DISCRETE CHANNEL APODIZATION METHOD

FOR THE ANALYSIS OF HIGH-ENERGY X-RAY DATA,
by

JAIME GUILLERMO CARBONELL

Submitted in Partial Fulfillment
of the Requirements for the

Degree of Bachelor of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1975

Signature Of AI@E oooo.oooa--v---o..tl:’yanloo-
“P€partment of -Physies, May 5, 1975

4

. S a

Certified by. eecrep e e e e —ew s VI T\ b Jid A WEY T KV .
ThesﬂgVSupervisor
Accepted by..'o-'.o..-.- ------------ oo e e R

Chairman, Departmental Committed/on Theses

ARCHIVES




DISCRETE CHANNEL APODIZATION METHOD

FOR THE ANALYSIS OF HIGH-ENERGY X-RAY DATA

by

JAIME GUILLERMO CARBONELL

Submitted to the Department of Physics on May, 1975
in partial fulfillment of the requirements for the degree

of Bachelor of Science.

ABSTRACT

The discrete channel apodization method to unfold
detected x-ray energy spectra is derived for a detector
with a Gausgsian response function. Other processes re-
quired to determine the true source spectrum at the top
of the atomosphere are described. A successful computer
implementation, with sample results of the spectral
determination process, including the discrete channel

apodization method, 1is presented.
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INTRODUCTION

X-ray astronomy is a new and rapidly developing
branch of Astronomy. X-ray telescopes, which must be
1lifted to stratospheric heights or beyond because of
the opacity of the atmosphere to x-rays, provide the
means of observing celestial x-ray sources. The analy-
sis of the x-ray observation data frequently culminates
in the determination of the x-ray energy spectrum for
the observed celestial source. The determination of the
spectrum is essential to the theoretical study and modeling
of the natural phenomena which produce the x-rays.

In order to determine the x-ray spectrum, the obser-
vation mechanism must be well understood, and all dis-
torting effects must be fully accounted for. X-ray
detectors have a response function which is convoluted
(i.e., folded ) with the energy spectrum in the detection
process., The logical way to determine the spectrum im-
pingent on the detector is to unfold the detected spectrum,
unfortunately, this is no simple process. The general
problem of reversing the effects of a response function
is known as apodization. The theme of this dissertation
is the development of an apodization algorithm which may
be applied to the phoswich x-ray detector system used by the

M.I.T. x-ray balloon group. The discrete channel apodization
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method is such an algorithm, generally applicable to the
class of detector systems which have Gaussian response
functions and discrete channels.

The high energy X;ray telescope system cited and de-
scribed in this investigation was flown to 13%0,000 feet
on a stratospheric balloon by the x-ray balloon group of
the M.I.T. Center for Space Research on June, 1974, The
telescope system consists primarily of two detector banks
of phoswich type x-ray detectors, and associated electronics.

The observed x-ray sources were the Crab Nebula and
the Coma and Perseus clusters of galaxies. The sources

were observed by the drift-scan method.



METHODS OF DETERMINING THE ENERGY SPECTRUM OF X-RAY SOURCES

The determination of the true spectrum of a celestial
Xx-ray source involves several areas of investigation. For
a balloon borne x-ray telescope these areas may be cate-
gorized as follows: The measured source spectrum must be
determined; i.e., the source and background x-ray fluxes
as functions of energy must be separated. Secondly, non-
linear efficlency effects of the electronic pulse height
analysis must be accounted for in order to determine the
spectrum at the detector level., Thirdly, the convolution
of the response function with the spectrum impingent on
the detector, known as the folding process, must be con-
sidered. Finally, there is energy dependent atmospheric
attenuation and some attenuating effects in the telescope
system which must be taken into account.

The drift scan method of observing an x-ray source
facilitates the separation of source and background
fluxes.l Since the diurnal motion of the Earth causes
the celestial sphere to rotate at a constant rate with re-
spect to Earth based coordinates, the telescope can be
aimed Jjust ahead of the x-ray source which will drift
through the field of view. This observation method is
known as a drift scan. If the aspect of the balloon borne

system is known, the increase in x-ray count rates, pro-
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portional to the increase in detector area exposed to the
source, can be used to calculate the source intensity
(Fig. 1.1). A straight line least squares fit to the
x-ray count rate as a function of the detector area may

be applied to different energy ranges. Extrapolating the
lines, if necessary, to full exposure and to zero exposure
yields the full source plus background, and the background
count rates respectively (Ryckman, 1974). The background
can be independently determined by extending the scan to
include a section where no part of the detector is ex-
posed to the source.

The other areas of investigation constitute the de-
termination of the unperturbed source spectrum from the
detected spectrum, If all of the attenuating and perturb-
ing effects of the atmospheric absorbtion of the x-rays,
folding in the phoswich detectors, and electronic pulse
height analysis could be sequentially reversed, then the
true spectrum at the top of the atmosphere could be easily
determined., This is not the case because the spectrum im-
pingent on the NalI crystal of the phowsich detectors is
folded with the detector response function, a process
which is not directly reversible.

Most of the X-ray Astronomy research groups use a
repeated trial method to converge on a function which
closely approximates the true source spectrum.2 This pro-

cess requires the critical assumption that the yet unknown
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source spectrum is best approximated by the theoretically
predicted spectral functions. The three types of functions
most often postulated by theoretical models of x-ray emit-

ting mechanisms are:3

a) %%-: pE ¢ power law — synchrotron
radiation
E/
aN _ ce T
(1.1) b) TS E exponential —bremsstrahlung
dN CE®
c) aT = —:E7EE——— black body radiation
e -1

In the repeated trial method one function is selected
and the free parameters (e.g., @ and B for the power
law spectrum) are estimated to generate a trial spectrum.
The attenuating and folding effects are applied to the
trial spectrum in order to compare it to the detected
spectrum. The closeness of the match is usually evalu-
ated under a x2 criterion. Next, the free parameters
are altered and the spectrum generation process is re-
iterated in order to minimize xg . Often, after many
iterations to find the best parameters to fit one function,
the entire process is repeated for other theoretically
feasible functions.

The repeated trial method has two clear disadvantages

over the direct determination of the spectrum at the top

8



of the atmosphere by apodization of the response function
and reversing the attenuating processes. Repeated trials
are computationally inefficient, and the number of trials
required to find an optimal fit to a given function ex-
plodes combinatorically as the number of free parameters
increases. There are algorithms to generate reasonable
guesses for the new values of the free parameters for sub-
sequent trials given the results of previous trials, but
these algorithms are computationally costly and dependent
on the form of the spectral function being approximated.
The other major disadvantage of the repeated trial method
is that the choice of approximating function is constrained
to simple, theoretically predicted, trial spectra. It is
conceivable that more than one mechanism, ircluding the
possibility of some absorbtion mechanism, may be operating
simultaneously to generate the observed spectrum.

An apodization method that can be implemented and
used efficiently avoids the aforementioned difficulties;
it avoids the problem of guessing trial spectra and the
combinatorial inefficiency of repeated trials with a moder-

M

ate number of free parameters,’ The apodization method for
discrete channels will be discussed in detail after the

different attenuation and pertubation effects are presented,
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STUDY OF THE ABSORPTION, FOLDING AND EFFICIENCY
EFFECTS OF THE X-RAY DETECTION PROCESS

This section will investigate each process in the
sequence of events which a primary x-ray undergoes on its
way to the detector, in the detection process, and in the
subsequent pulse height analysis, A brief description
of the x-ray telescope system for the June 1974 flight
should put these processes in their proper perspective,
A) Description of the Detector.

