
 

 

  
 
Abstract— StreamIt is a language specifically designed for 
modern streaming applications. A certain important class 
of these applications operates on streams of bits. This 
paper presents the motivation for a bit-packing 
optimization to be implemented in the StreamIt compiler 
for the RAW Architecture. This technique aims to pack 
bits into integers so that operations can be performed on 
multiple bits at once thus increasing the performance of 
these applications considerably. This paper gives some 
simple example applications to illustrate the various 
conditions where this technique can be applied and also 
analyses some of its limitations. 
 

Index Terms— Bit-packing, optimization, Streaming 
Applications,  StreamIt. 
 

I. INTRODUCTION 
 

Streaming applications are a new and distinct domain of 
programs that are becoming increasingly important and 
widespread. StreamIt is a language and compiler designed to 
make programming in this domain easy and efficient [3], [4]. 
In addition the StreamIt compiler aims to use the structure of 
the programs to generate efficient code for this class if 
applications. Streaming applications include the domains 
digital signal processing, embedded applications and many 
others. A subset of these applications like programs for   
digital circuit design and simulation operate on streams of bits. 
For this purpose StreaMIT has a data type defined as bits. But 
typically microprocessors do not operate on individual bits and 
so these bits are represented as bytes/integers in the hardware. 
Thus operations on a single bit are as expensive as operations 
on an entire integer which makes this implementation very 
inefficient. 

But an important observation is that in streaming 
applications typically same operations are performed 
repeatedly on all the data in the stream. So in most cases it 
might be possible to operate on multiple bits at the same time. 

 
Manuscript received November, 2002 This work was supported by 

Singapore MIT Alliance.  
Kunal Agrawal(email: kunal@comp.nus.edu.sg) 
Saman Amarasinghe (email: saman@lcs.mit.edu) 
Wong Weng Fai(email: wongwf@comp.nus.edu.sg) 

Taking advantage of this observation we propose and motivate 
an optimization technique wherein we put multiple bits in one 
integer and perform operations on all these bits at once. This 
could significantly increase the performance in many cases. 

This paper is organized as follows. In section 2 we give 
some background on the StreamIt language and syntax. In 
section 3 we give the motivation for this optimization. We 
present the various ways of bit packing in section 4 with 
examples. Section 5 contains the conditions when this 
optimization cannot be applied and Section 6 has the 
conclusions.  

II. BACKGROUND 
 

A. StreamIt Language Overview 
 

The StreamIt language provides novel high-level 
representations to improve programmer productivity and 
program robustness within the streaming domain. The 
programmer constructs a stream graph containing blocks with 
single input and single output and describes the function of 
atomic blocks and structure of composite blocks. The compiler 
generates code for each block and applies optimizations to the 
stream graph to produce efficient code for the target 
architecture. 

Computation in StreamIt is performed within stream objects.  
Every stream object has an input type and an output data type; 
the object is connected to ``tapes'' of a hypothetically infinite 
number of homogeneous data objects.  

The various stream objects are filters, pipelines, splitjoins 
and feedbackloops. Filters are atomic and have an 
initialization code and a steady state work code. Pipelines, 
feedbackloops and splitjoins are all composite structures that 
include some number of stream objects as children. Each 
structure specifies a pre-defined way of connecting streams 
into a single-input, single-output block. 

 
1) Filters: The basic unit of computation in StreamIt is the 

Filter. All computation in StreamIt takes place within filters. 
The central aspect of a filter is the work function, which 
describes the filter's most fine grained execution step in the 
steady state. Within the work function, a filter can 
communicate with neighboring blocks using the tapes 
described above. These high-volume channels support the 
three intuitive operations: a) pop() removes an item from the 

Bit-Packing Optimization for StreamIt 
Kunal Agrawal    Saman Amarasinghe          Wong Weng Fai                           

 Singapore MIT Alliance   Singapore MIT Alliance and        Singapore MIT Alliance and 

Laboratory of Computer Science    Department of Computer Science 

Massachusetts Institute of Technology       National University of Singapore 



 

 

end of the channel and returns its value, b) peek(i) returns the 
value of the item i spaces from the end of the channel without 
removing it, and c) push(x) writes x to the front of the channel.  

