . . . . . .
3.2 Distribution . . . . . . ...
3.3 Communication Availability . . . . ... ... ... .. ... ... .

4 Plan Reformulation

4.1 Introduction . . . . . . . ...
4.2 Basic Structures and Algorithms . . . . . . . . ... ... ... ...
4.2.1 Simple Temporal Network . . . . . ... ... ... ... ...
4.2.2 Distance Graph . . . . .. ... oo
4.2.3 Distributed Bellman-Ford . . . . . . .. ... ... ... ...
4.2.4 Predecessor Graph . . . . . . ... ... L.
4.2.5 Distributed Depth First Search . . . . . ... ... .. .. ..
426 Post Order. . . . . . . . . ...
4.3 Distributed Reformulation . . . . .. ... ... ... ... ...
4.3.1 Algorithm Structure . . . . . . .. .. ... ... ... ... .
4.3.2 Processing of Rigid Components . . . . . . .. ... ... ...
4.3.3 Identification of Non-Dominated Edges . . . . . . . ... ...
4.3.4 Complexity . . . . . . ...
4.4 Conclusion . . . . . . . ..

5 Plan Dispatching

5.1 Introduction . . . . . ...
5.2 Distributed Dispatching . . . . . . . ... ... 0L
5.2.1  Algorithm Structure . . . . ... ... ... .. ... ....
5.2.2  Waiting to Start . . . . . .. ..o
5.2.3  Waiting to Become Enabled . . .. .. ... ... ... ..
5.2.4  Waiting to Become Alive . . . . . ... ... ... ......
5.2.50  Executing . .. ..o
52.6 Complexity . . . . . ...
5.3 Conclusion . . . . . ...

67
67
67
73

79
79
80
80
80
83
86
87
90
92
92
95
122
128
129



6 Plan Extraction 141

6.1 Introduction . . . . . . . .. .. L 141
6.2 Distributed Plan Extraction . . . . . .. .. .. ... ... ... ... 141
6.2.1 Algorithm Structure . . . .. .. ... .. ... ... ... .. 143
6.2.2 Candidate Plan Generation . . ... .. ... .. ... ... .. 146
6.2.3 Temporal Consistency Checking . . . . . ... ... ... ... 158
6.2.4 Complexity . . . . . . .. 161

6.3 Conclusion . . . . . . . . .. 161
7 Results 163
7.1 Introduction . . . . . . .. .. 163
7.2 Performance Tests . . . . . . . .. ... L 163
7.2.1 Dispatching . . . . . .. ... o 164
7.2.2 Reformulation . . . . . ... ..o oo 166

7.3 Real World Scenario . . . . . . . ... oo 170
7.4 Conclusion . . . . . . .. 171
7.5 Future Work . . . . ..o 172



10



List of Figures

1-1

1-2

1-3

1-4

1-5

1-6

This figure shows a cooperative assembly task where two manipulators,
WAMO and WAM1, must deliver a tool to a drop-off location. The
drop-off location is reachable by manipulator WAM1 only. Pick-up
locations 0 and 1 are reachable by manipulators WAMO and WAM1

respectively. Both manipulators can reach the hand-off location.

This figure shows a graph representation of a plan describing a coop-

erative assembly task. . . . . . ... .o oo

This figure shows the trivial agent hierarchy for the two agents involved

24

in the tool delivery task. The choice of WAMO as the leader is arbitrary. 28

This figure shows the TPN after distribution between the agents in-
volved in the execution. White nodes are assigned to WAMO and gray
nodes to WAMI1. . . . . . .. ...

This figure shows the STN corresponding to the temporally consistent
plan selected from the TPN. . . . . . .. ... ... .. ... .....

This figure shows the Minimal Dispatchable Graph for the coopera-
tive assembly task plan. Many nodes have been eliminated as a result
of collapsing Zero-Related groups, Rigid Components have been rear-
ranged and the non-dominated edges have been calculated. Some edges

to and from node 1 are shown as stepped lines for clarity. . . . . . . .

11



1-7

2-1

2-2

2-4

2-5

2-6

2-7

2-8

2-9

This figure shows the Minimal Dispatchable Graph for the cooperative
assembly task plan at time 5 during dispatching. Executed nodes are
shown in dark gray, with their execution times. Other nodes are labeled
with their current execution window. Enabled nodes which are not yet

alive are shown in light gray. . . . . . . . . .. .. .. ... ... ...

This figure shows graph representations of the activity primitive and
the RMPL parallel and sequence constructs used to build a tempo-
rally flexible plan. (a) activity, (b) parallel and (c) sequence

This figure shows a simplified version of the plan from the manipulator
tool delivery example used in Chapter 1 as an example of a temporally
flexible plan. . . . . . . . .
This figure shows the distance graph representation of the simple tem-
poral network from the example temporally flexible plan introduced in

Section 2.2. . . . . L
This figure shows (a) a portion of the distance graph for the example
temporally flexible plan introduced in Section 2.2 and (b) its corre-
sponding All Pairs Shortest Path graph. . . . . ... ... ... ...
This figure shows an example of (a) an upper-dominated non-negative
edge |AB| and (b) a lower-dominated negative edge |AB|.. . . . . . .
This figure shows the example plan with the RC consisting of nodes
27, 28, 29 and 30 highlighted inred. . . . . . . . ... ... ... ...
This figure shows the example plan with zero-related components col-
lapsed in the RC consisting of nodes 27, 28, 29 and 30. . . . . . . ..
This figure shows the example plan with the RC consisting of nodes
27,28, 29 and 30 processed. . . . . . ... ...
This figure shows a snapshot of the dominance test traversal from node
1. The node being traversed is node 42. The dominance test applied
at this node determines that the APSP edge of length 10 from node 1
to node 42 is a member of the MDG. . . . . .. ... ... ... ...

12

41



2-10

2-11

2-12

2-13

3-1

3-2

3-3

3-4

This figure shows the RMPL representation of the manipulator tool
delivery task. . . . . . . ..

This figure shows the graph representation of the RMPL choose con-
struct used to build a Temporal Plan Network. The choice node is

shown as an inscribed circle. . . . . . . . . ...

This figure shows the TPN representing the manipulator tool delivery
SCENATIO. . . v v v v e e e e
This figure shows an inconsistent plan. The distance graph contains a

negative cycle ABDCA. . . . . . . . ...

This figure shows an example plan fragment and how nodes are as-
signed to agents based on the activities they will perform. (a) TPN
with activities. (b) Activity start and end events assigned to nodes.
(c) Nodes assigned to agents based on activity start and end events.

Nodes assigned to WAM1 are shown in gray. . . . ... ... .. ..

This figure shows an example plan fragment that can not be distributed
because it requires events to be carried out simultaneously by multiple
agents. (a) TPN with activities. (b) Activity start and end events
assigned to nodes. (c¢) Nodes assigned to agents based on activity start
and end events. Nodes assigned to WAM1 are shown in gray. Node C
can not be assigned because it owns activity events corresponding to

activities to be carried out by both WAMO and WAM1. . ... . ..

This figure shows an example plan in which two ZR components must
be collapsed. (a) Before node assignment. (b) After node assignment.
Nodes assigned to WAM1 are shown in gray. (c) After collapsing. Node
E owns activity events corresponding to activities to be executed by

WAMO and WAM1 so ZR component collapsing fails. . . . . .. ..

This figure shows the pseudo-code for the leader election algorithm

used to form agent clubs. . . . . . ... o000



3-9

4-1

4-3

4-4

4-6

This figure shows the operation of the club formation algorithm on a
group of rovers. (a) Agents with communication ranges. (b) At time
1, agent 1 declares itself a leader and agent 2 becomes its follower. (c)
At time 3, agent 3 declares itself a leader and agents 2 and 4 become
its followers. (d) At time 5, agent 5 declares itself a leader and agents

4 and 6 become its followers. . . . . . . . . ...

This figure shows the result of the tree hierarchy algorithm on a group
of rovers. The root of the tree structure is rover 3 and rovers 1 and 5

are its children. . . . . . . L.

This figure shows the Simple Temporal Network representation of the
simplified plan from the manipulator tool delivery scenario and was

first shown in Fig. 2-2. . . . . .. ... o

This figure shows the distance graph representation of the Simple Tem-

poral Network in Fig. 4-1 and was first shown in Fig. 2-3. . . . . . . .

This figure shows the operation of the distributed Bellman-Ford algo-
rithm on an example distance graph without any negative cycles. The
start node is node A. (a) Input distance graph with initial distance
estimates. (b) In round 1, nodes B and C update their distance es-
timates. (c) In round 2, node D updates its distance estimate. (d)
In round 3, node B updates its distance estimate and the values have

converged. . . ...

This figure shows the pseudo-code for the distributed Bellman-Ford
algorithm. . . . . . . ...

This figure shows the predecessor graph for the example distance graph

This figure shows the pseudo-code for the distributed Depth First

Search algorithm. . . . . . . . .. ... oo

14

85

88



4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

This figure shows the operation of the distributed Depth First Search
Algorithm on the example distance graph from Fig. 4-3. Nodes are
colored light gray once they have been visited and dark gray once their
part in the search is complete. (a) The search begins at node A. (b)
Node A sends a SEARCH message to its first outgoing neighbor, node
B, which has no outgoing neighbors that have not been visited, so
replies with a DONE message. (c¢) Node A then sends a SEARCH
message to its other neighbor, node C. (d) Node C sends a SEARCH
message to its only outgoing neighbor, node D. Node D has no outgoing
neighbors that have not been visited, so replies with a DONE message.
(e) Node C sends a DONE message back to node A. (f) The DFS is
complete. . . . ..
This figure shows the operation of the distributed Depth First Search
Algorithm, with the addition of RPO recording. The ID of the last
posted node is included with each messages. Nodes are colored light
gray once they have been visited and dark gray once their part in the
search is complete and are labeled with the last posted node.

This figure shows the high-level pseudo-code for the distributed refor-
mulation algorithm. . . . . . . ... ... Lo
This figure shows shows the distance graph representation of the plan
describing the simplified manipulator tool delivery scenario and was
first shown in Fig. 2-3. . . . . . . .. ..o
This figure shows the pseudo-code for the rigid component processing
phase of the distributed reformulation algorithm. . . . . . .. .. ..
This figure shows the distance graph with phantom node and corre-
sponding zero length edges added. . . . . . . ... ... ... ... ..
This figure shows the SSSP distances from the phantom node and the
corresponding predecessor graph. . . . . ... ... L.
This figure shows the predecessor graph for the first DF'S, which starts
at node 29 and records a post order of < 68, 1, 2, 3, 27, 28, 30, 29 >.