The high-energy x-ray telescope system consists of
two detector banks. FEach bank consists of four phoswich
type x-ray counters behind a slat collimator. For the
June flight, one collimator had a €°x 6° full width at
half maximum (FWHM) field of view, and the other a 30 x 30
FWHM field of view, The phoswich detectors have a pri-
mary 3mm thick NaI crystal coupled to a 1.6" thick CsI
secondary crystal, A plastic scintilliation veto counter
surrounds the detector banks to reject charged particles,
There is an on-board pulse height analysis and telemetry
System.5
B) Atmospheric Absorption.

The detector system was lifted above 99% of the
Earth's atmosphere by a stratospheric balloon, since the
opacity of the atmosphere to x-rays prevents them from
penetrating substancially deeper. Even in the tenuous
stratosphere, x-rays are absorbed as a function of x-ray

10



energy and air thickness traversed, The probability that
an x-ray will not be absorbed, called the transmission

probability, is given by:

(2.1)  Ppg_agrkp-B) = €

where E = X-ray energy in KeV and Ky = thickness of air
traversed measured in gm/cm? . Air thickness in the
zenith direction is a tabulated function of altitude.

To calculate the air thickness in the observation direc-
tion, the zenith air thickness is mutliplied by the co-
secant of the zenith angle of the collimator x-ray axis.
C) Styrofoam Absorption.

There is a protective styrofoam layer above the de-
tectors which abosrbs a small fraction of the x-ray flux
as a function of energy. The transmission probability
function is simpler than the one for air because of the
macroscopically homogeneous nature of styrofoam. The
transmission probability is;

(2.2) P (B) = e

IR-INS
D) Detection Efficiency.

Since the Nal crystal has finite thickness, there
is a probability that some x-rays will penetrate the full
thickness of the crystal without being detected. 1In this

11



case the probability that the x-ray is not lost (i.e.,
detected) is the absorption probability given by

22\2.65

B - _MENNM(E

(2.3) Prg_naT (PyaT’ 1-e

where = thickness of the Nal crystal ( = 1.17 %m/cm2

YNa1
for a mm Nal crystal), and

5.8 if E < 33 KeV
A(E) =
28,0 if E > 33 KeV

The difference in values for A(E) occurs because of the
K absorption edge of Iodine at 33 KeV,
E) Escape Probability.

An impingent x-ray whose energy is greater than
33 KeV may excite a K electron in Iodine, giving up 33
VeVre of energy. X-rays are re-emitted when an electron,
usually an L state electron, falls into the empty K
state. Since x-rays are re-emitted isotropically, there
is a theoretical probability that some may escape through
the front surface of the NaIl crystal. The vast majority
of x-rays are detected near the front surface of the 3mm
crystal; hence, the probability of escape through the back
surface is negligible. The average energy of the re-emitted

12



edOn

ESCAPE PROBA®ILITY

3
o\
4

g

o
3
2 2

x-rays is 29.2 KeV. The escape probability as a function

of x-ray energy is given in Figure 2.1.

33

A v ] L) ¥ v

L3
40 60 g0 too ENERGY (KeV)

(Fig 2.1) Theoretical probability that an x-ray impingent of a 3 mm
Nal crystal will produce an Iodine K-flourescent escape X-ray.

F) Detector Response Function Folding.

In the process of detection in a phoswhich type detector,
the impingent x-ray energy spectrum is folded with the re-
sponse function of the detector to create the detected pulse
height spectrum, Let S(E) and S’(E) represent the x-ray
energy spectrum, and the pulse height spectrum respectively,
S'(E) = s’(h(H)) where h(H) 1is the calibration function
that assigns to each pulse height the corresponding energy it

represents. The general folding process takes the form:

(2.4) s'(E) = gdﬁ r S(E) G(E)AE

where G(E) 1is the response function. Since
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dw
AE

(205) S(E) = gglng_)- i SI(E) _ dN'!E) ,

dE

equation (2.5) can be expressed as:

(2.6) N/(E) = [ B(E) an(E)

where N(E) 1is the number of x-ray counts of energy E
per cmosec KeV (i.e., the x-ray flux as a function of
energy). The response function for a phoswich type de-
tector is a Gaussian, therefore the probability that an
x-ray, whose impingent energy 1is Eo’ is detected as

having energy between El and E2 is given by:

E
2 2 2
-(E-E )“/20(E )
(2.7)  Py(Ey <E<Ey) = —— | S Fo) g
E

where E_ is the mean and o(E_) 1is the standard devia-

tion (Figure 2,2),

(Fig 2.2) Folding effect,
X-ray with impingent energy
B (8 function) has a prob-

ability of being detected

between El and E2 = shaded
Eo EVERGY area under Gaucsian response
function,

L/L%x. 1

& E €, ENERGY




PSD EFFICIENCY
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G) Pulse Shape Diserminator Efficiency.

The pulse shape discriminator (PSD) is an electronic
system which selects pulses according to the rise time and
pulse height, TIts efficiency in admitting the appropriate
pulses varied (June 1974) as a function of temperature
and pulse height during the flight, Therefore, the ef-
ficiency had to be determined by an analysis of source
calibrations taken during the flight (Scheepmaker, 1974).
A source calibration consists of exposing the detectors
to an x-ray source of known intensity for a few seconds.
Figure 2,3 is the best determination of the efficiency

function of the PSD for the June, 1974 flight.

115 -146 Kev

B 80-115 KeV
64~ 80 KeV
L7 _ 64 KeV

27.5 - 34.5 Kev

20 - 27.5 KeV

L [} i () 5 ) Y ry e i

20
lo Ig TiIMe (Hours)

(Fig 2.3) PSD efficiency as a function of time for each
energy channel



H) ©Pulse Height Analyzer,

The pulse height analyzer (PHA) bins the detected
x-rays according to energy into discrete pulse height
channels, Hence, the spectral data consists of x-ray
count rates per pulse height channel, If some of the
channel boundaries in the PHA are not well defined,
dN’(E) /dE is folded with the boundary resolution func-
tions.

From the mathematical models presented in this sec-
tion it is evident that all the processes, except for
folding, are easily reversible, The following section
will analyze an approximation method to reverse the fold-

ing process,
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DISCRETE CHANNEL APODIZATION METHOD

Discrete channel apodization is the process of
unfolding the effects of a response function on a finite
number of discrete channels whose energy width is great-
er than the minimum resolution of the detection system.
In this section a mathematical formulation of the fold-
ing process is examined and an algorithm for inverting
the process 1s derived. This algorithm, implemented in
a spectrum determination program, has proven successful in
unfolding detected continuous spectra.

