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Abstract

In this thesis, we study inclusive decays of the B meson. These allow one to determine
CKM elements precisely and to search for physics beyond the Standard Model. We
use the framework of effective field theories, in particular the Soft-Collinear Effective
Theory, which is a suitable method when the decay products include a jet-like set of
hadronic states.

We derive factorization theorems for Aqcp/my corrections (including all orders in
as) to B — Xyy and B — X, 47 in the shape function region, where m% < mpAqep.
A complete enumeration of Aqcp/mp contributions is provided. We also point out the
presence of new shape functions that arise from four-quark operators. These induce
an additional uncertainty in certain inclusive determinations of |V,)|.

Next, we derive the triply differential spectrum for B — X %/~ in the shape
function region, consideration of which is necessitated by experimentally required
cuts. It is shown that the same universal jet and shape functions appear as in the
decays B — Xy and B — X, ¢U. We also show that one can treat the perturbative
power counting above and below the scale ;1 = m, independently, using a procedure
we call “split matching”. This resolves the conflict between what is suitable in each
of these regions.

Finally, we use these results to calculate the fraction of the total rate that is mea-
sured in the presence of a cut on the hadronic invariant mass, myx. We find that the
effect of this cut depends strongly on the value of m$* and is approximately univer-
sal for all short-distance contributions. This feature can be exploited to minimize
hadronic uncertainties and thereby maintain sensitivity to new physics.
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Chapter 1

Introduction

1.1 B Physics

We are in the middle of a very fruitful era in B physics. The experiments at the
B factories, BABAR and Belle, have been resoundingly successful. In addition, the
Tevatron is running and LHCb is scheduled to begin taking data in 2007. On the
theoretical side, much progress has been made within the context of effective field
theories. One of these is the Soft Collinear Effective Theory (SCET), which describes
processes involving energetic hadrons and is useful for studying QCD effects systemat-
ically and model-independently. This provides the framework for the original research
in this thesis.

One of the main goals of heavy-quark physics is to test the flavour structure of the
Standard Model. This is the least understood sector of the Standard Model, raising
a host of so-far unanswered questions, including the following: Why are there three
generations? Why do we have a hierarchy of fermion masses? What is the mechanism
of clectroweak symmetry breaking?

One would also like to learn about CP violation. Unlike typical extensions of the
Standard Model, the Standard Model has only one source of CP violation!, namely

the single phase in the CKM matrix. Furthermore, it is well known that the observed

!Not including the QCD 6 term, which bounds on the neutron’s electric dipole moment imply
must be tiny.



baryon asviumetry of the Universe cannot be accounted for by the Standard Model.

The B meson is particularly suitable for probing QCD and flavour physics, from
both theoretical and experimental points of view. Consisting of a heavy b quark and
a light anti-quark, it is the simplest hadron. (No meson involving the top quark ex-
ists, since it decays too rapidly for hadronization to occur.) The large mass of the b
quark relative to Aqcp provides a useful expansion parameter, Agcp/mp ~ 0.1. Con-
sequently, theoretical expressions will typically involve both an «; expansion and a
power expansion in this parameter: the former gives perturbative corrections, whereas
the latter gives non-perturbative corrections. On the phenomenological side, the large
available phase space for possible decay states implies a rich decay spectrum. (It is
useful to characterize B decays as either exclusive or inclusive. By inclusive, we mean
that one sums over all hadronic final states in a given class, e.g. B — X7 in-
volves all hadronic decay states with one net ¢ quark: X, = {D, D*, D, Dnnmr,...}.)
Furthermore, B’s have a long lifetime, e.g. 7 = 1.6ps for B*, and are abundantly
produced in the B factories.

The payoff of the B physics program is, on the one hand, precision measurements
of Standard Model parameters and, on the other hand, high sensitivity to new physics,
i.e. physics beyond the Standard Model. We now consider each of these in turn in

more detail.

1.1.1 Precision Measurements and the Unitarity Triangle

Precision measurements provide determinations of elements of the the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, which parameterizes the mixing between quark
flavours in the Standard Model. A well-known example is the semileptonic decay
B — X 0. which allows measurements of |V,|, m, and m, through moments of the
decay spectra. Analyses of this type are performed at BABAR [13, 16], Belle [2],
and CLEO [64], where simultaneously fitting a few fundamental hadronic parame-
ters keeps the theoretical uncertainties under control [80]. From measurements of
B — X v we can also determine |Vy| [15, 78, 94].

The CKN matrix appears in the part of the Lagrangian governing charged-current

16



weak interactions.

L = La Vi EWS +he., (1.1)

V2

where i,j = 1,2, 3 are family or generation indices. It can be conveniently parame-

terized in terms of the Wolfenstein variables A, A, p and 7 as

(Vud Vus Vub

Vekm = Vea Vs Vg (1.2)
\ Via Vis Vi
[ 1-% X AN(p— i)
= -\ -2 AN? + 0O
\ AN(1 —p—in) —AXN? 1
(1 A
\ A -2 1

where A = |V,,| ~ 0.22 is a small parameter. Note that the O(\*) terms are kept in

current fits of these variables [57].

Now, unitarity of Vo, namely 1 = VgKMVCKM, leads to unitarity relations in-
volving the elements in pairs of rows or pairs of columns. For example, from the first

and third columns, we have
VudVgp + VedVy + VidVy, = 0. (1.3)

This relation can be represented as a triangle in the complex plane, as shown in

Fig. 1-1. This triangle is referred to as the unitarity triangle.

Thus. obtaining the CKM matrix elements is equivalent to obtaining the angles

2There are actually six unitarity triangles. The one shown here is particularly interesting. because
all of its sides are comparable in magnitude. The other triangle with this property is distinguishable
from this one only when we include higher-order terms.

17
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0,0) (1,0)
Figure 1-1: The unitarity triangle. p = p(1 — A\2/2) and 7 = n(1 — \2/2).

0.7 ¢

0.6 B

P

Figure 1-2: Global fit of the unitarity triangle [57].

and sides of the unitarity triangle. By overconstraining these, the flavour structure of
the Standard Model is subjected to rigorous examination. The current global fit of the
unitarity triangle is shown in Fig. 1-2. Here, €k is a C P-violation parameter related

0. Amg (Am) is the mass difference

to the decays K7 ¢ — 77~ and K} ¢ — n°r
between the two B® (B?) mass eigenstates and is measured through the B°B° (B?B?)
oscillation rate. The work described in Chapter 3 is relevant for determining the V,,;

side of the triangle.
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1.1.2 Rare Decays and New Physics

In searching for physics beyond the Standard Model, an obvious approach is to try to
create and observe new particles directly at particle accelerators. A complementary
approach is the indirect search, in which one looks for discrepancies between measure-
ments and theoretical predictions, signalling quantum corrections due to those new

particles. This requires precise control of experimental and theoretical uncertainties.

Of great importance in the latter endeavour are the so-called rare decays, namely
those channels involving flavour-changing neutral currents (FCNCs). These not only
allow measurements of CKM matrix elements, in particular V;; and V}4, but are also
highly sensitive to new physics, since they do not occur at tree level in the Standard
Model. What this means is that the effects of, say, Higgses and charginos in loops

can be comparable to the Standard Model contributions.

Among the inclusive rare B decays, the radiative process B — X7 has received
the most attention, having been measured first by CLEO [4] and subsequently by other
experiments [18, 1, 62, 11]. These measurements have provided significant constraints
on extensions to the Standard Model. The decay B — X £T¢~ is complementary to,
and more complicated than, B — X,v. Belle and BABAR have already made initial

measurements of this dileptonic process [95, 12, 14].

