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ABSTRACT

The discrete channel apodization method to unfold

detected x-ray energy spectra is derived for a detector

with a Gaussian response function. Other processes re-

quired to determine the true source spectrum at the top

of the atomosphere are described. A successful computer

implementation, with sample results of the spectral

determination process, including the discrete channel

apodization method, is presented.
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INTRODUCTION

X-ray astronomy is a new and rapidly developing

branch of Astronomy. X-ray telescopes, which must be

lifted to stratospheric heights or beyond because of

the opacity of the atmosphere to x-rays, provide the

means of' observing celestial x-ray sources. The analy-

sis of the x-ray observation data frequently culminates

in the determination of the x-ray energy spectrum for

the observed celestial source. The determination of the

spectrum is essential to the theoretical study and modeling

of the natural phenomena which produce the x-rays.

In order to determine the x-ray spectrum, the obser-

vation mechanism must be well understood, and all dis-

torting effects must be fully accounted for. X-ray

detectors have a response function which is convoluted

(i.e., folded ) with the energy spectrum in the detection

process. The logical way to determine the spectrum im-

pingent on the detector is to unfold the detected spectrum;

unfortunately, this is no simple process. The general

problem of reversing the effects of a response function

is known as apodization. The theme of this dissertation

is the development of an apodization algorithm which may

be applied to the phoswich x-ray detector system used by the

M.I.T. x-ray balloon group. The discrete channel apodization
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method is such an algorithm, generally applicable to the

class of' detector systems which have Gaussian response

functions and discrete channels.

The high energy x-ray telescope system cited and de-

scribed in this investigation was flown to 130,000 feet

on a stratospheric balloon by the x-ray balloon group of

the M.I.T. Center for Space Research on June, 1974. The

telescope system consists primarily of two detector banks

of phoswich type x-ray detectors, and associated electronics.

The observed x-ray sources were the Crab Nebula and

the Coma and Perseus clusters of galaxies. The sources

were observed by the drift-scan method.
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METHODS OF DETERMINING THE ENERGY SPECTRUM OF X-RAY SOURCES

The determination of the true spectrum of a celestial

x-ray source involves several areas of investigation. For

a balloon borne x-ray telescope these areas may be cate-

gorized as follows: The measured source spectrum must be

determined; i.e., the source and background x-ray fluxes

as functions of energy must be separated. Secondly, non-

linear efficiency effects of the electronic pulse height

analysis must be accounted for in order to determine the

spectrumn at the detector level. Thirdly, the convolution

of the response function with the spectrum impingent on

the detector, known as the folding process, must be con-

sidered. Finally, there is energy dependent atmospheric

attenuation and some attenuating effects in the telescope

system which must be taken into account.

The drift scan method of observing an x-ray source

facilitates the separation of source and background

fluxes. Since the diurnal motion of the Earth causes

the celestial sphere to rotate at a constant rate with re-

spect to Earth based coordinates, the telescope can be

aimed just ahead of the x-ray source which will drift

through the field of view. This observation method is

known as a drift scan. If the aspect of the balloon borne

system is known, the increase in x-ray count rates, pro-

5



i0o.1

o.t
0. -

0.o

ir
TTF

I

TIT I T_ TTT

I1 In I

FI6URE 1.1 - ;. CRAB NEBULA DRIFT SCANS

TOP: FRACTIlo OF DETEToR AREA EXPOSED TO TE CKAB

BOTTOM: DETECTED CouvT ATE FRP, 330 FEW.W.M. ETECToR

II I I I I

6

lin

36 .

32 .

28 b

N(n

2 .I2'-

<D

LO-20 .

cr)4-+

=16 c- 

4 Q3
LO

X *

In
X

8
-Y

a0)

o
N0

-1

· 1

ItI.

34;00 35000 35600 36200 36800 37100 38000
CDT SEC

'i .

T

I



portional to the increase in detector area exposed to the

source, can be used to calculate the source intensity

(Fig. 1.1). A straight line least squares fit to the

x-ray count rate as a function of the detector area may

be applied to different energy ranges. Extrapolating the

lines, if necessary, to full exposure and to zero exposure

yields the full source plus background, and the background

count rates respectively (Ryckman, 1974). The background

can be independently determined by extending the scan to

include a section where no part of the detector is ex-

posed to the source.

The other areas of investigation constitute the de-

termination of the unperturbed source spectrum from the

detected spectrum. If all of the attenuating and perturb-

ing effects of the atmospheric absorbtion of the x-rays,

folding in the phoswich detectors, and electronic pulse

height analysis could be sequentially reversed, then the

true spectrum at the top of the atmosphere could be easily

determined. This is not the case because the spectrum im-

pingent on the NaI crystal of the phowsich detectors is

folded with the detector response function, a process

which is not directly reversible.

Most of the X-ray Astronomy research groups use a

repeated trial method to converge on a function which

closely approximates the true source spectrum.2 This pro-

cess requires the critical assumption that the yet unknown
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source spectrum is best approximated by the theoretically

predicted spectral functions. The three types of functions

most often postulated by theoretical models of x-ray emit-

ting mechanisms are:3

dN -a
a) - = E a power law - synchrotron

radiation

dN CeE/KT(1.1) b) dE E exponential -bremsstrahlung

dN CE2
c) dN _E/K T black body radiation

e -1

In the repeated trial method one function is selected

and the free parameters (e.g., and P for the power

law spectrum) are estimated to generate a trial spectrum.

The attenuating and folding effects are applied to the

trial spectrum in order to compare it to the detected

spectrum. The closeness of the match is usually evalu-

2
ated under a x criterion. Next, the free parameters

are altered and the spectrum generation process is re-

2
iterated in order to minimize 2X Often, after many

iterations to find the best parameters to fit one function,

the entire process is repeated for other theoretically

feasible functions.

The repeated trial method has two clear disadvantages

over the direct determination of the spectrum at the top

8



of the atmosphere by apodization of the response function

and reversing the attenuating processes. Repeated trials

are computationally inefficient, and the number of trials

required to find an optimal fit to a given function ex-

plodes combinatorically as the number of free parameters

increases. There are algorithms to generate reasonable

guesses for the new values of the free parameters for sub-

sequent trials given the results of previous trials, but

these algorithms are computationally costly and dependent

on the form of the spectral function being approximated.

The other major disadvantage of the repeated trial method

is that the choice of approximating function is constrained

to simple, theoretically predicted, trial spectra. It is

conceivable that more than one mechanism, including the

possibility of some absorbtion mechanism, may be operating

simultaneously to generate the observed spectrum.

An apodization method that can be implemented and

used efficiently avoids the aforementioned difficulties;

it avoids the problem of guessing trial spectra and the

combinatorial inefficiency of repeated trials with a moder-

ate number of free parameters.4 The apodization method for

discrete channels will be discussed in detail after the

different attenuation and pertubation effects are presented.
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STUDY OF THE ABSORPTION, FOLDING AND EFFICIENCY

EFFECTS OF THE X-RAY DTECTION PROCESS

This section will investigate each process in the

sequence of events which a primary x-ray undergoes on its

way to the detector, in the detection process, and in the

subsequent pulse height analysis. A brief description

of the x-ray telescope system for the June 1974 flight

should put these processes in their proper perspective.

A) Description of the Detector.

The high-energy x-ray telescope system consists of

two detector banks. Each bank consists of four phoswich

type x-ray counters behind a slat collimator. For the

June flight, one collimator had a 6°x 6 ° full width at

half maximum (FWHM) field of view, and the other a 30 x30

FWTHM field of view, The phoswich detectors have a pri-

mary 3mni thick NaI crystal coupled to a 1.6" thick CsI

secondary crystal. A plastic scintilliation veto counter

surrounds the detector banks to reject charged particles.

