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Abstract—Ocular fundus image can provide information on 
pathological changes caused by local ocular diseases and early 
signs of certain systemic diseases. Automated analysis and 
interpretation of fundus images has become a necessary and 
important diagnostic procedure in ophthalmology. Among the 
features in ocular fundus image are the optic disc, fovea (central 
vision area), lesions, and retinal vessels. These features are 
useful in revealing the states of diseases in the form of 
measurable abnormalities such as length of diameter, change in 
color, and degree of tortuosity in the vessels. In addition, retinal 
vessels can also serve as landmarks for image-guided laser 
treatment of choroidal neovascularization. Thus, reliable 
methods for blood vessel detection that preserve various vessel 
measurements are needed. In this paper, we will examine the 
pathological issues in the analysis of retinal vessels in digital 
fundus images and give a survey of current image processing 
methods for extracting vessels in retinal images with a view to 
categorize them and highlight their differences and similarities. 
We have also implemented two major approaches using 
matched filter and mathematical morphology respectively and 
compared their performances. Some prospective research 
directions are identified.   
 

I.   INTRODUCTION 
Ocular fundus image can provide information on 

pathological changes caused by local ocular diseases and 
early signs of certain systemic diseases, such as diabetes and 
hypertension. For example, central retinal artery occlusion 
usually causes generalized constriction of retinal arteries, 
while central retinal vein occlusion typically produces dilated 
tortuous veins, arteriosclerosis can cause arteries to acquire a 
copper or silver color. Hypertension may result in focal 
constriction of retinal arteries, and diabetes can generate new 
blood vessels (neovascularization). Analyzing and 
interpreting retinal images have become a necessary and 
important diagnostic procedure in ophthalmology and 
considerable research effort has been devoted to automate 
this process. Among the features in ocular fundus image, the 
structure of retinal vessels plays an important role in 
revealing the state of diseases [1]. In addition, blood vessels 
can also serve as landmarks for image-guided laser treatment 
of choroidal neovascularization [2]. Thus, reliable methods 
of vessel detection that preserve various vessel measurements 
are needed. 

Diabetic retinopathy is a complication of diabetes mellitus. 
It is the most common cause of blindness worldwide [3-9]. 
Although diabetes itself cannot be prevented, complications 
such as blindness can be moderated if the disease is 
diagnosed early. The most effective method currently is 
regular screening of the fundus to detect early signs of 
diabetic retinopathy [10]. Microaneurysms – tiny dilations of 
the blood vessels - are the first unequivocal sign of diabetic 
retinopathy so that their detection in fundus images through 
photography might be enough to detect the disease in an 
early stage. However, with a large number of patients 
undergoing regular screenings, tremendous amount of time is 
needed for the medical professionals to analyze and diagnose 
the fundus photographs. By automating the initial task of 
analysing the huge amount of retinal photographs for 
symptoms of diabetic retinopathy, the efficiency of the 
screening process can be greatly improved. At the same time, 
patients that require the attention of the ophthalmologist 
would be timely referred.  

On the other hand, diabetic retinopathy resulting from 
long-term diabetes mellitus is one of the common diseases 
that lead to choroidal neovascularization (CNV). CNV is an 
important condition that leads to blindness. It decreases the 
amount of blood supplying the retina especially within the 
central area of acute vision [11]. One treatment strategy is the 
use of lasers to photocoagulate the affected areas of the 
retina. To obtain satisfactory results, the physician must 
identify the full extent of CNV and cauterize it completely 
[11]. Care must be taken to avoid radiating the macula (the 
area of acute vision), optic disc, and major blood vessels 
[12].  

   In the analysis of fundus images, two different types of 
the fundus images are used in term of the image capture 
procedure: retinal angiographies and normal fundus images. 
Images of retinal angiographies are obtained after an 
injection of fluorescein into the patients’ arm. Retinal vessels 
are highlighted using an ultraviolet light. Photographs taken 
during the 5-min injection represents brighter blood vessels 
relative to a darker background (i.e., reversed contrast). The 
normal images are acquired using a fundus camera applied 
directly to the retina. In these images, the vessels are less 
contrasted than in angiographic images and they contain less 
information: small vessels are not obvious in the image.  
However, they are still very precise in accordance with the 



information contained in the image and widely used in retinal 
image analysis.  
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Fig. 1. (a) A typical color retinal image without injec. (b) Green component 
image with green filter applied to color fundus image of (a). (c) Red 
component image with green filter applied to color fundus image of (a). (d) 
Blue component image with green filter applied to color fundus image of (a).    