The uncertainty factor in the analysis of discrete
channel spectral representations is that no direct deter-
mination can be made of the x-ray energy distribution
within a single channel. Therefore, for an arbitrary im-
pingent spectrum, a uniform distribution within each
channel is assumed, giving the spectrum a characteristic

step function. For a system with N energy channels

N

(Fig. 3.1) let (Ei’Ei+l) represent the ;1 th channel,
i.e., the energy range (E | Ei<IE<Ei+l} . E; 1is the

.th . =
energy at the center of the i channel; Ei::(Ei+Ei+l)/

The indices 1 and J are assumed to run from 1 to N
(N=7 for the June 1974 balloon flight system). S(E;)
and S'(Ei) represent, respectively, the values of the
impingent and detected (unfolded and folded) spectra in

17
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(a) (Fig, 3.1) Folding of

spectrum,
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into shaded
by Gaussian
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The response function of the phoswich x-ray detector

is a typical Gaussian distribution:

~(B-E.)° /20(E,)°

(3.1)  G(EE) = e J J
where
(3.2) | G(EpE)E - Jor o(E,)
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Ej is the mean of the distribution and U(EJ) the stan-
dard deviation. _G(Ej) is calculated empirically from
calibration data taken from x-ray line emission sources
before the balloon flight (Scheepmaker, 1974). The form
of G(Ej) may be estimated to within the limits of ex-

perimental accuracy by:
(3.3) G(EJ.) =A°*E,+B-. «/.TE* + C

where A, B and C are constants.
Normalizing (3.1) gives a probability distribution

function similar to equation (2.7):

Bin1
- 1 r -
(3.4) Py(E; <E <E ——— | G(EjE)dE

J i+1) - - J
JET'G(EJ) B,

This formulation allows the detected spectrum to be ex-

pressed as a step function of the impingent spectrum and

the response function for each channel:
Bira

N |
(3.5) S/(E;) = ) 8(F;) —=1-— ] G(E, E)dE
j=1

J JEE o(Ey)

1
i = ljej.on,N

19



The goal of this section is to derive S(Ei) from
S’(Ei) , hence reversing the folding process of the re-
sponse function G(EJ,E) . The apodization method is
usually an approximating process converging to a best
approximation of the impingent spectrum,6 In the present
apodization scheme the algorithm simply involves solving
a set of N 1linear equations in N unknowns. Since
G(Eﬁ,E) is directly computable, (3.5) yields a system
of linear equations with unknowns S(Ej) for a given set

of S'(ﬁi). Letting

be the coefficient matrix, (3.5) takes the form:

) — ’
(3.7)  lagj) [S(E;)] = [87(E;)) .

Since [aij] is nonsingular and diagonally dominant, there
exists a straightforward solution procedure for the S(Ej).
The aforementioned apodization algorithm makes four
simplifying assumptions to the general apodization problem.

Two of the assumptions are imposed by the detector system:

20



the finite number of discrete channels and the Gaussian
response function, The other assumptions are approxi-
mations to simplify the mathematical analysis. The uni-
form distribution within each channel is an assumption
which does not introduce significant inaccuracies. The
development of an apodization method which does not re-
quire this assumption will be discussed at the end of
this section. The fourth assumption is implicit in (3.14)
where the probability of detection is calculated to be a
single Gaussian distribution centered about the mean ‘Ej'
This assumes that the uniform distribution inside the

jth channel may be considered a delta function at the
mean, an assumption which is good only if the channel
width is small with respect to the standard deviation,

o(E;)>>E, ,-E..

J J+l 7]

For the June 1974 detector system the channels are
wide with respect to the standard deviation. Given a
uniform x-ray flux for the ith channel, the exact form

of the convolution with the Gaussian response function for

the jth channel is:
Esi1
— ’ ’
P,(B) - j U(E[,E,,q) G (E,B)dE
£
-8 E' o
(3.8) . J+1 —(E—E'fVQQ(E.)Q
- F e J° gqp’




Therefore, the probability that an x-ray impingent on the
th th

J channel is detected at the i channel is the definite
integral of (3.8) over the ith channel:
Ei+l
P (By <E<CE; .) = | P.(E)dE = L
dj i~ i+l J J (B B )JET‘O(E )
Ey JFLTEGNET TR
(3.9)
i+1 rJ 1 _(E,_E)g/gc(ﬁ‘)g
x| e I° 4B 'dE
J
Ei Ej

The exact expression for the total flux detected in

the ith channel is:
N —
S’(E_i) ___Z S(EJ) o
521 (Ej+l—Ej)ﬁ2wo(Ej)
E. E.
1 "3 (pep)2/6(E 2
-(E’'- o(E.)
(3:10) S 3 agra
Ei Ej

i = 112,--0,N

which is a system of llnear equations. (3.10) may be re-
presented in the same form as (3.7) and solved by inver-

ting the coefficient matrix. In the limit as (E E.) >0

J+1 73
(3.9) is equivalent to (3.4); hence, as previously stated,

the first apodization algorithm is valid for very narrow

energy channels.7
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Solving the system of equations (3.10) proved to be
impractical in terms of computer time required to gener-

ate the coefficient matrix. The numerical evaluation of

E, . E
i+l J+l _(E 'E)2/20’(fj)2 ’
(3.11) Dy, = | [ e dE 'dE
B, Ej

by iterative application of numerical integration tech-

niques 1s somewhat costly, and there are N2 (N2 = 49

for the present system) Dij to evaluate. A more ef-

ficient method of calculating the Dij has recently been

found, after an approximsting system of equations equivalent

to (3.10) was programed and used in the data analysis.

E; €. EvERGY (KeV)

{f'ig 3.2) Folded channel function for a) exact form
of Gaussian response convoluted with uniform dis-
tribution, b) close numerical approximation to (a),
c) single Gaussian, considering x-ray flux to be
8§ function at center of channel,.
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Equation (3.9) may be approximated by minimizing the
Ll norm of the éoncatentation of two half Gaussians and
a constant function (Fig. 3.2). The probability that an
X-ray impingent in the jth channel is detected at the ith

channel becomes:

1
wgﬂ'c(Ej)+(Ei+1'Ei)Pai
E,
i+l ( 2 = 2
- (E-E;) " /26 (E.)
(3.12) x [ e J JNaE, if i1
E,
1
Pgj(B4<EKE, ) = P , If j=1
1
ﬁw O’(Ej)+(Ei+l—Ei) POLi
Bii1 2 =2
r -(E-E, ,)%/20 ()
X | I e, if i
Ey

FOI‘ j-:: 1,2’000’N
where P, =1 "jii Pq;(Ey <E<E; q) 1s the probability

that an x-ray impingent on the jth channel is detected

in the jth channel. 1In this approximation the respective

means of the Gaussians are at the channel boundaries, mak-
ing the derivative of the approximating function well de-

24



fined and everywhere continuous.

The detected spectrum on the ith channel can be ex-
pressed as a sum of the impingent spectrum multiplied by
the respective detection probabilities, as in the previous

methods:

N
"E.) =) S(E
(3.10) §'(Ey) =), S(E4)Pq;(E<E<E,,,)

i = 132’¢oa,N

The system of linear equations may then be solved for

- - - . K3 '1 — (] -
Sa(Ej) S(Ej)Pai, which yields S(Ej) directly,

Sa(ﬁ;) is called the alpha spectrum; it is the fraction
of the spectrum in each channel not carried to a different

channel by the response function.