There is an on-board pulse height analysis and telemetry

system.

B) Atmospheric Absorption.

The detector system was lifted above 99% of the

Earth's atmosphere by a stratospheric balloon, since the

opacity of the atmosphere to x-rays prevents them from

penetrating substancially deeper. Even in the tenuous

stratosphere, x-rays are absorbed as a function of x-ray
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energy and air thickness traversed. The probability that

an x-ray will not be absorbed, called the transmission

probability, is given by:

[5.30 (10 2 .90+ .16] A

(2.1) PTRAIR(wAE) = e

where E = x-ray energy in KeV and P-A = thickness of air

traversed measured in gm/cm . Air thickness in the

zenith direction is a tabulated function of altitude.

To calculate the air thickness in the observation direc-

tion, the zenith air thickness is mutliplied by the co-

secant of the zenith angle of the collimator x-ray axis.

C) Styrofoam Absorption.

There is a protective styrofoam layer above the de-

tectors which abosrbs a small fraction of the x-ray flux

as a function of energy. The transmission probability

function is simpler than the one for air because of the

macroscopically homogeneous nature of styrofoam. The

transmission probability is:

- (8.6)2.69

(2.2) PIR-INS(E) = e

D) Detection Efficiency.

Since the NaI crystal has finite thickness, there

is a probability that some x-rays will penetrate the full

thickness of the crystal without being detected. In this

11



case the probability that the x-ray is not lost (i.e.,

detected) is the absorption probability given by

- A(E) NaI 
(2.3) PAB-NaI(P'NaI' E) = 1 - e 

where ,NaI = thickness of the NaI crystal ( = 1.17 gm/cm2

for a 3nm NaI crystal), and

5.8 if E < 33 KeV
A(E) = { 28.0 if E > 33 KeV

The difference in values for A(E) occurs because of the

K absorption edge of Iodine at 33 KeV.

E) Escape Probability.

An impingent x-ray whose energy is greater than

33 KeV may excite a K electron in Iodine, giving up 33

TCV' s of' energy. X-rays are re-emitted when an electron,

usually an L state electron, falls into the empty K

state. Since x-rays are re-emitted isotropically, there

is a theoretical probability that some may escape through

the front surface of the NaI crystal. The vast majority

of x-rays are detected near the front surface of the 3mm

crystal; hence, the probability of escape through the back

surface is negligible. The average energy of the re-emitted

12



x-rays is 29.2 KeV. The escape probability as a function

of x-ray energy is given in Figure 2.1.

,la 40 60 80 Ioo ENIgERGy (KeV'

(Fig 2.1) Theoretical probability that an x-ray impingent of a 3 mm
NaI crystal will produce an Iodine K-flourescent escape x-ray.

F) Detector Response Function Folding.

In the process of detection in a phoswhich type detector,

the impingent x-ray energy spectrum is folded with the re-

sponse function of the detector to create the detected pulse

height spectrum. Let S(E) and S'(E) represent the x-ray

energy spectrum, and the pulse height spectrum respectively.

S'(E) = S'(h(H)) where h(H) is the calibration function

that assigns to each pulse height the corresponding energy it

represents. The general folding process takes the form:

(2.4) S(E) = .[r X S(E) G(E)dE

where G(E) is the response function. Since

15
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S(E) =dN E) S (E) NdNI E)

equation (2.5) can be expressed as:

(2.6) N'(E) = X E(E) dN(E)

where N(E) is the number of x-ray counts of energy E

per cm sec KeV (i.e., the x-ray flux as a function of

energy). The response function for a phoswich type de-

tector is a Gaussian, therefore the probability that an

x-ray, whose impingent energy is Eo, is detected as

having energy between E1 and E2 is given by:

(2.7) Pd(E1<E< E2)

where E is the mean
o

tion (Figure 22).

1

and o(Eo)

and a (E0)

s~o IEElky cr

-Om ~ 6 G

E. Et V

E2

E F1

_(E-Eo) /2(Eo) 2de 00 dE

is the standard devia-

(Fig 2.2) Folding effect.
X-ray with impingent energy
'P (6 function) has a prob-0
ability of being detected
between F1 and E2 = shaded

area under Gaussian response
function.
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G) Pulse Shape Diserminator Efficiency.

The pulse shape discriminator (PSD) is an electronic

system which selects pulses according to the rise time and

pulse height. Its efficiency in admitting the appropriate

pulses varied (June 1974) as a function of temperature

and pulse height during the flight. Therefore, the ef-

ficiency had to be determined by an analysis of source

calibrations taken during the flight (Scheepmaker, 1974).

A source calibration consists of exposing the detectors

to an x-ray source of known intensity for a few seconds.

Figure 2.3 is the best determination of the efficiency

function of the PSD for the June, 1974 flight.

-14d6 KeV
-115 KeV
- 80 KeV

- 64 KeV

- 47 KeV

- 34.5 KeV

- 27.5 KeV

1 0 fr TlMe (HouVS) ao

(Fig 2.3) PSD efficiency as a function of time for each
energy channel
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H) Pulse Height Analyzer.

The pulse height analyzer (PHA) bins the detected

x-rays according to energy into discrete pulse height

channels. Hence, the spectral data consists of x-ray

count rates per pulse height channel. If some of the

channel boundaries in the PHA are not well defined,

dN'(E)/dE is folded with the boundary resolution func-

tions.

From the mathematical models presented in this sec-

tion it is evident that all the processes, except for

folding, are easily reversible. The following section

will analyze an approximation method to reverse the fold-

ing process.
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DISCRETE CHANNEL APODIZATION METHOD

Discrete channel apodization is the process of

unfolding the effects of a response function on a finite

number of discrete channels whose energy width is great-

er than the minimum resolution of the detection system.

In this section a mathematical formulation of the fold-

ing process is examined and an algorithm for inverting

the process is derived. This algorithm, implemented in

a spectrum determination program, has proven successful in

unfolding detected continuous spectra.

The uncertainty factor in the analysis of discrete

channel spectral representations is that no direct deter-

mination can be made of the x-ray energy distribution

within a single channel. Therefore, for an arbitrary im-

pingent spectrum, a uniform distribution within each

channel is assumed, giving the spectrum a characteristic

step function. For a system with N energy channels

(Fig. 3.1) let (Ei,Ei+l) represent the ith channel,

i.e., the energy range E i < E EiEi+l 1 . Ei is the

energy at the center of the ith channel; Ei = (Ei+Ei+)/2 .

The indices i and j are assumed to run from 1 to N

(N=7 for the June 1974 balloon flight system). S(Ei)

and S'(i ) represent, respectively, the values of the

impingent and detected (unfolded and folded) spectra in

17



of the ith channel.

(Fig. 3.1) Folding of
discrete channel x-ray
spectrum. X-ray flux
represented by shaded
area in (a) is folded
into shaded area in (b)
by Gaussian response
function.

E4 ;,, FAERCY (Ke j

The response function of the phoswich x-ray detector

is a typical Gaussian distribution:

-(E-E)2 /2(Ej )2
G(E-j,E) = e

18
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Ej is the mean of the distribution and a(Ej) the stan-

dard deviation. a(Ej) is calculated empirically from

calibration data taken from x-ray line emission sources

before the balloon flight (Scheepmaker, 1974). The form

of o(Ej) may be estimated to within the limits of ex-

perimental accuracy by:

(3.3) a(Eo ) = A j + B · Bj + C

where A, B and C are constants.

