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1 Basics

Informally, we can think of a random variable as a quantity which takes on
various values with probabilities specified by an associated function. This
function is called a probability density if the set of values which the random
variable can assume include an interval, and a probability mass function if this
set of values is discrete. In both the continuous and discrete case, the term
probability distribution 1s also often used. Random variables provide a
mathematical model for answers to questions which are not deterministic, such
as "Will it rain tomorrow?" or "What is the BOLD activity in a certain brain
region under given conditions?"

A probability is a value between 0 and 1 (inclusive) which can be thought of
either as the long-run average occurrence of some event, or else as subjective
belief that an event will occur. (For some events [e.g., the event that Mitt
Romney is elected Governor] the long-run frequency interpretation doesn't make
sense, so one must think in terms of subjective probabilities.) The mathematics
of probability theory is the same, whether one chooses to think in terms of long-
run frequency or subjectivity.

There is a mathematical theory of probability, based on a handful of axioms.
Many empirical characteristics of random phenomena are very commonly
observed, such as the fact that a long-run average of measurements tend to "settle
down" to some value, and that measurement noise often follows a "bell-shaped
curve" (or Gaussian distribution). Beginning with the axioms of mathematical
probability, one can model the behavior of random phenomena in great detail. In
particular, conditions under which the two empirical properties mentioned above
obtain are theorems in probability theory.



This is one indication that probability theory is a successful tool for explain-
ing random phenomena in nature. Regarding the ubiquity of bell-shaped
curves, which statisticians refer to as the Central Limit Theorem, the 19th
century mathematician Poincaré once said “Everyone believes in the law of
errors, the experimenters because they think it is a mathematical theorem,
the mathematicians because they think it is an experimental fact” (quoted
in Korner (1988), p. 347).

We will try to consistently write random variables using capital letters,
and observed values (realizations of random variables) using lower-case let-
ters. When it is desirable to emphasize the random variable(s) associated
with a particular probability distribution, the random variable(s) will be
indicated by subscripts.

As much as possible, we will illustrate results using the Gaussian distri-
bution as an example. This approach has two advantages. Familiarity with
Gaussian random variables will be very helpful when we discuss statistical
methods for fMRI data. Since we have to introduce these properties any-
way, it makes sense to have them do “double duty” as examples of more
general results. Also, compendia of properties of various distributions are
readily found. To systematically discuss various distributions would make
these notes unacceptably long, and would also risk obscuring the basic ideas.

2 Gaussian Random Variables: Probability
and Probability Density

We say that X has a Gaussian distribution if X takes on values according to
the probability density
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The parameters of this distribution are the mean p and standard deviation
0.

The probability that X takes on values in any interval is obtained by inte-
grating the probability density over that interval, for example the probability
that X takes on values in [a, b] is given by

Pr(a < X <b) = /ab fx(@)dz = Fx(b) — Fx(a),
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where

Fa)= [ : Fx(t)dt = Pr(X < z) (1)

is called the cummulative distribution function of X. Note that, where the
derivative exists, fx(z) = F'(z). A cummulative distribution function exists
for any random variable, continuous or discrete (not all random variables
have probability densities). For the Gaussian, Student-t, and many other
commonly used random variables, fx(x) is widely available in tables.

One small technical point needs to be emphasized here: the probability
that a continuous random variable X takes on any particular value is zero.
This is because there are an uncountable infinity of such values in any inter-
val, however small. And the total probability that X takes on any value must
equal one. So it is only meaningful to discuss probabilities of continuous ran-
dom variables on intervals, and to obtain these probabilities by integration.
Note that the probability density can exceed 1 (for example, evaluate fx
above at x = ), so one clearly cannot obtain probabilities at discrete points
by evaluating this function.

Mathematicians and Statisticians almost universally call the Gaussian
distribution the normal distribution; we will use “Gaussian” and “normal”
interchangeably, with some preference for the former. A common notation
for “X is a Gaussian random variable with mean p and standard deviation
0” is X ~ N (u,0?%). The notation is from Statistics, so it employs a “N”.

