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Statistics Review for fMRI Data Analysis

These notes review the basics of statistical inference, with a special em-
phasis on concepts necessary for understanding the primary statistical meth-
ods for fMRI data analysis. For further information, DeGroot and Schervish
Probability and Satistics (hereafter DS) is a good source. These notes com-
plement separate sets of notes on linear regression analysis and on probability.

1 Random Samples, Realizations and Statis
tics

Let Xi, i = 1,... n denote a collection of random variables, mutually inde-

pendent with a common distribution F. We will often say that the Xi are iid

, Which is short for "independent and identically distributed.” We can model

data as realizations of these random variables, i.e., observed values XI,. .. ,Xn,

for which each Xi is an independent observed value from F. We sometimes

refer to the observed Xi as a random sample from F.
A statistic is any function of the data, for example the sample mean

n
i=1

If each Xi ~ F, then X is itself a realization of a random variable X, where

T

n
i=1

The random variable X will have a probability distribution (induced by F),
and we can, for example, use X to test hypotheses about the population mean



This illustrates some fundamentals underlying much of statistical infer-
ence. We model our data as being a random sample from a population. This
population is described by a probability distribution, which usually involves
unknown parameters. We may or may not have prior beliefs about the val-
ues of these parameters. Having observed the data, we perhaps want to
make some statement about the parameters, or maybe a prediction regard-
ing future observations. There is some hope of doing these things because
functions of the data will themselves have probability distributions, induced
by our population model. And we can incorporate prior beliefs regarding pa-
rameters, using a basic result of probability theory known as Bayes Theorem
(DS, in particular Section 6.2).

2 Types of Statistical Problems

Statistics addresses questions of the following types (DS, Section 6.1). We
illustrate each of these with a simple example.

e FEstimation: What is the mean difference in BOLD activation in a
certain brain region between two different cognitive tasks, and what is
the uncertainty in this difference?

e Hypothesis Testing: Is it plausible that the mean difference in the above
example is equal to zero?

e FEzperimental Design: How can one choose a sequence of event types in
an event-related fMRI design so as to obtain as much information as
possible relevant to a scientific hypothesis of interest?

e Decision-Making: This is one area of statistics about which we will
have little, if anything, to say in this class. See DSp. 326 for a very
brief discussion.

3 Sampling Distributions

In this section, we discuss the distributions of some important statistics.



3.1 The Sample Mean

Let X; be iid F, with E(X;) = p and Var (X;) = 02, and denote our data
by x1,...,Z,, a random sample from this population. The sample mean (or
average) T is perhaps the first statistic that one would calculate. The exact
probability distribution of X will in general be very complicated, but we can
say quite a bit about X without knowing its exact distribution. Using results
on the expectation and variance of a linear combination of random variables,
we see that

E(X) = p, (1)

and B
Var (X) = o?/n. (2)

So X estimates E(X). One measure of the uncertainty in this estimate is the

standard deviation of X, which equals \/Var (X) = o/y/n. As n increases,

this uncertainty decreases at a rate of order 1/4/n. This is the main reason
why experimenters prefer averages over single measurements.

Although we don’t know the precise distribution of F', an extremely im-
portant result of probability theory states that under very general conditions,
so long as n is not “too small,” X is approximately distributed N (i, 0?/n).
This result is the “Central Limit Theorem,” and it is one reason why simple
statistical inference based on Gaussian assumptions can be so useful in wide
range of situations (DS, Section 5.7).

If the X; are correlated, this result usually still holds, though one needs
to replace n with an effective sample size in order for the approximation to
be a good one. Intuitively, highly correlated values convey less information
than uncorrelated ones (think of the limiting case of perfect correlation, for
which all of the z; will be equal, for any n). We define the effective sample
size, for the case of X to be

’ V&I‘ (Xz)

Var (X) )

n

we will see in this course that this idea can be generalized in obvious ways
for more complicated situations.



3.2 The Sample Variance and Standard Deviation

Another statistic often calculated is a measure of the scatter in the data, the
sample standard deviation:

S_\/EZ 1$z
n—1

It can be easily shown (DS, p. 429) that

E(s®) = o* (4)

it is for this reason that we divide by n — 1 in the denominator of s?. It is
not true that F(s) = o, but usually E(s) & o, at least for moderate to large
n.

The central limit theorem doesn’t help much for inference about o or
o?. If the X; are Gaussian, then s* ~ o?x2 | /(n — 1), where x? denotes a
chi-square random variable with v degrees of freedom (DS, Sections 7.2-7.3).
If Y has a x? distribution, then

yl//2—1e—y/2

fr(y) = PRT(W]2)’

where I'(t) denotes the gamma function

NG /oo v te .
0

It’s a simple exercise to show that E(Y) = v and Var (Y') = 2v (DS, p. 394,
and Section 5.9). In contrast to inference on means, statistical inference on
variances based on this x? distribution depends rather strongly on the data
being at least approximately Gaussian.