15

91

100



4-15

4-16

This figure shows the predecessor graph for the second DFS, which
starts at node 31 and records a post order of < 33, 40, 32, 31 >. . . . 101

This figure shows the predecessor graph for the third DF'S, which starts
at node 34 and records a post order of < 35,34 >. . . ... ... .. 102

4-17 This figure shows the predecessor graph for the fourth DFS, which

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

starts at node 36 and records a post order of < 37,36 >. . . .. . .. 103

This figure shows the predecessor graph for the fifth DFS, which starts
at node 38 and records a post order of < 69, 67, 50, 41, 42, 43, 44, 45,
46, 47,48, 49,39, 38 >. . . .. 104

This figure shows the transposed predecessor graph for the example

plan, with the RC extracted by the first search, from node 38, highlighted.107

This figure shows the transposed predecessor graph for the example
plan, with the RC extracted by the second search, from node 48, high-
lighted. . . . . . . . . . 108

This figure shows the transposed predecessor graph for the example

plan, with the RC extracted by the eighth search, from node 31, high-

This figure shows the transposed predecessor graph for the example
plan, with the RC extracted by the ninth search, from node 29, high-
lighted. . . . . . . . . . 110

This figure shows the transposed predecessor graph for the example

plan, with the RC extracted by the tenth search, from node 3, highlighted.111

This figure shows the distance graph for the example plan, with RCs
circled, RC leaders highlighted and SSSP distances for each node. . . 114

This figure shows the distance graph for the example plan, with zero-

related component non-leaders shown dashed. . . . . . ... ... .. 117

This figure shows the distance graph for the example plan, with the
doubly linked chains of edges complete. . . . . . .. .. .. ... ... 118

16



4-27 This figure shows the distance graph for the example plan after relo-

4-28

4-29

4-30

4-31

4-32

4-33

5-1

5-2

o-3

6-1

cation of edges for the rigid component consisting of nodes 27 through
0
This figure shows the distance graph for the example plan with RC
processing complete. . . . .. ... Lo
This figure shows the pseudo-code for the dominance test traversal
phase of the distributed reformulation algorithm. . . . . . .. .. ..
This figure shows the SSSP distances and predecessor graph from node
1 for the example plan. . . . . . . . . ... ... ... ... .. ...
This figure shows the predecessor graph from node 1 for the example
plan, with the ID of the last posted node for DFS from node 1 recorded
foreachnode. . . . . . . . . ..
This figure shows the predecessor graph from node 1 for the example
plan, at the point where the traversal from node 1 has just passed node
69. MDG edges are shown inred. . . . . ... ... ... .......
This figure shows the complete MDG for the example plan. Edges from

node 1 are shown as stepped lines for clarity. . . . . . .. . ... ...

This figure shows a state transition diagram for the distributed dis-
patching algorithm. . . . . . . .. ...
This figure shows the pseudo-code for the distributed dispatching al-
gorithm. . . . . . . . . ..
This figure shows the MDG for the example plan at time 5 during
dispatching. Executed nodes are shaded dark gray and enabled nodes
are shaded light gray. Each node is labeled with its execution window
in the case of a node which has yet to be executed, or its execution
time in the case of an executed node. Some edges from node 1 are

shown as stepped lines for clarity. . . . . .. ... ... ... ... ..

This figure shows the TPN for the tool delivery scenario introduced in

Chapter 1 and was first shown in Fig. 1-2. . . . . .. ... .. .. ..

17

127

135

136



6-3

6-4

6-5

6-7

6-8

6-9

6-10

The activity-sequence, parallel-sequence and choose-sequence COn-

structs used by the distributed plan extraction algorithm. . . . . . . .

This figure shows the pseudo-code for the response of the start node v

of a parallel-sequence network to a FINDFIRST message. . . . . .
This figure shows the search-permutations(node v) function.

This figure shows the pseudo-code for the response of the start node v

of a parallel-sequence network to a FINDNEXT message. . . . . . .

This figure shows the pseudo-code for the response of the start node v

of a choose-sequence network to a FINDFIRST message. . . . . . . .

This figure shows the pseudo-code for the response of the start node v

of a choose-sequence network to a FINDNEXT message. . . . . . . .

This figure shows the TPN for the manipulator tool delivery scenario
during plan extraction when the temporal inconsistency is discovered
at node 1. The deselected portion of the plan is shown in light gray.
FINDFIRST messages are shown as blue arrows and ACK messages as

Ereen arroOws. . . . . . . o oL o e e e e e e e e e e e e e

This figure shows the TPN for the manipulator tool delivery scenario
during plan extraction after node 2 has attempted to find a new consis-
tent assignment in its currently selected subnetwork (nodes 51 through
66). The deselected portion of the plan is shown in light gray. FIND-
NEXT messages are shown as black arrows and FAIL messages as red

AITOWS. . . . . o o o o v s o e e e e e e e e e e e e e e e e e e e

This figure shows the TPN for the manipulator tool delivery scenario
at the end of plan extraction. The deselected portion of the plan is
shown in light gray. FINDFIRST messages are shown as blue arrows,
FINDNEXT messages as black arrows, ACK messages as green arrows

and FAIL messages as red arrows. . . . . . . . . . .. .. .. .....

18



6-11 This figure shows how the synchronous distributed Bellman-Ford al-

7-2

7-3

gorithm detects a temporal inconsistency as a negative cycle in the
distance graph after N rounds. (a) Initial state for synchronous dis-
tributed Bellman-Ford single source shortest path calculation from
node A. (b) Single source shortest path distance estimates after round
1. (c) Single source shortest path distance estimates after round 2. (d)
Single source shortest path distance estimates after round 3. (e) Single
source shortest path distance estimates after round 4 show failure to
converge as a result of the negative cycle. (f) Single source shortest

path distance estimates continue to vary after round 5. . . . . . . ..

This figure shows the results of the tests used to verify the performance
of D-Kirk with regard to communication complexity. The plot shows
the peak number of messages sent by a node during dispatching as a
function of the number of nodes in the plan. . . . . . . .. ... ...
This figure shows the results of the tests used to verify the performance
of D-Kirk with regard to computational complexity. The plot shows
the average run time required by a node during reformulation.

This figure shows the results of the tests used to verify the performance
of D-Kirk with regard to computational complexity. The plot compares
the average run time required by a node during reformulation for the

centralized and distributed algorithms. . . . . . ... ... ... ...

19

168



20



Chapter 1

Introduction

1.1 Motivation

The ability to coordinate groups of autonomous agents is key to many real-world
tasks. An example scenario is the construction of a lunar habitat, where multiple
robotic manipulators are required to work together to assemble the structure. For
example, groups of manipulators may be required to act in coordination to lift large
or heavy objects. A second scenario is an exploration mission on a foreign planet.
This may involve multiple robots, each with a different skill set. For example, one
robot with a high top speed may be sent ahead as a scout while a second, slower
robot with a larger payload capacity is sent to the areas of interest discovered by the
scout to collect samples. A final scenario is in manufacturing, where multiple robots
simultaneously carry out different operations on a part. For example, one robot may

hold a part in position while a second welds it to the main structure.

Coordinating such a group of agents involves executing an activity plan that de-
scribes the actions each agent will perform. In order for the execution to be reliable
we must provide robustness to unknown events and to disturbances. We provide
robustness through an executive which performs dynamic execution of temporally

flexible plans.

21



1.2 Previous Work

Previous work on robust plan execution has provided robustness to three types of

unknowns: temporal uncertainty, execution uncertainty and plan failure.

Temporal Uncertainty. For many systems, the precise duration of an activity is
not fixed. It may be acceptable to conduct the activity for any period of time within
a given range, or it may be the case that the duration of the activity is beyond the
control of the executive. Temporally flexible plans [4] [19] allow us to accommodate
both cases by modeling activities of uncertain duration. Use of these plans allows us
to provide robustness to variation in the execution times of activities, as discussed

below.

Ezecution Uncertainty. Traditional execution scheme assign execution times at
planning time, such that any temporal flexibility in the plan has been eliminated by
dispatch time. This means that the executive is unable to adapt to uncertainty in
execution times. To overcome this problem, while executing the plan in a timely
manner, a dispatcher is used that dynamically schedules events. In particular, we
use the methods of Tsamardinos et. al. [27], which are based on a least commit-
ment strategy. This scheme is known as dispatchable execution [20], and provides
robustness to execution uncertainty. Here, scheduling is postponed until execution
time, allowing temporal resources to be assigned as they are needed. This allows the
dispatcher to respond to the variable duration of activities at execution time. To
minimize the computation that must be performed on-line at dispatch time, the plan

is first reformulated off-line.

Plan Failure. Plan failure occurs when the temporal constraints in the plan are
such that no satisfying execution schedule can be found. To address plan failure, Kim
introduced a system called Kirk [12], that performs dynamic execution of temporally
flexible plans with contingencies. These contingent plans are encoded as alternative
choices between functionally equivalent sub-plans. In Kirk, the contingent plans
are represented by a Temporal Plan Network (TPN) [12], which extends temporally

flexible plans with a nested choice operator. Kirk first extracts a plan from the TPN

22



that is temporally feasible, before executing the plan, as described above. Use of

contingent plans adds robustness to plan failure.

Kirk uses a centralized architecture in which a single master agent is responsible for
generating and executing an activity plan. In the case of a multi-agent plan, all other
agents are inactive during the plan extraction phase. During plan execution, the other
agents are simply instructed by the master agent to execute their activities at the
relevant time. This means that the master agent must communicate with each agent
at the time of execution of its activity and this creates a communication bottleneck
at the master agent. As a result, the executive lacks robustness to communication
latency. Similarly, the master agent may also suffer from a computational bottleneck,

as it must process the plan for all of the agents involved in the plan.

Recent work by Wehowsky produced a distributed version of the plan extraction
component of Kirk [31]. Prior to plan extraction, the TPN is distributed between the
available agents. However, this work does not provide a distributed version of the

reformulation or dispatching algorithms.

1.3 Problem Statement

The control of autonomous agents to achieve useful, real-world tasks requires activity
plans that involve groups of agents. Reliable execution of these plans in an uncertain
environment requires robustness to temporal uncertainty, execution uncertainty, plan

failure and communication latency.

The problem solved by this thesis is to create a plan execution system for au-
tonomous agents that is robust to these four types of uncertainty. The executive
takes as input a multi-agent activity plan in the form of a TPN, extracts a temporally
consistent plan from the contingencies available and schedules activities dynamically
to respond to variable execution times. It does this in a way that avoids bottlenecks

when communicating between agents.

23



1.4 Example Scenario

To motivate the discussion of our work, we introduce an example task taken from the
lunar construction scenario. Consider the task of assembling a lunar structure using

numerous robotic manipulators.

An example task which requires tight coordination of the manipulators is the
delivery of a tool to a specific location, perhaps for use by a human astronaut. In
this example there are two robotic manipulators. The action to be taken by the
manipulators depends upon the initial location of the tool. For some initial locations,
a single manipulator can pick up the tool and deliver it to the desired location. For
other initial locations, both manipulators must work together: one manipulator picks
up the tool and passes it to the second manipulator for delivery. This task is depicted
in graphical form in Fig. 1-1. This example is used to demonstrate our work on a
pair of Barret Technology’s Whole Arm Manipulators (WAMs) in Section 7.3. For
this reason, we refer to the two manipulators as WAMO and WAMI1.