3 Expectation, Mean and Variance

The ezpectation of a function g(-) of a random variable X, denoted E [¢(X)],
is the average value of this function over infinitely many realizations. To
determine the expectation, weight the function of the random variable by
the probability density of X and integrate.

The are two important special cases of expectation. The simplest case
is g(X) = X; E(X) is called the mean of X and is often denoted p. With
this definition of u, we can consider the squared deviation from the mean,
9(X) = (X —u)?% E[(X — p)?] = o? is called the variance of X. The square
root of the variance has the units of X, and is called the standard deviation.
It’s not hard to show that, for our Gaussian example,

E(X)= [ X/x(@)dz=p,



and ©

BI(X - = [ (X = wfx(z)ds = o*

The variance of X is sometimes written Var (X).

The E (X7) is called the rth moment of X, and E [(X — p)"] is called the
rth central moment of X. (Alternatively, one can refer to the moments as
properties of the distribution of X.) If X is Gaussian, then E (X7) is finite for
all » > 0. But this is not be the case for all random variables, particularly for
random variables for which the probability density fall off less rapidly with
increasing |z|. A well-known example of a random variable for which even
E(X) doesn’t exist is the Cauchy (or Lorentzian) distribution, which is the
same as a t-distibution with 1 degree of freedom.

4 Random Vectors and the Multivariate Gaus-
sian Distribution

In real applications, we usually have to deal with lots of random variables
(e.g., a random variable for each voxel in an image). As an important exam-
ple, consider the vector

X =[X1,Xy,...,X,]",

where the superscript “I” denotes a transpose. Each component random
variable X; has a univariate distribution, called a marginal distribution. As-
sume that each X; is Gaussian, i.e., that X; ~ N (u;, 0?). The expectation
of X is simply the vector of the component means y;

Hp
For the generalization of Var (X) to this multivariate case, however, the p o7

are not sufficient. In additional to these marginal variances, we need also to
specify p(p — 1)/2 covariances

Cov (X;, X;) = Cov (X}, X;) = E[(Xi — 1) (X; — p)] = 035



Hence Var (X)) can be written as a symmetric p X p matrix with the marginal
variances on the diagonal and the covariances off the diagonal
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If each X; has a Gaussian distribution, then we say that the vector X has
a multivariate (here, p-variate) Gaussian distribution, with mean (vector) p
and covariance matrix Y. The probability density of X is

1 1 —1
_ — 3 (X=p)27 (X —p)
fx(ﬂ')) - (27T)p/2|2‘e (2)

where |X| denotes the determinant of the covariance matrix. If X is a p-
variate Gaussian random vector with mean p and covariance matrix ¥, then
we sometimes write X ~ Ny, (1, 2).

5 Linear Combinations of Random Variables

Let X;,7=1,2,...,p denote p random variables, with means y; and covari-
ance matrix . For arbitray constants a;, we can form a linear combination
of the Xz

Y = CL1X1 + a2X2 + -+ CLpo.

Expectation is a linear operator; this follows from the linearity of integration
(and, in the case of discrete random variables, the linearity of summation).
So the expectation of a linear combination of random variables is always the
corresponding linear combination of the expectations:

E(Y)=aE(X1)+aBE(Xs)+--+a,E(Xp) = arpn+azpo+- - -+ appty = piy .

(3)

The variance of Y requires a bit more work. Below we expand out the

quadratic function within the expectation, and then use the linearity property
that we’ve just introduced:

\ PP
Var (V) = E[(Y — py)’] = E |} > (a:iX; — aipi) (a; X5 — azp15)
i=1

i=1j=1
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where a = [a1, ag, ..., ap]".

A variance must be non-negative, in particular Var (Y') > 0. From the
expression for Var (Y) above, we conclude that any covariance matrix X
must be non-negative definite. Since X is both non-negative definite and
symmetric, the eigenvalues of ¥ are real and non-negative. One conequence
of this is that the contours of equal probability of a multivariate Gaussian
random variable are p-dimensional ellipsoids (this might not be immediately
obvious, but it’s not hard to demonstrate).