1 & B EVERCY  (KeV)

(Fig 3.3) Extrapolation of detected spectrum to estimate the
fraction of the flux folded into the extreme channels from
X rays Whose impingent energy liecs beyond the threshold of
the extreme channel boundaries,

25



There is a non-negligible probability that x-rays
impingent with slightly less energy than the lowest en-
ergy channel boundary, or with energy slightly higher
than the highest channel boundary, will be folded into
the respective extreme channel by the response function,
Likewise, a fraction of the impingent flux at the extreme
channels is never detected; it is carried out of detection
range by the Gaussian response (Fig. 3.3). In order to
minimize errors caused by ignoring this effect, the de-
tected spectrum is extrapolated beyond the energy range
of the extreme channels, A reasonable extrapolation will
yvield correction estimates for the x-ray fluxes carried
across the extreme boundaries,

At the time of this writing the development of a
more accurate, but also more complicated, method is being
investigated. This method determines a smooth, best
Lo - approximate to the detected spectrum. The process
assigns to each E; a tentative é% S'(E)* _ 2nd a

E=E.
. d2 .
somewhat more tentative aEE.S'(E)’ in order to give
a reasonable approximation to the x-ray distribution with-
in each channel, The approximating functions under investi-
gation are interpolating cubic splines, where the number of

splined sections is a function of the number of energy

channels., The splining method will give a more accurate

26



determination of the impingent spectrum in systems incor-

porating a somewhat larger number of energy channels,
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IMPLEMENTATION AND RESULTS OF THE APODIZATION ALGORITHM

SPECTRA is a Fortran IV computer program which 1ifts
an x-ray spectrum from the detected count rates in each
channel to the true x-ray source spectrum at the top of
the atmosphere, An implementation of the discrete channel
apodization algorithm lies at the heart of SPECTRA in a
subprogram called GAUS,

SPECTRA applies the inverse process of each attenua-
tion or pertubation, previously described, in reverse
order from the detection process., Since the apodization
algorithm inverts the folding process, a single program
run will yield the best values of the source spectrum at
a small computational cost, SPECTRA takes as input the
set of detector system parameters and the detected count
rates per energy channel for each detextor bank. The de-
tector parameters are: air thickness, Nal crystal thick-
ness, detector area at full source exposure for each de-
tector bank, time in the flight when the detected count
rates were accumulated, PSD efficiency table with effic-
iency values for different x-ray energies and different
times during the flight, and PHA channel boundaries in
terms of energy. (Pulse height is directly porportional
to energy.)

The count rate in each channel is converted to units
of counts/cmgsec KeV . The PSD efficiency table is in-
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terpolated to calculate the closest value for each energy
channel at the given time in the flight, and the efficiency
correction is applied to the spectrum. SPECTRA calls GAUS
with the efficiency corrected spectrum to apply the dis-
crete channel apodization algorithm., GAUS, in turn, calls
several functions and subroutines, including RSIMQ to solve
the linear matrix equation (3.13). (RSIMQ was developed
by the Information Processing Center at M.I.T.). After
the escape correction is applied to the unfolded spectrum,
there follows a sequential application of the corrections
for NaI crystal transmission, styrofoam layer absorption,
and atmospheric absorption. The resultant step function
is the best discrete determination of the continuous x-ray
source spectrum at the top of the atmosphere., The spectral
step function can be easily X? fitted to a theoretically
predicted spectrum (e.g., power law),

SPECTRA tabulates the results at each step in 1ift-
ing a detected spectrum to the top of the atmosphere
(Figure 4.1). GAUS prints out the probability coefficient

matrix,

(4.1) (2551 = Pgy(Bs <E<E; 4)/Pyy

and the unfolding of the energy spectrum (Figure 4.2),
In order to test the accuracy of SPECTRA, a close

approximation to the Crab Nebula power law Spectrum,8
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UNFCLDING CF SPLCTRUM NUMEBER

AIR THICKALSS
ol RESPONSE FUNCTICN =

= 3,350 GRAVM3Z/CM SC

2

0.C3) * ENERGY +

PRCBABILITY CCAVCLUTICN MATRIX

1.09) 0.257
0.189 1.020
(‘e (0 D.124
Jeli 2.900
Oad 7.0
c.C 0.0
Cal 0.7
ENERGY BIN
20.03 27.50
27.53 3450
34,57 47.00
417.C0 64.00
64.70 87.CO
80.00 115.720
115.00 146.99

(Fig 4.2)

0.200
0.261
1.200
0.108
2.2090
0.0

0.0

FCLCEC

0.Cu9
0.000
0.178
1.000
0.139
0.000
0.0

SPECT

2.2293c-03

2.6318E-03

1.8642E-J3

1.2547€-03

T.6734E-24

3.6748E-04

1.2955E-04

0.0 0.0
0.000 0.0
0.000 0.0C0
0.155 3J3.C3C

1.000 0.2C2
0.075
.0 0.104
ALPFA SPECT
1.8346£-02
1.9766E-03
1.4476E-C3
1.0114E-03
5.6311E-G4
3.14072-C4

9.67T63E-0F

NAI THICKNECSS =

1.179

GRAMS/CM 5C

U420 * SQRTENERGY) +

UNFOLCED SP

2.4826E-C2
2.7511E-C3
1.£716E-C2
1.,276¢E-03
T.4EE1E-C4
3.72146-C4

1.215CE-04

Discrete Channel Apodization computational
results. GAUS prints the [aij] coefficient

0.230

probability matrix and the unfolded spectrum.
Results tabulated in this run are from the
recovery of the power law mentioned in the
previous figure,
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2,25

(4.2) g%-: 22E (photonS/cmgsec KeV)

was folded with the detector response function, and all
other absorption and efficiency effects were applied (Laros,
1973). The resultant spectrum, generated to simulate a
detected spectrum, was given to SPECTRA, which recovered

the original spectrum at the top of the atmosphere with
small computational errors (Fig. 4.1 and 4,3). The high-
est and lowest energy channels have somewhat larger errors
than the central channels due to the extrapolation of the
"detected" spectrum necessary to calculate the effects of
the response function at the boundaries of the spectrum.

SPECTRA was applied to detected spectra from Crab
Nebula drift scans. The result of one computer run, for
the second Crab scan in the June, 1974 flight, is pre-
sented in Figures 4,4 and 4,5. The second and fourth
energy channels are respectively too low and too high
with respect to the Laros spectrum. This was found to
be the case for other methods of determining the spectrum
and for other Crab scans,

SPECTRA was tested for different detector system
parameters, For instance, the unfolding of a test spec-
trum gave more accurate results when 12 energy channels
were used to span the 20-146 KeV energy range instead of
the 7 channels in the June flight.
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mined x-ray energy spectrum for the
Crab Nebula, The power law, given as
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CONCLUSIONS

The discrete channel apodization technique yields
the closest obtainable values to the true x-ray source
energy spectrum at the top of the atmosphere in a single,
efficient pass. These values may be matched to a theor-
etically predicted spectrum (e.g., under a x? minimi-
zation criterien) if one wishes to study the x-ray pro-
duction mechanism. The calculated values for the source
spectrum are independent of any fitting performed after
the determination of the spectrum, unlike the repeated
trial method, where nothing is known about the source
spectrum until a reasonable fit is found. The determina-
tion of the source spectral parameters may be greatly
facilitated by graphing the source spectrum and perform-
ing preliminary visual fitting, or, at least, setting
severe constraints on the type of function and values for
the free parameters chosen for the x? fit.

The discrete channel apodization algorithm may be
applied to any x-ray detector with discrete channels and
a Gaussian response function. It may be possible to
generalize the method to include other types of response
functions, but the necessity for discrete channels lies
at the very heart of the algorithm.

There are some limitations to the apodization method.

Only continuous spectra can be unfolded; 1ine spectra
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cannot be resolved by discrete channel apodization. In
order to get accurate results for continuous spectra,

the detector system needs to have at least five energy
channels. On the whole, the discrete channel apodization
algorithm is an efficient and fruitful process applied to
the determination of the x-ray source spectrum at the top
of the atmosphere. The author hopes that this method may
be used by x-ray astronomers to facilitate and improve

thelr spectrum determinations.

37



APPENDIX

FULL LISTING OF SPECTRA AND ITS SUBROUTINES

SPECTRA is a Fortram program which should be compatible
with most Fortran IV implementations. The data is read in
from a set of cards of specified format, fully explained
in the first page of the listing. SPECTRA can process
several detected spectra measured during a single balloon
flight in one program run.