 
For both types of images, a charge coupled device (CCD) 

video camera is attached to the eyepiece of the fundus 
camera to make the images collected using the fundus 
camera available in standard image format. The output from 
the CCD camera is connected to a PC through image digitizer 
card. The retinal images were captured to the memory of the 
computer system. The images were saved on a hard disk for 
further processing. As for color retinal fundus image, the 
blue band appears to be very weak and does not contain 
much information. The vessels appear in red, however the 
red band usually contains too much noise or is simply 
saturated since most of the features emit a signal in the red 
band. On the other hand, the green component of color 
fundus image gives the blood vessels on a highly contrasted 
background (darker blood vessels on a bright background). 
Hence, the green channel of the image is employed in the 
automated analysis of ocular fundus images. An example of 
color retinal fundus image and its three color bands 
components are illustrated in Figure 1.  

II.   DETECTION OF RETINAL VESSELS 
It has been observed that the blood vessels in retinal 

images have the following three important properties which 
are useful for vessels analysis [13]:  

1. The blood vessels usually have small curvatures and 
may be approximated by piecewise linear segments.  

2. The vessels have lower reflectance compared to other 
retinal surfaces: they appear darker relative to the 
background. It is observed that these vessels almost 
never have ideal step edges. Although the intensity 
profile varies by a small amount from vessel to vessel, 
it may by approximated by a Gaussian curve  

{ })2/exp(1),( 22 σdkAyxf −−= , where d is the 
perpendicular distance between the point (x, y) and 
the straight line passing through the center of the 
blood vessel in a direction along its length, σ defines 

the spread of the intensity profile, A is the gray-level 
intensity of the local background and k is a measure of 
reflectance of the blood vessel relative to its 
neighborhood.  

3. The width of a vessel decreases as it travels radially 
outward from the optic disk and such a change in 
vessel caliber is a gradual one. Therefore, a vessel is 
defined as a dark pattern with Gaussian-shape cross-
section profile, piecewise connected, and locally 
linear. 

One simple and direct approach to segment objects of 
interest from background is optimal thresholding with a 
threshold based on the statistical parameters calculated from 
the image. Image histogram of distribution of pixel grey-
level values is usually used to determine the optimal 
threshold. Unfortunately, the detection of blood vessels is not 
straightforward under the complex nature of retinal images. 
Detection using image statistics does not perform well due to 
the non-uniform illumination conditions presented in retinal 
images. Robust and effective studies have been conducted in 
the area of blood vessel extraction from retinal images. In 
generally, these studies can be classified into two main 
categories: detection of blood vessel boundaries and 
extraction of the core area of the blood vessel tree by tracing 
vessel centers.  

A. Detection of Vessel Edges 
An edge is defined as local change or discontinuity in 

image illumination. The edges in an image provide useful 
structural information about object boundaries, as the edges 
are caused by changes in some physical properties of 
surfaces being photographed, such as illumination, geometry, 
and reflectance. Thus, edge detection is an essential task in 
computer vision. It covers a wide range of applications, from 
segmentation to pattern matching. It reduces the complexity 
of the image allowing more costly algorithms like object 
recognition, object matching, object registration to be used. 
In the case of retinal vessel analysis, the aim of the edge 
detector is to extract the left and right edges of blood vessel.  

A typical example of edge detectors is Sobel operator [14]. 
The Sobel operator involves the computation of local 
intensity gradients but the responses due to non-ideal step 
edges are not good. A modification of that is the detection of 
second-order zero-crossing with Gaussian noise filtering, and 
the responding edge operator is called Laplacian of Gaussian 
[14]. Canny’s method is another famous edge detector [15]. 
Mathematical morphology operations such as morphological 
gradient enhancement utilizing erosion/dilation can also act 
as an edge detector in the situations where images are 
degraded by noise [16, 17].  

