Noise in fMRI

MGH-NMR Center

HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Harvard-MIT Division of Health Sciences and Technology Dr. Larry Wald

1) Brief review of BOLD

2) Noise sources in the BOLD experiment

Field Homogeneity and Oxygen State

de-Oxygenated Red Cell

Oxygenated Red Cell

Addition of paramagnetic compound to blood

Signal from water is dephased by local fields (T2* shortens), S goes down on EPI Magnetic stuff ↑ MR signal↓

Basis of BOLD fMRI

During activation...

Flow \uparrow but CMRO₂ only goes up a little DeOxy Hb in veins \downarrow

As magnetic stuff J T2* weighted MR signal 1

decrease in deoxygenated red cell concentration

Time response of BOLD

Important BOLD considerations

 In 50ms, water diffuses 25um on average thus moves ~4x diameter of capillary...

- Water diffuses readily in and out of RBC.
- Water does not exchange between vascular and tissue pools.

• 20x more water in tissue space, nonetheless, 2/3 of BOLD signal is intravascular at 1.5T.

Important BOLD considerations

• Diffusion in and around RBC shortens intravascular T2 esp. at high field making intravascular water contribute less to spin echo.

• B-W model shows that spin echo (T2) is more localized to small vessels than grad echo (T2*).

BOLD effect modulates signal where does the noise come from?

Thermal Noise in MRI

Thermal white noise in a resistor:

Pnoise = 4kTRB

Noise is flat across freq and is not encoded by gradients.

>> noise voltage due to resistive losses is Gaussian, temporally and spatially uncorrelated.

Thermal Noise in MRI

Resistive losses from

a) wires and components in coil.

b) Driving ionic RF eddy currents in body.

Body losses are generally 5x larger (or more)... Pnoise α R means noise scales with volume of tissue in coil

Measuring loss in a coil

MGH-NMR Center

Thermal Noise in MRI

Pnoise = 4k T R B

Bandwidth is set by filter determined by Nyquist condition: B α 1 / dwell time

Temporal uncorrelated means: SNR = 1 / SQRT(averaging time)

$$SNR = rac{mean(SignalROI)}{\sigma(noiseROI)}$$

(Quick and dirty method) MGH-NMR Center

Noise in the magnitude image is no longer Gaussian

Z = S = ABS(a + ib)

= ABS(a + ib)

ເ

Gaussian prob. distribution

Rayleigh prob. distribution

$$f(z) = \frac{z}{\sigma^2} \exp\left(-\frac{z^2}{2\sigma^2}\right)$$

In regions of high SNR, dist. Is Gaussian

fMRI noise means noise in the time series

Intensity of one pixel

A-w-trans-transford and

Gaussian noise characterized by mean and SD (σ)

- Thermal noise from coil and body σ_T
- Drift and instabilities in scanner

 σ_{scanner}

 Physiologic modulation of MR signal due to non-bold effects σ_{NB}

 Physiologic noise from flux. In basal cerebral CBV, CBF, CMRO₂ σ_B

• Total system thermal nois $\sigma_o^2 = \sigma_T^2 + \sigma_{scanner}^2$

• Non-BOLD physiologic noise is modulation of signal from: respiration $\sigma_{NB} \propto S$ cardiac motion subject movement other?

Respiration: Non-BOLD physiologic noise

(Van de Moortele MRM 47:888 2002)

Inflating lung produces z gradient

B_o near Ping pong ball in water

Respiration: Non-BOLD physiologic noise

(Van de Moortele MRM 47:888 2002)

B

lung

- Inflating lung produces z gradient
- Z grad gives each axial slice a different ω .
- Freq shift causes displacement of object in PE direction

BOLD noise σ_B Signal modulation from Δ in CBV, CBF, CMRO₂ is TE and S dependent.

$$S = S_o \exp\left(-TE \cdot R_2^*\right)$$

$$\frac{dS}{dR_2^*} = -TE \cdot S_o \cdot \exp\left(-TE \cdot R_2^*\right)$$

$$\sigma_B = c_1 \cdot S \cdot \Delta R_2^* \cdot TE$$

(Kuger and Glover MRM 46 p631 2001)

Estimate $\sigma_o, \sigma_B, \sigma_{NB}$

 $\sigma_{\rm B}$ can be measured by modulating TE

σ_{NB}can be measured by modulating Sbychanging flip angle

 σ_{o} is the noise independent of TE and flip angle

(Kuger and Glover MRM 46 p631 2001)

Relative magnitudes of σ_o , σ_B , σ_{NB}

	gray matter	white matter	phantom
S	3500	3350	1137
σ _{TOTAL}	0.63	0.37	0.19
σ₀	0.21	0.22	0.14
σ_{B}	0.53	0.25	80.0
σ_{NB}	0.21	0.11	80.0

(Kuger and Glover MRM 46 p631 2001)

 σ_B is maximum for TE = T2* Functional SNR: in gray matter = 84 in white matter = 143

Dominant noise sources α S

>> Increasing image SNR thru improved coils and big magnets doesn't help functional SNR after a point...

Elimination of respiration improves fSNR by 10%