The discrete channel apodization algorithm is im-
plemented in the subroutine GAUS, which may be used in-
dependently of SPECTRA for detector systems that are not
balloon borne (e.g. satellite detectors), but which have

a Gaussian response function and discrete channels,
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FCRTRAN [V G LEVEL

Q001
€002
€303
0004
Q05
Ccos6
C207
0308
£009
co1o0
0011
col2
col3
C0l4
0015
Ccol6
Ccol7
co1s
0919

zEaNaEaNaNeleNaNalaNalaN ooz aleNatalalaNaaRakalaNsXa ke kainkn s knkaXa ks XaXa]

10
11
12

13

14
199

19 FAIN DATE = 75126 21/55/37

MAIN PRCGRAM TO LIFT BALLOON DETECTED X-RAY SPECTRA 10 THE TCP CF
THE ATNCSPHERE . ASSUMES DISCRETE CHANNELS AND GAUSSIAN RESPCNSE
FUNCTICN FCR THE DETECTOR

WRITTEN AT MIT JANUARY ThRU APRIL 1975 BY JAIME G. CARBONELL

RECUIRES 4 SUBROUTINES,

1) GAUS = APODIZATICN ALCORITHM FOR DISCRETE CHANNELS AND GAUSSIAN RESP.

2) RSIMG SCLVES SYSTEM OUF N LINEAR EQUATIGNS IN N UNKNGWNS

3) ESCAPE INVERTS ESCAPE EFFECT OF ICDINE ABSCRPIION K EDGE IN NAI X-TAL.
4) EPSC CALCULATES EFFICIENCY OF PSC BY I[NTERPOLATICN ON TIME AND ENERGY.

REQUIRES 9 FUNCTIONS
GAUSP XTRPOL ESCR TRAIR TRNAI TRINS SIGF EFFEL FINTRP

FIRST SET OF DATA CARCS IS THE EFFICIENCY TABLE PRECEEDED BY 1 CARD
WITH THE (12) NUMBER OF ENTRIES (= NUMBER OF TIMES IN FLIGHT = AUMBER
OF CARCS IN EFFICIENCY TABLE.) EACH CARD CONSISTS CF A TIME IN CCT SEC,
FCLLCWEL BY 7 EFFICIENCY VALUES, ONE FOR EACH CHANNEL.

SECONC SET CF DATA CARCS CONSISTS OF DETECTCR PARAMETERS
1) NUMEER CF ENERGY CHANNELS (12)

2) THICKNESS CF NAI CRYSTAL IN CM/CM#%2 (F7.3)

3) A,B.C VALUES FUR SICGF RESPCNSE FULNCTION (3F7.3)

4) NBINS+#1 ENERCY BOUNCARY VALUES (1CF7.2)

5) NUMBER CF SPECTRA TC BE PROCESSEC (12)

THE FOLLCWING CARCS APPLY TO EACH SPcCTRUM - MUST Bz REPEATED
6) DETECTGR AREA IN CM**Z (F1C.1)

7) CLT TIME (FLO.1)

3) AIR THICKNESS IN GM/CM*%*2 (F7.3)

3) CCUNT RATZS PER CHANN:ZL (CETECTED) IN CTS/SEC (10F7.3)

REAL EKeVI(51),EKEVALS0), TSPECTIS5C),,SPECT(SC,8)
REAL SIGVALUYD),SICPAR(3)
EFF=1.0

CALL EFSC

REAC(5,10) NBINS

FCRMAT(12)

READ(5,11) TENAI

FCRMAT (FT7.3)

REACI5,12) (SIGPAR(I)},I=1,3)
FCRMAT(3F7.3)

KK=NEINS+1

REAC{S,13) (EKEVII)yI=1,KK)
FCRMAT(10F7.2)

[SPEC=0

READ(5,+14) NSPEC

FCRMAT (12)
IF(NSPEC.LE.ISPEC) €CC TG 1C1
1SPEC= ISPEC+]

REAC {5,18) AREA
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FCRTRAN 1V G LEVEL

€020
cn21
0022
co23
C024

0025
€026

0217
€028
0029
£030
2031
Co32
0033
€034
%035
€336
0037
0038
C039

040
Co41
t042
0043

€045
046
0347
2048
€049
250
951

€J)s52
J053
054
C055

€056
€057
{058
0059

0060
061
€062
€063
C064
0065
CQ66

18

29

38

33
34

39

19 MAIN DATE = 75126

READ(5,18) CLTIME

FORMAT(F10.1)

READ(54511) THAIR

REACISy15) (SPECT(I,1),1=1,NBINS)
FCRMAT (10F7.3)

~=-PRINT CUT INPUT PARANMETERS READ

WRITE(6,16) ISPEC,THAIR,TENAI,(SIGPAR(I),[=1,3)

FCRMAT {*1%4///7/7//* UNFOLDING CF SPECTRUM NUMBR ',12,//

1'* AIR THICKNESS ="4F7.3,' GRAMS/CM SQ NAI THICKNESS =',
2FT7.3," GRAMS/CM SQ'y /" RESPUNSE FUNCTICN =',F7.3,' # ENERGY
1 "4sF7.3,* * SQRT{ENERCY) + V2ZWFT.3,27771)

0C 29 J=1,NBINS

EKEVALJ)=(EKEVIJ)I+EKEVIJ+1))/2

B0 3J J=1,NBINS

K=J+1

SFECT{J,1)=SPECT(J,1)/(AREAX(IEKEVIK)I-EKEVIJ)]))
SPECT(J»2)=SPECT{Js1)/EFFELIEKEVA(J)]}

"CALL EFFPSC(EFF, CDTINE,EKEVA(JD.EKEVA)
SPECT(J,3)=SPECT{J,2)/EFF

TSFECT(J)=SP=CT(J,23)
SICVAL(J)=SIGFIEKEVA(J)»SIGPAR(1)+SIGPAR(2),SIGPAR(3))}/2.0
CALL GAUSINBINS,EKEV,EKEVA,SICVAL,TSPECT,SICPAR)
WRITEL6,1T) (SIGVAL(I)1X=1'NB[NS)

FCRMAT('OS IGVAL= ', 10FT.2)

--HAl CRYSTAL UNFOLDING JUST COMPLETED -- NOW DC FIRST CRCER

ESCAPE CCRRECTION ANC BRINCG SPECTRUM TO TOP OF ATMCSPHERE
TFLUX=0

CC 41 J=1.NBINS

SPECT(Jy4)=TSPECT(J)

CALL ESCAPE({EKEV,TSPECY,NBINS)

£C 31 J=1, NBINS

K=J+l

SPECT(Js5)=TSPECT(J)

SPECT{J,6)=SPECT(J,45)1/7(1.0~ TRNAI(THNAI,EKFVA(J)))
SPECT(J,7T)=SPECT(J,6)}/TRINSI{ZKEVA(I))
SPECT(J,8)1=SPECT{J+7)I/TRAIRITHAIRIEKEVA(J))
TFLUX= TFLUX+SPECT(J'8)*(;KEV(K) EKEV(J))

ECATINUE

--PRINT SPECTRUM AT EACFH STEP IN PROCESSING ARD UNFULDING

ARITE (£937)

FORMATL 'O UNITS = CTS/{Clx%2%SECHKEV}*/)

aRITE(6,32)

FCRMAT {0 ENERCY BIN MEASURED SpP EFFEL CORR EFF
LR NAI UNFCLCING ESCAPE CORR NAI ABSORPTICN TRINS
2INALYY)