Tool

2= —

Pick-up location 0 Pick-up location 1

A

B B

WAM 0 Hand-off location WAM 1 Drop-off location

Figure 1-1: This figure shows a cooperative assembly task where two manipulators,
WAMO and WAM1, must deliver a tool to a drop-off location. The drop-off location
is reachable by manipulator WAMI1 only. Pick-up locations 0 and 1 are reachable
by manipulators WAMO and WAMI1 respectively. Both manipulators can reach the
hand-off location.

24



1.5 Proposed Approach

We address this problem with a distributed architecture in which all agents partici-
pate in the execution process. Agents communicate by sending and receiving messages
and this communication is spread evenly between all agents. This evens out commu-
nication requirements and eliminates the communication bottleneck, thus providing
robustness to communication latency. We distribute computation between all agents
to reduce computational complexity and to take advantage of parallel processing,
thus improving performance relative to the centralized architecture. The greater the
number of agents that is involved in the plan, the greater the extent to which the
execution process can be shared out, so the greater the performance improvements.
Finally, our distributed architecture provides a framework for a future distributed
system capable of providing robustness to loss of an agent during plan execution. Such
a system would detect failure of an agent participating in plan execution, redistribute
the plan over the remaining agents, re-plan if necessary, and continue execution.
Our proposed executive is a distributed version of Kirk, called D-Kirk, which
performs distributed execution of contingent temporally flexible plans. D-Kirk consists

of the following four phases.

1. Form a structured network of agents and distribute the TPN across the network
2. Select a temporally consistent plan from the TPN
3. Reformulate the selected plan for efficient dispatching

4. Dispatch the selected plan, while scheduling dynamically

The four phases are described below in the context of the manipulator tool de-
livery task introduced above. A comprehensive summary of the reformulation and
dispatching phases of execution in the centralized case is provided by Stedl [25].

A TPN representing the tool passing task for a pair of WAMs is shown in graphical
form in Fig. 1-2. Nodes represent time events and directed edges represent simple

temporal constraints. A simple temporal constraint [[, u] places a bound t*—t~ € [I, u]

25



on the temporal duration between the start time ¢t~ and end time ¢ of the activity

or sub-plan to which it is applied.

The objective of the plan is to deliver the tool to the drop-off location, which is
reachable by WAMI1 only. A tool is available at pick-up locations 0 and 1, but the
time at which the tool becomes available at each location is unknown until execution
time. Depending upon the time at which the tool becomes available at a particular
location, it may not be possible to deliver the tool from that pick-up location to the
drop-off location within the time bounds specified by the plan. Therefore, the plan
contains two contingencies; one in which the tool from pick-up location 0 is used, and
another in which the tool from pick-up location 1 is used. At execution time, the
executive selects a contingency, if possible, which guarantees successful execution of
the plan. The contingencies are represented in the plan by the single choice node,

node 2.

In the case where the tool is at pick-up location 0, which is reachable by WAMO
only, the task can only be completed if the manipulators cooperate. This contingency
is shown in the upper half of Fig. 1-2. First, WAMO moves its hand to pick-up location
0, where it waits for the tool to arrive. When the tool arrives, WAMO closes its hand
around the tool and moves the tool to the hand-off location. At the same time, WAM1
moves to the hand-off location. Having completed these activities, either WAM will
wait until the other WAM has completed its activities. Next, WAM1 closes its hand
around the tool and one second after completing the close, WAMO begins to open its
hand. Within a second of WAMO opening its hand, WAM1 moves the tool to the
drop-off location, where it immediately opens its hand to release the tool and finally
moves to home position 1. Simultaneously, WAMO moves directly to home position
0. Again, having completed these activities, either WAM will wait until the other
WAM has completed its activities, before the plan terminates.

In the case where the tool is at pick-up location 1, which is reachable by WAM1
only, the task can be completed by WAMI1 alone. This contingency is shown in the
lower half of Fig. 1-2. First, WAMI1 moves its hand to pick-up location 1, where it

waits for the tool to arrive. Once the tool has arrived, WAMI1 closes its hand around

26



[0.01

LC

(Tool Delivery)

[x,+INF]
N 5 » 6 ) WAMO.CloscHand WAMO.MoveToHandOffLocation (Wait f

> 7

< 2 [0.1] [0.0] [0,1] 00]
0 Y7 (Synchronization) WAMO.MoveToPickUpLocation0 (Wait for tool) N ° Q G
S &2 &
\Q@ 2 [0.1] 100] [0,1] 00] [0,+INF] N
° 2 ) .
2 (Synchronization) ‘WAMI.MoveToHandOffLocation (Wait for WAMO to complete)
[0,1] 00] [0,1] 001 [0.+INF]
10,0}
WAMI.CloseHand (Synchronization) WAMO.OpenHand

[1,1] [0,1]

[0,11

[0,1]

[0,1]

[0,0]

[0,0}:
(Synchronization) WAMO0.MoveToHomeLocation0 (Wait fot WAMI to complete)
0,1 0,1 0,+INF
o1 [0.0] (0.1 [0,0] L ! /_
/00 (Synchronization) WAM 1.MoveToDropOffLocation ‘WAM I.OpenHand WAM 1.MoveToHomeLocationl (Wait for WAMO to complete
K7 [0,1] [0,+INF]

0.1] [0,0] [0,0] [0,0]

WAMI.MoveToPickUpLocationl (Wait for tool)
1 [00] 0,+INF]

2 (0. I
2
Ny 7 WAMI.CloseHand WAMI MoveToDropOffLocation WAMI.OpenHand WAMI.Mov
& D [0.1] [0,1] [0,1]
[0,0] [0,0] [0,0] [0,0]
1z} (Tool Delivery) N
‘Y [y+INF] A
58

57 5
(Available Time)
[0,10]

Figure 1-2: This figure shows a graph representation of a plan describing a cooperative assen



the tool and moves it to the drop-off location, where it opens its hand to release the
tool and finally moves to home position 1.

The simple temporal constraints [z, +INF] and [y, +INF], between nodes 5 and
6 and nodes 57 and 58 respectively, represent the time we must wait from the start
of the plan until the tool becomes available at pick-up locations 0 and 1 respectively.
The values of x and y, the minimum wait times, are not known until execution time.
The simple temporal constraint [0, 10] between nodes 68 and 69 imposes an upper

bound of 10s on the overall duration of the plan.

1.5.1 Distribution of the TPN across the Processor Network

Our objective in distributing the TPN is to share the plan data between the agents
taking part in the execution. We assume that tasks have already been assigned to
agents and distribute the TPN such that each agent is responsible for the plan nodes
corresponding to the activities it must execute.

Before we can perform the distribution, we must arrange the agents into an ordered
structure. This structuring defines which agents are able to communicate directly and
establishes a system of communication routing, such that all agents can communicate.
In D-Kirk, we form a hierarchy of agents using the methods of Coore et. al. [2]. In
the case of the tool passing example only two agents are involved in the plan, so the
hierarchy is trivial and the choice of WAMO as the leader of the hierarchy is arbitrary.
The agent hierarchy is shown in Fig. 1-3.

Figure 1-3: This figure shows the trivial agent hierarchy for the two agents involved
in the tool delivery task. The choice of WAMO as the leader is arbitrary.

28



Having formed the agent hierarchy, we assign plan nodes to agents. White nodes

are assigned to WAMO while gray nodes are assigned to WAM1, as shown in Fig. 1-4.

1.5.2 Selecting a Temporally Consistent Plan from the TPN

The simple temporal constraints [z, +INF] and [y, +INF] represent the time we
must wait from the start of the plan until the tool becomes available at pick-up
locations 0 and 1 respectively. The values of x and y, the minimum wait times,
determine whether or not each contingency in the plan is temporally feasible. The
plan selection phase of D-Kirk takes the TPN, including known values for x and y
and extracts a temporally consistent plan by selecting the appropriate contingency.
For the purposes of this example, we assume that x = 1 and y = 20. This means
that the lower bound on the execution time of the upper contingency is 2, which
is less than the plan’s overall upper time bound of 10. The lower bound on the
execution time of the lower contingency, however, is 20, which exceeds the overall
upper time bound. Therefore, D-Kirk selects the upper contingency, which involves
the two manipulators working together. The resulting temporally consistent plan is

shown in Fig. 1-5.

1.5.3 Reformulating the Selected Plan for Dispatching

Dispatchable execution retains the temporal flexibility present in the input plan
throughout the planning process, allowing it to be used to respond to unknown ex-
ecution times at dispatch time. However, this approach increases the complexity of
dispatching, relative to a scheme in which execution times are fixed before dispatch-
ing. To minimize the amount of computation that must be performed in real time
during dispatching, we first reformulate the plan. The output of the reformulation
phase is a Minimal Dispatchable Graph (MDG), which requires only local propagation
of execution time data at dispatch time.

The plan extracted from the TPN can be represented as a Simple Temporal Net-
work (STN) and every STN has an equivalent distance graph. In a distance graph,

29



(Tool Delivery)

[x+INF]
N 5 > W AMO ( |ch‘Hdnd WAMO.Mov eTuH mdom_uuuun (Wait f
< 0, [0,0] [0,0]
0 (S\n&.hmmzduon) WAMO. M(MToPukUpLuLduonU (Wait for tool) 0 a ° @ Q
N
y ° IO O ‘ ‘0 UI — °
° <
2 (Svmhmmzdtmn) WAML. M(MToHdmlOﬂ'Locdlvon (Wait for WAMO to complete)
10,0}
WAMI.CloseHand (Synchronization) WAMO0.OpenHand
1 [1.1] [0.1]

=
=3
[0,0}
(Synchronization) ‘WAMO0.MoveToHomeLocation0 (Wait fot WAMI to complete)
[0,11 (001 0,11 10.0] [0,+INF] /_
(Synchronization) WAM 1.MoveToDropOffLocation ‘WAMI.OpenHand ‘WAM 1.MoveToHomeLocationl (Wait for WAMO to complete
m m - e
@ WAMI. MchoP\gkUp[ ocation] (Wdit for tm»l)

[0,+INF]

c [0.0]
2
WAMI ('k\\cHdnd WAMI . Movs éTUD\’Up()ﬂLULdUUn WAMI1.OpenHand WAMI.Mov
[0.0] [0.0] [0,0] 0.1 10,0]
(Tool Delivery)
'0/ [y+INF]

(g,

S >

Wo

(Available Time)
[0,10]

68

Figure 1-4: This figure shows the TPN after distribution between the agents involved in the execution. Wh
to WAMO and gray nodes to WAMI.



