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A Hypothetical Hypothesis Test

Consider a hypothesis test for which you obtain
the t-statistic

T = 4.62,

with 50 degrees of freedom. The correspond-
ing p-value is

1 — Pr(—4.62 < Tgo < 4.62) = 0.000027.

Is this necessarily cause for celebration?



The Rest of the Story ...

The t-statistic on the previous slide was ob-
tained by choosing the maximum of 64 x 64 x
16 = 65,536 random draws from the null dis-
tribution of the test statistic (i.e., the Ty dis-
tribution).

So you might typically expect to see a t-statistic
this large or larger in a typical fMRI volume,
even if what you're imaging is a bottle of wa-
ter.

We need to adjust p-values for the number of
tests performed, a process which statisticians
call adjusting for multiple comparisons.



An Illustrative Example

In order to illustrate many of the basic ideas, it is suffi-
cient to consider an example of confidence intervals (or
hypothesis tests) on just two parameters.

Consider the simple linear regression model

y; =6 + B(x; — ) + e,
where z; = 0,10, 20,...,100, § =0, 8 =1, and
the e; ~ N (0,102).

We are interested in testing the null hypothesis
Hp:0=0and g =1,
against the alternative

H{:0#0o0or 8#1,
at the 0.05 significance level.

A joint 95% confidence region for (4, 3) would
provide a critical region for this test.

(Aside: Note that the vectors [1,1,...,1]T and [z1 —

T, xo—T,...,xn — ] are orthogonal.)
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Comments

e Note that the exact 95% elliptical con-
tour is not contained withing the box corre-
sponding to the joint confidence intervals.

e If we reject Hy when (&, B) falls outside of
the rectangle, then we will reject Hg too
often.

e In other words, the corresponding hypoth-
esis test overstates the significance of re-
sults.



Comments (Cont’d)

e Over repeated future data, the probabil-
ity that an interval covers its parameter is
ax = 0.95. Since the model has been set
up so the the estimates are independent,
the actual probability of rejecting Hg for
the pair of confidence intervals

a = Pr(|Ty| >ty or |T»| > t5)
—=1-(1-ax)2=1-(1-0.05)2=0.0975.

e Working backwards, if we choose ax to be

ax=1—+vV1—-—a=xa/2,
then we will achieve our goal of an overall
significance level of «.

e T his approach achieves the desired signifi-
cance if the test statistics are independent,
but is conservative if the test statistics are
dependent.
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Bonferroni Correction

e The Setup: We have k independent test statistics
T1,...,T, corresponding to parameters (4,..., B,
respectively.

e For each test statistic, we reject the null hypothesis
H; : B; = 0 when |T;| > t;, for constants t¢1,...,t.

e T he probability of rejecting

Ho:f1=p2=... =0 =0
against the alternative that Hp is not true
IS

a = F())F(|T1| >tq1 or |To| >ty or ... [T > t) =
k
= 1-J[Pr(Ty| <t) =1— (1 — ax)”.
i=1

e Hence, we choose

ax=1-(1-a)* ~1-(1-a/k)=a/k
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Illustrative Example Revisited:
An Alternative Parameterization

Next we see what happens in our simple linear regression
example if we don’t subtract off the mean of the zs:

yi = 6 + Bz + e,

where z; = 0,10,20,...,100, § = 0, 8 = 1, and the
ei ~ N(0,10%). To relate this to the previous parame-
terization, note that

6 =68 — z0.

We are interested in testing the null hypothesis
Hop:6=—-zand g =1,

against the alternative
Hqy:0# —z or B# 1,

at the 0.05 significance level.

A joint 95% confidence region for (§,3) would provide
a critical region for this test.

(Aside: Note that the vectors [1,1,...,1]7 and
[z1,22,...,2,]T are not orthogonal! Consequently, the
t-tests for § and 8 will not be independent.)
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Confidence Region for a Dependent
Example, With Bonferroni Intervals
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Conclusions on Bonferroni

e [ he Bonferroni correction for multiple com-
parisons is simple, and it can be reasonable
to use if the test statistics are nearly spa-
tially independent.

e \When the statistics are spatially correlated,
the Bonferroni approach can still be used,
but will be conservative.

13



Gaussian Random Field

A Gaussian random field is a stationary
Gaussian stochastic process, usually in 2
or 3 dimensions.