Normalizing (3.1) gives a probability distribution

function similar to equation (2.7):

Ei+l

(3.4) Pd(Ei< < Ei+l) = A G(faE)dE
2P7r (C) E

This formulation allows the detected spectrum to be ex-

pressed as a step function of the impingent spectrum and

the response function for each channel:

N Ei+l

(3.5) s'(Ti) = X s(i) 1 - J G(EjE)dE

j=l E a(2) E

i = 12,,N

19



The goal of this section is to derive S(Ei) from

S '(Ei ) , hence reversing the folding process of the re-

sponse function G(Ej,E) . The apodization method is

usually an approximating process converging to a best

6
approximation of the impingent spectrum. In the present

apodization scheme the algorithm simply involves solving

a set of N linear equations in N unknowns. Since

G(E.,E) is directly computable, (3.5) yields a system

of linear equations with unknowns S(Ej) for a given set

of S'(Ei) . Letting

Ei+l

Ei
(3.6) [aij] = r _ 1 G(EE)dE7

; o(Ej) i

be the coefficient matrix, (3.5) takes the form:

(3.7) [aij] [S(Ej)] = [S'(YEi)]

Since [ai] is nonsingular and diagonally dominant, there

exists a straightforward solution procedure for the S(Ej).

The aforementioned apodization algorithm makes four

simplifying assumptions to the general apodization problem.

Two of the assumptions are imposed by the detector system:

20



the finite number of discrete channels and the Gaussian

response function, The other assumptions are approxi-

mations to simplify the mathematical analysis. The uni-

form distribution within each channel is an assumption

which does not introduce significant inaccuracies. The

development of an apodization method which does not re-

quire this assumption will be discussed at the end of

this section. The fourth assumption is implicit in (3.4)

where the probability of detection is calculated to be a

single Gaussian distribution centered about the mean Ej .

This assumes that the uniform distribution inside the

.th
jth channel may be considered a delta function at the

mean, an assumption which is good only if the channel

width is small with respect to the standard deviation,

c(Ej) > Ej+jl - Ej 
For the June 1974 detector system the channels are

wide with respect to the standard deviation. Given a

.th
uniform x-ray flux for the i channel, the exact form

of the convolution with the Gaussian response function for

the jtL channel is:

Ej+l
Pj(E)= j[ U(EjEjl) G (E,E')dE'

Ej

(3.8) Ej+l 2

=[_ e dE

(Eel E) Fr E) E

21



Therefore, the probability that an x-ray impingent on the

.th th
3 channel is detected at the i channel is the definite

integral of (.8) over the ith channel:

Ei+l

P.(E i< Ei+l)-- P(E)dE =
Ei (Ej+-Ej) 2w (EFj)

(3.9)
E B 2 2
E i+ EJ! -(E -E) /2a(E .)

x r e dE dE
x ~ j

E.

The exact expression for the total flux detected in

th
the i channel is:

= S(Ej)

jL (EJ+ -Ej ) a (J)

Ei+l Ej+l

x I: 5j e*, t~~
-(E '-E) 2 /Co(E )2

i dE 'dE

which is a system of linear equations. (3.10) may be re-

presented in the same form as (3.7) and solved by inver-

ting the coefficient matrix. In the limit as (Ej+l-Ej) -0

(3.9) is equivalent to (3.4); hence, as previously stated,

the first apodization algorithm is valid for very narrow

energy channels.7

22
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Solving the system of equations (3.10) proved to be

impractical in terms of computer time required to gener-

ate the coefficient matrix. The numerical evaluation of

Ei+l Ej+l

(3.11) Di = J e

Ei E.
3

- (E 'E) /2 (j)
dE 'dE

by iterative application of numerical integration tech-

niques is somewhat costly, and there are N2 (N2 = 49

for the present system) Dij to evaluate. A more ef-

ficient method of calculating the Dij has recently been

found, after n approximating system of equations equivalent

to (3.10) was programed and used in the data analysis.

E; El;, . Ew [I(k >V)

(Fbig 3.2) Folded channel function for a) exact form
of Gaussian response convoluted with uniform dis-
tribution, b) close numerical approximation to (a),
c) single Gaussian, considering x-ray flux to be
8 function at center of channel.
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Equation (3.9) may be approximated by minimizing the

L1 norm of the concatentation of two half Gaussians and

a constant function (Fig. 3.2). The probability that an

x-ray impingent in the jth channel is detected at the ith

channel becomes:

1

2ra (Ej)+(Ei+l-Ei) Pai

Ei+1
F e

E.

(3.12)

Pdj (i<E<Ei+])

- (E-Ej) /2F(E )2
3 dE , if

Paj

1
-- ~-_ __--~- 1-" ~

2r (E) +(Ei+ -Ei)Pai

E (B 1 2)2Eil -(E-E ) 2/2 (j) 2
x J e j+l dE, if j>i

E iI

For i = 1,2,. ,N

where Dcj 1 ji Pdj((E i < E <il) is the probability

channel is detectedthat an x-ray impingent on the jth

thin the j channel. In this approximation the respective

means of the Gaussians are at the channel boundaries, mak-

ing the derivative of the approximating function well de-

24
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fined and everywhere continuous.

The detected spectrum on the ith channel can be ex-

pressed as a sum of the impingent spectrum multiplied by

the respective detection probabilities, as in the previous

met hods::

N

S'(Ei) S(Ej)Pd(E < E < Ei+l)
ij= 

i = 1,2,... ,N

The system of linear equations may then be solved for

S (j)= S(Ej)P , which yields S(Ej) directly.

S (E.) is called the alpha spectrum; it is the fraction
a 

of the spectrum in each channel not carried to a different

channel by the response function.

A/ .1-0 I
I

I II<
tI C ti EER cy ( kEV )

(Fig 3.15) Extrapolation of detected spectrum to estimate the
fraction of the flux folded into the extreme channels from
x rays whose impingent energy lies beyond the threshold of
the extreme channel boundaries.
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There is a non-negligible probability that x-rays

impingent with slightly less energy than the lowest en-

ergy channel boundary, or with energy slightly higher

than the highest channel boundary, will be folded into

the respective extreme channel by the response function.

Likewise, a fraction of the impingent flux at the extreme

channels is never detected; it is carried out of detection

range by the Gaussian response (Fig. 3.3). In order to

minimize errors caused by ignoring this effect, the de-

tected spectrum is extrapolated beyond the energy range

of the extreme channels. A reasonable extrapolation will

yield correction estimates for the x-ray fluxes carried

across the extreme boundaries.

At the time of this writing the development of a

more accurate, but also more complicated, method is being

investigated This method determines a smooth, best

L2 -approximate to the detected spectrum. The process

assigns to each a tentative d ES'(E)! and a

Emewhat more tentative

d2

somewhat more tentative d- S(E)IE in order to give

a reasonable approximation to the x-ray distribution with-

in each channel. The approximating functions under investi-

gation are interpolating cubic splines, where the number of

splined sections is a function of the number of energy

channels. The splining method will give a more accurate

26



determination of the impingent spectrum in systems incor-

porating a somewhat larger number of energy channels.
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IMPLEMENTATION AND RESULTS OF THE APODIZATION ALGORITHM

SPECTRA is a Fortran 1 computer program which lifts

an x-ray spectrum from the detected count rates in each

channel to the true x-ray source spectrum at the top of

the atmosphere. An implementation of the discrete channel

apodization algorithm lies at the heart of SPECTRA in a

subprogram called GAUS.