CC 34 J=1,NBINS

K=J+1 -

WRITE(6+38)

FORMAT{! [wwwcrmrmrcr e csccn e nea ———————— e —————————

Al ")

nRITEL6+33) EKEVIJ) EKEVIK) p(SPECT(J,I),I=1,8)

FORMATU(* [ '42F7.2,1P8El4.4," 1)

CCATINUC

wRITE(6,38)

WRITE(64+39) EKEV(1),EKEVIKK),TFLLX

WRITE(6,35) ISPEC

FCRMAT('0',//" TOTAL INVZGRATED FLUX BETWZEN',F7.2,* AND',F

Lo

21755737

PSC CCR
TRAIR(F

T2



"CRTRAN IV G LEVEL 19 MAIN DATE = 75126 21:/55737

1* KEV IN UNITS OF XRAYS/{CM*#2%SEC) IS *,1Pcl4.5//)

Cco67 35 FCRMAT('0',///% ENL CF PROCESSING FOR SPECTRUM *,12//7)

€068 GC T0 100

€069 101 CONTINUE

0370 WRITE(6,36)

Co71 36 FCRMAT('0',//7//7/" CCMPLETION OF UNFOLDING ANC LIFTING OF SPECTRA
1 11717)

€072 STCP

0073 FNC

b1



FCRTRAN TV G LEVEL 19 CAUS DAYE = 75126 21755737

©

001 SUBRCUTINE GAUS{(NBINS, XKEVsXKEVA,LMDA,XSPEC1,SIGPAR)
C-==-- CAUSSIAN UNFOLDING CF XRAY SPECTRUM,
€002 REAL XKEVIS51)9AL(50,53)sLMDA{S1),XSPECL(5C),XSPEC2{50)
€Co3 REAL XSPEC3(50),XKEVA(S50),SIGPAR(3)
€004 SCPI=1.172454
0005 DU 14 J=1,NBINS
€006 K=J+1
cQo7 CC 14 1=1,NBINS
€008 L=1+1
€009 AHIGH=XKEV {K)
€010 XLEW=XKEV (J)
cott CE=XHFICH-XLOW
co12 IF (I-J) 41,43,42
G013 41 ANEAN=XKEV (L)
C0l4 GC TC 15
c015 42 XMEAN=XKEV(I)
c016 15 XLMOA=LNCA(T)
0017 ALy 1) =SCPI*XLMDA*GAUSP{XLOW,XHIGH, XMEAN,XLMDA)/CE
col18 GC TC 14
coL9 43 A10441)=1.0
€020 14 CONT INUE
C--~--- LINMIT EXTRAPQLATION CORRECTION
C----- {MCRE PRECISICN REC FOR SMALLER E BINING)
c021 CE=XKEV(2)=-XKEV(1)
0022 X4=XKEVA(1)-DE
€023 SZERC=XTRPOL(XKEVA{2),XKEVA(2 )y XKEVA[1) X4, XSPECL(3),
IXSFECL(2) 4 XSPECL(1))
024 ALNDA=S IGF{X44SICPAR{ 1), SIGPAR(2),SIGPAR(3)1/2.0
025 SALPHA=SZERO*LE/(DE+4SGPI*XALMDA)
0026 XMEAN=XKEV (1)}
€027 XLCW=XKEVI(1)
028 XHIGHF=XKEV(2)
G029 SCCRR=SALPFA#SQPI%xXLMCAXGAUSP (XLOWyXHIGH  XMEAN, XLMDA) /DE
o3¢ wRITE(6,51) SZERC,SALPFA,SCCRR
031 51 TCRMAT ('OSZERC,SALPHA, SCURR= '4v3E14.4)
2032 {SPECL1{1)=XSPEC1(1)-SCCRR
€033 NK2=NBINS-2
034 NK1=NBINS-1
€035 sN1=NBIAS +1
0036 , CE=XKEVINN1)-XKEVINBINS)
6037 X4=XKEVA(NBINS)+CE
co38 - SZERC=XTRPOL{XKEVAINKZ) ) XKEVAINK 1) yXKEVAINBINS) yX4 4 XSPECLINKZ) »
IXKSFECL(NKL )+ XSPECL{NBINS))
0039 ALMDA=SIGF(X4,SIGPAR({1),SIGPAR(2),SIGPAR(3))/2.C
0049 SALPHA=SZERCO*CE/(CE+SCPI*XLMDA)
C041 ANMEAN=XKEV(NBINS)
2042 XLOW=XKEVINBINS)
0043 XFIGH=XKEV (NN1)
044 SCCRR=SALPFA#SQPI*XLMCA*CGALSP { XLOW ¢ XHIGH, XMEAN, XLMDA) /DE
€045 WRITE(6451) SZERO,SALPFA,SCUORR
046 XSPECL(NBINS)=XSPECI{NBINS)-SCORR
C----- NOw SOLVE MATRIX OF CCNVCLUTION COEFF., FOR S ALPHA,
C047 WRITE(6,30)
048 30 FCRMAT({'0*,///* PROBABILITY CCNVOLUTION MATRIX?/)
2049 0C 16 I=1,NBINS
£050 WRITE(6,31) (AL{I,J),J=1,NBINS)
051 31 FCRMAT(10FT7.3)
c0s2 16 XSPEC2([)=XSPECL(I)

L2



FCRTRAN IV G LEVEL

0053
€054
€055
€056
0057
Cc058
€059
0060
coe61
C062
€063
0064
C065
€066
G067
0068
C069
co7o0

17
18
19
29
21

22

19 GAUS DATE = 75126 21755737

CALL RSIMQ(50,NBINS,A1,XSPEC2,0)

CCNTINUE

DC 17 I=1,NBINS

K=1+1
KSPEC3(I)=XSPEC2(I)*{1.0+SQPI*LMCA(I)/(XKEVIKI-XKEVIII))
CCANTINUE

WRITE(6,18) :
FORMAT{ *OENERGY BIN FOLCED SPECT ALPHA SPECT UNFOLDED SP'/)
bC 19 I=1,NBINS

K=[+1

WRITE(6+20) XKEV(I)g XKEV(K)XSPECLII) o XSPEC2{1) ,XSPEC3 (I}
FORMAT (2F7.2,1P3E14,.,4/)

aRITE(6421)

FCRMAT('0%',///7/7/7°% END OF GAUSSIAN UNFOLDING *2/7/7)

DB 22 I=1,NBINS

ASPECLUL)=XSPEC3(I)

RETURN

ENC

L3



FCRTRAN IV G LEVEL 19 RS IMQ DATE = 75126 21755737

coo1l

0002
coo03

0004

<005
€006
007
ccos

CJ09
z010

co11

co12
co13
C0l4
<015
U016
<017

<018
c019
020
£o21

J022
€023
£024
3925
23?6

027
cu28
€029

€030

€031
€032
€033
0034
035
€036
2037

o0

e Xyl

aNalal

OO0

YOO

SUBROUT INE RSIMQ(NCIM» NORCER, COEFF, RHS, IERR}

REAL CCEFF, RHS, BIGC, SAVE, TOL, ABS
INTEGER NORCERe NCIMy I» Jy Ko IMAX, JPLly JJs NM1

DIMENSICN COEFF(NDIM, NCRCER), RHS(NCRCER)