1.2 Effective Field Theories

Heavy-quark physics involves disparate scales my > my > Aqep and the complex in-
terplay between electroweak and strong interactions. A powerful, model-independent,
method for dealing with these complications is to use an effective field theory (EFT),
which may be regarded as the low-energy limit of some more fundamental theory (ei-
ther known or unknown). Many well-known theories are actually EFTs. For example.
the Standard Model itself is an EFT.

The EFT is constructed from only the relevant infrared degrees of freedom and

involves an expansion in some suitable small parameter. The resulting effective La-

19



grangian will take the form

L = 3 LM = LO +ZZZ—';0§’?>, (1.4)

n>0 n>1 i,

where c;, are dimensionless coefficients, A represents the fundamental scale below
which the EFT is valid, and the local operators (91(:) have the same symmetries as
the underlying theory. This is an infinite series, but the higher the dimension of
the operator the more powers of A it is suppressed by. In other words, the lowest-
dimensional operators will be the most important ones.®> Thus, in practice, one can
truncate the series at some order dictated by the desired accuracy, so that one is
left with a finite number of operators and hence a finite number of parameters c;, to
determine. If the underlying theory is known and weakly coupled, one may be able to
compute the parameters. Otherwise, one can take them to be experimental inputs.

EFTs have many advantages. They enable one to decouple long-distance and
short-distance effects, a process known as factorization. This is a crucial step in
studying QCD, for example, since the short-distance contributions are perturbatively
calculable, whereas the long-distance contributions are non-perturbative. Further-
more, the power counting (in the small parameter) is transparent and power correc-
tions can be systematically incorporated. Sometimes low-energy symmetries that are
not manifest in the underlying theory become explicit. In this case the leading-order
Lagrangian £ exhibits the symmetries, which are broken by higher-order correc-
tions. We shall see an example of this in the next chapter, when we consider the
Heavy Quark Effective Theory (HQET).

Nevertheless, the influence of the EFT approach extends beyond just providing a
tool for tackling otherwise intractable problems: in fact, it has profoundly changed
our nnderstanding of renormalizability. The traditional belief was that, in order to
be predictive, a quantum field theory should be renormalizable, i.e. at any order

in perturbation theory loop divergences can be absorbed into the same finite set of

3We have been describing a typical EFT. More generally, the expansion parameter need not be
simply related to the mass dimension. For example. NRQCD and SCET use different kinds of power
counting.

20



Vv 1

Figure 1-3: Integrating out the W boson.

parameters of the theory. A non-renormalizable theory, it seemed, would require
an infinite number of experimental inputs. It is now clear that non-renormalizable
theories still retain predictive power; there is simply a finite accuracy associated with
these predictions, and renormalization is carried out order by order. Moreover, we
do not claim that any quantum field theory is exact up to arbitrarily high energies.
(One might be able to carry out exact calculations within some theory, but this is
not the same as having that theory exactly describe the physical world at any scale.)
On the contrary, a renormalizable theory such as the Standard Model itself can be

viewed as an EFT, in which non-renormalizable terms have been neglected.

1.2.1 Effective Electroweak Hamiltonian
In Fermi theory, the four-fermion Hamiltonian is

1Gr

Heg =
f V2

(l‘L'YuVL) ('L_LL’YILdL) + h.c. (15)

The modern interpretation is that this is an effective low-energy theory, in which the
11" boson has been removed as an explicit, dynamical degree of freedom. Pictorially,
this corresponds to Fig. 1-3. In other words, terms of O (k?/M3Z.) have been neglected
in the propagator. This process is commonly referred to as “integrating out” the heavy
particle. a termm with origins in the path-integral formalism.

Generalizing this idea to incorporate the particles and interactions of the Standard

()l

L



Model leads to the generic form
Gr ;
He = 7 ) VékmCi(1)Oi(w). (1.6)

The O; are the local operators relevant to the process being studied; the strengths of
these operators are determined by the CKM factors V¢, and the Wilson coefficients
C;(u). We can regard the latter as the effective coupling constants of the effective

vertices.

As an example, let’s consider the effective Hamiltonian for B — X,y. This is

given by

Mo = 45.2%\4’;20 ()0 (1) (17)

The operators O; come from the Feynman diagrams shown in Fig. 1-4. The W boson

and top quark are integrated out and the resulting operators are (85, 86]

Current-current: O1 = (SLaVubrs) (ELsy*cra), (1.8)
Oz = (SLaVubra)(Crsr cLs),

QCD penguins: O3 = (SLaVubra) Z (GLs"aws),

g=u,d,s,c,b
Os = (Spaubrs) Y, (Grs7*qra),
q=u,d,s,c,b
Os = (SraMubra) D, (Trs7"ars);
g=u,d,s,c,b
O¢ = (5LaYubrs) Z (TreY"qRa),
g=u,d,s,c,b
. . e
Electromagnetic penguin: O = 16 2SUWF " (i Pr + mgsPp)b,
C'hromomagnetic penguin: Og = Ton QSQTO 30 (M Pr + M PLYbs G,

where Pg; = (1 £75)/2, a, (3 are colour indices, and F*” and G** are the photonic

and gluonic field strength tensors. It is common to neglect the mass of the strange

22
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u,ct
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w
¥
c) d) e)

Figure 1-4: Feynman diagrams corresponding to B — X,v: a) current-current, b)
gluon penguin, c)-d) magnetic photon penguins, e) magnetic gluon penguin. The
cross indicates a mass insertion. Diagrams with wave-function renormalization are
not shown.

quark in Oy, since ms/m, is of the order of a few percent.

Note the common CKM factor V;,V;: in Eq. (1.7). We can see from the diagrams in
Fig. (1-4) that we originally also had terms with V,,V,\, or V,, V. However, V,, V5, is
suppressed by \? relative to V;,V;: (see Eq. (1.2)) and so can be neglected. Similarly,
we can use the unitarity relation from the second and third columns of the CKM
matrix to eliminate VgV :

Vo Vs + Vo Ve + Vi Vg = 0

us

* * VUbVJs
- k= vt (14 232

= —VaVi + O(V). (19)

At lowest order in «,. only O; contributes. The full operator basis listed consists

23



of dimension-6, gauge-invariant operators that have the right quantum numbers to
contribute to b — s and are compatible with electroweak symmetries.* These dom-
inate over higher-dimensional terms, because the latter are suppressed by powers of
mi/MZ,. If we keep all of the terms (of all dimensions) in the series, then the result

is equivalent to the original (“full”) theory.

1.2.2 Matching and RG-Improved Perturbation Theory

The procedure for using the effective Hamiltonian (1.7) to obtain the amplitude for
B — X, is as follows. First, we match the full theory on to the effective theory at the
scale u = O(My/). What this means is that we calculate matrix elements in the full
theory and in the effective theory. Comparing these gives the Wilson coefficients C;.
For this purpose, any external states - even unphysical ones - may be used, since the
Wilson coefficients are independent of these, i.e. independent of the particular decay
considered (just like gauge couplings, which are universal and process independent).
It is important, however, that the same infrared regulator is used on both sides of
the equation. The scale p is large enough that this matching can be done in ordinary
perturbation theory. The Wilson coefficients will, in general, depend upon the masses
of the particles integrated out, namely the W boson and top quark.

Now, whereas the quark-level decay is governed by the electroweak scale pwy ~
mw, the typical energy of the B meson is of order m; <« my. Thus one en-
counters the problem of large logarithms of the form log(mw /u), u ~ my, with

o5 (myp) log(mw /myp) ~ 1. Terms of the form

ol (my) log™ (my/mw ) (leading log [LL]),

™ (my) log™ (my/mw) (next-to-leading log [NLL]),

are significant and should be resummed to all orders in a; to get accurate values for

4There are actually ten two-quark operators, but by using the equations of motion and various
gamma-matrix identities we can reduce these to linear combinations of four-quark operators and

Oz.s [85].