1€

(Tool Delivery)
[x+INF]

) WAMO.CloseHand WAMO0.MoveToHandOffLocation (Wait £
0,
7 0,0] [0,0]

WAMO.MoveToPickUpLocation0

(Wait for tool)
[0.+INF]

(Synchronization)

[0.1]

[0,0] [0,0]

‘WAMI.MoveToHandOffLocation (Wait for WAMO to complete)

[0,1] [00) [0,1] 001 [0,+INF]
{0,0}
WAMI CloseHand (Synchronization) WAMO.OpenHand
[0,11 [ [0,1]

[0.01

[0,0}
[0,0F
(Synchronization) WAMO0.MoveToHomeLocation0 (Wait fot WAMI to complete)

[0,1] 00] [0,1] [00] [0,+INF]

WAM 1.MoveToDropOffLocation
[0,1]

WAMI.OpenHand WAMI.MoveToHomeLocationl (Wait for WAMO to complete
[0,1] 1001 [0,1] 00] [0+INF]

(Synchronization)
[0.1]

[0,0] [0,0]

(Available Time)
[0,10]

Figure 1-5: This figure shows the STN corresponding to the temporally consistent plan selected fi



nodes represent time events and directed edges represent a single temporal constraint.
Specifically, each edge AB in the distance graph has a length or weight b( A, B) which
specifies the constraint tp —t4 < b(A, B), where t4 and tp are the execution times
of nodes A and B respectively. Reformulation operates on the distance graph rep-
resentation of the selected temporally flexible plan and the MDG is itself a distance
graph. The MDG for the cooperative assembly task example is shown in Fig. 1-6.

An important feature of the MDG is that all Rigid Components (RCs), that is
groups of nodes whose execution times are fixed relative to each other, have been
rearranged. In particular, the member nodes of the RC are arranged in a chain, in
order of execution time, linked by pairs of temporal constraints. The member node
with the earliest execution time, at the head of the chain, is termed the RC leader. All
temporal constraints between the RC’s member nodes and the rest of the plan graph
are re-routed to the leader. Also, RC member nodes linked by temporal constraints
of zero duration, are collapsed to a single node. Members of these Zero-Related (ZR)
components must execute simultaneously, so any start or end events are transferred
to the remaining node. An example of a rearranged RC is nodes 27 through 30 in
Fig. 1-5. Nodes 27 and 28 and nodes 29 and 30 are ZR components, so are collapsed
to nodes 28 and 30 respectively in Fig. 1-6. Node 28 is the RC leader so the edges

between node 30 and nodes outside the RC are rerouted to node 28.

In the case of the fast reformulation algorithm used in D-Kirk, rearrangement of
rigid components in this way is required for the correct operation of the algorithm
used to determine the distance graph edges that belong in the MDG, as described

below. Also, the rearrangement improves the efficiency of reformulation.

Once RCs have been processed, the reformulation algorithm identifies all edges
that belong in the MDG. Some of the original edges of the input STN remain in the
MDG, while others are eliminated. In addition, the MDG contains new edges which
are required to make explicit any implicit timing constraints required for dispatching.
An example of such an edge is that of length 9 from node 1 to node 13 in Fig. 1-6. It
ensures that node 13 is executed sufficiently early that the upper bound of 10 units

on the overall plan length can be met, given that later in the plan (between nodes 28

32



€€

END( WAMO.CloseHand )
START( WAMO.
MoveToHandOffLocation )

START( WAMO. END( WAMO.
MoveToPickUpLocation0 ) MoveToPickUpLocation0 )

END( WAMO.
MoveToHandOffLocation )

START( WAMI.

. END( WAMI.
MoveToHandOffLocation )

MoveToHandOffLocation )

START( WAMO.
MoveToHomeLocation0 ) END( WAL

[1,2] 1 MoveToHomeLo

END( WAMI.CloseHand )

END( WA
MoveToHomeLo

END( WAMI.OpenHand )
START( WAMI.
MoveToHomeLocation] )

START( WAMI.
MoveToDropOffLocation )

END( WAMI.
MoveToDropOffLocation )
START( WAMI1.OpenHand )

START( WAMO.OpenHand )

Figure 1-6: This figure shows the Minimal Dispatchable Graph for the cooperative assembly task plan. NV
eliminated as a result of collapsing Zero-Related groups, Rigid Components have been rearranged and the
have been calculated. Some edges to and from node 1 are shown as stepped lines for clarity.



and 40 in the MDG in Fig. 1-6) there exists a minimum duration of 1 unit.

During reformulation, the temporal constraints between the start and end nodes
of an activity in the input plan may be removed if the constraints do not belong
in the MDG, as described above. This means that activities no longer necessarily
coincide with temporal constraints. For this reason, activities are instead represented
as a pair of events: a start event at the start node and an end event at the end node.
An example of this is the WAMO0.OpenHand activity between nodes 30 and 31 in the
STN in Fig. 1-5, or equivalently nodes 30 and 40 in the MDG in Fig. 1-6.

1.5.4 Dispatching the Selected Plan

During dispatching each node maintains its execution window. The execution window
is the range of possible execution times for the node, given the temporal constraints
in the plan and the execution times of nodes that have already been executed. The
start node, node 1 in the tool delivery example, is assigned an execution time of 0 by
definition.

The dispatching algorithm uses an internal clock, the execution windows of the
nodes and the temporal constraints from the MDG to determine when each node can
be executed. We use a minimum execution time policy: where there exists a range
of possible execution times, nodes are executed as soon as possible. When a node is
executed the MDG edges are used to update the status of neighbor nodes.

A node must be both alive and enabled before it can be executed. A node is
enabled when all nodes that must execute before it have executed. A node is alive
when the current time lies within its execution window. In addition, contingent
nodes, which represent the end event of uncontrollable activities, must also wait for
the uncontrollable activities to complete.

Fig. 1-7 shows a snapshot of the MDG for the tool delivery example during dis-
patching at time 5. Executed nodes are shown in dark gray, with their execution
times. Enabled nodes which are not yet alive are shown in light gray.

The distributed dispatching algorithm monitors the node for the enablement con-

dition. The algorithm uses incoming EXECUTED messages from neighbor nodes

34



Ge

END( WAMO.CloseHand )
START( WAMO.
MoveToHandOffLocation )

END( WAMO.
MoveToHandOffLocation )

START( WAMO. END( WAMO.
MoveToPickUpLocation0 ) MoveToPickUpLocation0 )

START( WAMI. END( WAMI.

MoveTofandOffLocation) MoveToHandOffLocation )
0
10 0 1
START( WAMO.
MoveToHomeLocation0 ) END( WA
MoveToHomeL

[0,+INF
[0,+INF

[0,+INF]
[0,+INF]

[0,+INF]

END( WA
MoveToHomeL

END( WAMI1.OpenHand )
START( WAMI.
MoveToHomeLocation1 )

END( WAMI.
MoveToDropOffLocation )
START( WAM1.OpenHand )

START( WAMI.
MoveToDropOffLocation )

START( WAMO.OpenHand )

Figure 1-7: This figure shows the Minimal Dispatchable Graph for the cooperative assembly task pl
dispatching. Executed nodes are shown in dark gray, with their execution times. Other nodes are label
execution window. Enabled nodes which are not yet alive are shown in light gray.



to update the enablement condition and the execution window. Once enabled, the
algorithm waits for the current time to enter the execution window, while continuing
to use EXECUTED messages to update the upper bound of the execution window.
Once alive, and in the case of a contingent node, all uncontrollable activities ending
at the node have completed, the node can be executed. Executing a node involves
stopping all controllable activities that end at the node and starting all activities
which start at the node. When a node is executed, EXECUTED messages are sent to
its neighbor nodes so that they can update their execution window and enablement
status.

For example, in Fig. 1-7, the last node to have been executed is node 28 at time
5. The non-positive MDG edges to node 28 from nodes 30 and 40 have been used
to enable these nodes and to update the lower bound of their execution window to 6
in each case. The positive MDG edges from node 28 to nodes 30 and 40 have been
used to update the upper bound of the execution window of these nodes to 6 and 7

respectively.

1.6 Key Technical Contributions

D-Kirk performs distributed execution of contingent temporally flexible plans. The

technical insights employed by each phase of the algorithm are summarized below.

1. Distribute the TPN across the processor network. We arrange agents
into a hierarchy to provide the required communication availability. We then
map the TPN to the hierarchy, exploiting the hierarchical nature of the TPN

to maximize efficiency.

2. Select a temporally consistent plan from the TPN. We use a distributed
consistency checking algorithm and interleave candidate generation and consis-

tency checking to exploit parallel processing.

3. Reformulate the selected plan for efficient dispatching. We use a dis-

tributed version of the fast reformulation algorithm, using parallelism wherever

36



possible. The algorithm uses a state machine approach with message passing

that is robust to variable message delivery times.

4. Dispatch the selected plan, while scheduling dynamically. The algo-
rithm uses a state machine approach with message passing that is robust to

variable message delivery times.

1.7 Performance and Experimental Results

The main objective of distributed D-Kirk is to eliminate the communication bot-
tleneck present at the master node of the centralized architecture when the plan is
dispatched. The peak communication complexity of the D-Kirk dispatching algo-
rithm is O (¢’) per node or O (NTG/) per agent on average, where €’ is the number of
edges connected to each node in the plan after reformulation for dispatching, A is
the number of agents involved in the plan execution and N is the number of nodes in
the plan. In the centralized case, the peak message complexity is O (N). This means
that D-Kirk reduces the peak message complexity at dispatch time, when real-time
operation is critical, by a typical factor of O (g) per agent. Note that €’ is typically
a small constant, determined by the branching factor of the plan.

D-Kirk also improves the computational complexity of the reformulation algo-

rithm relative to the centralized case. The computational complexity is reduced from

O (N%E) in the centralized case to O (N2e) per node or O (Nje) per agent in the
distributed case, where E is the total number of edges in the input plan and e is the
number of edges connected to each node in the input plan. Typically, £ = O (Ne),
so the improvement is a factor of O (A).

Both of the above analytical results are verified by experimentation using a C++
implementation of D-Kirk operating on parameterized sets of plans of numerous types.
In addition, we use the C++ implementation to demonstrate the applicability of D-
Kirk in a realistic setting. We use D-Kirk to execute the manipulator tool delivery

example plan in our robotic manipulator testbed. This consists of a pair of Barrett

Technology’s Whole Arm Manipulators (WAMs), each with four degrees of freedom

37



and a three-fingered hand effector.

1.8 Thesis Layout

First, in Chapter 2, we review methods for the robust execution of contingent tempo-
rally flexible plans. We discuss how dispatchable execution is used to robustly execute
a temporally flexible plan, present a definition of a TPN and give an overview of plan
selection in the centralized case. In Chapter 3 we present the first stage of D-Kirk; for-
mation of an agent hierarchy to provide the required communication between agents
and the distribution of the TPN over the group of agents. Chapters 4 and 5 present
the details of the two stage process required by the dispatchable execution approach
to execute a temporally flexible plan. First, reformulation, where the plan is recom-
piled so as to reduce the real-time processing required at execution time. Second,
dispatching, where the activities in the plan are executed. This is the core of the
D-Kirk distributed executive. In Chapter 6 we extend the distributed executive to
handle contingent plans. This completes the description of D-Kirk. Finally, in Chap-
ter 7, we present experimental results which demonstrate the performance of Kirk and
make comparisons with the centralized Kirk executive. We also demonstrate the real-
world applicability of our solution by using D-Kirk to execute the manipulator tool
delivery example plan in our manipulator testbed. Finally, we present conclusions

and discuss directions for future work.