SPECTRA applies the inverse process of each attenua-

tion or pertubation, previously described, in reverse

order from the detection process. Since the apodization

algorithm inverts the folding process, a single program

run will yield the best values of the source spectrum at

a small computational cost. SPECTRA takes as input the

set of detector system parameters and the detected count

rates per energy channel for each detector bank. The de-

tector parameters are: air thickness, NaI crystal thick-

ness, detector area at full source exposure for each de-

tector bank, time in the flight when the detected count

rates were accumulated, PSD efficiency table with effic-

iency values for different x-ray energies and different

times during the flight, and PHA channel boundaries in

terms of energy. (Pulse height is directly porportional

to energy.)

The count rate in each channel is converted to units

of counts/cm2sec KeV. The PSD efficiency table is in-

28



terpolated to calculate the closest value for each energy

channel at the given time in the flight, and the efficiency

correction is applied to the spectrum. SPECTRA calls GAUS

with the efficiency corrected spectrum to apply the dis-

crete channel apodization algorithm. GAUS, in turn, calls

several functions and subroutines, including RSIMQ to solve

the linear matrix equation (3.13). (RSIMQ was developed

by the Information Processing Center at M.I.T.). After

the escape correction is applied to the unfolded spectrum,

there follows a sequential application of the corrections

for NaI crystal transmission, styrofoam layer absorption,

and atmospheric absorption. The resultant step function

is the best discrete determination of the continuous x-ray

source spectrum at the top of the atmosphere. The spectral

2step function can be easily 2 fitted to a theoretically

predicted spectrum (e.g., power law).

SPECTRA tabulates the results at each step in lift-

ing a detected spectrum to the top of the atmosphere

(Figure 4.1). GAUS prints out the probability coefficient

matrix,

(4.1) [aij] = Pdj(Ei< E< Ei)/Pai

and the unfolding of the energy spectrum (Figure 4.2).

In order to test the accuracy of SPECTRA, a close

approximation to the Crab Nebula power law spectrum,8
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UNFCLDING cr SPECTRUP NUMeER 2

AIR THICKNESS = 3.350 G;S/CM SC
RESPONSE FUNCTICN = 0.C30) * ENERGY

NAI THICKNESS = 1.171 GRAMS/C SC

u.420 * SQRT(ENERGY) + 0.230

PRCHABILITY CChVCLUTION VATRIX

1. 00)
0.189

0.0
C.C
...

0.207
1.000
0.124
9 . C0
O. 0
0.0
O.n

ENERGY BIN

0. 00
0.261
1.0o
0.108

. 900
0.0
0.3

o .0UC
0 .000
0. 1 78
1.000
0. 139
0.000
0 .

0 .0
0 .000
0 .000.OOJ
0.155
1.000
0 .075
0.0

0.0
0.0
0 .000
3 .CC

.2C2
1.0CO
0. 1 04

FCLCEC SPECT ALPFA SPECT UNFOLCED SP

20.0) 27.50

27.50 34.50

34. 5 47.00

471.C 64.00

64.90 8.CO

80.30 115.00

115.00 146.00

2.2293E-03

2.6318E-03

I .8642E-33

1.2547E-03

7.6734E-04

3 .6748E--04

1. 2J5 5E-04

(Fig 4.2) Discrete
re sult s.

Channel Apodization computational
GAUS prints the [aij] coefficient

probability matrix and the unfolded spectrum.
Results tabulated in this run are from the
recovery of the power law mentioned in the
previous figure.

- of

0.0
C .
C.u
0 .09
0 .113
I .CCC

1.8346E-03

1.9066E-03

1.4476E-C3

1.0 1 14E-03

5.631 E-C4

3.1407E-C4

9 .6763E-05

2.4826E-C3

2.7511E-C3

1.E71SE-C3

1 .2762E-03

7.4EUlE-C4

3.72 14F-C4

1.215CE-04
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(Fig 4.53) Comparison of original power law spectrum,
folded, attenuated spectrum, and recovered
spectrum by SPECTRA.
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(4.2) dN = 22E 2.25 (photons/cm2sec KeV)
dE

was folded with the detector response function, and all

other absorption and efficiency effects were applied (Laros,

1973). The resultant spectrum, generated to simulate a

detected spectrum, was given to SPECTRA, which recovered

the original spectrum at the top of the atmosphere with

small computational errors (Fig. 4.1 and 4.3). The high-

est and lowest energy channels have somewhat larger errors

than the central channels due to the extrapolation of the

"detected" spectrum necessary to calculate the effects of

the response function at the boundaries of the spectrum.

SPECTRA was applied to detected spectra from Crab

Nebula drift scans. The result of one computer run, for

the second Crab scan in the June, 1974 flight, is pre-

sented in Figures 4.4 and 4.5. The second and fourth

energy channels are respectively too low and too high

with respect to the Laros spectrum. This was found to

be the case for other methods of determining the spectrum

and for other Crab scans.

SPECTRA was tested for different detector system

parameters. For instance, the unfolding of a test spec-

trum gave more accurate results when 12 energy channels

were used to span the 20-146 KeV energy range instead of

the 7 channels in the June flight.

33



O)

0 )
U) (])

U U O -@
_r a) P, r.D

·
o - CtZ

rl co0 

U)

U-

0V E S

Zj $ %Q )Z E1 i

hO H

i a) ;

aH) R

4 r Q 

I- EE 

I

IIw

I-10CIt

NlI * I 
p-I I cI I

1010

I-WI 1mEIf

1010

111I 0l N

* i 

I I

I I
OI I I f l I

I 0 I 0 
1111u

I

.-,-4II

0

u-NJ

C'
3t

w

C,LuI
C-

0

3
W:L

01t

.0W
'0r.-

0

C',t-

0

0coui

w

In

(P

0
1

LU

rfl

0

U

'0

N

en

Ci

LU

m,er

'Wim

I

w

II
, r'0 Ii , 

I lw

(n
0

i

0

i 
.

0

Io

r-Lr)

.I 

-4 I Q

III
I

I r-
I u I I
IUr I 
'T I -

0

LU
0

'0'4

(r!¢

I Lu
I CI co
I 0
Ig

IrI 0
I N 
_

01ZI

U--10Cl
I u

013U. X 

I IJ I Wj

rN
41
UL I ZI

I I
1 I

r-4uZ I

CL I NWI 

OI t"
V: I r

C;I OLl
L I 0LLI'7
tu-W I

0. I 'W

4/ I C)II

J I _U
U)z I N

IN1

LU I -n

:IUzJ I rs

IU I e

I 

C I
ow 

'Ir4 l o-1 - I 
I I

I I i
l I

I I I C I o I o0 1 I 0I I III

0

co
0 

II

u I

C-I
In

oItI
IJ

0 

0 1

OI

'I

I

LIUJ ILUI LI

N N I I '0
0'| I 0 I 0'v I 

I I I

I I I v,..- ,.-4 ffI I I(

§ O I ' t Q
I I II " I W I '7 I -T

0 I 0 I 0 1 .-

1111111I U I N I LU I LU0I I 0 I -0 I 0 I - I 0
;I · I ; I
I I i I

0 10 I0 I00 I O I 0) I OI . I ,t I 0 I U,ru I I o I u
I I I_

0101010U, I 0 I 0 I 0
I * I . I 

JTICI~Tl0
I 4 I '0 I 0
I 't I 0 1 

I 
I 

10
I ,
I o

I I

I I

IC

10

I -
I N

ujy
0

ui

,/
-r

I-
0

II

'A
I-
-C
3

I 0
V )

rJ

CN
0

0
Nu

aC,
LU

Lu
tJ

34

II
II
II

II
II

II
II
II
II
II
II
II
I

I
II
II
II

I

II
II
II
I

I

II

II

II
I
I

I

7



O 3o 40 lo a00 EnVERY (KeV)

(Fig 4.5) Graphical representation of the deter-
mined x-ray energy spectrum for the
Crab Nebula. The power law, given as
a reference, is the Laros spectrum.
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CONCLUS IONS

The discrete channel apodization technique yields

the closest obtainable values to the true x-ray source

energy spectrum at the top of the atmosphere in a single,

efficient pass. These values may be matched to a. theor-

etically predicted spectrum (e.g., under a X2 minimi-

zation criterien) if one wishes to study the x-ray pro-

duction mechanism. The calculated values for the source

spectrum are independent of any fitting performed after

the determination of the spectrum, unlike the repeated

trial method, where nothing is known about the source

spectrum until a reasonable fit is found. The determina-

tion of the source spectral parameters may be greatly

facilitated by graphing the source spectrum and perform-

ing preliminary visual fitting, or, at least, setting

severe constraints on the type of function and values for

the free parameters chosen for the '2 fit.