CHzCK FCR ARGUMENT ©ERRCRS.
IF (NDIVM JGE. NORCER .ANC. NORDER .GT. C) GC 10 10

[ERR = 2
WRITE (&s 1001) NCIM, NORDER
RETURN

10 TOL = C.0€0
iERR = Q

CC TORWARC ELIMINATION, WITH PARTIAL PIVCTING.
CC 70 J' = 1, NORCER

CHCCSE LARCEST ELEMENT. RENMAINING IN THIS CCLUMN,
BI1GC = 0.0E0
CC 22 I = Jy» NCRCER
IF (ABS(BICGC) .CE. ABS(COEFF(I, J))) GU TC 29
EIGC = CUEFF(I, J)
IVAX = ]
20 CCNTINUE

If ALL ELEMENTS KAVE MAGNITUCES LESS THAN CR EQULAL TC TCL, THEN
MAIRIX IS SINGULZ2R,
IF (ABSIBIGC) .GT. TOL) GO TC 20

IERR = 1
WRITE (6, 1002)
RETUERN

INTERCEANGE RCWS IF NECESSARY, AND DIVIDE NEW CURRENT RCW BY
PIVGT ELENENT.
30 CC 4) K = 4y NORCER
. SAVE = COUEFFtIMAK, K)
CCEFF(IMAXy K) = CGEFF(J,y K)
CCEFF{J, K) = SAVE / BIGC
40 CONT INUE

CC T+E SAME FCR THE RIGHT~-HANC SIDE.

SAVE = RHES{IMAX)

RHS {IMAX) = RHS{J)

RFS(J) = SAVE / BIGC
SUBTRACT MULTIPLES QF THIS ROW FRAM ANY REMAINING RCWS TQ MAKE
LEACING CCEFFICIENTS VANISEH.

IF (J .GE. NORDER) GG TC 80

JFl1 = J + 1
CC 60 I = JP1ly NCRCER
SAVE = COEFF(I1, J)

CC 50 K = JP1l, NCROER

50 COEFF(1l, K) = COEFF(I, K) ~ SAVE * CCEFF{J, K}
FES(I) = RHS(I) - SAVE * RHS(J)

60 CONTINUE

4l



CRTRAN 1V G LEVEL 19 . RSIMQ DATE = 75126 21/55/37

038 70 CCATINUE
c
C NCW FIND ELEMENTS OF SCLUTICON VECTOR IN REVERSE CRDER BY CIRECT
C SLESTITUTICN.
€039 80 AM1 = NCRDER - 1
{040 «P1 = NCRCER + 1
o4l NC 130 JJ = 1, NM1
042 J = NORCER - JJ
£043 JP1 = J + 1
(044 CG 99 KK = 1» JJ
C045 K = NP1 - KK
046 RES(J) = RHSUJ) - COEFF(J, K) * RES(X)
CC47 90 CCNTINUE
€048 100 CONTINUE
C
<049 RETURN
C
3050 1001 FORMAT(Z3H RSIMQ ARGUMENT LRROR, 2111)
C051 1332 FCRMAT (22kH RSIMGC ECUATIONS ARE SINGULAR.)
€052 CNC

L5



FCRTRAN IV G LEVEL 19 ESCAPE CATE = 75126 21755737

C0o01

€002
€003
04
c005
c0a6
Cco7
€008
€009
£JI10
col1l
L0122
013

C0l4
€I1%
2316
C017
018
£019

2320
€021
€022
0923
€024
£02s
Co26
nn217
28

Cl29
030

€031
132
«J33

SUBRCUT INE ESCAPE(XKEV,TSPECT,NBINS)
C----- ESCAPE CORRECTION ON ENTIRE EXPANDED SPECTRLM
C RETURNS NEW SPECTRUNM BY CLOBBERING TSPECT
REAL XKEVI(S51),TSPECT(S0),FSPECT(3CC)
INTECER IKEVIS®1)
KK=NBI[AS+1
00 1) I=1,KK
12 IKEVII)=IFIX(XKEV{I))
LC=IKEV(KK)-IKEV(1])
[CCUNT=NBINS
g 20 I=1,L0
N=LC~-T+IKEV(1l)
[F (NLTLIKEV(ICCUNT)) ICOUNT=ICOUNT-1
[Cl=ICCUNT +1
FSPECTIN)=TSPECTUICQUNTI/(IKEV(ICL)-IKEVIICOUNT))
CeoeashRITE(64101) ICCUNT,IKEV(ICOUNT),TSPECT(EICOLNT) N FSPECTIN)
20 CCNTINUE
£C 30 I=1,LC
M=LC-T+1KEV(1)
N29=N=-29
CSC=ESCR({FLCATIN))
IF (N2S.GELIKEV(1)) FSPECT(N29)=FSPECTIN29) /{1+4ESC*FSPECT(N)/FSPEC

1T(N29))
FSFECTIN)=FSP=CT(N}/(1-ESC)
30 CCNTINUE
CC 40 I=1,NKBINS
4 TSPECT(1)=0.9

{CCUNT=ABINS
CC 50 I=1,1¢C
N=LD-T4IKEV{1)
IF (NJLTLIKEVIICOUNT)) ICCUNT=ICOUNT-1
TSFICTUICOUNT )=TSPcCTUICOUNT)+FSPECTIN)
CeseesRITE(G,101) ICOUNT, IKEVIICOUNT)» TSPECTUICOULNT) oNoFSPECT(N)
50 CCNTINUL
1171 FCRMAT (* ICOUNT, IKEV(ICOUNT), TSPECT{ICOUMT) N,FSPECTI(N) = *,
$2149C814.4,14,214.4)
RETURN
DERUC SUBCEK
cNC

L6



FERTRAN IV G

ool

cco2
€J03
004
€305
Cd06
C0o7
Ggos
coco9

co10
co11
PR
0013
{214
C015

LEVEL

19 EPSD DATE = 75126

SUBRCUT INE EPSD

-EFFICIENCY OF PULSE KEICHT DISCRIMINATOR

THIS ENTRY REACS THE EFFICIENCY TABLE

LIVENSICN PSCU5047)sCOTX{S5C),CODTY(S0)EX{TYLEY(T)
VEAD(5,10) NTIMES

FCRMAT(]2)

CC 20 1=1,NTIMES

REAC(5+30) CCYX(I)o(PSCl[sd)ed=1sT7)

FORMAT(F10.0,7F10.3)

RETURN

-NTRY EFFPSD{ZFF,Tyc,EX)

~INTERPCLATES EFFICIENCY TABLE FOR A GIVEN TIME AND ENERGY
WRITE(6+81) EFF,THEyLEX(I)yI=1,1)

FCRMAT('OEFF,TyEyEX= ',1(F10,2)

CC 50 J4=1,17

0O 40 I=19NTIMES

COTY(I)Y=PSC(],J)

EY(J)=FINTRP{T,NTIMES,CCTX,COTY)

EFF=FINTRP(EyT4+EX,EY)

WRITE(6982) EFFo(EY(I)eI=14T7),(COTX(L},COTY(I),I=14NTIMES)

21/55737

FCRMAT (*QEFF,EYyCOTX,CLTY= "yF7,29/7F7.2,/10F10.2+/13F10.24/

* 1CF10.24/10F10.2/)
RETURN
ENC



FCRTRAN IV G LEVEL

001

¢a02

€003
C004
€005
Q0026
coo7
o008
€009
<010
011
{oL2
©013
Col4
co15
€016

coL7

018
o119
€020

TCRTRAN IV G

2001

€co2
coo03
CJ304
Ccaa5
cCo6
€007
c098
€009
col10
Co1l1
col12
co13

1

LEVEL

19 CAUSP DATE = 75126 21755737

FUNCTICN GAUSP(X1,X2,XMEAN,SIGMA)

CCNPUTES THE INTEGRAL UNDER A NCRMALIZED GAULSSIAN DISTRIBUTIGN
AFPRCX. ACCURATE TO SIX CIGITS. X1=LOWER AND X2=UPPER INTEGRATION
LIMITS IN TERMS OF X CCORDINATE, NOT SIGMA INITS

REAL BEB(5)/.31638153, ~.3565637€, 1.7814779, ~-1.8212560, 1.3302744
/ .