Edge detectors produce unconnected parallel edges to let 
extraction of the blood vessel as a whole be still open. These 
edge techniques have good results only when the edges are 
sharp and distinct. However, retinal vessels usually have poor 
local contrast and they almost never have ideal step edges. 
The application of existing edge detection algorithms yields 
unsatisfactory results. Moreover, morphological methods 
often lead to a problem of over-segmentation. Results of edge 
detection by several edge detectors are shown in Figure 2. 
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Fig. 2. Edge detection algorithms applied to green image of Fig. 1.(b): (a) 
Sobel edge detector, (b) LOG edge detector, (c) Canny edge detector, (d) 
morphological gradient. 

 
Recently some studies performed contour detection using 

deformable models has been shown to provide more accurate 
results [18, 19]. Nevertheless, it is not suitable for real-time 
applications because of its computational complexity and 
requires user interaction. N. H. Solouma et al. [12, 20] 
propose an algorithm that extracts the blood vessel tree 
accurately using deformable models and 1–D Gaussian filter 
with efficient computation. First, the boundaries of vessels 
are obtained using a simplified form of deformable models. 
The image is convolved by a Sobel operator in both the 
horizontal and vertical directions resulting edge values to 
represent the external energy of the contour. All the 
neighbouring points of each contour point are searched and 
points having a value above a certain threshold are extracted 
as new points on the contour. This process not only deforms 
the contour but also makes it grow. During the contour 
iteration, the seed contours that lie within the areas of poor 
edges shrink until vanishing while the others merge and/or 
split until recovering a continuous description of all edges 
that pass above a certain threshold. This process is repeated 
until no changes occur during a given iteration. Small vessels 
and the boundaries of large vessels are detected. Then, the 
core of the wide vessels is determined by correlating the 
image by a one-dimensional (1-D) Gaussian filter in two 
perpendicular directions. This reduces the computational 
complexity of the 2-D matching technique to a great extent 
and makes it practical for clinical applications. 

B. Extraction of the Core of Vessels  
The goal of the second category of blood vessel detection 

in retinal fundus image is to extract the core of blood vessels 
in retinal fundus images. It can be further divided into two 
sub-categories in respect to the different processing manners: 
scanning and tracking [21]. Scanning is typically a two-pass 
operation. Extraction of core pixels of the blood vessels is 
conducted by an enhancement–detection process. The 
desirable image feature points are first enhanced by 
techniques such as convolving a mask processing with the 
entire image and then segmented by some convenient 
thresholding algorithms such as Otsu’s global thresholding. 
In contrast, a tracking operation begins at a prior known 

positions in the image. In a single-tracing operation, 
extraction of the image features and recognition of the vessel 
structure are simultaneously performed by exploiting the 
three basic properties of the vessel mentioned above. 

1) Scanning: A method to detect the core of the blood 
vessels by matching the image by two-dimensional (2-D) 
Gaussian filters was introduced by S. Chaudhuri et al. [22]. 
Based on the observation that the gray levels across the blood 
vessel have a Gaussian profile, the grey level profile of the 
cross section was approximated by a Gaussian-shaped curve 
and the concept of matched filter detection of signal was used 
to enhance blood vessels. An inverted, Gaussian-shaped 
zero-sum matched filter rotated twelve discrete angles of 15 
each was designed to detect piecewise linear segment of 
blood vessels. This filter was performed throughout the 
retinal image and a threshold was set to differentiate blood 
vessels from retinal background. This algorithm requires a 
large number of computations when the filter is applied in 12 
different directions for best performance. Moreover this filter 
tends to get erroneous detection at the boundary of bright 
objects such as the optical disk and linear background noise 
resembling to small vessels.  

In [23, 24, 25], F. Zana and J. C. Klein presented an 
algorithm that combines Morphological filters and cross-
curvature evaluation to segment vessel-like patterns. Based 
on fact that blood vessel patterns in retinal fundus images are 
bright features defined by morphological properties: 
linearity, connectivity and curvature of vessels varying 
smoothly along the crest line, mathematical morphology was 
used to highlight vessels with respect to their morphological 
properties. However other patterns fit such a morphological 
description. In order to differentiate vessels from analogous 
background patterns, a cross-curvature evaluation is 
performed. Vessels are detected as the only features whose 
curvature is linearly coherent. The detection algorithm that 
derives directly from this modeling is based on four steps: 1) 
noise reduction; 2) linear pattern with Gaussian-like profile 
improvement; 3) cross-curvature evaluation; 4) linear 
filtering. The algorithm had been tested on retinal 
photographs of three different types: fluoroangiography, gray 
images obtained with a green filter, and color images with no 
filter. Occasionally a short preprocessing step was necessary 
since the algorithm only works with bright patterns in gray 
level images.  