The discrete channel apodization algorithm may be

applied to any x-ray detector with discrete channels and

a Gaussian response function. It may be possible to

generalize the method to include other types of response

functions, but the necessity for discrete channels lies

at the very heart of the algorithm.

There are some limitations to the apodization method.

Only continuous spectra can be unfolded; line spectra
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cannot be resolved by discrete channel apodization. In

order to get accurate results for continuous spectra,

the detector system needs to have at least five energy

channels. On the whole, the discrete channel apodization

algorithm is an efficient and fruitful process applied to

the determination of the x-ray source spectrum at the top

of the atmosphere. The author hopes that this method may

be used by x-ray astronomers to facilitate and improve

their spectrum determinations.



APPENDIX

FULL LISTING OF SPECTRA AND ITS SUBROUTINES

SPECTRA is a Fortram program which should be compatible

with most Fortran IV implementations. The data is read in

from a set of cards of specified format, fully explained

in the first page of the listing. SPECTRA can process

several detected spectra measured during a single balloon

flight in one program run.

The discrete channel aodization algorithm is im-

plemented in the subroutine GAUS, which may be used in--

dependently of SPECTRA for detector systems that are not

balloon borne (e.g. satellite detectors), but which have

a Gaussian response function and discrete channels.
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DATE = 75126 21/55/37

C …....AIN PRCGRAM TO LIFT BALLOON DETECTED X-RAY SPECTRA 10 THE TP CF
C rHE ATPCSPhERE. ASSUMES DISCRETE CHANNELS AND GAUSSIAN RESPCNSE
C FUNCTICh FCR TIE DETECTOR
C
C
C-----WRITTEN AT MIT JANUARY ThRU APRIL 1975 BY JAIME G. CARBONELL
C
C
C-----RECUIRES 4 SUBROUTINES,
C 1) GUS = APOCIZATICN ALGORITHM FOR DISCRETE CHANNELS AND GAUSSIAN RESP.
C Z) RSIPC SCLVES SYSTEM OF N LINEAR EQUATIONS IN N LNKNCOINS
C 3) ESCtPE INVERTS ESCAPE EFFECT OF IODINE ABSCRP[lON K EDGE IN AI X-TAL.
C 4) EPSE CALCULATES EFFICIENCY OF PSC BY INIERPOLATICN ON TIME AND ENERGY.
C
C
C-----RECUIRES 9 FUNCTIONS
C GAUSP XTRPOL ESCR TRAIR [RNAI TRINS SIGF EFFEL FINTRP
C
C
C-----FIRST SET OF DATA CARCS IS THE EFFICIENCY TABLE PRECEEDED BY 1 CARD
C WITH T- (12) NUMBER OF ENTRIES = NLMBER OF lIMES IN FLIGHT = NUMBER
C OF CARCS IN EFFICIENCY TABLE.) EACH CARD CONSISTS CF A TIME IN CCT SEC.
C FCLLCWEE BY 7 EFFICIENCY VALUESt ONE FOR EACH CHANNEL.
C
C
C-----SECOND SET CF DATA CARCS CONSISTS OF DETECICR PARAMETERS
C 1) NUMEER CF ENERGY CHANNELS (12)
C 2) TICKNESS (IF AI CRYSTAL I GM/CM**2 (F7.3)
C 3) A,B8C VALUES FOR SIGF RESPOCiNSE FLNCTION (3F7.3)
C ''t) NINS+1 ENERGY OUNEARY VALUES (1CF7.2)
C !I) NUMBER CF SPECTRA C BE PROCESSEC (12)
C-----THE FOLLOWING CARDS APPLY TO EACH SPECTRUM - MUST li. REPEATED
C b) DETECTOR AREA IN C**2 (FIC.I)
C 7) CT TIME (FIO.1)
C B) AIR THICKNESS IN GM/CM**2 (F7.3)
C 9) CCUN7 RATES PER CANN.'L (CETECTED) IN CTS/SEC (10F7.3)
C
C
C

REAL EKV(51),EKVA(50),TSPECT(5C),SPECT(SC,8)
REAL S ICVAL(!O),S IPARf3)
EFF=1.O
CALL EFSD
REAC(5,10) NBINS

10 FCRMAT(I12)
READ5,11) TNAI

11 FCRMAT(F7.3)
REAC(5,12) (SGPAR(I),I=1p3)

12 FCFMAT(3F7.3)
KK=NE INS+1
REAC(5,13) (EKE.V( I I=1,KK)

13 FCPMAT(10F7.2)
ISPEC=O
REPD(5,14) NSPEC

14 FCRPAT(12)
100 IF(NSPEC.LE.ISPEC) CC TO 1C1

ISPEC= ISPEC+I
READC (,18) AREA

39

0o01
C002
CO03
0004
C005
C006
C007
0'08
C009
COlO
0011
0012
0013
C014
0015
C016
0017
C018
0019

FCRTRAN V G LEVEL 19 MAIN



DATE = 75126 21/55/37

READ(5,18) CT IME
18 FORMAT(F10.1)

READ(5,11) TAIR
REAC(5,15) (SPECT( I 1)I= INeINS)

15 FCPMAT(10F7.3)
C ---- PRINT CUT INPUT PARAMETERS READ

WRITE(6,16) ISPECTHAIRTI-NAI,(SIGPAR(lI),I==3)
16 FCRMATI'l't//////' UNFOLDING CF SPECTRUM NUMB-R ',12,//

1' AIR T-ICKNESS =',F7.3,' GRAMS/CM SQ NAI T-ICKNESS =',
2F7.3,' GRAMS/CM SQ,/ RESPUNSE FLNCTICN =',F7.3,' * ENERGY
I ',F7.3,' * SQRT(EKERCY) * ',F7.3,////)
CC 29 J=1,hBINS

29 EKEVA(J)=(EKEV(J)+EKEYVJ+I))/2
U 3 J=lrNBINS
K=J+1
SFECT(J,1)=SPECT(JI)/(AREA*IEKEV(K)-EKEViJ)))
SPECT(J,2)=SPECT(J,1)/EFFEL(EKEVA(J))
CALL EFFPSC(EFF,COTIE, EKEVA J )EKEVA)
SPECT(J,3)=SPECT(J,2)EFF
TSFECT(J)=SPEC(J, 3)

30 SICVAL(J)=SIGF(EKEV( J )SIGPAR(1) r SIGPAR(2) SIGPAR 3 )/2.0
CALL GAUS(NBINS,EKEVEKEVASIGVALTSPECTtSICPAR)
WRITEI6,17) (SIGVAL( I),I=1,NBINS)