4 Estimation

Assume now that our data are a random sample from a population, with
X; distributed according to a probability density fx(z|f). We have modified
our notation for a probability density to indicate explicitly that this density
depends on a parameter. We would like to estimate # using some statistic
U=U(Xy,Xo,...,Xpn). We call U an estimator of 6, and we refer to a



realization of U, i.e., u(z1,...,,) as an estimate of 6. Often we indicate an
estimate of a parameter by putting a “hat” on the quantity being estimated;
e.g., we might use the notation 9 for both u and U above.

A useful way of characterizing the quality of an estimator is its mean
square error, or the square root of this quantity: root mean square error.
Mean square error is the expected squared deviation of an estimate from the
thing that it is estimating:

MSE (U, 0) = E[(U — ).

It is simple to show that it is always the case that mean square error can be
decomposed into the sum of the variance and squared bias of an estimator:

MSE (U, 8) = Var (U) + E[(U — 6)?].

Bias is the difference between the expected value of an estimator and the
value of the thing that it’s supposed to be estimating.

This simple decomposition of MSE into squared error and bias can pro-
vide insight in diverse real applications. For example, one might observe a
noisy signal in time, which one can think of as an estimate of some smooth
underlying function. An improved estimate of this underlying function might
be obtained by smoothing the signal, since this reduces the variance. But
smooth it too much, and though the variance may become quite small, the
bias can become very large. Optimal choice of degree of smoothing of signals
and images is in general a difficult problem, in which one attempts to arrive
at a reasonable compromise between bias and variance, leading to improved
estimates.

4.1 Standard Error, Confidence Interval

We usually characterize uncertainty in an estimate by the standard error, the
standard deviation of the estimator. In the notation of the above example,

SE(U) = /VarU(Xy, ..., X).

For example, the standard error of X as an estimator of E(X;) = p is o/ /n.

Another way of quantifying uncertainty in a parameter estimate is a con-
fidence interval (DS, Section 7.5). A confidence interval is an interval which,
informally, includes the “true” value of the parameter of interest with a



prescribed probability 7, called the confidence level. Strictly speaking, a
confidence interval is constructed so that if one were to repeatedly obtain
random samples, of the same size as the data, from the same population,
and calculate a confidence interval for each of these hypothetical future data
sets, a proportion v of these intervals would contain the true value. It is
one advantage of a Bayesian formulation of statistics that one can simply
say that the interval contains # with probability v. Even if one is not taking
a Bayesian approach, there is little harm in practice of adopting, at least
informally, this simpler interpretation.

4.2 Maximum Likelihood Estimation

The likelihood is the conditional probability density of the data given the
parameters. If X;,..., X, are iid fx(x|f), then the likelihood function is

L= f[fx(:ci|9).

A useful approach to finding estimators with reasonably nice properties is to
maximize the likelihood function with respect to the parameters. Estimates
obtained in this way are called mazimum likelihood estimates or MLEs (DS,
Section 6.5a).

4.2.1 The MLE of ;4 for Gaussian Data
If X; ~ N (u,0?), then the likelihood is

n(@i-w?
L=(2r) " [e 2 .
i=1

Except for a constant which does not involve the parameters, the log-likelihood

1S
n

In(L) = Y- (ei — 10/ (20°).
i=1
Differentiating with respect to u and setting this derivative equal to zero,
we see that the maximum likelihood estimate is 4 = Z. (Note that strictly
speaking one needs to show that [ is indeed a maximum [as opposed to a
minimum or a saddle point]. But this is obvious for this example.)



Maximum likelihood estimates are asymptotically Gaussian, with vari-
ance (or, in the multi-parameter case, covariance matrix) determined from
the curvature of the likelihood at the MLE (the Fisher Information; see
DS Sections 6.6, 7.8, and pp. 442-443 for details).

5 Hypothesis Testing

The set-up for statistical hypothesis testing takes some getting used to: it’s
probably fair to say that it’s not very intuitive. A hypothesis in statistics
is a statement in terms of the parameters of a model. Hypotheses usually
come in pairs: a null hypothesis which you hope to reject, and an alternative
hypothesis which you usually hope is true (DS, Chapter 8).