24



the C;.

The solution is to use the renormalization group equation (RGE) for C(p). Once
again, this is completely analogous to the case of gauge coupling constants, which run
and obey renormalization group equations. To illustrate that running down from the
scale p ~ my to u ~ m, takes care of large-log summation, consider the one-loop

running of the strong coupling constant,

as(mZ)
14 ﬁo———a"(;:Z) log (;%)

= a,(my) [1 + g (ﬂoﬂ‘f(zi:-z—)log (%))n} , (1.10)

where we have expanded in as(mz). Thus, solving the RGE

as(p)

5220

1.1
= (111)

d
u@as(u) = —

automatically sums the large logarithms.

The renormalization group equation for C can be obtained as follows. The bare

and renormalized operators are related by
0y = Z3(wOoi, (1.12)
l.e. in general, renormalization will involve mizing between operators. Then, because

the bare operator is u independent,

d d N . 14 .
0 ud,u, 5 (;Ldﬂ Zo) Ol +Zp (uduou) , (1.13)

so that

d .
u@(?{, = ~’yc§(9f,, (1.14)



where

18 = [25"(w)]™ u% (Zo(u)]" (1.15)

is the anomalous dimension matriz.

Finally,
0 = nln,, (1.16)
dp
= 1 (C'0))
= (u%a) Ol — Ciyg0s,

which (because the O; are independent) implies that

d

The use of this equation to run the C;(u) down to the desired scale is known as

RG-Improved Perturbation Theory.

The amplitude for the decay B — f is

(THalB) = 55 Ven ) (110.00)1B). (118

The Wilson coefficients C;(u) summarize the physics from all scales greater than p,
whereas the matrix elements of the operators O; summarize the contributions to the
amplitude from scales less than p. In other words, the problem has been separated
into two parts: the short-distance calculation of the C;(x) and the long-distance
calculation of the matrix elements (O;(i)). When we evolve the scale down from
ftw ~ myy to p, we transfer information about physics in the range between p and

my- from the hadronic matrix elements to the C;: equivalently, we split the logarithm
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of the full amplitude:

2 2 2
mw mw H
oc (25) = s () +os (25) (19

where p? is an infrared regulator.

The third step (after matching and running) is to calculate the hadronic matrix
elements, which are non-perturbative (in a;). For exclusive decays, this is a difficult
problem: one must determine a considerable number of form factors, which leads to
the dominant theoretical uncertainties in the decay amplitudes. Semileptonic form
factors have begun to be determined by lattice QCD, while form factors for other
channels are related by symmetries. For inclusive decays (including the example we
have been considering, B — X,7) the theoretical situation is better: one can exploit
quark-hadron duality and use the heavy-quark expansion, which gives an expansion
in inverse powers of my;. The leading term represents the decay of the b quark and
can be calculated in RG-improved perturbation theory. The next term is suppressed
by 1/m?.

From the optical theorem, the inclusive decay rate is

I'(B— Xgy) ~ Elglm [z / d*z 77 (B|TH z(x)Hs(0)|B)| . (1.20)

One can proceed by using a local operator product expansion (OPE), which writes

the product of operators separated by some distance x as a series of local operators:
T [01(z)04(0)] Zcu )0k (0 (1.21)

Non-perturbative matrix elements are defined with the help of the Heavy Quark
Effective Theory (HQET), which will be discussed in more detail in the next chapter.

At leading-log order, one must perform O(a?) matching. which corresponds to
matching at tree level on to four-quark operators from Fig. 1-4a), and at one-loop
level on to O7g from Fig. 1-4e)-f). The running requires the anomalous dimension

matrix to order «!; for the mixing of ©,_¢ into O 4, this involves the calculation of
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two-loop diagrams. Finally, one needs the matrix elements of the operators at order
2. This step includes calculating (s7]O; 2|b) at one-loop level and (s7|O7|b) at tree

level. The leading-log result with 1/m?2 corrections is [70]

GZm} . A — 9\
DB = Xuy) = 2L VoV Poem|Crlms)? |1+ o 40| (122)
b

where A1, Ay ~ A2QCD are non-perturbative parameters that are matrix elements of
local operators. Here, C; has been evolved down to the scale my. This takes care of
the summation of leading logarithms. At next-to-leading order, the Standard Model

predicts that the branching fraction, B(B — Xv) = I'(B — X¢v)/Tiot, is {72, 52]
BB — XsY)ls = (3.73£0.30) x 1074, (1.23)
Averaging the experimental results of the various collaborations gives [19]
B(B — Xyy) = (3.5540.2413% +0.03) x 1074, (1.24)

where the quoted errors are combined statistical and systematic, systematic due to

the shape function, and the b — dv fraction, respectively. This is in good agreement

with Eq. (1.23).

1.2.3 The Endpoint Region

The study of inclusive B decays circumvents the need for hadronic form factors,
thereby allowing model-independent tests. However, there is often a trade-off between
theory and experiment, because cuts are necessary experimentally, but these less
inclusive spectra make the theory more complicated. For B — Xy, a lower cut on
the photon energy is used to eliminate softer photons. In B — X, 7. phase-space
cuts are important to remove the dominant b — ¢ background. In such cases. we are

restricted to a region in which m% ~ mpAqep and the local OPE breaks down.

Consider. for example. the photon energy spectrum for B — X . for which the
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OPE gives [124]

ar  GEmd . \ AL — 9\
Jr = T3gga VeVl ten|Cr(my)l [ 1+ ozt (1.25)
)\1 +3)\2 )\1
§(1—z)— 2222601 gy - Algn ) 4.
x 10(1—z) e LACIb S

where x = 2E,/m; and the primes indicate derivatives of the delta function. This
must be interpreted as a distribution, i.e. one must integrate it against some smooth
weight function. In this way, one can obtain moments of the spectrum. The series of

the most singular terms takes the generic form

oo

Z lfﬁ5(n)(1 — ). (1.26)

| n
= nlmj

The experimental cut puts us in the so-called endpoint region, where 1 — z ~
Aqcep/me. A weight function of width ¢ ~ Agcp/mp results in all terms in (1.26)

being of the same order of magnitude.

These most singular terms can be summed into a non-perturbative shape function
[125, 124], which we shall denote by f(. This is analogous to parton distribution
functions in deep inelastic scattering. Similarly, series of subleading delta functions
and their derivatives result in subleading shape functions. Since shape functions are
non-perturbative, they are not calculable analytically. However, because they are
properties of the B meson, they are universal, i.e. process-independent. At leading
order, one can measure the relevant shape function from the photon energy spectrum
of B — X,y and use the result in determining |V,,;| from B — X, £, thereby avoiding
model dependence. (In Chapter 4, it will be shown that the same function also occurs
in B — X #*¢".) As we shall see, at subleading order the situation is far more
complicated. with several universal shape functions present, which occur in different

combinations.

The study of the shape function region is greatly facilitated by using an appro-
priate theoretical method. When m% ~ myAqcp, the set of outgoing hadronic states

becomes jet-like and the relevant degrees of freedom are collinear and (ultra)soft
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modes. SCET is a powerful tool in this region. To summarize, we list the different

regions of phase space, with the applicable theoretical methods shown in brackets:

Am3 ~ mZ, totally inclusive (local OPE, HQET),
Am% ~ mpAqep, endpoint region (Factorization, SCET), (1.27)

Am3 ~ AgCD, resonance region (exclusive methods),

where Am% denotes the region of m% extending out from m% .
min

1.3 Outline

The outline of the rest of this thesis is as follows. Chapter 2 is devoted to background
theory: we provide a summary of HQET, followed by a review of the Soft-Collinear
Effective Theory. Chapters 3 to 5 describe the original research of this thesis, which
focuses on inclusive B decays.?