The one-dimensional case of GRF is Brow-
nian motion (formally, a Weiner process).

Unsmoothed BOLD activity is not well ap-
proximated as a GRF, so spatial smoothing
IS generally done if one is to use GRF the-
ory.

Smoothing is averaging, and averages of
(almost) arbitrary random variables are ap-
proximately Gaussian. This is the essence
of the Central Limit Theorem.

14



Euler Characteristic

If one thresholds a continuous GRF, the
the Euler Characteristic is

EC = (# Blobs) — (# Holes),

if the threshold is sufficiently high, then
this will essentially become the (# Blobs).

If the threshold is higher still, then the EC
will likely be zero or 1.

If we threshold high enough, then we might
be able to assume, at an appropriate sig-
nificance level, that all blobs are due to
activity.
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Expected EC

By definition,
E(EC) =) kPr(EC =k)
k

For high thresholds, the probability of more
than one blob under Hp is negligible, and
we have

E(EC) ~ Pr(EC = 1)

For large u, E(EC) will approximate
E(EC) ~ Pr(maxT; > u).
1

We can either attempt to approximate this
expectation for a choice of v (adjusted p-
value), or else select u so that E(EC) equals,
say, 0.05 (adjusted hypothesis test).
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Corrected p-Values via E(EC)

e \We can obtain p-values by using
Pr(maxT;, > u) ~ E(ECy)
1

. R(u? — 1)6_“2/2
T 472(2109g(2))3/2

e Where R is the number of Resolution Ele-
ments, defined to be a unit search volume,
in terms of the FWHM of the kernel used
for spatial smoothing.

e (So now you know why SPM requires that
you do spatial smoothing!)
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Resolution Elements

R=_-"_
fafyfz

where

e S is the search volume, in mm3,

e and fz, fy, f» are the FWHMs of the Gaus-
sian spatial kernel in each coordinate direc-
tion, in mm.
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Conclusions on Gaussian Random Fields

e The GRF approach to multiple compar-
isons is appropriate if the noise in the data
approximates a Gaussian random field.

e This is generally not the case. The ap-
proach taken is to impose known Gaussian
spatial correlation structure on the data
through smoothing.

e If one is willing to accept such smoothing,
then the GRF approach is reasonable.
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False Discovery Rate

e The Bonferroni approach ensures that the
probability of incorrectly declaring any voxel
active is small. If any voxels ‘survive,”
one can reasonably expect that each one
IS truly active.

e An alternative approach is to keep the pro-
portion of voxels incorrectly declared ac-
tive small. Among those voxels declared
active, a predetermined proportion (e.g.,
0.05), on average, will be declared active
in error (“false discoveries" ).
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Implementing FDR

e Order the N p-values from smallest to largest.:
P(1) SP) < S P(N)-
e Declare as active voxels corresponding to

ordered p-values for which

Py < gci/N,
where q is the selected FDR.

e The choice of ¢ depends on the assumed
correlation structure for the test statistics.
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Values for c

e Two choices for ¢ have been suggested in
the literature

e For independent tests, or tests based on
data for which the noise is Gaussian with
non-negative correlation across voxels, use
c=1.

e For arbitrary correlation structure in the
noise, use ¢ = 1/(log(N) + ~v), where ~ =
0.577 is Euler's constant.
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A Simulated Example

Number of VVoxels:
N =64 x64 x 16 = 65,536

Number of Active Voxels:
N1 =0.02N = 1,335

“Inactive” statistics independently distributed
t50-

“Active” statistics independently distributed
noncentral-t, tsg(d), where § = 3.5.
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Probability Density
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Simulation Results

e FDR = 35/549 = 0.064, ¢ = 1:

Discovered
Yes No
Correct 514 64,166
Error 35 321

e FDR = 1/123 = 0.008, ¢ = 1/(log(N)+~):

Discovered
Yes No
Correct 122 64,200
Error 1 1213

e Bonferroni (FDR =0), p = .05/N = 7.6 X
10— 7:

Discovered
Yes No
Correct 44 64,201
Error 0 1291
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Conclusions on FDR

e FDR differs philosophically from both Bon-
ferroni and GRF. These methods have a
small probability of any false positive. FDR,
on the other hand, seeks to control the pro-
portion of false discoveries.