Filters must explicitly declare their initialization code if 
present, but also have the option of omitting it.  A filter may 
have a single anonymous work function, or multiple named 
work functions.  Each work function must declare its I/O rates, 
the number of items one call to the function removes, 
examines, or places on its tape.  A basic filter declaration 
looks like the code shown in Figure 1. 

Figure 1 : Filter Code 

One important point of note is that StreamIt requires filters 
to have static input and output rates. That is, the number of 
items peeked, popped, and pushed by each filter must be 
constant from one invocation of the work function to the next.  

 
2) Pipeline: The simplest composite filter is a pipeline.  A 

pipeline contains a number of child streams; the output of the 
first stream is connected to the input of the second, whose 
output is connected to the input of the third, and so on as 
shown in Figure 2: Pipeline. All the streams are added to the 
pipeline using the add statement. Note that output type of the 
first stream should be the same as the input type of the second 
stream and so on. In addition the input of the first stream 
should be the input type of the pipeline and the output type of 
the last stream should be the output type of the pipeline. 

 

Figure 2: Pipeline 

The body of the pipeline declaration is the initialization 
code; no internal function declarations or message handlers are 
allowed.   

 
3)Split-Joins:A split-join allows computation to be run in 

parallel, possibly using different parts of the input stream.  It is 
so named because incoming data passes through a splitter, is 
distributed to the child streams for processing, and then is fed 
through a joiner to be combined into a single output stream as 
shown in Figure 3: SplitJoin. 

 

 

Figure 3: SplitJoin 

The splitter specifies how items from the input of the 
SplitJoin are distributed to the parallel components. The type 
of splitters allowed are: a) Duplicate, which replicates each 
data item and sends a copy to each parallel stream, b) 
RoundRobin(i1, i2, : : :, ik), which sends the first i1 data items 
to the stream that was added first, the next i2 data items to the 
stream that was added second, and so on, If the weights are 
ommitted from a RoundRobin, then they are assumed to be 
equal to one for each stream. Note that RoundRobin can 
function as an exclusive selector if one or more of the weights 
are zero. 

Likewise, the joiner is used to indicate how the outputs of 
the parallel streams should be interleaved on the output 
channel of the SplitJoin. The only joiner allowed is 
RoundRobin, whose function is analogous to a RoundRobin 
splitter.  
 
3)Feedback Loops: The FeedbackLoop construct provides a 
way to create cycles in the stream graph. A feedback loop has 
a body stream.  Its output passes through a splitter; one branch 
of the splitter leaves the loop, and the other goes to the loop 
stream as shown in Figure 4: Feedback Loop.  The output of 
the loop stream and the loop input then go through a joiner to 
the body's input. 
 

 

Figure 4: Feedback Loop 

Enqueue statement takes a value and places it in FIFO order 
on the output tape from the loop stream. We need to enqueue 
enough items that the input joiner will be able to fire once; 
enqueuing more items causes a delay in the feedback loop. 

 

B. StreamIt Compiler for RAW 
 

Though StreamIt is architecture independent, it’s structure is 
especially suitable for compilation to grid based architedture 



 

 

with software exposed communication [1], [2]. The StreamIt 
compiler being developed at MIT Laboratory of Computer 
Science targets the RAW Architecture [5]. RAW stands for 
raw Architecture Workstation. It is composed of 
interconnected tiles each tile comprising of ALU, FPU, 
registers, data memory, programmable switch etc. The 
communication between these tiles is fully exposed to the 
software. As we have seen, StreamIt is composed of individual 
filters with fixed communication patterns. Thus these filters 
can be assigned to different tiles which perform 
communication in parallel. Since StreamIt syntax exposes the 
complete structure of the stream graph to the compiler, the 
compiler can work out the best layout at compile time, thus 
improving the performance.  