In Chapter 3 we derive a factorization theorem for Aqcp/ms, power corrections
(to all orders in ;) to the inclusive decays B — X, ¢ and B — X, in the endpoint
region. Our analysis separates perturbative corrections that appear at two different
scales from the non-perturbative shape-function physics. We derive the complete
set of subleading corrections for the triply differential spectrum and show how it
factorizes into hard, jet and shape functions. This provides one of the only examples
of an endpoint factorization theorem that has been worked out at subleading order.
The triply differential decay rate thus obtained is important for phenomenological
analyses of |V,;|. We also point out the presence of four-quark-operator contributions
that have previously been neglected in the literature; these induce an additional
uncertainty in certain inclusive determinations of |V,

In Chapter 4. we investigate the decay B — X €T¢~. Here, experimentally re-
quired cuts are made in the dileptonic mass spectrum to remove the largest cé res-

onances, namely the J/y and v/. This leaves two perturbative windows, the low-¢*

5This research is covered in somewhat less detail in Refs. [106, 107, 105].
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and high-q? regions. The low-¢* region has the higher rate, so experiments will ob-
tain precise results for this region first. However, at low ¢? an additional cut is
required: a hadronic invariant-mass cut is imposed in order to eliminate the back-
ground. BABAR’s current cut of my < 1.8 GeV means that, here also, we must deal
with shape-function effects. We derive the spectra for B — X ¢*¢~ in the shape
function region for the first time. Without these results, no model-independent com-
parison between the Standard Model and experiment can be made: although the
existing literature on this decay is vast, what has been calculated previously is dif-
ferent from what is actually being measured. We also show that the order of the
perturbative expansion above p >~ m; can be decoupled from that below p ~ my, i.e.
formulated so that the p dependence cancels independently in the two regions. This
is important because it turns out that the standard perturbative power counting for
i = my is no longer appropriate in the region pu < my.

In Chapter 5, we apply the result of this analysis to calculate an experimentally
important quantity in the low-¢? region, namely the fraction e of the total rate that
is measured in the presence of a hadronic invariant-mass cut, m$*. Experimentalists
can use our ratio to relate their measurements to theoretical predictions for short-
distance coeflicients in the Standard Model. We find that e has some noteworthy

features:
1. it has strong m$* dependence, and

2. the individual terms in the differential-decay-rate expression display a universal-
ity, yielding the same value of € (to a good approximation), which demonstrates
that hadronic uncertainties do not spoil the interpretation of short-distance

measurements. In other words, we can still maintain sensitivity to new physics.

We conclude in Chapter 6.
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Chapter 2

Soft-Collinear Effective Theory

2.1 Heavy Quark Effective Theory

Consider a physical system that consists of a heavy quark interacting with light
degrees of freedom (quarks, antiquarks and gluons) that have four-momenta much
less than the heavy-quark mass, mg. An example is a meson Qg containing one
heavy quark, @), and one light quark, g. The hadronic length scale is rqcp ~ 1/Aqep
and typical momenta exchanged are of the order of Aqcp. The heavy quark’s four-
velocity, v = p‘é /mg, thus changes by an amount of order Aqcp/mp, which goes to
zero as mg — oo. The appropriate effective theory is then the limit of QCD when
mqg — 00, with v# constant. This is known as the Heavy Quark Effective Theory
(HQET) [82, 66, 74].

Since the heavy quark’s Compton wavelength, Ao ~ 1/mg, is much less than
the confinement scale, rqcp, the light degrees of freedom cannot resolve the heavy
quark’s quantum numbers beyond its static colour charge. Consequently, its mass
(and hence flavour) and spin become irrelevant in the heavy-quark limit and the
effective theory exhibits a spin-flavour symmetry, namely SU(2Ny), where N, is the
number of heavy flavours. It is interesting to compare this approximate symmetry
with chiral symmetry, SU(3) x SU(3)g, which manifests itself in the limit where the
light-quark masses, m,,, mq and mg, are taken to zero. Approximate chiral symmetry

is thus a result of the fact that m,. mq, m, < Aqcp: it exists even though the light-
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quark masses are not even roughly equal. Similarly, heavv-quark symmetry results
from the fact that my, m. > Aqcp, and exists even though my is not close to me.!
Corrections to predictions in the chiral limit, m, — 0, are of order my/Aqcp. We
shall see that corrections in HQET can be systematically incorporated and are of

order Aqep/mo.

2.1.1 The HQET Lagrangian

The terms in the QCD Lagrangian pertaining to the heavy quark are

Loop = QUP-mQ)Q. (2.1)

We wish to expand this in inverse powers of mg in order to be able to take the heavy-
quark limit. This can be done by scaling out the factor exp(—imguv - z) from the field

. Thus, write

Q(z) = ™" [hy(z) + Xu(2)] (2.2)

where
hyo(z) = etimave® -1——*2_—?-62(.%) , Xo(z) = etmev? 1—;i/]Q(a:) : (2.3)
Note that »? = 1. so it follows from Eq. (2.3) that ph, = h, and Px, = —Xo-

Substituting Eq. (2.2) into Eq. (2.1) and using these facts, we obtain

L = hyilDhe + XiDxe — 2MoXeXo + RviDXy + Xsi DA,

= 1+ 149 1= 1-9 T :
= h” '“21 ?@—;ﬁ h,- <+ Xv 5 ?5 Zp_Ql Xv — 2771(2)?,")(1» -+ ll:]-[:@le + ,\—’U?/phv
= hyiv - Dh. — Xy (iv - D + 2mg)xy + hyiDxw + CwiDh, . (2.4)

'Recall that the top quark does not hadronize, and so is not relevant here.
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Now. define the transverse component of a four-vector, V¥, to be
VE = VF—v-Vo*, (2.5)

i.e. so that v- V7 = 0. Then, since h,%x, = 0, we can replace )by D in the last two
terms in Eq. (2.4).

Since x, has mass 2mg, we integrate it out. At tree level, we can eliminate X,
using its equation of motion, which we obtain by varying the Lagrangian with respect

to h,. This implies that

Xv = = ) m 'ipThv- (26)

Since we have factorized out the large component of the momentum in defining the
heavy-quark field, the covariant derivative acting on h, scales like Aqcp. Hence
Eq. (2.6) shows that X, is suppressed by Aqcp/mg. This is as expected, since h, is

off-shell by only a small amount.

Substituting Eq. (2.6) into Eq. (2.4), we obtain

T . 1 .
£ = hiw-DhythoiPr 50— iPr b,
- | 1
= th’U-DhU-f- ém—th’l,pT’tpTh«U-i—O (@) . (27)

The second term can be recast in a physically instructive form. First note that

v 1 1 L 12
Prpr = "D, Dy = S{y*2}D, Dy + 51" 4"1D, Dy
2 1 1 v
~ D} +11y.+IIDE. D). (28)
In terms of 0¥ = L[y*.4*] and igG,, = [iD,,iD,), we then have
heDyrPrh, = h,D2h, — '—20—51,.0“”(;,”,}1.1.. (2.9)
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where the fact that $h, = h, allows us to drop T labels in the second term.

Our HQET Lagrangian is thus

L = Lo+Ly+--, (2.10)

where
Lo = hyiv- Dh,, (2.11)
L, = —Zi—QBvD%hv+Z7fL—QE,,aWGWhU. (2.12)

We also have the relation between the QCD and HQET heavy-quark fields: Egs. (2.2)
and (2.6) give

. i 1
Q@ = cmeslia Prln o 5. (2.13)
2mg mg

We can see that the leading-order Lagrangian Ly has both spin symmetry and
flavour symmetry. The first term in the subleading Lagrangian £; corresponds to
kinetic energy. It preserves the spin symmetry but breaks the flavour symmetry, since
it explicitly involves m¢. The second term in £; corresponds to the (chromo)magnetic
moment and breaks both flavour symmetry and spin symmetry, since it has a non-

trivial Dirac structure.