M. E. Martinez-Perez et al. [26, 27] propose that blood 
vessels are segmented based on multi-scale analysis. Two 
geometrical features based upon the first and the second 
derivative of the intensity image, maximum gradient and 
principal curvature, is obtained at different scales by means 
of Gaussian derivative operators. A multiple pass region 
growing procedure is used which progressively segments the 
blood vessels using the feature information together with 
spatial information about the eight-neighboring pixels. The 
algorithm works with red-free as well as fluorescein retinal 
images.  

Nekovei and Sun [28] describe an approach using back-
propagation network for the detection of blood vessels in X-
ray angiography. The method applies the neural network 
directly to the angiogram pixels without prior feature 
detection. Since angiograms are typically very large, the 



network is applied to a small sub-window which slides across 
the angiogram. The pixels of the sub-window are directly fed 
as input to the network. Pre-labeled angiograms are used as 
the training set to set the network’s weights. A modified 
version the common delta-rule is to obtain these weights. The 
proposed method does not extract the vascular structure but 
is to label the pixels as vessel or non-vessel. 

Francis K. H. Quek et al. [29] present an approach for the 
extraction of vasculature from angiography images by using 
a wave propagation and traceback mechanism. Each pixel is 
labeled in an angiogram with the likelihood that it is within a 
vessel by using a dual-sigmodial filter. Representing the 
reciprocal of this likelihood image as an array of refractive 
indexes, a digital wave is then propagated through the image 
from the base of the vascular tree. This wave “washes” over 
the vasculature, ignoring local noise perturbations. The 
extraction of the vasculature becomes that of tracing the 
wave along the local normals to the waveform. An efficient 
sequential algorithm for the wave propagation is presented in 
the reference. Wave propagation and traceback allows to 
extract not only the individual vessels, but the vascular 
connection morphology as well.  

Tianhu Lei et al. [30, 31, 32] present a near-automatic 
process for separating vessels from background and other 
clutter as well as for separating arteries and veins in contrast-
enhanced magnetic resonance angiographic (CE-MRA) 
image data. The separation process utilizes fuzzy connected 
object delineation principles and algorithms. After seed 
voxels are specified inside artery and vein in the CE-MRA 
image, the small regions of the bigger aspects of artery and 
vein are separated in the initial iterations, and further detailed 
aspects of artery and vein are included in later iterations. The 
algorithm is able to separate higher order branches, and 
therefore produces vastly more details in the segmented 
vascular structure. However, seed voxels have to be manually 
specified inside artery and vein objects by an operator 
interactively during the process. 

Other techniques using steerable filters have also been 
used in the detection of the blood vessel core [33, 34]. This 
class of filters is not applied in many directions. Rather, it is 
applied in only two basic directions and the response is 
calculated in other directions from a combination of the 
responses from these two directions. This has the advantage 
of faster computation for a reasonable accuracy.   

The scanning methods search throughout the whole image 
for possible feature pixels, they usually provide complete 
segmentation of the blood vessels in the image. However, the 
thorough scanning over the whole image is very 
computationally intensive and requires more time and space. 
Moreover, the existence of random or structural noise which 
has also been enhanced in the first stage may bewilder the 
recognition of blood vessel network in the second stage and 
lead to erroneous results. On the other hand, the tracking 
methods are inherently efficient computation and can always 
provide a meaningful description of the vessel network. The 
disadvantages is that it is insufficient to provide a complete 
segmentation in the case the blood vessel fades away in the 
middle part and emerges again in its extended direction. This 
can be alleviated to some degree by estimating along the 
direction when the blood vessel seems to end. 

2) Tracking: Zhou, et al. [35] develop an algorithm to 
track the midline and extract diameters and tortuosity of a 
single vessel segment, although only diameter measurements 
are reported. The tracking of a blood vessel proceeds by 
extending the search in the direction of the last-tracked part 
of the blood vessel by a certain fixed length. The density 
profile on the perpendicular line in the extended direction is 
taken and a Gaussian matched filter is convolved with it and 
the result is examined. The strategy is to estimate the next 
location based on the current location, observe the next actual 
location by the matched filter, correct the estimation and then 
re-estimate the next location and continue iteratively. 
Moreover, the matched filter helps ignoring small branches at 
a bifurcation point without any special handling, thus 
allowing the tracking process to follow one major branch 
continuously. However, the algorithm needs starting and 
ending points and a tracking direction defined by an operator.  