e Using FDR with ¢ = 1/(log(N)++) is safe,
but experience suggests that it can be very
conservative. The choice c =1 is probably
better for general use.
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Analyses for Groups of Subjects

IIa. Fixed Effects

IIb. Random Effects

IIc. Conjunction Analysis
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Group Analyses

e \We next consider approaches to data anal-
yses which involve more than one subject.

e T he first difficulty that one has to address
In these situations is warping each subjects
data onto a common template, such as Ta-
laraich coordinates.

e T his process can easily introduce and diffi-
culties and distortions of its own, but these
are beyond the scope of the present discus-
sion.
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Fixed Effects Analyses

It is conceivable that one might want to

make inference for only the subjects at hand,
without any desire to extrapolate to a larger
population.

This might be the case for clinical appli-
cations of fMRI, for example, where the
objective is to understand the subjects —
patients — who are being studied or treated.

Fixed effects models should be used in such
cases.

But since fMRI is presently a research tool,
fixed effects analyses are usually less ap-
propriate than random effects analyses, in
which one is concerned with inferences valid
for a population, or equivalently, for the
“next” subject which one might obtain.
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Fixed vs. Random Effects

e Assume that several machines are used in a
production environment. To fix ideas, let's
say these machines are for DNA sequenc-

ing.

e If I have several of these machines in my
lab, I would presumably be interested in
quantifying the relative performance of each
of them. Fixed effects models would be
appropriate.

e On the other hand, if I own the company
that makes the machines, then I'd want to
characterize the performance of any one of
the machines, conceptually drawn at ran-
dom. The machines would then constitute
a population, and I'd use random effects
analyses.
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The RandomsEffects Idea

Grand Mean

ﬂezn—Subjects
Within-Subject/

Withinl-S_ubj. /

Population

[
- Observation
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Fixed Effects Approach

e Stack together all the activity data from
all the subjects (conceptually, at least) into
one vector Y.

e Build a design matrix for all the data, with
additional coefficients for the group effect.
If the data are subject-separable, then the
big X matrix will be block diagonal for
within subject factors.

e Schematically (for two subjects):

vi] [X; 0 O P1
Yo 0 X» 1 552
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Fixed Effects Approach (Cont’d)

e The coefficient § models the shift in mean
activity of subject 2 with respect to subject
1. (Why only one §, though we have 2
subjects?)

e If 31 # (B>, then we have an interaction
between effect and subject. Hence, one
hypothesis to test is

Hp : B1 =B
o If 6 = O then we don't have a significant

subject effect; so another useful test is

HoI(S:O
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Random Effects: Two-Stage Analyses

e The simple (and most common) way to
do a random-effects group analysis is by
a two-stage method,; this is the approach
which SPM uses. This requires the follow-
ing assumptions:

— Balance: The design matrix is the same
for each subject.

— Equal Variance: The error variances
are the same for each subject.

— Separability: The GLM model used must
be subject-separable; i.e., the combined
design matrix for all subjects is block di-
agonal, with one block for each subject.
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A (Very) Simple Example

e TO better understand the distinction be-
tween fixed- and random-effects, and to
see how a two-stage analysis might work
for the random case, it helps to consider

the simplest possible model: One-way ANOVA,
for a single voxel.

e Fixed Effects Model:

Yij = u+ B; + €
where 7+ = 1,...,s indexes subjects, 7 =

1,...,n indexes TRs within a subject. The
noise term, e;;, is assumed independent N (0, 02).
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A (Very) Simple Example (Cont’d)

e Random Effects Model:

Yij = 1+ by + €
where ¢+ = 1,...,s indexes subjects, 5 =
1,...,n indexes TRs within a subject. The
noise term, ¢;;, is assumed independent N (0, 2).