When we take into account perturbative loop corrections, the chromomagnetic
operator acquires a scale-dependent Wilson coefficient, cg(u). The above tree-level
matching shows that cp(mg) = 1+ O(as(mg)). In contrast, the kinetic operator
remains unrenormalized to all orders in perturbation theory. The reason for this will

be discussed in the next subsection.

We can now read off the HQET Feynman rules from £y. Write the momentum of

the heavy quark as

P = mout+k~, (2.14)
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where the residual momentum k is of order Aqcp. For the heavy-quark propagator.

we then have

The vertex for interactions between a heavy quark and a gluon is given by
igutTA . (2.16)

The same rules result when one takes the heavy-quark limit of the corresponding
QCD Feynman rules. For the vertex, note that it is always sandwiched between

quark propagators, so one can insert factors of the projector (1 + ¢)/2. Thus,

1 1
z'gTA'y“ — igTA 1ty 4 ~H b ] 4
2 2
1
= igT4¥ —;—ﬁ — igT4*. (2.17)

Finally, note that the non-perturbative parameters A; and A; encountered in Chap-

ter 1 are essentially matrix elements of the terms in Lo:

M= o(BIR(D)hB), (2.18)

-1
)\2 = %(B|hv§gcr””GWhviB).

At this order, one can use D2 instead of D? in the definition of \;, using the equation

of motion v - Dh, = 0, i.e. the difference is higher order.

2.1.2 Reparameterization Invariance

Introducing v* establishes a preferred frame and hence breaks Lorentz invariance.
This is restored order by order in 1/mq by reparameterization invariance (RPI) in

v# [114]. The decomposition of the heavy quark’s momentum in Eq. (2.14) is not
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unique. since p’é is unchanged under

o= vt € /mg, (2.19)

kK — EH— €,

where € ~ Aqgcp. Whatever the choice of the four-velocity, it must satisfy v? = 1,

which at linear order in € implies that
v-e=0. (2.20)

Furthermore, maintaining the constraint ph, = h, requires

hy — hy + 0h, (2.21)
such that
(75 + f—) (hy + 0hy) = hy + Oy . (2.22)
mQ
Hence, at linear order we obtain
(1—9)dh, = —¢—hv. (2.23)
v mQ
One solution is
Shy = —*—h, . (2.24)
2mQ

Other solutions are related to this choice by field redefinitions.

Thus, RPI amounts to invariance under

vt - o e mg . (2.25)

h, — €7 <1—|— / )/zv,

2]”(2
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iex

where the factor €'“* corresponds to k — k — e.

Transforming £y according to Eq. (2.25) and simplifying using Eq. (2.20) (e.g.
Eq. (2.20) and ¢h, = h, imply that A,¢h, = 0), we obtain

1
0Ly = —hy(ie- D)h,. (2.26)
mq
The change in £; is due entirely to the kinetic-energy term and precisely cancels the

change in Ly:

1 -
0Ly = — —nhy(ie- D)h,. (2.27)
mq
Thus £ = Lo+ L, is reparameterization invariant, provided that the coefficient of the
kinetic-energy operator is exactly unity. On the other hand, the magnetic-moment

term is not protected from being renormalized by RPI.

We shall see that SCET also possesses a reparameterization invariance that con-
nects operators at different orders in the power counting. Hence, one can obtain
information about Wilson coefficients at higher orders from knowledge of coefficients

at lower orders.

2.2 SCET;

For processes that involve energetic light hadrons, there is an additional (intermedi-
ate) scale. HQET alone is not sufficient for describing the jet-like and soft degrees
of frecedom: one also requires SCET [22, 23, 33, 30]. The large mass of the B meson
means that many of its decay channels fall into this category, including exclusive
decays such as B — D7 and inclusive decays in the endpoint region. Since the light
particles move close to the light cone, it is convenient to use light-cone coordinates, in
which one introduces light-like vectors n and 7 such that n? =72 =0 and n-7 = 2.

For example, one possible choice is n* = (1.0,0.—1) and a* = (1.0,0.1). Any
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four-vector, p#, can then be written as

n# n*

pt = n-p—2-+ﬁ-p—§—+p’i, (2.28)

and one can refer to the components as (p*,p~,p.) = (n-p,7 - p,py). Note that

p?=ptp  +pl.

2.2.1 Modes and Power Counting

The fast, light hadrons have energies much larger than their invariant masses and
are described by collinear modes. Collinear hadronic states in the n direction have
momenta scaling as Q(\2,1,)), where @ is the large energy scale in the physical
process and X is a suitable small parameter. For exclusive decays A ~ Aqcp/@,
whereas for inclusive decays A ~ \/m. For example, consider B — Dm. In
its rest frame, the pion has momenta of the order of the confinement scale: p* ~
(Aqep, Aqeps Aqep). Boosting this in the n direction gives p* ~ (A% cp/@, Q, Aqep).
On the other hand, inclusive decays in the endpoint region have m% ~ myAqcp, and
hence jet momenta scale as p* ~ (Aqep, @, \/IW), with Q ~ m;.

We see that the effective theory has two cases, which we refer to as SCET (which
describes inclusive decays) and SCETy; (which describes exclusive decays). The rele-
vant degrees of freedom and power counting for the associated momenta are summa-
rized in Table 2.1, in which we distinguish between the power-counting parameters

for SCET; and SCETy; by renaming the latter 7.  Note that the ultrasoft (usoft)

EFT | Power-counting | Modes Momenta p?

parameter pH
SCET, | A= \/é%a collinear | Q(X\%,1.)) | Q2\?

ultrasoft | Q(A%, A2, \%) | Q*)\!
SCET p = ~aco collinear | Q(n% 1.n7) | Q%*)*
soft Q(n.n,n) | Q%

Table 2.1: Infrared degrees of freedom and power counting for momenta in SCET;
and SCETy;.
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modes of SCET| are actually the same as the soft modes of SCET};. Since this thesis

deals with inclusive B decays in the shape function region, we shall henceforth discuss

only SCET].

The collinear fermion propagator can be obtained by expanding the standard QCD

propagator to leading order in A. This gives

z;é' Z_?_}i_ _ n-p2 .
6 . .
PP+ 2n-ph-p+pl + e
7 1

§n-p+pi/ﬁ-p+iesign(ﬁ-p) '

= i (2.29)
In any gauge, the collinear gluon propagator remains the same as in QCD. We can
now derive the power counting of the SCET fields. This is done by assigning a scaling
that makes the kinetic terms in the action of order A\°, or, equivalently, by counting
powers of A in expressions for the two-point functions. For the collinear quark field,

denoted by &,, we have

4 7.
O[T (2)EA(0)[0) = / %e—fp.zign'm.p +pp'i+ie' (2.30)

Since d*p = (1/2)dp*dp~d®p, ~ A, the right-hand side scales as A? and we obtain
&n ~ A. For the collinear gluon field, A%,
d*p

u v _ —ip-x —1 uv _ pppu
oraxaoN = [ gher e -a-afE ] eay

Here, some care is required. In a general covariant gauge, the scaling will be that
of p*p” and so A* scales like a collinear momentum. The scaling of the remaining
fields can be derived in a similar fashion. Note that for ultrasoft fields the measure
will scale as A®. There are 1o heavy collinear fields, since they have hard off-shellness
(p? — m? ~ Q%) and hence arc integrated out. Table 2.2 summarizes the fields and

their scaling properties.
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Collinear Ultrasoft
quark gluon light quark heavy quark gluon
Field &, (AF AL ALY Gus hy AR
Scaling | A (A2,1,)) A3 A3 2?2

Table 2.2: Fields and their scaling in SCET}. In SCETYy;, soft quarks and gluons have
the scalings g, ~ 7*/% and A* ~ 7.