For example, suppose that you’ve done a cognitive experiment to test
the (scientific) hypothesis that BOLD activity in some region of the brain is
higher during a certain cognitive task than it is during rest. If the parameter
in your model which represents the expected value of the difference in BOLD
response for this brain region is §, then your null hypothesis might be

HO ) S O,
with corresponding alternative hypothesis
H1 . 5 > 0.

From your data, you calculate an estimate of § and divide this estimate by
its standard error to form a test statistic

6

T= —.
SE (9)

To perform a hypothesis test, one begins by tentatively assuming that H,
is true. Then one checks if there is enough evidence in the data in support
of the alternative H; to enable one to safely reject H, as implausible. In our
example, the larger T is, the stronger the evidence in the data in support
of the alternative hypothesis. If T exceeds some constant, say ¢, then one
rejects Hy in favor of Hy. Otherwise, one fails to reject Hy.



5.1 Type I and Type II Errors

The rub, of course, is in the choice of ¢. One can make two kinds of errors
in a hypothesis test. A Type I error occurs when one rejects Hy incorrectly;
a Type II error occurs when one rejects H; incorrectly. The probabilities of
these errors are universally denoted o and . The probability of a Type I
error («) is also called the significance level or size of the test; one minus the
probability of a Type II error (1 — f3) is called the power of the test.

By making c large enough, you can make it as hard as you like for Hj to
be rejected; i.e., you can make « arbitrarily small. But as you change ¢ so
as to decrease «, you will be increasing (3, since you will be requiring larger
and larger values of T" in order to reject Hy. So one cannot make both o and
B arbitrarily small. The approach which is generally taken is to fix o at a
small value, conventionally usually taken to be 0.05, but sometimes 0.10 or
0.01. Having done so, one can then determine ¢ = ¢(«). The probability of
a Type II error will depend on the state of nature under Hi, i.e., the closer
the true ¢ is to zero, the closer together Hy, and H; are, the larger g will
be (equivalently, the smaller the power will be) for a given sample size. (In
experimental design, one selects a small significance level (say, o = 0.05), a
reasonably high power (say, 1 — 8 = 0.80), and a plausible value of 6 which
you’d like to be able to detect with this power and statistical significance.
One can then solve for the required sample size.)

6 Inference on a Population Mean: the t-
Distribution

We now illustrate concepts introduced in the above sections for a simple
example. Although this example is very simple, it is closely related to the
problems of inference in the general linear model, which, as we will learn
in this course, are central to many conventional approaches to fMRI data
analysis.

Assume that our data are a random sample from a Gaussian distribu-
tion with unknown mean and variance. We estimate p and o2 by Z and
s?, the sample mean and variance, respectively. We know that (to a good
approximation, even without the Gaussian assumption) that

X~ N(ll’a 02)5



and (here we cannot be so cavalier about the Gaussian assumption)
S~ 0"/ (n = 1).

It can be shown that <
— i
T, =
Vn—g
has a t-distribution with v = n — 1 degrees of freedom (DS, Sections 7.4 and
8.5). The density of T, is

I (et 2\ ~HD/2
Frltly) = \/% F((i)) (1+—> .

The corresponding cumulative distribution function is tabulated in all ele-
mentary statistics textbooks. The t-density is bell-shaped, with tails which
are heavier than those of a Gaussian. The t-density can be reasonably well
approximated by a Gaussian, however, for many applications, once n exceeds
about 20 or so.

When the data come from a non-Gaussian population, the statistic 7,
still very often has an approximate t-distribution. This is an important fact,
which is often under-emphasized in elementary texts. It is one of the main
reasons why tests and estimates based on the t-distribution are so useful
in real applications, where idealized assumptions often do not hold. If the
data are correlated, however, the degrees of freedom of the approximate t-
distribution may have to be adjusted, using estimated effective degrees of
freedom, in order to improve the approximation.

6.1 Confidence Interval for u (DS, pp.410-411)

From a table, we determine ¢,, the value such that the probability that a 7},
random variable exceeds t, is 0.025. Since the T, density is symmetric about
0, we have that

X —
Pr (—t,, < Vi P < t,,) —0.95.

This can be rewritten as
Pr(X —4,5/vn < < X +1,5/v/n) = 0.95.

Hence, X 4t,S5/\/n is a two-sided 95% confidence interval for p.

9



6.1.1 Test of Hy: u=20
To test the hypothesis

Hy:p=0
against the alternative

H :p#0
We form the test statistic =

t =

and reject Hy when |¢| is greater than ¢, (you should convince yourself that
this is equivalent to rejecting Hy, when the 95% confidence interval for p
does not contain 0). This is a two-sided hypothesis test is at the a = 0.05
significance level.