The subject effects b; are independent N (O, 05).
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Fixed-Effects Estimates: One-Way

ANOVA
e Grand Mean:
S n
p=y.= )Y > vij/(ns)
i=14=1

Conventional notation: dot indicates sum-
mation over index, bar indicates average.

e Subject Effects:

Bi =ui — 4.
(Note that 3; 3; = 0.)

e \Variance:
5 TS X (Y — 3
o =
s(n—1)
~ 02X§(n_1)/[5(n —1)].
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One-Way FE ANOVA (Cont’d)

e Inference for u:

p~N [,U,,O'Q/(’I’LS)]
Under Hyg : p =20

—~

7

G/\/ns ~ Ts(n—l)
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Random-Effects Estimates: One-Way

ANOVA
e Grand Mean:
S n
p=7y.= Y > vij/(ns)
i=14=1

e Variance Components:

> _ 2i=125=1("ij — 7i.)°
s(n—1)

~ 02X§(n_1)/[3(n —1)].

—~

S

MSy = > n(g;. —5.)%/(s — 1)
i=1

~ (nag + 02))(3_1/(3 —1)

41



One-Way RE ANOVA (Cont’d)

e Inference for u:
i~ N [u,af/s + 02/(%8)]

MSy/(ns) ~ |07 /s + 0 /(ns)| x5_1/(s — 1)
Under Hg : p =0

—~

m
\/'\/'Sb/(’nS)

~ Lg—1-
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Comments on One-Way ANOVA

The estimates (here, n) are the same for
both the random and fixed analyses.

The standard errors are different. The stan-
dard error of i under a FE model is o /+/ns.
Under a RE model it is \/og/s-l—aQ/(ns).
Note the between-subject component, which
depends only on s, not on n.

The estimated standard error of n for the
FE analysis makes use of all of the data:
52  Yi=12i—1(Wij — Ui )2

var (i) = ns (ns)s(n —1)

The estimated RE standard error of u uses
only the group means:.

MSy _ 351 n(Fi. —5.)°
ns (ns)(s—1)

Var (n) =
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Two-Stage Approach for Random Effects

e Stage 1: Obtain the a map of effects for
each subject.

e Stage 2: Use these effect maps (by anal-
ogy, the estimates y; in our one-way ANOVA
example).

e Form the t-statistic for an overall test of
significance of the effect or contrast.

e Note why the subject-separability, balance,
and equal variance assumptions are required:
we need to be able to estimate the individ-
ual subject maps independently, and these
maps need to enter into the second stage
on “equal footing”.
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The Problem of Not Enough Subjects

e RE models include variability between sub-
jects into the standard errors of estimates.

e If you only have a few subjects (e.g., 5 or
so), then there is not much information in
the data to estimate this variability!

e SO your standard errors are large, and it’'s
much harder to establish significance than
it is with FE analyses. (Note the degrees
of freedom of the t-statistics in our exam-
ple: n(s —1) for FE; s — 1 for RE. So the
t-distribution is more diffuse, and the stan-
dard error has the extra oZ/s term.)
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Not Enough Subjects (Cont’d)

e It's important to realize that the large stan-
dard errors for RE analyses with few sub-
jects is usually not a fault of the methodol-
ogy. Rather, one is incorporating o7 in the
standard errors of the estimates, and this
IS quantity which can’'t be well estimated
except when either

— You have lots of subjects, and so ag/s
is reasonably small, and your t-test for
effect significance has adequate degrees
of freedom; or

— You regularize the estimate of 8,? by in-
cluding information which isn't in the
data. This can be done explicitly, via a
prior distributions and a Bayesian anal-
ysis, or implicitly, as in Worsley's recent
work (NeuroImage, 1-15, 2002)

46



Typicality

e Friston, Holmes and Worsley (NeuroImage,
1-5, 1999) introduce the concepts of typi-
cality and conjunction analysis as a way to
make inference with respect to a popula-
tion in a fixed-effects context.

e If one has a small sample of subjects, and
a certain feature is observed in several of
these subjects (adjusting for multiple com-
parisons), then one can say, qualitatively,
that this feature is “typical,” and thus likely
to be present in a population.

e T his is to be contrasted from quantitative
assessment of what the “average” effect
is in a randomly selected subject from a
population.
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Conjunction Analysis

e In conjunction analysis, one attempts to
find what activity is statistically significantly
in all (or, perhaps, most) subjects.

e T his feature can then be thought of as typ-
ical, i.e., more likely than not to be present

in the population from which the subjects
are drawn.
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Model Validation

e The GLM is a very powerful tool, but like any mod-
eling tool, it is only good to the extent that the
modeling assumptions are valid.

e If assumptions are grossly violated, then inferences
can be seriously misleading.

e [ he assumptions underlying the model include:

— The form of the model for the mean.