17 FCRMAT('OSIGVAL= ',1OF7.2)
C- ---- 'Il CRYSTAL UNFOLDING JUST COMPLETED -- NOW DC FIRST ORCER
C ESCAPE CORRECTION ANC RING SPECTRUM TO TOP OF ACSPHERE

rFLUX=O
CC 41 J=leNEINS

41 SPECT(J,4)=TSPECT(J)
CALL ESCAPE(EKEV,TSPECT,NBINS)
CC 31 J=1,NBINS
K=J+I
SPECT(J,5 )=TSPECT( J )
SPECTJ,6)PEcPECT(J,5)/(1I.O-TRNAI(THNAI,EKEVAIJ)))
SPECT(J,7)=SPCT(Jt6)/TRINS(KEVA(J) )
SFECT(J,8)=SPECT(Jt7)/TRAIR(fHAIREKEVA(J))
TFLUX=TFLUX+SPECT(JE)*(lKEV(K)-EKEV(J))

31 CChTINUE
C-----PRINT SPECTRUM AT EACI- STEP IN PROCESSING AD UNFULDING

,RITE (6,37)
37 FORMATI'O UNITS = CTS/ICMi**2*SEC*KEV)'/)

ARITEI6,32)
32 FCPMAT{'O ENERGY BIN MEASURED SP EFFEL CORR EFF{

IR NAI UNFCLCING ESCAPE CORR NAI ASORPTICN TRINS
2INAL)' )

4

'SC COR
[RAIR(F

CC 34 J=ItNBINS
K=J+1
RITE(6,38)

38 FORPAT(' I---------------------------------------

2-------I' )
nRITEC6,33) EKEVIJ),EKEV(K)l(SPECT(JrI),=1r8)

33 FORMATI' I '2F7.2,1P8EI4.4, I')
34 CCATINUE

RITF(6,38 
WPITE(6,39) EKEV( 1 tEKEV(KK)rTFLLX
WRITE(6,35! ISPEC

39 FCRMATi'O',//' TOTAL INTGRATED FLUX ETWEhN,F7.29' AND'rF7.29

40

C020
C021
0022
C023
C024

0025
CO26

C027
C028
0029
C030
;0 31
C 32
0033
C034
¶0 35
C036
0037
0038
CO 39

C040
CO41
t:042
0043
C044
C045
C046
,347
004 !8048
C049
0 50

0351

C .)52
gJ53

054
C055

C056
C057
C058
0059

0360
0061
C062
C063
C064
0065
C066

FCRTRAN IV G LEVEL 19 MAIN



FCRTRAN IV G LEVEL 19 , AIN DATE = 75126 21/55/37

1'KEV IN UNITS OF XRAYS/(CM**2*SEC) IS ',1PE14.5//)
0067 35 FCRPAT('O',///' ENE CF PROCESSING FOR SPECTRUv ',12///)
C068 ;;C TO 100
C069 101 CCNTINUE
0070 ,RITE6,36)
0071 36 FCRPAT('O',//////' CCMPLETION OF UNFOLDING ANC LIFTING OF SPECTRA

I '/////)
C072 STCP
0073 FNC



DATE = 75126 21/55/37

SUERCUTINE GAUSINBINS,XKEV,XKEVA,LMDA,XSPEC1,SIGPAR)
C-----CAUSSIPA UNFOLDING CF XRAY SPECTRUM.

REAL XKEV(51),A1(50,5 ),LMDA( 5l)XSPECI(5C),XSPEC2(50)
REAL XSPEC3(50),XKEVA(5 ),SIGPAR(3)

CP I= 1 72454
DO 14 J=1,NBINS
K=J+1
CC 14 I=1,kEINS
L=I+1
XHIGH=XKEV(K)
XLCW=XKEV ( J)
CE=Xf IC---XLUW
IF (I-J) 41,43,42

41 XPEA\= XKEV(L)
GC TC 15

42 XFEAN=XEV ( I )
15 XLfO= LCA( I )

A1(JI1 )=SCP I*XLMDA*GAUSP(XL0h,X
,C TC 14

43 AI(JI)=1.O
14 CONTINUE

IGH,XMEANXLMDA)/CE

C-----LIPIT EXTRPPOLATION CCRRECTION
C-----(CRE PECISICON REC FOR SMALLER E BINING)

CE=XKEV (2)-XKEV( 1)
X4=XKEVA( 1)-DE
SZERC=XTRPOL(XKEVA(3),XKEVA(2),)XKEVA(1),X4tSPECI(3),
1XSFEC(2) ,XSPEC1( 1) )
ALPD=SIGF(X4,SICP R( ),SIGPAR(2),SIGPAR(3))/2.O
S ~LPHA=SZEROCG*E/( E+SQP *ALMDA)
XP EAN=XKEV( 1 )
l LCW=XI<EV( 1 )
XHIGF= XKEV( 2)
SCCRR=SALPFA*SQPI*XLMCA*CALSP(XLChXHIGH,XMEAN·)LVOA)/DE
:RITE(6,51) SZERCtSALPI-ASCORR

51 C;AT ( 'OSZERCSALP-/, SCURR= ',3E14.4)
(SPECI(1)=XSPEC1(1)-SCCRR
NK2=KBINS-2
NK1=NB INS-1
.1=N1e I\S +
lC E=XKEV ( NN 1 -XKEV( N IS )
X4=XKEVA(NBINS)+CE
SZERC=XTRPOL(XKEVA(NK2),XKEVA(NK1),XKEVA(NBINS),X4,XSPECI(NK2),lXSFECl(NK1)t.XSPECL{NeINS ) 
XLFVA=SIGF(X4,SIGPtR)1)S[ SC-PAR(2)tSIGPAR(3))/2.0
SL PHA=SZERO:E/ ( CE+SCP I*XLMOA )
XEAN=XEV ( N8 INS )
XLOW=XKEV( B INS)
XF IGH=XKEV (NN1 )
SCCRR=SALP-A*SQPI*XLMCA*CALSP(XLOW,XHIlGH,XMEAN,XLMDA)/DE
wRITE(6,51) SZtRO,SALPfA,SCORR
XSPECl(IBINS)=XSPEC1(NfEINS)-SCORR

C- ---- Ok SOLVE MATRIX OF CCNVCLUTION COEFF. FOR S ALPHA.
ARITE(6,30)

30 FCRMAT('O',///' PROBAeILITY CCNVOLUTION MATRIX'/)
[C 16 I=1,NBINS
WRITEl6,31) (Al I,J),J=l,NBINS)

31 FCRVAT(1OF7.3)
16 XSPEC2(1)=XSPEC1(I)

42

Cool

C002
C003
C004
0005
C006
COO7
C008
C009
C010
COll
C012
0013
COl4
C015

C016
0017
COb 8
C019
C020

C021
0022

C024
002 5025
0026

C027
C028
0029
ro- 
klu, 5 u

C 0 3 1C031
032

C033
C034
C035
0036
C037
C038

0039
004 0
C041
`042
0043
0044
C045
C046

C04 7
C048
C049
C050
C051
C052
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IC

0053
C054
C055
0056

:" 0057
C058
C059
0060
C061
C062
C063
0064
C065
C066
0067
0068
C069
C070

CALL RSIMQ ( 50, NINS, A ,XSPEC2, 0 )
;CNTINUE

DO 17 I=1,NBINS
K=I+l
(SPEC3(I)=XSPEC2(1)*(I.O+ SQPI*LMCA(I)/(XKE(KI-XKF-V(I)))

17 CCNTINUE
WRITE(6, 18)

18 FORPAT('OENERGY BIN FOLCED SPECT ALPHA SPFCT UNFOLDED SPI/)
L)C 19 1=1,tBINS
K =I +l

19 WRITE(6,20) XKEV(I),XKEV(K),X<PEC(I , lXSPEC2(I),XSPEC3I)
20 FORiAT(2F7.2, IP3E14.4/)

hR ITE(6,21 )
21 FCPMAT('O',//////' END OF GAUSSIAN NFOLDING '////)

DO 22 I=1,NBINS
22 XSPEC1({ )=XSPEC3(I)

RETURN
ENC
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SUeROUTINE RSIMQ(NCIM, NORCER, COEFF, RHS, IERR)
C

REAL CCEFF RHS, I8GC, SAVE, TOL, ABS
INTEGER NORCtR, CIM I J K, IMAX, JPI, JJ, NMI

C
!)IMENSICN COEFF(NDIM, NCRCER), RHS(NCRCER)

C
C CHECK FCR ARGUMENT RRCRS.

