MASSACHUSETTS INSTITUTE OF TECHNOLOGY

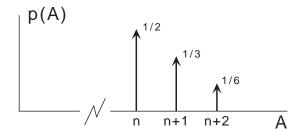
Physics Department

8.044 Statistical Physics I

Spring Term 2003

Exam #1

Problem 1 (35 points) Isotopic Abundance



A certain element has three stable isotopes with atomic weights A = n, n + 1, and n + 2. n is a known integer. The probability of occurrence of each, p(A), is shown in the figure. The scattering of neutrons from the isotopes is governed by an atomic-weight-dependent scattering amplitude f(A). It is known that

$$f(n) = 2f_0$$

$$f(n+1) = f_0$$

$$f(n+2) = 4f_0$$

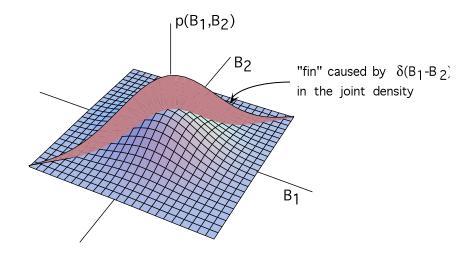
where f_0 is a constant.

- a) Make a carefully labeled sketch of the cumulative function P(A) which displays all of its important features.
- b) Find < f >. Coherent neutron scattering from a crystal is proportional to < f >2.
- c) Find the variance of f, $Var(f) \equiv <(f-< f>)^2>$. Incoherent neutron scattering from a crystal is proportional to Var(f).

Chemists are able to grow nanocrystals of this element, each containing exactly 64 atoms. Let M be the total mass of a nanocrystal.

- d) The minimum possible value of M under these circumstances is $64n m_0$ where m_0 is the proton mass. What is the exact probability that a nanocrystal will have a mass equal to $(64n + 1)m_0$?
- e) What is the approximate probability density p(M) for the mass M of a nanocrystal in terms of A > Var(A) [do <u>not</u> calculate either of these], and m_0 ?

Problem 2 (30 points) Field Reversals



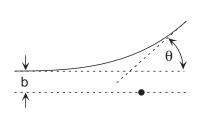
The earth's magnetic field changes suddenly at random times as the earth evolves. A possible model for this behavior gives the following joint probability density for the magnetic fields B_1 and B_2 measured at two different times separated by t years.

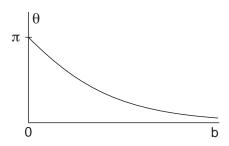
$$p(B_1, B_2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp[-t/\tau] \, \delta(B_1 - B_2) \, \exp[-B_1^2/2\sigma^2] + \frac{1}{2\pi\sigma^2} \, (1 - \exp[-t/\tau]) \, \exp[-(B_1^2 + B_2^2)/2\sigma^2]$$

au is a parameter of the order of 5×10^5 years and σ is a parameter of the order of 1/2 gauss.

- a) Find $p(B_1)$. Sketch the result.
- b) Find the conditional probability density $p(B_2 | B_1)$. Sketch the result.
- c) Are B_1 and B_2 statistically independent? Explain your reasoning.

Problem 3 (35 points) Rutherford Scattering



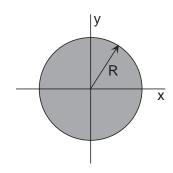


In Rutherford scattering of mono-energetic α particles from nuclei, the dependence of the scattering angle θ on the impact parameter b is given by

$$\theta = 2 \operatorname{arccot}(b/l)$$

(as shown in the figure above) where l is a characteristic length. The impact parameter b is the closest distance the α particle would come to the nucleus if there were no Coulomb interaction.

In the following assume that the α particle flux is uniform over a disk of radius R centered on the nucleus. Thus b is in the range from 0 to R.



- a) Find p(b) and sketch the result.
- b) What is the smallest possible scattering angle?
- c) Find $p(\theta)$ and sketch the result.

Derivatives of Trigonometric Functions

$$\frac{d\sin x}{dx} = \cos x.$$

$$\frac{d\cos x}{dx} = -\sin x.$$

$$\frac{d\sin x}{dx} = \sin x.$$

$$\frac{d\sin x}{dx} = \sin x.$$

$$\frac{d\sin x}{dx} = \sin x.$$

$$\frac{d\cos x}{dx} = \sec x \tan x.$$

$$\frac{d\cos x}{dx} = -\csc x \cot x.$$

Definite Integrals

For integer n and m

$$\int_0^\infty x^n e^{-x} \, dx = n!$$

$$\int_0^\infty \frac{e^{-x}}{\sqrt{x}} \, dx = \sqrt{\pi}$$

$$(2\pi\sigma^2)^{-1/2} \int_{-\infty}^{\infty} x^{2n} e^{-x^2/2\sigma^2} dx = 1 \cdot 3 \cdot 5 \cdots (2n-1) \sigma^n$$

$$\int_0^\infty x \, e^{-x^2} \, dx = \frac{1}{2}$$

$$\int_0^1 x^m (1-x)^n dx = \frac{n!m!}{(m+n+1)!}$$