III. MOTIVATION 
 

A certain class of streaming applications has bits as the data 
on the stream tapes. There is a bit datatype defined in the 
streamit language definition. But in general, a microprocessor 
computes on bytes or words of data and not individual bits. 
Thus these bits are represented as integers after compilation. 
Eg. bit c = 1&0 is converted to int c = 00…000 & 00…001 

This seems to be a big waste of computation resources. Also 
the StreamIt compiler targets the RAW architecture which, as 
explained above has interconnected tiles. So to send an entire 
integer for one bit is a waste of communication bandwidth. 

Thus we propose this bit packing optimization. The idea is 
very simple. We try to put many bits into an integer instead of 
just one and then perform computation on this integer once 
effectively performing that operation on all those bits. Thus it 
is obviously necessary that the same operation is required to be 
performed on all these bits. This idea is especially feasible for 
StreamIt because typically the filter performs the same 
computation on all the data items on the incoming tape before 
putting them on the outgoing tape. This also addresses the 
communication problem since if we manage to pack an entire 
application or even many communicating filters then we can 
send the bit packed integers instead of individual bits thus 
decreasing the communication requirements. 

IV. BIT PACKING 
 

As explained above the idea of the optimization is to put 
multiple bits into an integer and perform operations on them as 
if they were one unit. Thus the programmer writes the program 
in terms of filters and other constructs that operate on bits. The 
compiler should automatically analyze where packing is 
possible and convert the program accordingly. There are two 
aspects to this conversion.  
• Converting the filter so that it operates on integers instead 

of bits. For this we first need to analyze the filter to see if 
it can be packed (the conditions when packing is 
impossible are described in section 5). And if so how it 
should be packed. 

• Packing and unpacking the bits. Since the input to the 
filter is originally bits we need to put a certain number of 
bits into a single integer. This effectively means adding 
another filter that will do the packing. Also it might not be 
possible to pack the next filter in the stream. Thus we 
have to again unpack the integer and send a stream of bits 
to the next filter. 

One of the important decisions to be made is how many bits 
should be packed into an integer. If we put more bits into an 
integer, we should theoretically get a higher performance 
advantage but the opportunities for packing may be fewer. 
Also trying to pack too many bits could cause some filters to 
remain idle while they are waiting for enough bits to arrive for 
packing. This may cause a drop in performance. Currently we 
have chosen to pack 8 bits in one integer. This strategy may be 
re-evaluated later. 

In the following sections we will use some simple example 
programs to illustrate some of the issues involved in bit 
packing. 

 

A. A single NOT Gate  
 

The simplest candidate filter for packing would be a 1->1 
filter. That’s a filter that pops one bit from the input tape and 
pushes one bit onto its output tape. Such filter can be easily 
and intuitively packed (assuming it satisfies all other 
conditions described in Section 5.). This is illustrated in the 
example application of NOT gate in Figure 5: Example 1. 
 

 
 

Figure 5: Example 1, Unpacked NOT 

Note that top level stream in StreamIt has to be void->void 
type, and the source of input data and the sink of output data 
also have to be filters. 

It is fairly easy to pack this application. The compiler has to 
just insert a packing filter before the NOT filter and make 
changes to the NOT filter so it will work correctly on integers. 
Also since the user probably wants the output also in terms of 
bits, we unpack before the output. The changes are illustrated 
in Figure 6: Example 1, Packed NOT. 
 



 

 

 
 

Figure 6: Example 1, Packed NOT 

B. A One Bit Adder: 
 

From the previous example we see that it is fairly simple to 
pack a 1->1 filter. But that will not give performance 
advantages in most applications. But filters with different 
pop/push rates can also be packed. Consider the circuit for a 
OneBitAdder shown in Figure 7: One Bit Adder Circuit 
Diagram. 

 
Figure 7: One Bit Adder Circuit Diagram 

 
It can be represented in StreamIt format in Figure 7: One 

Bit Adder Circuit Diagram8. Note that the output bits are 
alternate sum and carry bits. If we want to saperate them, we 
have to add another roundrobin split join in the output filter. 

This application is not as straight forward as the previous 
one. We can not just pack consecutive bits on the tape going 
into the filter, since the filter operates on two bits at once. But 
if we pop 16 bits and push 2 integers packing alternate bits on 
the two integers, we still get a good packing and then the AND 
and XOR gate filters can be transformed very easily. This 
packing is shown in Figure 8: OneBitAdder in StreamIt.  