REAL XX{2)4RRUZ2),PPL2),EE(2)

XX(1)=(X1-XMEAN)/SIGMA

XX{2)=(Xx2-XMEAN)/S IGMA

CC 30 I=1,2

FPUIN=1./70(1.+442316419*%ABS{XX(I)))

I=1.0

RR{I)=C.0

LC 10 J=1,5

T=T*PP([)

RR{T)=RR(I1)+T%BB(J)

EE(I)=0.0

IF(XX({I)elTol0.0.ANDXX{1) oGV e—10.C) ECLI)=EXP(-XX(1)%xXxX([)/2)
CAUSP=ABS((RR{2)*EE(Z)-RRU1)*EE(1))/2.5C6628)

WRITE (6420) GAUSP,X14X2,XMEAN,SIGMA

FCRMAT (' GAUSP,X1,XZ,MEAN,SIGNMA= *,5F10.4)

WRITE{6,21) (XX{I)eRRUI)sPPII)+yEE(I)s[=1,2)

FORMAT(10E12.3)

RETURN

ENC

19 ZSCR DATE = 75126 217557317

FUNCTICN ESCRIUE)

APPRCXINMATE ESCAPE PRCBABILITY FOR X-RAYS FROM ICDINE K FLOURESCENCE
VI2A FRCANT FACE CF 3 MM NAI CRYSTAL
IF(E.LE.33.) GU TO 1

IF(E.GT .33..AND.E.LE.S5C.) GO TO 2
IF(E.GT.50..AND.E.LE.BC.) GO TO 3
IF(E.GT.80.] ESCR=.C%55

RETURN

ESCR=0.

RETURN

cSCR=.27-({E~-33.)/25.)%.21

RETURN

ESCR=414-{(E~-50.,)/25.)%.C8

RETURN

=NC

48



FCRTRAN IV G LEVEL 19 XTRPOL CATE = 75126 21755737

cQol FUNCTICN XTRPOL(IX19X29X2,X4,51552,52)
[ AFFRCXIMATE EXTRAPOLATION FOR DETECTED SPECTRUM FUNCTION.
€002 SLCPEL=(S2-S1)/(X2-X1)
;003 SLOPE2=(S3~-S2)/(X3-X2)
C0d4 - SLCPE3=0
€005 . {F(SLOPZ1.EQ.0) CU TO 5 .
co06 1F (SLCPE1.GT.0.3 +AND. SLCPE2.CT.C.C) GO TC
co07 IF (SLCFE1.LT,0.0 .ANC. SLOPE2.LT.C.C) GO TC 1
Q08 SLCPE3=SLOPEZ2-SLCPEL :
cco9 GC TG 5
<010 1 SLCPE3=SLCPEZ2*SLOPE2/SLOPE]
col1 {F(ABS{SLOPE3).GT ,ABRS(SLCPE2)) SLOPE3=SLOPE2
£012 5 XTRPCL=SLOPE3*(X4-X2)4+S3
€013 WRITE(6,10) SLUPZ1,SLUPE2, SLOPEZ,XTRPOL
€214 19 FORMAT(*QSLCPEL,SLOPE2sSLOPE3,XTRPOL = ",4El4.6/7)
€J15 RETURN
‘rQl6 ENC
FLRTRAN IV G LCVEL 19 . FINTRP DATE = 5126 217557317
€301 FUNCTICN FINTRP(XoNVALSXVALS,YVALS)
C-=-=-- {NTERPCLATES TABULATEC FUNCTICN, XVALS AND F{XVALS) = YVALS
C TC CALCULATE F(X). LINEAR EXTRAPOLATION [F X CUTSIDE TABULATED RANGE.
9932 DIVMENSICN XVALS(50),YVALSISO)
Cud3 [F(X.LE.XVALS(1)) GC TQO 29
2034 IFIX.GELXVALSINVALS)) GO TO 30
cCcos N=1
€206 10 M1=N
€227 A=N+]
£0o8 IFIN.GT.NVALS) GC TC 130
€co9 . IF(X.GTXVALSIN}) €O TO 12
2310 TINTRP=YALSINL) #+{X-XVALS(N1) )%= {YVALSI(NI-YVALS(NL) )/ (XVALS(N)~-
. 1 XVALS(N1))
011 GC TC 45
co12 20 FINTRP=YVALS{ 1)-({XVALS{1)-X)={YVALS(2)-YVALS{1))/(XVALS(2)~-
1 XVALS(1)) ’ .
o113 GO TC 49
col4 30 FINTRP=YVALS(NVALS }+{X=-XVALSINVALS))*(YVALSINVALS)-YVALS(NVALS-1))
1 Z(XVALSINVALS)=-XVALSINVALS~-1))
€015 49 CCNT INUE
) o WRITE(64+81) FINTRP,X,NVALS
2016 81 FCRMAT(*0 INTERPyX,NVALS= *,2F1C.2,13}
C WRITE (6+482) (XVALS([), YVALS(I),I=1,NVALS)
0017 R2 FORNAT(* XVALS,YVALS= *,1CF10.2)
cor8 RETURN
co19 CEBUG SUBCHK
€320 - ENC



FCRIRAN IV G
coo1
€002

€003
€004
[

FCRTRAN IV §
ool
€002

€033
v004

FCRTRAN IV G
{001

£002
cCco3
2004
2305
2006
coo7
{008

FCRTRAN IV G
€901
€092

c003
{004

FCRTRAN IV G
cco1
0092

€093
CCo4

LEVEL

LEVEL

LEVEL

W N

LEVEL

C-=>—-

LEVEL

19 TRAIR DATE = 75126 21755737

FUNCTICN TRAIR{THFAIRVE)

PRCBABILITY OF TRANSMISSION THROLGH ATMOSPHERE
TRAIR=EXP{-{5+30%(1C./E)%%2.,5C+.16)*THAIR)
RETURN

ENC

19 TRINS DATE = 15126 21755731

FUNCTICN TRINS(EE)

PRCBABILITY OF TRANSMISSION THRU STYROFOAM LAYER (JUNE, 1974)
TRINS=CXP(-1.0%({B.6/EE)*%2.,65)

RETURN

ENC

19 TRNAIL DATE = 75126 21/55/31

FUNCTICN TRNAI(TENAILE)

PRCEABILITY ULF TRANSMISSION THRCUGH NAT CRYSTAL
{FIE~-32.0) 1,1,2

4=5,8

c0 1C 3

A=28.0

TRNAI=CXP(-TENATI*[A%{22,0/E)%%2.65))

RETURN

ENC

.19 . SIGF CATL = 75126 21755737

FUMCIICN SICF(E,A,E,C)

GIVES 5IGMA FOR CAUSSIAN RESPCNSE FLNC'IUN -- cMPIRICAL FORMULA
SICF = (A*E + B*SQRT(E)} + C)

RETURN

N

19 EFFEL DATZ = 75126 21755737

FUNCTICN EFFELLE)

EFFICIENCY CF ELECTRONICS ON SCALE 1 TC O
EFFEL=C.94

RETURN

ENC

50
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