38



Chapter 2

Robust Execution

2.1 Introduction

This chapter serves as a review of methods used for robust execution of contingent
temporally flexible plans in the centralized case. We first define a temporally flexible
plan and its representation as a Simple Temporal Network (STN). We then review
dispatchable execution, which provides a means to robustly execute a temporally
flexible plan. We then present a definition of a Temporal Plan Network (TPN),
which adds choices to a temporally flexible plan. This allows us to describe contingent
plans, where each contingency is a choice between functionally equivalent threads of
execution. We then review methods for selecting a temporally consistent plan from
the TPN. Finally, we present related work on robust plan execution and distributed

execution systems.

2.2 Temporally Flexible Plans

Traditional plans specify a single duration for each activity in the plan. A temporally
flexible plan allows us to specify a range of durations, in terms of a lower and upper
bound on the permissible duration. This allows us to model activities whose durations
may be varied by the executive, or whose durations are unknown and are controlled

by the environment.

39



A temporally flexible plan is built from a set of primitive activities and is defined
recursively using parallel and sequence operators, taken from the Reactive Model-
based Programming Language (RMPL) [32]. A temporally flexible plan encodes all
executions of a concurrent, timed program, comprised of these operators.

A primitive element of a temporally flexible plan is of the form activity[l, u]. This
specifies an executable command whose duration is bounded by a simple temporal
constraint. A simple temporal constraint [I,u] places a bound t* — ¢~ € [l,u] on
the duration between the start time ¢t~ and end time ¢* of the activity, or more
generally, any sub-plan to which it is applied.

Primitive activities are composed as follows.

e parallel(subnetworks,...,subnetworky) [l, u] introduces multiple subnetworks

to be executed concurrently.

e sequence(subnetworks, ..., subnetworky) [, u] introduces multiple subnetworks

which are to be executed sequentially.

Note that the RMPL language also allows us to apply a simple temporal constraint
between the start and end of a parallel or sequence operator, but this is purely
syntactic sugar. In the case of the parallel operator, it corresponds to an additional
parallel branch, consisting of a single activity with the prescribed simple temporal
constraint. In the case of the sequence operator, it corresponds to an additional
parallel operator, of which one branch is the sequence and the other is a single
activity with the prescribed simple temporal constraint. For simplicity, we do not
use these syntactic mechanisms in this thesis.

The network of simple temporal constraints in a temporally flexible plan form a
Simple Temporal Network (STN). An STN is visualized as a directed graph, where
the nodes of the graph represent events and directed edges represent simple temporal
constraints. Graph representations of the activity primitive and of the parallel and
sequence constructs are shown in Fig. 2-1.

Fig. 2-2 shows a simplified version of the selected plan from the manipulator tool

delivery scenario used in Chapter 1 as an example of a temporally flexible plan. The

40



a) L] b) N 7
activity z
parallel
[0,0] [0,0]

sequence

Figure 2-1: This figure shows graph representations of the activity primitive and the
RMPL parallel and sequence constructs used to build a temporally flexible plan.
(a) activity, (b) parallel and (c) sequence

first section of the plan has been collapsed to a single simple temporal constraint. The
plan contains both the sequence and parallel constructs. For example, at the highest
level, the plan consists of two subnetworks in parallel; a subnetwork between nodes 2
and 50 and another between nodes 68 and 69. The upper subnetwork, between nodes
3 and 39, is a series subnetwork, consisting of three activities (nodes 3 and 27, 28
and 29, and 30 and 31) followed by a parallel subnetwork (nodes 32 to 39). Note
that nodes 2 and 50 are present as the remnants of the choose subnetwork from the
complete TPN, which is introduced in Section 2.4.

In order for a temporally flexible plan to be executable, it must be temporally con-

sistent. We discuss the methods used to test for temporal consistency in Section 2.5.

Definition 1 A temporally flexible plan is temporally consistent if there exists a

feasible schedule for the execution of each time-point in the plan.

Definition 2 A feasible schedule for the execution of a temporally flexible plan is

41



(Wait for WAN

WAMO.MoveToHomeLocation)
[0+

(Synchronization)

[0.0]

» 36

WAMO.OpenHand

(Collapsed section)
[1.+INF]

(Synchronization)
[t

WAMI OpenHand WAMI MoveToHomeLocation (Wait for WAM
[0.1] [0.1] 100 [0.41

WAMI MoveToDropOffLocation
[0.1]

(Synchronization)

[0.1]

g
'z

[0.0]

[0.0] [0.0]

Figure 2-2: This figure shows a simplified version of the plan from the manipulator tool delivery example

an example of a temporally flexible plan.



an assignment of execution times to each time-point in the plan such that all temporal

constraints are satisfied.

The example plan in Fig. 2-2 is temporally consistent because none of the temporal
constraints conflict. This allows the executive to assign an execution time to each
node without violating any temporal constraints. For example, consider node 32 in
Fig. 2-2. The maximum duration specified by all of the edges between nodes 1 and 32
is +INF and the minimum duration is 2. Similarly, the maximum duration between
nodes 32 and 67 is +INF and the minimum duration is 0. The simple temporal
constraint between nodes 68 and 69 specifies a maximum duration of 10 between
nodes 1 and 67 and a minimum duration of 0. This means that we can schedule node
32 to be executed at any time between times 1 and 10 and these constraints will be
satisfied. All of the nodes in the plan can be scheduled in this way, so the plan is

temporally consistent.

2.3 Dispatchable Execution

Given a temporally flexible plan to be executed, traditional execution schemes select a
feasible execution schedule at planning time. This approach eliminates the temporal
flexibility in the plan prior to execution, which leads to two problems. First, the fixed
schedule lacks the flexibility needed to respond to variation in activity durations at
execution time, so the plan is prone to failure. Second, if we generate a very conser-
vative schedule to increase the likelihood of successful execution, then the execution
becomes sub-optimal in terms of total execution time.

This limitation can be overcome through the methods of dispatchable execu-
tion [20], in which scheduling is postponed until dispatch time. This means that
the plan retains temporal flexibility until it is dispatched. The dispatcher schedules
events reactively, assigning execution times just-in-time using the observed execution
times of previously executed events. This provides robustness to uncertain durations
that lie within the temporally flexible bounds of the plan.

In traditional execution schemes, where events are scheduled at planning time,

43



the job of the dispatcher is trivial: it simply executes events at the predetermined
time. However, in the case of dispatchable execution, the dispatcher is required to
perform a certain amount of computation to determine the execution time of each
event. Since dispatching must be performed in real time, this extra computation can
cause problems. To minimize the amount of computation that must be conducted
in real-time, dispatchable execution uses a two-stage execution strategy. Prior to
dispatching, the plan is compiled or reformulated to a form that allows straightforward
dispatching. In particular, the plan is reformulated to a Minimal Dispatchable Graph
(MDG), which requires the minimum amount of processing at dispatch time. This is

followed by dispatching, when the plan is executed.

If a graph is dispatchable, then one can generate a feasible schedule using only
local propagation of timing information to immediately succeeding activities. A min-
1mal dispatchable graph is a dispatchable graph that contains the minimum possible
number of edges. Dispatching a minimal dispatchable graph minimizes the amount

of computation that must be performed by the dispatcher.

To form the MDG, reformulation identifies the non-dominated edges in the plan.
These are the edges along which timing information must be propagated at dispatch
time. The reformulation algorithm operates on the distance graph representation of

the STN from the input temporally flexible plan.

Every STN has an equivalent representation as a distance graph [5]. The distance
graph contains the same set of nodes as the STN. However, each edge represents a
single temporal constraint, rather than the pair of constraints specified by a simple
temporal constraint. Specifically, an edge from node A to node B with length or
weight b(A, B) specifies an upper bound of b(A, B) on the execution time of node B
relative to node A, that is tg —t4 < b(A, B), where t4 and tp are the execution times
of nodes A and B respectively. Therefore, each edge in the STN is converted to a pair
of opposed edges in the distance graph; one representing the lower and the other the
upper bound of the simple temporal constraint. The distance graph representation
of the STN from the example temporally flexible plan introduced in Section 2.2 is
shown in Fig. 2-3.

44



¥

FOED 00 ) § ©) @&

POI0SR0IOSP OI0aP OO
0% CEPO ISP 0 OSP0IOSP0OS

°
o

Figure 2-3: This figure shows the distance graph representation of the simple temporal network from the
flexible plan introduced in Section 2.2.



For example, the simple temporal constraint of [0, 1] between nodes 30 and 31
is represented by two edges. The lower bound of 0 is represented by an edge with
weight 0 from node 31 to node 30. The upper bound of 1 is represented by an edge
with weight 1 from node 30 to node 31.

The most simple reformulation algorithm [20] begins by forming the All Pairs
Shortest Path (APSP) graph. The APSP graph is a distance graph that contains an
edge from every node in the plan to every other node, the weight of which is equal
to the shortest path distance between these nodes. We can not easily visualize the
entire APSP graph for the example temporally flexible plan introduced in Section 2.2.
Instead we show the APSP graph for a portion of the plan, as shown in Fig. 2-4.

Figure 2-4: This figure shows (a) a portion of the distance graph for the example
temporally flexible plan introduced in Section 2.2 and (b) its corresponding All Pairs
Shortest Path graph.

The APSP graph is dispatchable but it is not minimal. Every time a node is
executed the dispatcher must propagate timing information to all other nodes in the
plan. This is computationally expensive and may prohibit real-time execution. The

next step in the simple reformulation algorithm, therefore, is to trim the redundant

46



edges from the APSP graph, leaving only those edges which belong in the MDG.
An edge is redundant if, in all possible execution schedules of the plan, there exists
another edge which propagates a bound on the execution time of the node at the end
of the edge which is at least as restrictive as that propagated by the edge in question.
Such an edge is said to be dominated by the edge imposing the more restrictive bound.
To determine if an edge is dominated we consider a triangle of nodes taken from the
APSP graph. Since we consider the APSP graph, the edge between any two nodes
A and B is a shortest path distance, written |AB|. There are two cases to consider,

shown in Fig. 2-5.

10 -10

a) b)

Figure 2-5: This figure shows an example of (a) an upper-dominated non-negative
edge |AB| and (b) a lower-dominated negative edge |AB].

e A non-negative edge AC is upper-dominated by another non-negative edge BC
if and only if |[AB| + |BC| = |AC.

e A negative edge AC is lower-dominated by another negative edge BC if and
only if |AB| + |BC| = |AC]|.

The simple reformulation algorithm is inefficient, because forming the APSP graph
and searching it for non-dominated edges is expensive. Constructing the APSP graph
requires O(N?) time complexity and O(N?) space complexity, where N is the number
of nodes in the plan. Searching the APSP graph for non-dominated edges requires

47



O(N?) time complexity. This gives an overall complexity for the simple reformulation
algorithm of O(N?) in time and O(N?) in space.

The inefficiency of the simple reformulation algorithm is overcome by fast refor-
mulation [27]. Fast reformulation identifies the non-dominated edges through a series
of traversals of the graph, without forming the complete APSP graph. In the worst
case, fast reformulation conducts a traversal from every node in the distance graph.
This allows the non-dominated edges to be identified by a local test conducted at
each node. The use of a local test is the source of the efficiency of the fast reformula-
tion algorithm. In a traversal starting from node A, the fast reformulation algorithm
applies a local test at node B to determine whether the MDG should contain the
shortest path edge AB.