 

 
Figure 8: OneBitAdder in StreamIt 
 
Notice that we can pack before the split join because both 

AND and XOR behave in the same way as regards to their 
input output rates. If this were not the case, then it would be 
necessary to insert separate packing filters on each branch of 
the split join. 

 

C. A Full Adder: 
 

This final example illustrates one of the limitations of this 
technique and shows a condition where this technique cannot 
be used.  

 
 

Figure 9: Full Adder Circuit Diagram 

 
Figure 9: Full Adder Circuit Diagram shows the logic diagram 
of a full Adder circuit. The Cout can be fedback to the Cin so 
as to add multiple bits. Notice that the first part of the circuit is 
the same as the OneBitAdder. The StreamIt representation is 
shown in Figure 10: Full Adder and the streamIt code is in 
Figure 11: FullAdder in StreamIt 



 

 

 
 

Figure 10: Full Adder 

Here we can use the packed or unpacked OneBitAdder. But 
the rest of the application, the CarryFeedBack and the filters 
inside it cannot be packed. This is because every input 
depends on the previous output and thus we do not have 
enough inputs at the beginning of the filter available for 
packing. This is one of the conditions when this technique of 
bit packing is not possible. The other deterrents to bit packing 
are explained in the next section.  

 

V. ISSUES WITH BIT-PACKING 
 

There are certain types of filters and arrangements of filters 
for which it is not possible to perform this kind of bit packing. 
These are discussed briefly in this section. 
 

A. Part of feedbackloop 
 

As we already illustrated in the previous section, the filters 
which are part of feedbackloop cannot be packed as there are 
not enough inputs in advance to pack. There are exceptions to 
this case when there is an 8-bit slack in the feedbackloop.  

B. Control flow changes from one input to another 
 

If there are control flow structures in the filter work function 
like if-then-else, the filter might behave differently from one 
input to another. This might be in two circumstances 
• There is data-dependent control flow, how the filter 

behaves depends on the incoming bit. 

• There is local state in the filter which determines the 
control flow.  

In both these cases, it is not possible to use this optimization 
since the basic premise is that the same operation is performed 
on all the packed bits. 

 

 

Figure 11: FullAdder in StreamIt 

C. More than one work function 
 

If there is more than one work function in the filter and they 
have different push/pop rates, it is difficult to determine how 
to pack the bits so all of them can operate on the packed bits.  

 



 

 

VI. CONCLUSIONS 
 

We have presented the motivation and the idea for a bit-
packing optimization technique which might be very useful for 
certain types of streaming applications. We believe that it is 
possible to considerably increase the performance of these 
applications by using this technique. We have started 
implementing this optimization in the StreamIt compiler. The 
compiler support for packing for 1->1 filter is almost 
complete. The other cases require detailed analysis of the 
filters for automatic packing and the implementation for this 
will be started in near future. 

REFERENCES 
 
[1] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A.      

Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. 
Amarasinghe, A Stream Compiler for Communication-
Exposed Architectures, Proceedings of the Tenth 
International Conference on Architectural Support for 
Programming Languages and Operating Systems, San 
Jose, CA, October, 2002. 

 
[2] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, 

H. Hoffmann, M. Brown, and S. Amarasinghe, A Common 
Machine Language for Grid-Based Architectures, In 
ACM SIGARCH Computer Architecture News, June, 2002 

 
[3] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, 

H. Hoffmann, M. Brown, and S. Amarasinghe, StreamIt: 
A Compiler for Streaming Applications, MIT LCS 
Technical Memo LCS-TM-622, Cambridge, MA, 
December, 2001 

 
[4] W. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: 

A Language for Streaming Applications, 2002 
International Conference on Compiler Construction, 
Grenoble, France. To appear in the Springer-Verlag 
Lecture Notes on Computer Science 

 
[5] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. 

Kim, M. Frank, P. Finch, S. Devabhaktuni, R. Barua, J. 
Babb, S. Amarasinghe, and A. Agarwal, Baring it all to 
Software: The Raw Machine, MIT/LCS Technical Report 
TR-709, March 1997.  

 
 