Liu and Sun [36, 37] present an approach that extracts 
extended tracts of vasculature in X-ray angiograms by an 
adaptive tracking algorithm. Given an initial point within a 
vessel, they apply an “extrapolation update” scheme that 
involves the estimation of local vessel trajectories. Once a 
segment has been tracked, it is deleted in the angiogram 
image by growing the “deletion intensity value” over the 
grey levels representing the vessel. This procedure is 
performed recursively to extract the vascular tree. This 
algorithm also requires the user to specify vessel starting 
points. 

In L. Gang and O. Chutatape [38, 39], the fitness of 
estimating vessel profiles with Gaussian function is evaluated 
and an amplitude modified second-order Gaussian filter is 
proposed for the detection and measurement of vessels. It 
proves that the vessel width can be measured in linear 
relationship with the “spreading factor” of the matched 
Gaussian filter when the magnitude coefficient of the 
Gaussian filter is suitably assigned. The vessel width 
measurement not only provides the size of blood vessel but it 
is also useful for optimizing the matched filter to improve the 
successful rate of detection.  In another reference by Opas 
Chutatape et al. [21] using tracking strategy for blood vessels 
detection in retinal fundus images, the Kalman filter is 
employed to estimate the next vessel segment location using 
not only the parameters of current segment but all previous 
vessel segments as well similar to tracking a flying object in 
the radar system. A Gaussian matched filter then locals the 
actual centerline midpoint based on the cross-section density 
profile at the estimated incremental section. The look-ahead 
distance and the searching window size are decided based on 
the error estimation of the Kalman filter. Instead of 
specifying points for the tracking to start by operators, the 
method uses the second order derivative of Gaussian filter to 
convolve with the density profile of a starting circle already 
detected such as optic disk where all vessels originate. The 
local maxima with high response are selected as the stating 
points of major vessels for the tracing algorithm to work. It 
seems the use Kalman filter posing a large amount of 
computation and the improvement in performance is not as 
obvious.  



   III.   IMPLEMENTATION OF TWO VESSELS 
DETECTION ALGORITHMS  

     

F. Zana and J.C. Klein [23] present an algorithm that 
combines Morphological filters and cross-curvature 
evaluation to segment blood vessels in retinal angiographies. 
Vessel-like patterns are bright features defined by 
morphological properties: linearity, connectivity, width and 
by a specific Gaussian-like profile whose curvature varies 
smoothly along the crest line. Mathematical Morphology is 
very well adapted to this description and is used to highlight 
vessels with respect to their morphological properties. 
However other patterns fit such a morphological description. 
In order to differentiate vessels from analogous background 
patterns, a cross-curvature evaluation is performed. Vessels 
are detected as the only features whose curvature is linearly 
coherent. This algorithm has been tested on retinal 
photographs of three different types: fluoroangiography, gray 
images obtained with a green filter, and color images with no 
filter. Occasionally a short preprocessing step was necessary 
since the algorithm only works with bright patterns in gray 
level images.  

                  
                              (a)                                                          (b) 
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Fig. 3. Each step of the morphological treatment: (a) original image of 
inverted version of the image given in Fig. 1(b) image, (b) supremum of 
opening, (c) reconstruction, and (d) sum of tophat. The detection algorithm is based on four steps. 1) noise 

reduction: small bright noise is removed while most of the 
capillaries are preserved using a geodesic reconstruction of 
the opened images into the original image. The structure size 
is approximately the range of the diameter of the biggest 
vessels. 