We use the fast reformulation algorithm as the basis for the distributed plan
reformulation phase of D-Kirk. The fast reformulation algorithm has space complexity
linear in N, the number of nodes in the plan, and time complexity O (NE + N?In N),
where E is the number of edges in the plan, which is typically roughly proportional
to N.

The fast reformulation algorithm further improves run time by exploiting Rigid
Components (RCs). A rigid component is a set of nodes whose execution times are
fixed relative to each other. The fast reformulation algorithm represents each RC by
a single node, thus reducing the effective value of N and hence reducing complexity.
Note that the treatment of RCs in this way is also required for the dominance tests to
function correctly. Note also that nodes whose execution times are not rigidly fixed
relative to any other nodes in the plan can be considered as a special case of an RC,
where the RC consists of a single node.

For example, consider the example plan introduced in Section 2.2. The plan is
shown in Fig. 2-6. The edges between nodes 27 and 28 require them to execute at
the same time. Similarly the edges between nodes 29 and 30 require them to execute
at the same time. Furthermore, the edges between nodes 28 and 29 require node 29
to execute exactly 1 time unit after node 28. Therefore, the execution times of these

four nodes are fixed relative to each other and they form a rigid component.

48



67

10 10 10 10 10
O @O0 -0 { ©) &
0 0 9 9 10 10 10 10 S +I

p
27 28 29 30

10 10 10 10 10 10 10 10 10
0
1

5 PN
0
a 10

Figure 2-6: This figure shows the example plan with the RC consisting of nodes 27, 28, 29 and 30 hi



The single node used to represent in the RC in the fast reformulation algorithm
is referred to as the RC leader. The RC leader is the only member node involved in
reformulation, so it is the only member of the RC which has MDG edges to other
nodes in the plan. Therefore, during dispatching, it is the only member of the RC
to which timing information is propagated from other nodes in the plan. Only once
timing information has reached the RC leader can it be further propagated to the
other members of the RC. For this reason, the RC leader must be the first member
of the RC to be executed, so we choose as the RC leader the member node with the
minimum Single Source Shortest Path (SSSP) distance from the start node of the
plan. For example, consider the RC consisting of nodes 27, 28, 29 and 30 in Fig. 2-6.
The nodes are labeled with the SSSP distance from the start node, node 1. Nodes
27 and 28 share the minimum SSSP distance of the RC members, so either could be
selected as the RC leader.

The member nodes of an RC are connected with a doubly linked chain of edges.
The nodes are linked in order of increasing SSSP distance from the start node, so
that timing information can be propagated along the chain at dispatch time in order
of execution time. A doubly linked chain of edges of this form is both minimal and
dispatchable, so forms the MDG for the RC. This ensures that the RC members can

be executed correctly at dispatch time.

A special case exists when multiple nodes in an RC are constrained to be executed
at exactly the same time. These nodes are identified by the fact that they share the
same SSSP value from the start node. A set of such nodes is referred to as a Zero-
Related (ZR) component. It is required for the correct operation of the dominance
tests used in the fast reformulation algorithm that ZR components are collapsed
to a single node. It does not matter to which member of the ZR component the
nodes are collapsed. Collapsing involves transferring all activity start and end events
from the member nodes to the single surviving node. All edges to other nodes are
also transferred. The example temporally flexible plan used earlier in this section is
shown in Fig. 2-7. In this figure the ZR components of the RC containing nodes 27,
28, 29 and 30 have been collapsed. In particular, nodes 27 and 28 have been collapsed

20



to node 28, and nodes 29 and 30 have been collapsed to node 30.

The RC leader represents all members of the RC for the purposes of reformulation.
It is necessary, therefore, to express all temporal constraints between the member
nodes of the RC and other nodes in the plan in terms of temporal constraints between
the RC leader and the other nodes in the plan. To achieve this, the edges to all RC
members are relocated to the RC leader. When the edges are rerouted their lengths
must be modified to reflect the relocation. The amount by which edge lengths are
adjusted is equal to the SSSP distance between the RC member from which they are
being relocated and the RC leader. In particular, when relocating an outgoing edge
from node A to a leader node L, its length must be increased by the SSSP distance
of node A relative to that of node L. When relocating an incoming edge from node
A to a leader node L, its length must be decreased by the SSSP distance of node A
relative to that of node L.

For example, the temporally flexible plan used earlier in this section is shown in
Fig. 2-8. In this figure the RC containing nodes 27, 28, 29 and 30 has been fully
processed. The RC leader (node 28) has been selected, ZR nodes (nodes 27 and 28
and nodes 29 and 30) have been collapsed, the remaining RC members are joined by
a doubly linked chain of edges and edges to other nodes in the plan graph have been
relocated to the RC leader. In particular, the pair of edges between nodes 30 and
31 have been relocated to connect nodes 28 and 31. The outgoing edge from node
30 of length 1 has been increased in length by 1 unit to give a new length of 2. The
incoming edge from node 30 of length 0 has been decreased in length by 1 unit to

give a new length of -1.

Once the rigid components in the plan have been processed as described above,
the fast reformulation algorithm performs a series of traversals of the graph to de-
termine which edges should be included in the MDG. A traversal is conducted from
every RC leader node (including the leaders of singleton RCs) in the graph. Each
traversal follows the Reverse Post Order (RPO) for a Depth First Search (DFS) of
the predecessor graph rooted at the start node of the traversal. The predecessor

graph and the reverse post order, as well as details on how they are calculated, are

o1



10 10 10 10 10
O S OO ) § ©) &
0 0 9 10 10 0 £ INF
¢ TN
28 30 {
_ ! _ P 10 10 10 10 10 10 10 10 10
0 QQ o
\ 0
+INF
99 0
0
o 10

Figure 2-7: This figure shows the example plan with zero-related components collapsed in the RC consis
29 and 30.




€¢

Figure 2-8: This figure shows the example plan with the RC consisting of nodes 27, 28, 29 and 2



given in Chapter 4. The predecessor graph is built on the set of RC leader nodes.
At a given node B on the traversal started from node A, the fast reformulation algo-
rithm performs a local test to determine whether or not the shortest path edge AB
is dominated. Only non-dominated edges feature in the MDG. The test requires the

following two pieces of data.

e minimum The minimum SSSP distance (from the start node of the traversal)
of the nodes visited so far in this traversal, excluding the start and current

nodes.

e non-positive Whether or not a node with a non-positive SSSP distance (from
the start node of the traversal) has been encountered so far in this traversal,

excluding the start and current nodes.!

The first dominance test is carried out at the second node in the RPO, as a
dominance test at the first node in the RPO (the start node) is meaningless. It is for
this reason that the start node is excluded in the above definitions.

Note that not all nodes are necessarily reachable from every other node in the
plan, so the predecessor graph for a particular node may not span the entire set of
nodes. As a result, a given traversal may not visit all of the RC leader nodes in the
plan. This behavior is correct, because the shortest path edge from a given node
to another node not in its predecessor graph must be of infinite length, so is always
dominated and can not be a member of the MDG.

These two pieces of data are used as follows to perform the dominance test. The

logic behind these tests is given by Tsamardinos et. al. [27].

e If |AB] is non-negative, then the edge AB is upper-dominated if and only if

manimum is less than the SSSP distance of B.2

!Tsamardinos et. al. [27] test for a negative edge, rather than a non-positive edge. Use of
a non-positive edge allows correct dispatching in the case of nodes separated by simple temporal
constraints with a lower bound of zero.

2Tsamardinos et. al. [27] use the condition ‘less than or equal to’, rather than ‘less than’. Use
of the condition ‘less than or equal to’ allows correct dispatching in the case of nodes separated by
simple temporal constraints with a lower bound of zero.

o4



e If |AB]| is negative, then the edge AB is lower-dominated if and only if non-

positive is true.

For example, consider once again the example temporally flexible plan introduced
in Section 2.2. Fig. 2-9 shows the distance graph for this plan once all rigid compo-
nents have been processed. The figure represents a snapshot during the traversal from
node 1. Each node is labeled with the SSSP distance from node 1 and the reverse
post order is shown by the blue arrows. The node being traversed in this snapshot
is node 42. This node has SSSP distance 10, so the shortest path edge from node 1
to node 42 is 10, which is non-negative, so we use the test for upper-dominance. The
value of minimum is 10, which is not less than the SSSP distance of node 42, so the
edge from node 1 to node 42 is not upper-dominated. We therefore include the APSP
edge from node 1 to node 42, of length 10, shown in red in Fig. 2-9, in the MDG.

Figure 2-9: This figure shows a snapshot of the dominance test traversal from node
1. The node being traversed is node 42. The dominance test applied at this node
determines that the APSP edge of length 10 from node 1 to node 42 is a member of
the MDG.

Once a traversal has been conducted from every RC leader in the graph, and the
non-dominated edges have been recorded, the MDG is complete. The MDG makes
explicit all of the temporal constraints in the plan, such that it can be executed using
only local propagation of timing information. The MDG can then be dispatched using
the methods of Muscettola et. al. [20].

25



Recall that we use temporally flexible plans to model activities of uncertain du-
ration. These uncertain durations arise for one of two reasons. First, it may be
acceptable to conduct the activity for any period of time within a given range, or
second, it may be the case that the duration of the activity is beyond the control of
the executive. In the first case, the activity is termed controllable and its duration is
dictated by the executive. In the second case, the activity is termed uncontrollable
and its duration is dictated by nature. The fast reformulation algorithm does not
guarantee that the MDG it produces is dispatchable if any of the activities in the
plan are uncontrollable. This is because the dispatcher can not adapt the execution
schedule to account for the uncertain completion time of activities whose durations

are determined by nature.

Vidal and Ghallab introduced the notion of uncontrollable activities [29] and pro-
posed methods to correctly execute plans containing such activities. A Simple Tem-
poral Problem under Uncertainty (STPU) allows an uncontrollable activity to be
distinguished from a controllable activity, so that it can be handled correctly. Vidal
and Ghallab also introduce the notion of controllability; the ability for the executive
to select a temporally consistent execution schedule irrespective of the situation im-
posed by the environment. In particular, they introduce strong controllability, where
a single execution schedule is consistent for any situation; weak controllability, where a
consistent execution schedule exists for each complete situation; and dynamic control-
lability, where the executive can generate a consistent execution schedule dynamically,

given the observed situation up the current to point in time.

Work by Vidal and Fargier produced algorithms to check weak and strong control-
lability [28], while a dynamic controllability algorithm [18] was produced by Morris
et. al.. The dynamic controllability algorithm extends the reformulation algorithm
provided by Tsamardinos et. al. [27] to ensure correct dispatching of a plan contain-
ing uncontrollable activities. The algorithm tightens temporal constraints elsewhere
in the plan to ensure that the plan can be correctly dispatched irrespective of the

duration of the uncontrollable activities.

Prior to the dynamic controllability algorithm, Morris and Muscettola presented

o6



ways to apply existing plan verification, reformulation and dispatching algorithms to
a STPU [17]. This work also applied the concept of an STPU to an STN, to define
the Simple Temporal Network with Uncertainty (STNU).