2.2.2 Leading-Order Lagrangian

The procedure for obtaining the leading-order SCET Lagrangian is analogous to,
albeit more complicated than, that for HQET, which was described in the previous

section. We start with the QCD Lagrangian for massless quarks, namely

L =Pilpyp, (2.32)

where D* = ot —igA*. Later, the gauge field will be split into collinear and ultrasoft
fields. Recall that in HQET the momentum was decomposed into large and residual
pieces (p = myv + k), and the velocity v became a label on the fields. In SCET, one

does something similar, writing

p = p+k, where p=—-(R-p)n+pL, (2.33)

N =

and labelling a collinear field with its large momentum components, p. A phase
factor involving p is scaled out and the four-component spinor is separated into two

two-component spinors (c.f. Egs. (2.2) and (2.3)):

vla) = e (U, + i)

p#0

= D" (Gp+Ean) (2.34)

P70
where the superscript 4+ (—) corresponds to particles (antiparticles) and

it

— L+ ™
§np = 1 (b',,.p + l,”,,'...p) , €np

_ 7

1 (Vi T 0n,) - (2.35)
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Note that #it/4 + ##/4 = 1. We do not include p = 0 in the sum in Eq. (2.34).
because that mode is covered by the field ¢, (which one must include when deriving

the subleading Lagrangians). Equation (2.35) implies that

il

Tfn,p = én,rn %Eﬂ,p=07 (2-36)
i?‘ﬁﬁ.p = Cap, %fﬁ.pzo-

Substituting Eq. (2.34) into Eq. (2.32) and using the relations above, we obtain

E = Z e—i(ﬁ—p")-x [En,p’g(in ' D)&n,p + gﬁ,p'%(ﬁ 4 + {L,ﬁ’ ' D)gﬁép
p.p'

+f—n,p’ (IS_L + 'épl)ﬁﬁ,p + gﬁ.p’ (15J- + ilD.L)fn,p] : (2-37)

The small-component field &5, is integrated out by using its equation of motion. By

varying the Lagrangian with respect to &, this is found to be

1

Cnp = m(]h+i@ﬂg§n,p7 (2.38)

Substituting Eq. (2.38) into Eq. (2.37) gives

L = Z e—i(ﬁ—ﬁ’)-wgn’pl [zn D+ (]51_ + ZDL)

54

Ba+ i) S

(2.39)

n-p+in-D

The collinear gluon field has large momentum components, so it is useful to rescale

it, as we did with the collinear quark field:
Al(x) = Y e TTTAR (). (2.40)
q
One can then factorize out the large phases from operators with arbitrary numbers

of collinear quarks and gluons by introducing a label operator, P* = E;'P + P [33].

This acts on the large labels of a product of fields as follows: for an arbitrary function
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F(P) @Y -0k bp - bp (2.41)

= f(ﬁ'p1+"'+ﬁ'pn_ﬁ'Q1_"'—ﬁ'Qm)¢;1"'¢Tm¢p1"'¢pn,

with an analogous equation for P,. Here, ¢, can be a collinear quark, &,,, or a

collinear gluon, A% . The label operator thus satisfies
i0*e P T hnp(2) = e PE(PH +i0")bnp(), (2.42)

which facilitates the explicit separation of O(A\%!) and O(A?) contributions, since i,
acting on &, or Ap, gives a momentum k of order A2

Now it is straightforward to expand Eq. (2.39) in powers of A\. The resulting

leading-order Lagrangian is

: - 1
Eé? — e P Z Enp [m -D+ Q;L LD‘CL %{n’p, (2.43)

- D¢
labels

where

in-D = in-0+gn-A,q+gn- Ay, (2.44)
i'ﬁ'Dc = 75+g'n'An,qv

iDY" = Pl +gArk.

One can adopt the convention that field labels are summed over. Furthermore, the
overall phase factor imposes conservation of large momenta (label conservation). The
reason for this is that the exponential of a large phase will oscillate rapidly, and so
the integral of this against a slowly-varying function will tend to a delta function as
A — 0. One can therefore also suppress the phase factor if one remembers to maintain

label conservation. Consequently, the Lagrangian can be written in the form [23, 33]

© _ z - 1 /i
LEE - &Tl,p [2n D + LD;'L in - Dr ml} 2€7I-P ’ (245)
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Both terms are of order A* in the power counting. Since p -z = (1/2)ptz~ +
(1/2)p~x* + py - 1, z¥ scales as (zt,z7,2/) ~ (1.A72,A71). Hence, d'z ~ A\ 7*
and the action scales as \".

This was a tree-level derivation. One can, however, use gauge invariance and
reparameterization invariance to show in full generality that Eq. (2.43) is the unique
leading-order collinear-quark Lagrangian [30, 118]. From this, one can read off the

Feynman rules for interactions involving a collinear quark. These are shown in Fig. 2-
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Figure 2-1: Collinear-quark Feynman rules in SCET [23].

The Lagrangian for collinear gluons can be obtained in a similar manner. The

result is [30]

n.g’

1 : Ty v
Lo = ﬁtr{([ﬂ)u A~ iD¥ + gA ])2}+g.f.. (2.46)

where iD= iZn - Dy + PY + 75% (with ¢DH, = i0" 4+ gA* ) and g.f. stands for

us
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gauge-fixing terms.

2.2.3 Decoupling Ultrasoft Fields

In the leading-order collinear Lagrangians for quarks and gluons, Egg) +£,(;?,), the usoft
gluons can be decoupled from the collinear fields [30]. This is achieved by introducing

the usoft Wilson line

Y =Y(z) = Pexp (z’g /Ods n-Aus(:c+ns)) , (2.47)

—00
where P denotes path ordering, and making the field redefinitions

b Y6,  AE YAV, (2.48)
The Wilson line satisfies [in - D,sY] = 0, which implies that

Yin-D,Y =n-0. (2.49)

Therefore, the result of making the substitutions (2.48) in Eq. (2.45) is

= . 1 7
LY = &y lin-0+gn-Ang+ lpjm ' Dcwj FEne (2.50)
since Y commutes with P. Likewise, in the gluon Lagrangian (2.46),
N L w S

We have found that the leading-order Lagrangians are independent of the usoft fields
after the field redefinition. The usoft fields have not been removed entirely. since they
appear in external operators or currents. They also appear in subleading collinear
Lagrangians. Nevertheless, this result is an important ingredient in derivations of

soft-collinear factorization theorems.
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2.2.4 Reparameterizaton Invariance

We saw previously that, in HQET, Lorentz symmetry manifests itself as reparame-
terization invariance. Similarly, RPI appears in SCET, in which it comprises a larger

set of transformations.The choice of the light-cone vectors n and 7 must satisfy

n=n*=0, nn=2, (2.52)
but otherwise is arbitrary. Therefore one can make the following reparameterization
(RPI) transformations [59, 118, 130]:

