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Problem 1: Classical Magnetic Moments

Consider a system made up of N independent classical magnitic dipole moments
located on fixed lattice sites. Each moment �µi has the same length µ, but is free to
rotate in 3 dimensions. When a magnetic field of strength H is applied in the positive
z direction, the energy of the ith moment is given by εi = −miH where mi is the z
component of �µi (that is, � ẑ = mi).µi ·

The magentization M and the total energy E are given by

N N∑ ∑
M =

i=1

mi E =
i=1

εi = −MH

a) What are the physically allowed ranges of values associated with mi, M , and
E?

b) How many microscopic variables are necessary to completely specify the state
of the system?

In a certain limiting case, the accessible volume in phase space for the microcanonical
ensemble is given by

M2

Ω ≈ (2µ)N exp[−
3
Nµ2

].2

c) Use the microcanonical ensemble to find the equation of state, M as a function
of H and T .

d) Is there some condition under which the solution to c) is unphysical for the
system under consideraton? Explain your answer. For what values of T is the
expression for Ω a good approximation?

e) The probability density p(M) for the z component of a single magnetic moment
can be written as p(m) = Ω′/Ω where Ω is given above. What is Ω′?
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f) Find p(m). [Note: For the limit which applies here, an expression for p(m)
including powers of m no higher than the first is adequate.] Sketch p(m) and
check its normalization.

g) Use p(m) to computed < m >. Compare the result with that which one would
expect.

Problem 2: A Strange Chain

F
l

F

A one dimensional chain is made up of N identical elements, each of length l. The
angle between successive elements can be either 00 or 1800, but there is no difference
in internal energy between these two possibilities. For the sake of counting, one can
think of each element as either pointing to the right (+) or to the left (-). Then one
has

N = n+ + n−
L = l(n+ − n−) = l(2n+ − N)

a) Use the microcanonical ensemble to find the entropy as a function of N and n+,
S(N, n+).

b) Find an expression for the tension in the chain as a function of T , N , and n+,
F(T, N, n+). Notice the strange fact that there is tension in the chain even
though there is no energy required to reorient two neighboring elements! The
“restoring force” in this problem is generated by entropy considerations alone.
This is not simply an academic oddity, however. This system is used as a model
for elastic polymers such as rubber.

c) Rearrange the expression from b) to give the length as a function of N , T , and
F .
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d) Use the result for the high temperature behavior from c) to find an expression
for the thermal expansion coefficient α ≡ L−1(∂L/∂T )F . Note the sign. Find
a stout rubber band. Hang a weight from it so that its length is extended by
about a factor of two. Now heat the rubber band (a hair drier works well here)
and see if the weight goes up or down.

Problem 3: Classical Harmonic Oscillators

Consider a collection of N indentical harmonic oscillators with negligable (but non-
zero) interactions. In a microcanonical ensemble with energy E, the system is on a
surface in phase space given by

N
(

2 mω2q2∑ pi i+ = E.
2m 2i=1

a) Find the volume of phase space enclosed, Φ(E), as follows. Transform to new
variables

1
xi = pi 1 ≤ i ≤ N√

2m

mω2

xi = N + 1 ≤ i ≤ 2N
2

qi−N

Note that in terms of these variables the constant energy surface is a 2N dimen-
sional sphere. Find its volume. Find the corresponding volume in p-q space.

b) Find the entropy S in terms of N and E.

c) Find T and express E in terms of N and T .

d) Find the joint probability density for the position coordinate qi and the mo-
mentum coordinate pi of one of the oscillators. Sketch p(pi, qi).

Problem 4: Quantum Harmonic Oscillators

Consider a system of N almost independent harmonic oscillators whose energy in a
microcanonical ensemble is given by

1
E = hωN + ¯¯ hωM.
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a) Find the number of ways, Ω(E), that this energy can be obtained. Note that

N

M = ni

i=1

where ni is the occupation number (0, 1, 2, . . .) of a given harmonic oscillator.
Ω(E) can be looked upon as the number of ways of putting M indistinguishable
balls in N labelled boxes. It is also the number of ways of arranging N − 1
partitions and M indistinguishable balls along a line.

b) Find the entropy S in terms of N and M .

c) Find T and express E in terms of N and T .

d) Find the probability that a given oscillator is in its nth energy eigenstate. Sketch
p(n).

4