Work by Stedl [25] introduced the Temporal Plan Network under Uncertainty
(TPNU). This is a TPN which includes uncontrollable activities, where the temporal
constraints of the TPNU are described by an STNU, rather than by an STN. Stedl
produced a plan execution system which allows a group of agents to robustly execute
a plan encoded as a TPNU when communication is limited at execution time. To
achieve this, agents are clustered into groups based on their communication avail-
ability. A novel hierarchical reformulation algorithm is then used to rearrange the
plan into two layers. At the group level, group plans are decoupled so that a static
schedule can be used that does not require communication at execution time. At the
agent level, each group plan is reformulated using a new fast version of the dynamic
controllability algorithm to allow agents to respond to the uncertain durations of

uncontrollable activities.

2.4 'Temporal Plan Networks

Dispatchable execution provides robustness to execution uncertainty by preserving
temporally flexibility throughout the planning stage and exploiting it at dispatching
time. This allows the executive to use the temporal flexibility in the plan to respond to
uncertain activity durations at dispatch time. A Temporal Plan Network [12] (TPN)
extends a temporally flexible plan by adding contingencies. These contingencies en-
code functionally equivalent methods for achieving the same task. This provides the
executive with alternate methods of achieving a goal, and hence adds robustness to
plan failure.

For example, in the manipulator tool delivery task introduced in Chapter 1 we
must deliver a tool to a specified location within a certain time limit. In this example,
the times at which a tool will become in each of two initial locations is not known

a priori. We wish to encode in our plan two alternative methods for delivering the

27



tool to the desired location. The two methods represent the two different strategies
that are required to deliver the tool within the specified time limit, depending on the
time at which the tool becomes available in each of the two initial locations. The
inclusion in the plan of both contingencies allows the executive to successfully execute
the task even if one alternative method fails due to insufficient time being available

for delivering the tool from that initial location.

A TPN encodes contingencies by augmenting the temporally flexible plan repre-
sentation with a choose operator, taken from the RMPL programming language [32].
The choose operator allows us to specify nested choices in the plan, where each choice

is an alternative sub-plan that performs the same function. The choose operator is

defined below.

e choose(T'PNy,...,TPNy) introduces multiple sub-plans of which only one is to

be chosen. A choice variable is used to encode the currently selected subnetwork.

As with the other RMPL constructs, the RMPL language allows a simple temporal
constraint to be applied between the start and end of the choose operator, as syntactic
sugar. Here this corresponds to an additional parallel operator, of which one branch
is the choice and the other is a single activity with the prescribed simple temporal

constraint. For simplicity, we do not use these syntactic mechanisms in this thesis.

The RMPL representation of the manipulator tool delivery task is shown in Fig. 2-
10. A graph representation of the choose construct is shown in Fig. 2-11. The choice

node is shown as an inscribed circle.

An example of a TPN is that representing the manipulator tool delivery scenario,
shown in Fig. 1-2 and repeated in Fig. 2-12 below. This example includes all three
TPN constructs; parallel, sequence and choose. Node 2 is a choice node and intro-
duces the two possible methods for delivering the tool. The upper path through the
TPN involves WAMO picking up the tool and passing it to WAM1 for delivery. The
lower path uses WAMI1 to pick up and deliver the tool alone.

o8



parallel
choose
sequence
parallel
sequence
parallel
(Tool delivery) [x,+INF]
sequence
(Synchronization) [0,1]
WAMO . MoveToPickupLocation0 [0,1]
(Wait for tool) [0,+INF]
end-sequence
end-parallel
WAMO.CloseHand [0,1]
WAMO . MoveToHandOffLocation [0,1]
(Wait for WAM1 to complete) [0,+INF]
end-sequence
sequence
(Synchronization) [0,1]
WAM1.MoveToHandOffLocation [0,1]
(Wait for WAMO to complete) [0,+INF]
end-sequence
end-parallel
WAM1.CloseHand [0,1]
(Synchronization) [1,1]
WAMO . OpenHand [0,1]
parallel
sequence
(Synchronization) [0,1]
WAMO .MoveToHomeLocationO [0,1]
(Wait for WAM1 to complete) [0,+INF]
end-sequence
sequence
(Synchronization) [0,1]
WAM1.MoveToDropOffLocation [0,1]
WAM1.OpenHand [0,1]
WAM1 .MoveToHomeLocationl [0,1]
(Wait for WAMO to complete) [0,+INF]
end-sequence
end-parallel
end-sequence
sequence
parallel
sequence
WAM1.MoveToPickupLocationl [0,1]
(Wait for tool) [0,+INF]
end-sequence
(Tool delivery) [y,+INF]
end-parallel
WAM1.CloseHand [0,1]
WAM1.MoveToDropOffLocation [0,1]
WAM1.OpenHand [0,1]
WAM1.MoveToHomeLocationl [0,1]
end-sequence
end-choose
(Available time) [0,10]
end-parallel

Figure 2-10: This figure shows the RMPL representation of the manipulator tool
delivery task.

29



AR 4

O

choose

Figure 2-11: This figure shows the graph representation of the RMPL choose con-
struct used to build a Temporal Plan Network. The choice node is shown as an
inscribed circle.

2.5 Plan Extraction

A TPN allows us to encode alternative options in a plan. At execution time, the
executive must select from the TPN a plan for which all temporal constraints are
satisfied. Recall that for each set of alternative contingencies in the TPN, the cur-
rently selected contingency is encoded in the corresponding choice variable . Selecting
a plan, therefore, is a matter of assigning values to the TPN’s choice variables. In
particular, we require a feasible plan. Note that a temporally consistent plan was

defined in Section 2.2.

Definition 3 A feasible plan is a complete choice assignment to the choice vari-

ables of a TPN such that the selected plan is temporally consistent.

Definition 4 A complete choice assignment is an assignment to the choice vari-
ables of a TPN such that 1) all active choice variables are assigned 2) all inactive
choice variables are unassigned. The plan denoted by a complete choice assignment

includes all activities and temporal constraints in the selected portion of the TPN.

Definition 5 An active choice variable is a choice variable whose corresponding

choice node is included in the currently selected portion of the TPN.

In general, plan selection consists of two stages: generation of candidate plans and

testing of candidate plans for temporal consistency. We detect temporal inconsistency

60



[0.01

19

(Tool Delivery)

[x,+INF]
N 5 » 6 ) WAMO.CloscHand WAMO.MoveToHandOffLocation (Wait f

> 7

< 2 [0.1] [0.0] [0,1] 00]
0 Y7 (Synchronization) WAMO.MoveToPickUpLocation0 (Wait for tool) N ° Q G
S &2 &
\Q@ 2 [0.1] 100] [0,1] 00] [0,+INF] N
° 2 ) .
2 (Synchronization) ‘WAMI.MoveToHandOffLocation (Wait for WAMO to complete)
[0,1] 00] [0,1] 001 [0.+INF]
10,0}
WAMI.CloseHand (Synchronization) WAMO.OpenHand

[1,1] [0,1]

[0,11

[0,1]

[0,1]

[0,0]

[0,0}:
(Synchronization) WAMO0.MoveToHomeLocation0 (Wait fot WAMI to complete)
0,1 0,1 0,+INF
o1 [0.0] (0.1 [0,0] L ! /_
/00 (Synchronization) WAM 1.MoveToDropOffLocation ‘WAM I.OpenHand WAM 1.MoveToHomeLocationl (Wait for WAMO to complete
K7 [0,1] [0,+INF]

0.1] [0,0] [0,0] [0,0]

WAMI.MoveToPickUpLocationl (Wait for tool)
1 [00] 0,+INF]

2 (0. I
2
Ny 7 WAMI.CloseHand WAMI MoveToDropOffLocation WAMI.OpenHand WAMI.Mov
& D [0.1] [0,1] [0,1]
[0,0] [0,0] [0,0] [0,0]
1z} (Tool Delivery) N
‘Y [y+INF] A
58

57 5
(Available Time)
[0,10]

Figure 2-12: This figure shows the TPN representing the manipulator tool delivery scen:



as a negative cycle in the distance graph. For example, consider the distance graph
in Fig. 2-13. This plan is inconsistent because the upper temporal bound for the
thread of execution ABD is 9 units, whereas the lower temporal bound for the thread
of execution ACD is 10 units. Clearly these two constraints are incompatible, so no
feasible assignment of execution times exists and the plan is temporally inconsistent.
This inconsistency manifests itself as a negative cycle in the distance graph: the sum

of the edges around the loop ABDCA is -1.

Figure 2-13: This figure shows an inconsistent plan. The distance graph contains a
negative cycle ABDCA.

The simplest method to test for negative cycles is to use an All Pairs Shortest
Path (APSP) algorithm, for example the Floyd-Warshall algorithm or the matrix-
multiplication-based APSP algorithm. The Floyd-Warshall algorithm takes O(N?)
time and requires O(NN?) space to store the distance matrix, and the matrix-multiplication-
based APSP algorithm takes O(N?®log N) time and requires O(N?) space as well.
However, there are methods of detecting negative cycles that are both faster and
require less space. The Bellman-Ford algorithm is used to compute single-source
shortest paths but also can be used to check for negative cycle in O(N E) time, where
E is the number of edges in the distance graph. In addition, this algorithm only needs

to maintain one distance label at each node, which only takes O(N) space.

62



The Kirk executive [12] generates candidate plans by performing a Depth First
Search (DFS) through the possible assignments to the choice variables. Plan ex-
traction therefore has exponential time complexity in the worst case. Kirk frames
consistency checking as a Single Source Shortest Path (SSSP) calculation. It uses
the First In First Out (FIFO) implementation of the generic label correcting SSSP
algorithm, which is similar to the Bellman-Ford SSSP algorithm.

Work by Walcott [30] extends the plan selection phase of Kirk to handle both
activity costs and the problem of path planning. This planner uses A* search to
extract an optimal plan from a TPN which is extended to include activity costs. In
addition, the planner is integrated with a road-map based path planner.

Work by Effinger [7] extends the plan selection phase of Kirk to use dynamic
backtracking to improve the efficiency of search. The planning problem is posed as a
Constraint Satisfaction Problem (CSP).

Recent work by Wehowsky [31] produced a distributed version of the plan selection
phase of Kirk. It uses a distributed depth-first search for candidate plan generation
and the distributed Bellman-Ford algorithm for consistency checking. This is the

plan selection algorithm used in D-Kirk.

2.6 Related Work

In this section we provide an overview of other work related to the execution of
temporally flexible plans and to distributed algorithms in general.

Work by Tsamardinos introduced the Probabilistic Simple Temporal Problem
(PSTP) [26]. In this work, uncontrollable events are modeled using random variables
following conditional probability distributions. This overcomes two limitations of the
STPU formalism. First, the duration of a real uncontrollable activity is not limited
by lower and upper bounds, but there exists a finite probability of any duration. Sec-
ond, there is no principled way for the modeler to select these bounds. Tsamardinos
presents an algorithm which schedules controllable activities such that the probabil-

ity that the temporal constraints in the plan are satisfied by the durations of the

63



uncontrollable activities is maximized.