IF (:DMl .GE. NORCER .ANC. NORDER .GT. C) GC 10 10
IERR = 2
WRITE (, 1001) CIM, NOROER
RETURN

C
10 TOL = G.OEO

IERR = 0
C
C CC ORWARC ELIMINATION, WITH PARTIAL PIVCTING.

CC 70 J = 1, NORCER
C
C CHCCSE LARCEST ELEMENT. REMAINING IN THIS COLUMN.

eIGC = O.OEO
CC 2 I = J NCRCER

IF (AeS(BICC) .CE. ABS(COEFF(I, J)) CO T 20
EIGC = CEFF(I J)
IFAX = I

20 CCNTINUE
C
C IF LL ELEMENTS AVE MAGNITUCES LESS THAN
C PMAIIX IS SINGULAR.

IF (PBSIEIGC) .GT. TOL) GO TC 30
IERR = 1
WRITE (6, 1002)
RETUFN

C
C INf-RC-ANCE RCWS IF NECESSARY, AND DIVIDE
C PIVOT ELEMENT.

30 CC 4) K = J, NORCER
SAVE = C(EFFIIMAX, K)
CCEFF(IMAX, K) = COEFF(J, K)
CCEFF(J, K) = SAVE / BIGC

40 CCNTINUE
C
C

CR ECLAL TC TCL, THEN

NEW CURRENT RCW 8Y

CC rI-E SAVE FCR TE RIG-T-HANC SIDE.
SAVE = RHS(IMAX)
RHS(IMAX) = RHS(J)
RI-S(J) = SAVE / 8IGC

C
C SUeTRACT MULTIPLES OF THIS ROW
C LEgCING CCEFFICIENTS VANISI-.

IF (J .GE. NORDER) GO TO
C

FROM ANY REMAINING RCWS TO MAKE

80

JF1 = J + 1
CC 60 I = JPI, NCRCER

StVE = COEFF(I, J)
CC 50 K = JP1, NCRCER

50 COEFF(I, K) = COEFF(I, K) - SAVE * CCEFF(J, K)
;ES(I) = RHS(I) - SAVE * RHS(J)

60 CONTINUE
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COOl

0002
C003

0004

C005
C006
C007
CC008

C309
:010

I01 1

C012
C013
C014
C11015

0016
01 7

C018 e
C019
S020
C0021

0022
C023
C324
0025
:0?6

2027
¢028
C029

C030

C031
C032
C033
0034
0035
C036
0037
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70 CCNTINU_
C
C NCW FINC ELEMENTS OF SCLUTION VECTOR [N REVERSE CRDER BY CIRECT
C SLESTITUTICN.

8O Nh = CROER -
Pl = CRCER + 1

'3C 130 JJ = It NMI
J = NORCER - JJ
JP1 = J + I
DO 9 KK = 1 JJ

K = NP1 - KK
PI-S(J) = RHS(J) - COEFF(J, K) * RFS(K)

90 CCNTINUE
100 CONTINUE

RETURN
C
1001 FORVT(23H RSIMQ
1'302 FCRPAT(32k RSIPC

F NC

ARGUMENT ERRORt 2111)
ECUATIONS ARE SINGULAR.)

45

C038

C039
C040
C041
C042
C043
t044
C045
046

C047
C048

2049

'050
0051
C052
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COO1 SUeRCUTINE ESCAPE(XKEV,TSPECT ,Ne INS )
C -----ESCAPE CORRECTION ON ENTIRE EXPANDED SPECTRLM
C RETURNS NEW SPECTRUP Y CLOBBERING TSPECT

C002 PEAL XKEV(51),TSPECT(50),FSPECT 3CC)
C003 INTECEP IKEV(51)
C034 KK=Ne IS+l
C005 H10 1 I=1,KK
C006 1) IKEV( I)=IFIX(XKEV( [) )
CC07 LC=IKEV(KK)-IKEV(1)
C008 [CCUNT=hINKS
CU09 l)0 20 I=1,LD
CO10 h=LC- +IKEV(1
COi1 IF (N.LT.IKEV(ICCUNT)) ICOUNT=ICOUNT-1
L012 ICI=ICCUNT+1
^013 FSPECT(N)=TSPECT([COUNT)/(IKEV(IC1)-IKEV(ICOUNT))

C ..... RITE(6,101) ICCUNT,IKEV(ICOUNT),TSPCT( COLNT),NFSPECI(l)
C014 20 CCNTINUE
Ct)15 CC 3 I=LLC

;01 6 ?1= LC- I + KEV ( 
017 N29=N-29

C018 [SC=ESCR(FLCAT(N))
t019 IF N2$.GE.IKEV(1)) FSPECT(N29)=FSPECT(N29)/(1+ESC*FSPECT(N)/FSPEC

1T(K29))
S'20 FSFECT ()=FSPECT( N)/( 1-ESC)
C021 30 CCKTINUE
Ci22 UC 40 I-lI,NBINS
023 43 rSPECT(I)=0.2)
C024 ICCUNf=B INS
C025 EC 50 !=!,LC
C026 N=LD-I IKEV ( )
'927 IF (N.LT.IKEV(ICOUN[)) ICCUNT=ICCUNT-1
C028 TSF-CT(ICOCUN-)=TSPECT(ICtiUNT)+FSPECT(N)

C ..... RITE(6,101) ICOUT T,IKEV( ICOUNT),ISPECT(ICOLNI) ,N,FSPECT(N)
C329 50 CCNTINU._
'"30 191 FCRMAT(' ICOLNrIKEV(ICOUT),TSPECT(ICOUJ),N,FSPECT(N) = ',

21 4, 14.4, E 14 . 4)
C031 rETURN
.)32 DEPUC SUBCkK
6J33 L hC
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CO01 SUEROCUTINE EPSD
C-----EFFICIENCY OF PULSE HEICFT DISCRIPINATOR
C THIS ENTRY REACS THE EFFICIENCY TABLE

CC002 IPENSICN PSEC5097),CDTX(5C),CDTY(50),EX(7),EY(7)
00C03 P'EAD(5,10) NTIMES
0004 1) FCRPAT(I2)
C005 CC 20 I=1,NTIMES
C306 20 READ(5,30) CCTX(I),(PSC(lJ),J=1.7)
007 30 FORT ( F 10.0,7F10.3)

G008 'ETURN
C009 --NTRY EFFPSO(zFF,TT,EEX)

C-----.NTERPCLATES EFFICIENCY ABLE FOR A GIVEN TIME AND ENERGY
C WRITE(6,8L) EFF-T, E,(EX(I)pI=1,'7)

CO10 81 FCRPAT('OEFFT,E,EX= ',10F10.2)
COil CC 50 J=1,7
C'J12 DO 40 I=1,NTIMES
0013 4n CTY(I)=PSC(I,J)
C014 5J FY(J)=FINTRP(T,NTIMES,CCTX,CDTY)
C015 EFF=FINTRP(E,7,EXEY)