N, — ny + Af;

and ™ am{ ™

= - = = 1
Ry — Ny oy — Ay + €, n, — (1 —a)n,

@

where At ~ A et ~ X and a ~ A° are infinitesimal parameters. (In order to

Lep.eb=p.AL=

maintain Eq. (2.52) to linear order, Al and e must satisfy 7- €
n - At = 0.) Each parameter is assigned the largest scaling that leaves the power
counting of collinear momenta intact. To derive the way in which the decomposition
of a vector V* is changed by the transformations, we impose the condition that V*
itself is invariant, i.e. V# — V¥ For example, under type-I transformations the

components of V# = (n -V, @ -V, V) change to

n-V — (n+AY)-V=n-V4+AL.V, (2.54)
n-V —- a.V,
n* nt
Vf = V“—TL'V'?—TI;'V‘E
A By AM
. V“—(eri)-V%—ﬁ-vﬁ—z—L
VA nH
= Vi——2£nV—7AlVl
Similarly, under type-1I transformations,
. " _ Loyl e EL ool
n-V.n-VVl) > n-V.a -V +¢ -V,VJ_—-2—n.-V——2—5 -V (2.55)
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We can now see that if V¥ is collinear, scaling as (A%, 1, ), then it will stay collinear
after a type-I (type-II) transformation if AL ~ X (et ~ A°). Just as h, transforms
to maintain the condition ph, = hv in HQET, &, transforms to maintain %’an =&,
& = 0. One can derive the transformations as follows. From Egs. (2.34) and (2.38),

we find
, 1
P = Z e~ iP= [1 + ﬁ@l%} fn,p, (2.56)
P.q

where the covariant derivative ® includes both @ and P. This is invariant under the

RPI transformations, i.e.

. 17
—iP-z
> e [1 + ﬁ@lg] €np (2.57)
p.g
: 1 s
_ E : —iP-x 7
- v,q ‘ [1 - ﬁ’_g,ﬂl 5] gn,p, ’

where the prime indicates a transformed quantity. Multiplying both sides of this
equation by # leads to the following expressions for £, , under the three RPI trans-

formations:

b~ (1438%) 6o, (2.58)

We summarize all of these results in Table 2.3.
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Type 1 Type 11 Type 111

n—n+ At n—n n— (1+a)n
n—n n—n+et n— (1-a)n
n-VonV+ALtvt n.Von.V n-V-o(l+an-V
nV-onV n-Voa- Vet Vi n-V-oQ1l-apn-V
VESVE_SA. Y VESVE—Sn.V VE VP
—%}iAJ‘-V_L —%;iE‘L'V_L
b (L+iMMe6 - (1+#HDP )6 &6
W — W W [(1-she-DHw| wow

Table 2.3: Effect of type-I, I and III RPI transformations. V* is a vector, which may
be the covariant derivative. For completeness, the table includes the transformation
of W, which is the Wilson line constructed from 7 - A, gluons.

2.3 Heavy-to-light Currents

The weak-decay processes that we are studying have effective Hamiltonians of the

form

4G
Heﬂ‘ = “_\7—2£VCKMC(,U)JhadJ7 (2.59)

which involves the QCD current Jy,q = gI'b (with the relevant Dirac structure, I')
and the leptonic or photonic current J. For example, for the decays B — X, ¢ and

B — X, the hadronic currents are
JL‘ = ay"Prb and JZ = 510,,4"Prb, (2.60)

respectively (the latter coming from the operator O;). In the endpoint region, in
which the light quark is energetic, gI'b is matched on to an SCET current. With no
collinear gluon, we simply obtain &,['h,. However, since 7 - A, ~ A°, an arbitrary

number of such gluons can be included without inducing any power suppression.
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Consider then the case with one A, gluon attached to the heavy-quark line. The

propagator in this diagram has momentum

7
P= mt 4 g+ O

=>pl-ml = n-vmpn-qg4--~m?. (2.61)
This large off-shellness means it must be integrated out. Expanding to lowest order

in A, we obtain

s i@ Eme) . 4, = A
T 9 h'U - n ~ #‘ v
&L pz—mf 19Ty — g€, pp———— 2nT h

.
= “na T T4h, . (2.62)

Thus, the Feynman rule for the SCET heavy-to-light current with no (one) gluon is
I'* (—gn#*/f - qT*T4). When we add arbitrarily many A gluons, we obtain 'V,
where W is the Wilson line built out of A, gluons:

i Z (—g)m ﬁ'A”JIm“.ﬁ'A”vm
m! ﬁ-qlﬁ'(Q1+Q2)"'ﬁ‘(221%’)

m=0 perms

_ L;Sexp <:€%é’£)} , (2.63)

where “perms” means all permutations of the indices 1, ..., m. W satisfies the equa-

tion [inn - D,W] = 0, from which it follows that f(in - D.) = W f(P)WT.

W

The resulting heavy-to-light current is thus [23]
J = Ci(u, P, ,WTh,, (2.64)

in which the Wilson coefficient may depend upon the large component of the total

jet momentum.



The form of this current is actually determined by gauge symmetry [33, 30]. The
allowed gauge transformations are those that leave us within SCET;. We are left
with two classes, namely collinear and ultrasoft gauge transformations, denoted by
U, and V,;, respectively. These are defined by the scalings 0*U.(z) ~ Q(A\%,1, ) and

OHVys(x) ~ QX2. Under a collinear gauge transformation,

En — cgna (265)
A, — ucAnu§+§uc[z'D,ug],
W —- Uuw,

where Uc&, is shorthand notation for - (Ue)p-génq. Ultrasoft fields are not trans-

formed by U,, since otherwise they would not maintain their momentum scaling.

We can now see that &, ,W is a gauge-invariant block. The current &, ,WTh, is

gauge invariant, whereas &, pI'h, is not.

We finish this section by noting that the Fourier transform of the momentum-space

Wilson line is

Wa(y) = Pexp (z’g / ' dsﬁ-An(sﬁ)> | (2.66)

—0Q

Recall that we have already encountered an ultrasoft Wilson line in position space,

Y(x). given by Eq. (2.47). This is the Fourier transform of

= (=)™ n-AL .- -n-Alm
— us us Tam .. .Tal . i
Y Z Z m)! n-kln-(k1+k2)---n'(zgl1 Al]) (2 67)

m=0 perms

The latter object arises when one sums all diagrams of attachments of ultrasoft gluons

to a collinear-quark line.
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2.4 Subleading Lagrangians

In order to include Aqep/my power corrections, which we do for B — X, v and
B — X, fv spectra in the next chapter, we need the subleading Lagrangians and

heavy-to-light currents. As will be discussed, we require these to second order in

A~ \/AQCD/mb, ie.

L=LO04+L0 40 J=gO 4 g0 4 5@ (2.68)

In this section, we summarize the results for the Lagrangians.

The LO Lagrangian for usoft light quarks and usoft gluons, o , is identical
to full QCD. For usoft heavy quarks we have the leading and subleading HQET
Lagrangians, which were given in Egs. (2.11) and (2.12). We repeat these here with
slightly modified notation (showing that the gluon in HQET is ultrasoft, and that in

SCET) our power-counting parameter is A):

LY = hyiv-Dyshy, (2.69)
. 1 - 1 -
LY = —0,,  On=hy(iDr)*hy + = cr(ps) hoopy, 9G* by .
2mb 2

For convenience, let’s also define

H, = YTh'v ) wus = YfQus ’ Dus = YTDusY
1
o = Wi, D.=WDW, igB'= [ﬁ-wf[m-z)c,wg]w]. (2.70)

The leading-order collinear Lagrangians (after one makes the field redefinitions (2.48))

are then

1 1 |
LY = X |in-De + 1P 5Pt 'g’xn, Ly = —5ulGG, ) +ef, (271

v

where igG* = [¢D*.iD¥]. Here, in- D, =1in -0+ gn - A,, and the other components

of D, are as given in Eq. (2.44).
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The subleading Lagrangians that we require are all available in the literature [37,
130]. To obtain these Lagrangians, one must include gy in the Lagrangian (2.32). by
writing ¢ = Y e 77*(£,, + Eap) + Qus, and expand to the desired power in . Here,
one encounters a potential complication related to the choice of the full covariant
derivative. Omne possible reparameterization-invariant choice is ini-D = in- D, +
in - Dys, iD*+ = iD} + iDg,. With this choice, one must redefine - A, and A} if
one wants the Lagrangian to be invariant order by order in A under collinear gauge

transformations [32]. This turns out to be equivalent to the choice

in-D = in'8+gn'Ac+gn'Ausz iDt = Z.D;:L_’_wriDd—sWT’

if-D = ift- De+Wisi- Dy, W, (2.72)

with the covariant derivatives defined in terms of the new gauge field. Furthermore,
the Wilson line built out of the new gauge field has the same equation of motion as
previously, and hence the same transformation law. Hence, using the redefined gauge
field is simply a matter of using Eq. (2.72) above. The results that follow are written
in terms of the redefined gauge field.