— The temporal correlation structure, and
equal-variance assumptions.

— @Gaussian errors.

— Separation of signal from noise (e.g.,
What part of the trend in a time course
IS @ “nuisance effect” to be filtered out,
and what part of it is slowly varying sig-
nal?)
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The Form of the Model

If your X matrix does not appropriately
model the factors contributing to mean ac-
tivity, then your estimates can be seriously
biased.

This bias can, in principle, be detected by
looking at the residuals.

Think of the example of a straight line
fit to data for which a parabola would be
much

How would the residuals (deviations from
the fit) tell you that your model is inappro-
priate?
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Error Variance Assumptions

Inappropriate modeling of temporal corre-
lation can give you a biased estimate of the
uncertainty in effects, and grossly incorrect
estimates of degrees of freedom for voxel
t- or F-statistics.

In principle, one can test this by looking to
see if the residuals at each time course are
(at least approximately) white noise.

How does the temporal autocorrelation vary
from voxel to voxel? Is it adequate to use
the same model for each voxel?

Assuming equal within-voxel variances when
these variances differ considerably is also
something that one might want to look out
for, though checking the correlation esti-
mates is probably more important.
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Gaussian Errors

e When doing inference, we assume that the noise in
our data follows Gaussian distributions.

e (This assumption is necessary for determining stan-
dard errors of estimates; it is not required for the
estimates themselves.)

e Fixed effects analysis are not very sensitive to viola-
tion of this assumption. The central limit theorem
implies that averages tend to be Gaussian in many
situations, and coefficient estimates are essentially
weighted averages. The central limit theorem also
tells us that standardized contrasts will have ap-
proximate t-distributions under fairly general condi-
tions (provided the standard errors and degrees of
freedom are appropriately estimated).

e T his robustness, unfortunately, does not extend to
random effects. Estimates of variances between
subjects, for example, will likely be sensitive to to
the assumption of Gaussianity. That being said,
Gaussian random-effects models are very widely used,
because there are not good alternatives.
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Separation of Signal from Noise

A necessary step in any fTMRI analysis is to
remove nuisance effects from the data.

Usually these results are low-frequency trends,
and they are removed either by high-pass
filtering, or by explicit modeling via covari-
ates in the GLM.

Always keep in mind that if your have signal
which looks like the trend being removed,
then you might be “throwing the baby out
with the bathwater.”

One example might be a nuisance physi-
ological effect, which you'd like to model
and remove. If this effect is, at least in
part, associated with an experimental stim-
ulus, then you could be discarding impor-
tant signal with the noise.
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Model Selection

e In any course in regression analysis, one
learns how to choose a “best” model from
within a family of interesting candidate mod-
els.

e Part of this approach involves examining
candidate models for goodness-of-fit, mostly
be examining residuals as discussed earlier.

e Another part of this approach is model com-
parison, which involves fitting a “large’” model,
with perhaps too many parameters, and
then comparing this fit to a “smaller” model
in which some of these parameters are con-
strained, either to equal zero, or else per-
haps to equal each other.
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Model Selection (Cont’d)

e Model comparison thus reduces to hypoth-
esis testing, in the simplest textbook situ-
ations, to F'-tests.

e T his approach can be applied to fMRI, al-
though instead of a single F-test, we will
have F' maps and associated p-value maps
to interpret.

e More general model comparison tool com-
pare the reduction in residual sum of squares
between nested models, penalizing for com-
plexity due to adding parameters. Two
such criteria are AIC and BIC (Akaike In-
formation Criterion; Bayesian Information

Criterion).
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Conclusions for Model Validation

Basic assumptions of GLM: mean model (design
matrix), noise model (Gaussian, correlation struc-
ture), and the partitioning of the model into noise,
nuisance factors, and factors of interest.

Residual analysis and model slection criteria (for a
family of nested models of varying complexity) are
useful for validating the mean model.

Autocorrelation functions are the main tool for val-
idating the correlation part of the noise model.

The Gaussian assumption is not critical for fixed
effects models. It is more important for random
effects models, but no-Gaussian modelling alterna-
tives are presently not available.

The primary challenge in model validation in fTMRI
is the vast number of voxels.
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