Work by Khatib et. al. introduced the Simple Temporal Problem with Preferences
(STPP) [11]. STPPs allow us to model plans with temporal constraints and to express
preference criteria which dictate the relative importance of the satisfaction of each
constraint. Khatib et. al. present an algorithm, based on a simple generalization
of the SSSP algorithm, for finding globally best solutions to STPPs with restricted
preference functions.

Schwartz and Pollack developed the Disjunctive Temporal Partial-Order Planner
(DT-POP) [24]. This work uses a partial-order planning approach to generate plans
from actions which include disjunctions of temporal constraints.

Model-based programming elevates the level of interaction between human oper-
ators and hidden-state, under-actuated systems. A model-based executive reasons
on a model of the plant to determine the required sequence of commands to drive
the plant through the required states. Williams introduced a model-based executive
called Titan [32], which allows the operator to specify the behavior to be executed in
terms of intended plant state evolution, instead of specific command sequences.

Work by Léauté and Williams addressed the problem of plan execution for under-
actuated systems [14]. Their model-based executive takes as input a qualitative state
plan. This is a temporally flexible plan augmented with state constraints, which spec-
ify the intended state evolution of the system. The executive dynamically generates
a near-optimal control sequence by framing planning as a disjunctive linear program-
ming problem. To achieve robustness to disturbances and tractability, planning is
folded within a receding horizon, continuous planning framework.

Qualitative state plans are also used by Hofmann and Williams for the control of
bipedal walking devices [10]. These bipedal walking devices are hybrid systems with
high-dimensional non-linear dynamics, so a feedback linearizing controller is used to
provide an abstraction of the system. The qualitative state plan specifies the input
to the system as a set of gait poses, including foot placement constraints, linked by
flexible timing constraints. The executive uses the temporal and state flexibility to

provide robustness to disturbances and controls the system by tuning the control

64



parameters of the linearized abstraction.

A great deal of work has been done on controlling groups of autonomous agents
to perform collaborative tasks. Des Jardins [6] asserts that to effectively execute
real world problems we require a planner that is both distributed and continual,
where planning and execution are interleaved. This work presents a survey of work
in this field and draws some general conclusions. In particular, distributed planning
is broadly categorized into two distinct approaches. The first is Cooperative Dis-
tributed Planning (CDP), where a group of agents collaborate to formulate a plan
which is optimal, or at least good, for the collective objectives of the group as a whole.
Similarly, the agents execute the plan in a coherent, effective manner. The second
approach is Negotiated Distributed Planning (NDP), where agents seek to construct
a plan which is optimized for their individual objectives. Where other agents place
constraints upon the planning process, an agent seeks to persuade them to accommo-
date its own preferences. Our executive takes a collaborative group plan and executes
it in a distributed fashion, so fits the CDP approach.

The RoboCup Rescue competition [13] highlights the need for distributed execu-
tion systems to achieve complex, real-world tasks.

The CASPER system [8] provides a system for coordinating a group of rovers in
collecting planetary surface data. A central planner generates an abstracted group
plan and assigns activities to each rover. Each rover is then responsible for planning
its own activities and provides a detailed, executable plan. However, this is a leader-
follower type of distributed system and there is no communication between followers.
This means that agents do not interact when formulating their individual plans, so
the system can not handle plans with tight coupling between activities owned by
different agents. Each agent executes its plan independently, within a re-planning
architecture.

The Multi-Rover Integrated Science Understanding System (MISUS) [9] uses a
similar approach.

The CAMPOUT [21] system provides an architecture for the tightly coupled coor-

dination of groups of agents. The actions of each agent are determined by behaviors,

65



which represent the mapping from a set of observations to the activity performed by
the agent. A behavior has an assigned preference value which describes how desirable
the action is. This system of preferential behaviors is extended to the case of multiple
agents through multi-objective problems [22]. This allows agents to take into account
the preferences of other agents and thus reach a mutually preferred plan.
Temporally flexible plans allow us to model tightly coupled sets of activities. None
of the above work provides methods for the distributed execution of such tightly
coupled plans. However, work by Riley and Veloso provide a system for generating
and executing plans for a group of agents [23] which partially addresses this problem.
First, planning is performed in a centralized fashion. The output of the planning
phase is a STN. The centralized planner then decides which agent will conduct each
activity and assigns to the agent the corresponding nodes of the STN. Each agent
then executes its portion of the STN in a fully distributed fashion, without access to a
global state. This work differs from our approach in that planning is centralized rather
than distributed. Also, complete reformulation is not used: instead the APSP graph
is formed from the STN and used in execution. Riley and Veloso state that for the
relatively small plans they use, the APSP graph is manageable and full reformulation

is not required. Furthermore, formation of the APSP graph is centralized also.

66



Chapter 3

Plan Distribution

3.1 Introduction

D-Kirk distributes both data and processing between all of the agents involved in
the plan and this means that all agents must be able to communicate throughout
the execution of the plan. This chapter addresses the problems of establishing the
required communication routes between the agents involved in the plan and of dis-
tributing the plan data between those agents. First we discuss exactly how the plan is
distributed and the requirements that this places upon the structure of the plan. We
then introduce the algorithm we use to establish the required communication routes

between agents.

3.2 Distribution

One of the advantages of using a group of agents, rather than a single agent, is
that more complex tasks can be achieved. One reason for this is that agents can be
specialized such that each lends its particular skills to a specific portion of the plan.
As a result, each activity in a multi-agent plan is intended to be executed by a specific
agent. For example, a rover equipped with a robotic manipulator is able to take a
soil sample. A second rover, with a camera but no manipulator, can not take soil

samples, but can capture images. These two rovers will therefore be used in distinct

67



roles in an activity plan.

In a centralized architecture a single agent conducts all of the processing related
to dispatching the plan. However, as discussed above, each activity must be executed
by a specific agent. This means that when a given activity is to be executed, the
master agent must send a message to the agent which will carry out that activity,
instructing it to begin execution of the activity. In a plan involving many agents this
can lead to a communication bottleneck at the master node, which renders the system
vulnerable to communication latency. These delays may mean that the system can
not operate in real-time, causing dispatching failure.

The main objective in distributing the dispatching process is to eliminate the
communication bottleneck present in a centralized architecture. We achieve this by
distributing both data and processing between all of the agents involved in the plan.
In particular, we assign to each agent the portion of the plan corresponding to the
activities it will carry out, as well as the responsibility for processing this part of the

plan.

D-Kirk uses a Temporal Plan Network (TPN) to represent the plan to be exe-
cuted, so the task of distributing the plan data between the available agents is one of
assigning parts of the TPN to each agent. A TPN consists of nodes and edges, where
nodes represent points in time and are connected by edges, which represent activi-
ties whose durations are bounded by simple temporal constraints. The dispatching
process used to execute the activities in the plan involves assigning execution times
to each node. For the purposes of dispatching, therefore, we represent each activity
by two events; a start event at the activity’s start node and an end event at its end
node. Details of the dispatching algorithm are given in Chapter 5. Therefore, we
assign nodes to agents based on the ownership of the activities corresponding to the
start and end events they contain.

For example, consider the plan fragment shown in Fig. 3-1, which is based on
the manipulator tool delivery scenario introduced in Chapter 1. The plan fragment
contains three activities, two of which are to be carried out by WAMO and third by

WAMI1. The figure shows how start and events are assigned to the relevant nodes for

68



each activity and how nodes are then assigned to agents.

a) WAMO.MoveToHomeLocation0
[0,1]

WAMO.OpenHand
[0,1]

A 4
@

WAMI1.MoveToDropOffLocation
[0,1]

&)
h 4

) 4
@

b) START( WAMO. END( WAMO.
MoveToHomeLocation0 ) MoveToHomeLocation0 )

[0.1]

V)
START( WAMO.OpenHand ) o END( WAMO.OpenHand ) 0

B
@

) 4

[0.1]

»
»

ONO

START( WAMI. END( WAMI.
MoveToDropOffLocation ) MoveToDropOffLocation )
C) START( WAMO. END( WAMO.
MoveToHomeLocation0 ) MoveToHomeLocation0 )
[0,1]
o >
START( WAMO.OpenHand ) END( WAMO0.OpenHand )

) 4

[0.1]
®

[0.1]

»
»

OO

START( WAMI. END( WAMI.
MoveToDropOffLocation ) MoveToDropOffLocation )

Figure 3-1: This figure shows an example plan fragment and how nodes are assigned
to agents based on the activities they will perform. (a) TPN with activities. (b)
Activity start and end events assigned to nodes. (c) Nodes assigned to agents based
on activity start and end events. Nodes assigned to WAM1 are shown in gray.

It is possible to construct a TPN in which a given node contains multiple activity
start or end events. If all of the events in a single node correspond to activities to be
carried out by the same agent, the distribution proceeds as described above. However,

the events may correspond to activities to be carried out by multiple agents. Such a

69



plan requires multiple agents to execute events simultaneously. This is not possible
in any realizable system, so execution of the plan is not possible and distribution
fails. For example, consider the TPN fragment in Fig. 3-2. Node B owns multiple
activity events but both correspond to activities to be carried out by WAMO, so the
node is successfully assigned to WAMO0. However, node C owns one activity event
corresponding to WAMO and another corresponding to WAM1. This means that the

plan can not be executed and the distribution fails.

a) WAMO.OpenHand WAMO.MoveToHomeLocation0 WAM]1.MoveToDropOffLocation
[0,1] [0,1] [0,1]
b)
END( WAMO.
END( WAMO.OpenHand ) .
) MoveToHomeLocation0 ) END( WAMI.
START(WAMO.OpenHand ) START( WAMO. START( WAMI. MoveToDropOffLocation )

MoveToHomeLocation0 ) MoveToDropOffLocation )

[0,1] [0,1] [0,1]

O OISy

c)
END( WAMO.
END( WAMO.OpenHand ) .
MoveToHomeLocation0 ) END( WAMI.
START( WAMO.OpenHand ) M vsiAI—EI{Trgl V{AMS n0 ) START( WAMI. MoveToDropOffLocation )
ovelotometocatio MoveToDropOffLocation )

[0,1] [0,1]

[0,1] -

) N Q

A » B » C » D
Q N \_/

X

Figure 3-2: This figure shows an example plan fragment that can not be distributed
because it requires events to be carried out simultaneously by multiple agents. (a)
TPN with activities. (b) Activity start and end events assigned to nodes. (c¢) Nodes
assigned to agents based on activity start and end events. Nodes assigned to WAM1
are shown in gray. Node C can not be assigned because it owns activity events
corresponding to activities to be carried out by both WAMO and WAMI1.

For practical modeling purposes, this situation can be avoided by inserting a
‘wait” duration between the activities to be executed by each agent. This removes
the requirement for the events to be executed simultaneously and allows the plan to

be executed and therefore distributed successfully. An example of this technique is

70



the waits between nodes B and C and nodes B and E Fig. 3-1.

Section 2.3 introduced the concept of a Zero-Related (ZR) component. A ZR com-
ponent is a group of plan nodes which are constrained to execute simultaneously and
must be collapsed to a single node for the correct operation of the fast reformulation
a