6 Independence and Correlation
Consider two random variables X and Y. If
E(XY) = B(X)E(Y),

then we say that X and Y are uncorrelated. Note that this implies that
Cov (X,Y) = 0, since, with obvious notation for £(X) and E(Y),

Cov(X,Y) = BE[(X —px)(Y — py)] = E(XY — Xpy — Y pux + pxpiv)
= (ux)(py) — (px)(py) — (py) (px) + (px) (py) =0

Denote the joint density of X and Y by fxy(z,y). The random variables
X and Y are said to be statistically independent (or, simply independent) if

fxy(@,y) = fx(2)fr(y)- ()

Random variables which are independent are uncorrelated, but the converse
is not necessarily true. However, it’s easy to show that uncorrelated Gaussian
random variables are independent.

The correlation between X and Y is defined to be

Cov (X,Y)

Cor (X,Y)
\/Var )Var ( )

(6)
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Correlation is a measure of how closely two random variables are to being
linearly related. One can show (use the Cauchy-Schwartz inequality, or the
definition of an inner product) that |Cor (X, Y)| < 1, with equality holding if
and only if X and Y are perfectly linearly related. Corresponding to each off-
diagonal element of a covariance matrix is a correlation, so one can define a
correlation matriz R in terms of 3, with diagonal elements 1 and off-diagonal
elements R;; = 0;;/(0i0;).

7 Conditional Distribution

To fix ideas, consider two random variables X and Y which have a bivariate
Gaussian distribution. So fxy(z,y) is a “bell-shaped” surface in the (z,y)
plane, from which one can determine the probability of X and Y taking on
values in any set by integration. The volume under this surface equals the
probability that X and Y jointly take on any real values, i.e: 1. Imagine
that you are given the value of Y, say ¥ = y. Then you know that (X,Y)
must fall on the horizontal line through ¥ = y. Hence, the probability
desity of X given Y = y (written fx|y(z|y)) is zero unless Y = y, and is
proportional to the area under the surface for points (z,y) when Y = y. In
order for the area above the line Y = y and under the surface to equal 1, we
must normalize approriately. Nowhere in the above discussion have we used
properties specific to a Gaussian distribution, thus this argument motivates
the following general definition of a conditional density:
fxy(@,y)

You should satisfy yourself that this function integrates to 1 for any y. We
have discussed a bivariate example above for simplicity only, the notions of
conditional probability and conditional distribution generalize to multivariate
situations of arbitrary dimension.

Conditional probability provides another way of describing independence.
Random variables X and Y are independent if, and only if,

fxiy (zly) = fx(2) (8)
Or, equivalently,
frix(ylz) = fr(y).

An informal way of expressing this is to say that knowing that the value of Y’
is some y does not change the probability distribution of X, and vice-versa.
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8 Linear Transformations of Random Vari-
ables and Quadratic Forms

Given random variables X, X, ..., X, one can define another set of random
variables Y1,Y5,...,Y), by a linear transformation. For any j, let

Y; = a1 Xq + a9 Xo+ -+ -+ ay; Xp.

Using matrices, we write the system of equations defining the Y's in terms of
the Xs as Y = AX, where the typical element of A is a;;.
It’s easy to show that

E(Y)=AE(X), 9)

and
Var (Y) = AVar (X)AT. (10)

Let X denote a p x 1 vector of random variables with mean p and covari-
ance matrix X, and let A be a p X p symmetric matrix, with ¢jth element
a;j. The function

Q=XTAX (11)

is an example of a quadratic form. It’s easy to show that
B(Q) = tr (AS) + i Ap, (12)

where tr (-) denotes the trace of a matrix (the sum of the diagonal elements).
(One can expand the quadratic and take expectations term-by-term, as we
did above for the variance of a linear combination of random variables.) The
Var (@) is more complicated, since it involves sums in which each term is
the product of four random variables. Some basic results on Var (@) can be
found in Seber (1977, Section 1.3). If X is multivariate Gaussian, then it can
be shown that

Var (Q) = 2tr [(AS)?] + 44" ASp. (13)
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