7 The Generalized Linear Model

A separate set of notes (A Review of Statistics Part 3: The Generalized Linear
Model, Emery N. Brown) reviews the basics of the linear model, otherwise
known as linear regression analysis (see also DS, Chapter 10). One aspect
of the linear model which is not covered in these notes is the testing of
hypotheses on linear contrasts in parameters. This topic is central to a
commonly-used approach to fMRI data analysis, so we review it briefly here.

After motion correction, de-trending, and other data-preparation steps,
imagine that the time course data for each voxel can be described by a linear
model of the form

Y =X +e¢,

where the BOLD signal vector, Y, is n x 1, the (known) design matrix X is
n X p, and the unknown coefficient vector g is p x 1. We assume that the
residual error vector, ¢, is Gaussian with zero mean. For simplicity, in the
present discussion we will also assume that the ¢; are iid. The coefficient
vector, B will vary from voxel to voxel, but it is estimated separately for each
voxel.

The method of least squares, which is also the maximum likelihood method
for this problem, estimates 8 by minimizing the sum of squared residuals

Q= (Y- Xp)'(Y - Xp),

10



Differentiating with respect to the vector 3, and setting the derivative equal
to zero, we see that

XT(Y -XB)=0=p5=(X"X) X"y, (5)

where (X7 X)™ is (X7 X)7! if X is of full rank; otherwise the Moore-Penrose
generalized inverse is used. (When X is of less then full rank, there are
infinitely many B estimates which minimize the sum of squares, although all
of these estimates lead to the same predicted values Y. The Moore-Penrose
inverse leads to the unique B vector of shortest length.)

Using the formula for the variance of a linear transformation of random
variables, we see that

Var(B) = [(XTX)"X"] Var (v) [(X7x)"x7]"
= (X"X)" X"’ X(X"X)™
= A(XTX)"(XTX)(XTX)"
oA(XTX). (6)

(The last step follows immediately from the definition of the Moore-Penrose
inverse. If you’re not familiar with genralized inverses, you can easily redo
the above calculation for the simpler case where X is of full rank, and hence
(XTX)™! exists.)

Assume that this study is comparing three different tasks with baseline
fixation, and that we are interested in determining those voxels for which at
least one of these three activities differs from the fixation control. Ignoring
for simplicity any columns of the design matrix which might be associated
with “nuisance” effects such as motion correction, we have that X is a n x 4
matrix with rows [1,0, 0, 0] for fixation, [0,1,0,0] for task #1, [0,0,1,0] for
task #2, and [0, 0, 0, 1] for task #3. We write the 3 vector as [3y, 81, Bo, B3] 7 -
We would like to test the null hypothesis that

Hy: By = Brand By = Brand By = (3

against the alternative that at least one of these 3 equations doesn’t hold.
These constraints on the parameters under the null hypothesis can be written
in matrix form using a contrast matrix

Bo

1 -1 0 0 5
1 0 -1 0 ﬁl =Cp=0.
1 0 0 -1 >

Bs

11



To test this hypothesis, we obtain the usual (unconstrained) least squares
coefficient estimate B , and the constrained estimate B , for which C’B = 0. One
simple way to find B is to use C'8 = 0 to substitute for some of the fs in

terms of others. There is also an explicit formula for 3. For X of full rank,
Seber (1977, pp. 84-86) shows that

B=p+(xX"X) C" [o(xTx) ") CB. (7)

Let the number of parameters be p, and the number of contrasts ¢ < p.
The error variance o? is estimated by

o W=XB)"(y—Xp)
- "

7

which is distributed as O'ZX%_p /(n —p), indepdendently of B. Tt is always the
case that X X

Q1= (y—XP) (y - Xp)
is less than ) )

Qo= (y—Xp)"(y—Xp),
since the /3 are unconstrained. It turns out tha the increase in sums of squares
due to relaxing the constraints C'5 = 0, divided by the number of contrasts
g, provides an independent estimate of o2, when H, is true. Specifically,

2 Q1 — Qo
== o’x2/q.

o

If Hy is true, then the ratio

~2

5 Q- Qu)/a
6% Qo/(n—p)

will be distributed according to an F-distribution with ¢ and n — p degrees of
freedom. (When ¢ = 1, F reduces to the square of a ¢t random variable with
n — p degrees of freedom; thus the F-test for a single contrast is equivalent
to a t-test.)

The F' distribution is tabulated in many statistics textbooks. If Hj is
true, then the numerator and denominator are both estimating o2, so F will
tend to be near 1, or smaller than 1. It can be shown that under H; F will

F
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be larger than under H,. Hence one proceeds as usual for hypothesis tests:
one tentatively assumes that Hj is true, one calculates F', and compares this
calculated value with an appropriate tabulated upper percentile for an F
random variable with ¢ and n — p degrees of freedom. If the calculated value
is sufficiently large, one rejects Hy, and concludes that at least one of the
contrasts is nonzero.