C iRITE(6,82) EFF,(EY(I),=17),(CDTX ,CX(,CTY(II=1,TIPES)
0016 R2 rCRYPT('OEFF,EYCOTXC£TY= ',F7.2,/7F7.2,/10FFI.2,/1JF10.2,/

t CF. 10F.210lF1.2/)
C017 RETURN
C318 ENC
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FUhCTICh GAUSP(X1,X2,XMEAN,SIGMA)
C-----CCPUTES TI-E INTEGRAL UNDER A NORMALIZED GALSSIAN DISTRIBUTIGK
C AFPRCX. ACCURATE TO SIX CIGITS. X1=LOWER AND X2=UPPER INTEGRATION
C LIMITS IN TERMS OF X CCCRDINATE, NOT SIGMA LNITS

REAL Be(5)/.31S38153, -. 35656378, 1.7814779, -1.8212560, 1.3302744
1/
REAL XX(2 ),RR( 2 ),PP(2),EE(21)
XX (11= (X1-XMEAN I/S IGMA
XX (2 )= X2-XMEAN )/S IGtA
CC 30 1=1,2
FP( I )=1./(1.+.2316419*AESXX I ) )
1=1.0
RR( I )=C.O
I;C 10 J,5
T=T*PP( I)

10 RR(II=RR( I +r*BB(J)
IF(XX(I).LT.O.0) RR(II=1.0-RR(Il
EE(I 1=0.0

30 IF(XX( I ).LT.10.AND.XX( I).GT.-10.C EE( I ) =EXP(-XX(I)*)X(I )/2)
CAUSP=ES((RR(2)*EE(2)-RR( 1)*EE( 1 )2.5C6628

C WRITE (6,20) AUSP,X1,X2,XMEAN,SIGA
20 FCRMAT(' GAUSP,X1,X2,MEAN,SIGIA= ',5F10.4)
C WRITE(6,21) (XX(I),RR( I),PP( I ),EE(I 1=1,2)
21 FORPOT(10E12.3)

RETURN
'.C

FCRTRAN IV G LEVEL 19

_001

CC02
C003
C304
C0J5
CC06
C007
u038
C009
COlO
COll
C012
C013

_SCR DATE = 75126 21155/37

FUNCTICK ESCR(E)
C-----APPRCXIUATE ESCAPE PRCBABILITY FOR X-RAYS FROM ICDINE FLOURESCENCE
C VIA FRCNT FACE CF 3 MM NAI CRYSTAL

IF(E.Lt.33.) GU TU 1
IF(E.G[.33..AND.E.LE.5C.) GO 10 2
IF(E.G.50..AND.ELELE.80.) GO TO 3
IF(E.GT.80.1 ESCR=.C55
RETURN

1 ESCR=O.
RETURN

2 cSCR=.27- (E-33.)/25.)*.21
RETURN

3 ESCR=.14-((E-50.)/25.)*.C8
RETURN
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0002

C003
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0006
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FUNCTICN XTRPOL( XItX2,X3,X4tSltS2,S3!
C-----AFFRCXIPATE EXTRAPOLATION FOR DETECTED SPECTRUM FNCTION.

SLCPEI=(S2-Sl)/(X2-XII
SLOPE2=(S3-S2)/(X3-X2)
SLCPE3=O
!F(SLOP l.EC..O ) CU TO 5
IF (SLCPEl.GT.0. .aNC. SLCPE2.CT.C.C! GO TC I
IF (SLCFE1.LT.O.0 .hAC. SLOPE2.LT.C.C) GO C 1
SLCPE3=SLOPE2-SLCPE1
GC TO 5

1 SLCPE3=SLCPE2*SLOPE2/SLOPEI
IF(AeS!SLOPEJ).GT.AeS(SLOPE2)) SLOPE3=SLOPE2

5 XTRPCL=SLOPE3*(X4-X3).S3
\4RITE(6,10) SLPE1,SLOPE2,SLUPE3pXTRPOL

10) FiRMAT('OSLCPEl,SLOPE2,SLOPE3pXRPOL = ',4E14.6/)
RETURN
ENC

FLRTRAN IV G LEVEL 19

C301

--O02
C003
034
CC05
C'006
CO07
C038
C009
2 10

LOll
C012

01 3
CO14

CO 5

C016

0017
COl 8
C019
C020

r INTRP DATE = 15126

FChNCT IC FINIRP(XNVALSXVALS,YP6LS)
C-----IKTERPCLATES TAEULATEC FUNCTICN, XVALS AND
C FC CALCULArE F(X). LINEAR EXTRAPOLATION IF

DIFENSICN XVALS(50),YVALS(5C0
[F(X.LE.XVALS(1)) GC TO 20
IF(X.GE.XVALS(NVALS)) CO TO 30

21/55/37

F( VALS) = YVALS
X ELISIDE TIAULATED RANGE.

N=1
10 N1=N

~=1+1
IFIN.GT.NVALS) G TC 30
IF(X.Gr.xvALS(NJII O TO 1J
r-INTRP=YVALS(Nl+i(X-XVALS(Nl))*(YVALS(N)-YVALS(hl))/(XVALS(N)-

I XVALS(N1))
GCC TE 40

20 FINTRP=YVALS( 1)-(XVALS(I)-X)*(YVALS(2)-YVALS(l) )/(XYALS(21-
1 XVALS(1))
GO TC 4;

33 F ITRP=YVALSINVALS )+ (X-XVALS(NVAL S) )* (YVALS(NVALS)-YVALS(NVALS-1))
I /(XVALS(NVALS)-XVALS(NVALS-1))

43 CCNT INUE
C WRITE(6,81) FIN[RP,X,NVALS
81i FCRMAT('O INTERP,XtNVALS= '2F1C.213)
C WRITE (6982) XVALS(I),YVALS(I),I=1tNVALS)
82 FORATi' XVALS,YVALS= 'CF10.2)

RETURN
CEeUG SUBC-K
ENC
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FUNCTILN TRAIR(T-AIR E )
C-----PRCAeeLITY OF TRANSIISSION TIROLGH ATMOSPHERE

IRAIR=EXP(-(5.30*( 1C ./E)**2.C+.16)*THAIR)
RETURN
ENC

FCRTRAN IV G LEVEL 19

C001

C002
C033
Q004

[R INS DATE = 5126 21/55/37

FUNCTILN TRINS(EE)
C-----PRCeABILITY OF TRANSMISSION THRU STYROFOAM LAVER (JLNE, 1974)

rRINS=EXP(?-1.0*(8.6/EE **2.65)
RETURN
ENC

FCRTRAN IV G LEVEL 19

CfOO

C002
CC03
C004
:J 5
006

C007
*008

FRNAI DATE = 75126

FUNCTICN TRNAI(TNA ,E )
C-----PRCeABILTY LF TRANSMISSION TRCOGH NAI CRYSTAL

IF(E-33.0) 1,1,2
1 c=5.8

GO TC 3
2 4a=28.0
3 fRhNAI= XP(-T-NAI*( A* 3.Oi/E )* 2.65 )

RETURN
ENC

FCRTRAN IV G LEVEL 19

COOl

C002
C003
C004

SIGF CATE = 75126 21 /55/37

FUNCI ICN SICGF(E,A,e,C )
C-----;GIVES SIGMA FOR GAUSSIAN RESPCNSE FiCTION -- EMPIRICAL FORPULA

SICF = i(A*E + B*SQRT(E) + C)
RETURN
C'C

FCRTRAN IV G LEVEL 19

CCO1

0002
C033
CC04

EFFEL DATE = 75126

FUNCTICh EFFEL( E)
C-----EFFICIENCY CF ELECTRONICS ON SCALE 1 TO 0

EFFEL=C.94
RETURN
ENC
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C002
C003
C004

21/55/37
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