 
 
4) linear filtering: after computing the Laplacian which is a 
good estimation of the curvature, the alternating filter is 
applied to make the final result. The alternating filter 
contains a linear opening by reconstruction, a linear closing 
by reconstruction and finally a linear opening of larger size. 
This alternating filter removes most of the enhanced noise 
patterns. The structure element sizes should be adjusted to 
the sizes of the vessel patterns for specific application. Figure 
5 and Figure 6 give the results of curvature computation and 
final result of blood vessel detection.  
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2) linear pattern with Gaussian-like profile improvement: the 
sum of tophats on the filtered image will enhance all vessels 
whatever their direction, including small or tortuous vessels, 
even in the low signal. The large homogeneous pathological 
areas will be set to zero since they are unchanged by the 
tophat operation. Vessels could be manually segmented with 
a simple threshold on. However the image contains a lot of 
details corresponding to background linear features that are 
also enhanced by the difference. Figure 3 shows the results of 
blood vessel enhancement applied by the morphological 
operations. 
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  3) cross-curvature evaluation: the result of sum of tophat 
still contain noisy data requiring further treatment. The noise 
tends to be low and disorganized whose curvature will have 
alternating positive and negative values in various directions. 
Hence, the sign of the Laplacian can be used as a good 
approximation of the sign of the curvature. However, in a 
few cases, this fuzzy signal can have a curvature that looks 
very much like a small vessel. The proposed strategy does 
not separate this signal from the retinal vessels, leading to 
false detection.  

  
                            (a)                                                           (b) 
 
Fig. 4. Laplacian images highlighted around zero (positive values in white 
and negatives in black) before (a) and after the alternating filter (b).  
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Fig. 5. segmentation results by mathematical morphology and curvature 
evaluation (a) original retinal fundus image, (b) extracted blood vessel tree.   
 

S. Chaudhuri et al. [13] propose a method to detect the 
core of the blood vessels by matching the image by two-
dimensional (2-D) Gaussian filters. The rationale is that the 
gray levels across the blood vessel have a Gaussian profile. 
The matched filter was able to enhance blood vessels to make 
them readily be differentiated from background by 
conveniently adapting a thresholding algorithm such as 
Otsu’s method. Based on the observations that vessels may 
be considered as piecewise linear segments, matching a 
number of cross sections along its length simultaneously was 
developed to improve detection performance instead of 
matching a single intensity profile of the cross section of a 
vessel. For vessels at different orientations, the Gaussian 
filter has to be rotated accordingly. Detailed implementation 
of the method is as follows.  

The two-dimensional matched filter kernel in a discrete 
grid is designed as follows. Let  ][ yxp =  be a discrete 
point in the kernel and θi be the orientation of the ith kernel 
matched to a vessel at an angle θi . in order to compute the 
weighing coefficients for the kernel, it is assumed to be 
centered about the origin [0 0]. The rotation matrix is given 
by 
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and the corresponding point in the rotated coordinate system 
is given by 

T

ii rpvup == ][ . Assuming an angular 
resolution of 15 degree, 12 different kernels are needed to 
span all possible orientations. Then a set of 12 such kernels 
applied to a retinal fundus image and at each pixel only the 
maximum of their responses is retained. 

A Gaussian curve has infinitely long double sided trails. 
The trail is truncated at σ3±=u . A neighborhood N is 
defined such that { 2/,3 LvN ≤= σ }),( uvu ≤ . L is 
the length of the segment for which the vessel is assumed to 
have a fixed orientation. L is used to be experimentally 
determined. The corresponding weighs in the ith kernel of the 
proposed 2-D Gaussian filter are given by  
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Consider the response of this filter for a pixel belonging to 
the background retina. Assuming the background to have 

constant intensity with zero mean additive Gaussian white 
noise, the expected value of the filter output should ideally be 
zero. The convolution kernel is, therefore, modified by 
subtracting the mean values from the function itself.  If A 
denotes the number of points in N, the mean value of the 
kernel is determined as  
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Thus, the convolution mask of 2-D Gaussian matched filter 
used to detect blood vessels is finally given by, 

iii myxKyxK −= ),(),('  ∀ . Npi ∈
Two of the 12 different kernels that have been used to detect 
vessel segments along different orientation are given in 
Figure 6. Final segmentation result of blood vessel by the 
matched filter is shown in Figure7. 
 
     

      
 

              (a)                                                 (b) 
 

Fig. 6. Two of the 12 different kernels that have been used to detect vessel 
segments along different orientation: (a) segments along the 45 degree 
direction, (b) segments along the vertical direction. σ = 2.0 and L = 9. 
 