7.1 Satterthwaite Approximation

It is convienient when quadratic forms, such as 6% and 32 above, have distri-
butions proportional to x? random variables, since one can then form at least
approximate t and F' statistics for various tests of hypotheses and confidence
intervals.

However, there are often situations where the distribution of a quadratic
form is more complicated. In particular, this happens in the case of the linear
model when the noise terms ¢; either have unequal variances, are not Gaus-
sian, or are correlated. Often one doesn’t even have a closed-form expression
for the distribution of a quadratic form. It is common in such situations to
approximate the distribution of a quadratic form @ by ax?, where a and b are
constants to be determined. We know the mean and variance of a quadratic
form, at least for the Gaussian case (see the probability review notes), and
we know that E(x?) = b, and Var (x?) = 2b. So a simple thing to do is to
equate the mean and variance of ) to the mean and variance of ax?, and
solve for a and b.

Denote the mean and variance of a quadratic form @ by g and aé,
repectively. We approximate @ by ax?, where a and b are determined from

pg = ab

and
aé = 2a°b.

This approximation was proposed by Satterthwaite in a statistics journal in
the early 1950’s, so it’s usually referred to as the Satterthwaite approrima-
tion (at least by statisticians). One use of this approximation in fMRI data
analysis is to adjust the degrees of freedom of ¢-statistics in the generalized
linear model for temporal correlation of voxel time-course data.

13



7.2 Further Reading

For a discussion of elementary results in linear regression, see DS, Chapter
10. The F'-distribution is introduced in DS, Section 8.7. The proof that the
statistic F' is distributed according to the indicated F'-distribution is beyond
the scope of most elementary statistics texts. One notable exception is Hoel,
Port and Stone, 1971, Chapter 5. For a more detailed treatment, see any text
on the theory of linear models in statistics, such as Seber (1977), Chapter 3.

8 The Multiple Comparisons Problem

It is common for hypothesis tests to be performed at the o = 0.05 significance
level. This means that one would only reject Hy when it’s true one time out
of 20. A standard approach to fMRI data analysis is to perform a hypothesis
test of the form introduced in the previous sections for each vozrel. With
several thousand voxels in a typical fMRI image, the “only” in the previous
section no longer applies!

In statistics, this is referred to as the problem of multiple comparisons.
A standard approach to resolving this difficulty is to reduce the nominal o
level to something sufficiently small that one can claim an overall significance
level of 0.05 or 0.01. How one does this reduction in a depends on what
assumptions one is willing to make about the correlation among the voxel
time courses: that is, there’s more than one way to do it.

If one assumes that the voxels are independent, the the Bonferoni correc-
tion is appropriate. In this approach, one would use the nominal significance
level of a/N for each voxel, where N is the number of voxels, in order to
assure an overall significance level of a.

However, NV is very large, and the voxel time courses tend to be spatially
correlated. So the Bonferoni approach is usually not used in fMRI data
analysis. It is usually too conservative. Instead, there are at least three
approaches that one can take. The most widely adopted approach at present
is to select a threshold for the statistics at each voxel based on the assumption
that these voxels, perhaps after some spatial smoothing, can be regarded as
a realization of a Gaussian random field (e.g., Worsley (2001)). This will be
less conservative than the Bonferoni approach, since it makes some allowance
for spatial correlation. There is some controversy, however, over the validity
of the Gaussian field assumption for fMRI data. A second approach is to do a

14



Bayesian or Empirical Bayes analysis (Genovese (2000), Friston (2002)). For
such an analysis, one can avoid the hypothesis testing problem altogether.
A third approach is to control the false discovery rate instead of the overall
significance level. The FDR is the expected proportion of false rejections of
Hj in a volume; this approach can provide less conservative results than the
Bonferoni approach, without requiring assuming a Gaussian random field as
a model for the data (Geovese et al., 2002).

9 Need More Review?

With the exception of much of Sections 7 and 8 of these “Statistics” notes,
and Section 8 of the “Probability” notes, this material should be review. But
the presentation here is necessarily concise. For a more detailed discussion
of the basic concepts of probability and statistics, you can of course consult
any elementary textbook. In particular, we’ve put a copy of DSon reserve.
Pages of this text which are particularly useful for review include 268-277,
282-283, 355-369, 393-396, 404-412, 435-444, 449-462, 485-493, 506-508, and
599-664.
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