The matching filter algorithm [13] produces an image of 
good quality for the biggest vessels, however some smaller 
vessels of poor contrast are only partially detected. The 
method in deed gets some response due to edges of other 
bright objects such as optic disk due to the fact that the local 
contrast is very high and the edge of the objects partially 
match the shape of the Gaussian kernel. Moreover, linear 
background noise is also enhanced by the designed filter and 
segmented as blood vessels. A post-processing step is needed 
to identify and subsequently eliminate such false detection. 
Mathematical morphology transformations are known to be 
sensitive to changes of scale. Since a large part of the method 
proposed in [23] employs morphological operations, scale 
effects cannot be avoided. However, the algorithm has 
proved to be efficient on a wide scale of Gaussian profiles 
due to the reconstruction procedure. The scale effect is 
encountered in two parts of the algorithm: 1) during the sum 
of top hats, big vessels are excluded when their profiles are 
larger than the first structuring element and 2) during the 
very last opening, vessels that are not longer than the last 
structuring element or that appear tortuous compared to this 
structuring element are removed. Linear background 
structure resembling small vessels is also detected. Small 
vessels appear wider than their real size due to the Gaussian 
filter that is used before computation of the Laplacian. Both 



methods give good segmentation of big vessels while 
mathematical morphology approach produces more detailed 
description of the blood vessel tree structure. The vessel 
detection results are accurate and sufficient for some 
applications such as registration. On the other hand, they do 
not provide a meaningful description of the vessel network 
and parameters of vessels such as vessel calibre for analysis 
of vessel abnormality which have to be measured through 
other designed methods. 
 
 

    
     
                                (a)                                                        (b) 

 
Fig. 7. Result of application of the matched filter to the image given in Fig. 
1(b): (a) enhanced blood vessels with 2-D Gaussian matched filter, (b) 
binary blood vessel tree by Otsu’s thresholding method.  
 

IV.   CONCLUSION AND DISCUSSIONS 
Ocular fundus image can provide information on 

pathological changes caused by local ocular diseases and 
early signs of certain systemic diseases. Blood vessels are 
useful in revealing the states of diseases in the form of 
measurable abnormalities such as length of diameter and 
degree of tortuosity in the blood vessels. In addition, they can 
also act as landmarks for image-guided laser treatment of 
choroidal neovascularization. Thus, reliable automatic 
detection of blood vessel that preserves various vessel 
measurements is needed.  

Methods for segmentation of blood vessel can be mainly 
classified into two categories: detection of blood vessel 
boundaries and extraction of the core area of the blood 
vessel. Since blood vessels in retinal images almost never 
have ideal step edges and a large amount of noise with sharp 
boundaries exist, application of existing edge detection 
algorithms yields unsatisfactory results to make them rarely 
be employed in both research and practice. Fig. 2. illustrates 
the situation. On the other hand, segmentation of the core of 
the blood vessel proves to be accurate and effective for 
detection of blood vessel structure in retinal fundus images. 
The scanning approaches search throughout the whole image 
for possible feature pixels, they usually provide complete 
segmentation of the blood vessels in the image. However, the 
thorough scanning over the whole image is very 
computationally intensive and requires more time and space. 
Moreover, the existence of random or structural noise also 
leads to erroneous results. On the other hand, the tracking 
approaches are inherently efficient computation and can 
always provide a meaningful description of the vessel 
network. One disadvantage of the tracking method is that it 
usually needs operator to specify starting parameters 

interactively to initiate the tracking process. A prior 
knowledge that blood vessels are outwards around optic disk 
makes the recognition of optic disk a premise for automatic 
tracking. The tracking method is also unable to provide a 
complete segmentation in the case the blood vessel fades 
away in the middle part and emerges again in its extended 
direction. The specific method adopted in detection of blood 
vessel is application-oriented. For example, scanning 
approaches to segment the core of blood vessel have results 
that are accurate and sufficient for registration application. 
Nevertheless, they do not provide any parameters of vessels 
such as vessel calibre for analysis of vessel abnormality 
which have to be measured through other designed methods. 
In such situation the tracking operation can simultaneously 
perform extraction of the vessel features and recognition of 
the vessel structure. 

 Existing strategies for artery and vein separation are based 
on various measurement of pixels properties such as grey-
scale intensity value obtained from green images or color 
transformation. Careful observation of red component image 
of color fundus image reveals that artery expresses 
themselves quite clear while vein is almost invisible as 
shown in Figure 1. This prompts the feasibility of artery and 
vein separation on red images provided that color funs 
images are available and the whole blood vessel tree has 
being segmented from background.  
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