After one makes the field redefinitions (2.48), the subleading quark Lagrangians

we require are [32]

S
.C&) = iDL =ik ZL— Xn + h.c., (2.73)
Eé;) = Xn igB;qus + h.c. s
20) _ o 1t
‘C’gf = Xn Z%s 7puLs "7'5'5 Xn

L 1 :
Egb) = )‘(nﬂDch-’Dusng %i Z’PCL Xn -

We also need the subleading terms in the mixed usoft-collinear gluon action,

£l = —2u[GH] g5 +ef., (2.74)
L:ga) = tr [HIWHUT] g’fr gVLU —tr [HWHNT] gl_/LT _tr [géwggq gta g +gf.,
Efib) = —fr [g(‘.”“HHT] nyn, +g.f.,

93



where

igGh = WIiDE i DWW, igGM = YT[iD*, iD%]Y |
ig H" = [WHiDMW, YiDY Y], (2.75)

and g.f. denotes gauge-fixing terms that are required by reparameterization invari-

ance.



Chapter 3

Factorization and Power

Corrections to B — Xgy and

B — X, v

3.1 Introduction

In this chapter, we derive factorization theorems for Aqcp/my power corrections to
B — X,y and B — X,£v in the shape function region, where m% ~ myAqep. For
b — u decays this region is important, because of cuts on E, or m%, which are used to
eliminate b — ¢ events. In this region both the perturbative expansion and the power
expansion become more complicated. In particular, there is the usual perturbative ex-
pansion at the scale u? ~ m2, as well as a second perturbative expansion at the smaller
scale u? ~ m%. The rates also exhibit double Sudakov logarithms. In addition, in-
stead of depending on non-perturbative parameters (A, Ag, ...) that are matrix ele-
ments of local operators, the decay rates depend on non-perturbative shape functions.
We shall refer to the expansion parameter for this region as A\* ~ m%/m% ~ Aqcn/ms
to distinguish it from the 1/m; expansion for the local OPE. In the endpoint region.
the standard OPE no longer completely justifies the separation of short- and long-
distance contributions. Instead, we must consider a more involved derivation of a

QUD factorization theorem, as is the case in processes such as Drell-Yan and DIS as



x — 1[123, 134].

For B — Xyy and B — X, /v at leading order (LO) in A, the factorization
theorem for the endpoint decay rates was determined in Ref. [99]. It separates QCD
contributions that are hard (H), collinear (7(?) and soft (f(®), so that, schematically,

a differential decay rate takes the form
A =HxJO0 g O, (3.1)

where X is normal multiplication and ® is a one-parameter convolution. Here the
hard contributions are perturbative at the scale u? ~ m2, the collinear contributions
in J© are associated with the inclusive X jet and are treated perturbatively at the
scale pu? ~ mpAqep, and the soft contributions are factored into a forward B-meson
matrix element giving the non-perturbative shape function f(® [124]. In Ref. [30]
this factorization theorem was rederived using the Soft-Collinear Effective Theory
(SCET) [22, 23, 33, 30]. The attraction of the effective-theorv method is that it
provides a formalism for extending the derivation of factorization theorems beyond
LO in the power expansion. The main goal of this chapter is to derive a factorization
theorem for B — X,y and B — X,f0 at subleading order, i.e. O(\?), using SCET.
This factorization theorem allows us to separate perturbative and non-perturbative
corrections to all orders in ag.

One method for studying the endpoint region is to start with the local OPE and
sum up the infinite series of the operators that are most singular as we approach the
m% ~ mpAqcp region. This technique was used in Refs. [124, 125, 41, 115, 69, 65],
and provides a method of defining the non-perturbative functions. At LO the result

is the shape function!

éz DY 569(6%) (Bylu(in- DY hlBe) = (Bl 6(¢* — in-D) hy|B,)

= k=0

N -

- f(o)(;+) ' (3.2)

'"We arbitrarily use the term “shape function” for f(¢1) rather than “distribution function”.
Sometimes in the literature the term “shape function” is reserved for the distribution that enters
dI'(B --» X, fv})/dEy, which is an integral over f.



The result is simply the matrix element of a non-local HQET operator, where the
states |B,) and heavy b-quark fields h, are defined in HQET, and n* is a light-like
vector along the axis of the jet. This approach allows direct contact with the extensive
calculations made with the local OPE, which give terms in the power series. There
are several reasons for considering an approach where f(£%) is obtained without a
summation. In particular, it is difficult to go beyond tree level with the summation
approach. Also, owing to the presence of a kinked Wilson line [97], the renormalization
of the local operators in the sum and final delta-function operator are not identical (27,
47] (see also [99]), essentially because the moment integrals introduce additional UV
divergences.? For this reason the expansion in Eq. (3.2) should be considered to be
formal, and care must be taken in drawing conclusions from operators in the expanded
version, such as the fact that they have trivial dependence on n*. Care must also be
taken in calculating the hard factor H, as pointed out recently [27, 47], since the one-
loop matrix element for f(© (£1) has finite pieces in pure dimensional regularization.
This implies that the quark-level QCD computation does not directly give the hard
contribution, unlike factorization theorems involving massless quarks such as in DIS.
The matching calculation in SCET handles this in a simple manner because matrix
elements of the effective-theory graphs are necessarily subtracted from the full-theory

graphs in order to compute H.

For any precision calculation, perturbative corrections play an important role,
and both the resummation of large logarithms and fixed-order calculations need
to be considered. The position-space version of Eq. (3.2) has a kinked Wilson
linc along v-n-v, which leads to double Sudakov logarithms [97, 99]. These occur
between both the m; — myAqep and the myAgep — AéCD scales and can be
summed using renormalization-group techniques. In moment space the leading and
next-to-leading anomalous dimensions can be found in Ref. [99]. For phenomeno-

logical purposes, formulae for the differential rates with resummed logarithms are

*From the point of view of effective field theory this makes sense. since the summation in Eq. (3.2)
attempts to connect one effective theory (HQET) to a region with a differeut expansion parameter
that is described by a different effective theory (SCET). Generically the renormalization in two EFTs
is not interconnected.



of practical importance and were obtained using inverse Mellin transformations in
Refs. [113. 112. 110, 3]. These resummations have also been considered in SCET, both
in moment space [22, 27] and for the differential rates [47]. Finite-order perturbative
corrections are currently known to order «, for the H and J functions [23, 27, 47].

Since in the endpoint region Aqep/@ ~ 1/5 to 1/10, it is important to consider
the effect of power corrections for precision phenomenology. By matching from QCD
at tree level, contributions of subleading NLO shape functions have been derived for
B — X, [26] and for B — X, £ [108, 25|, followed by further analysis in Refs. [100,
55, 127]. A single NNLO contribution has also been considered, corresponding to the
“annihilation” contribution, which is phase space enhanced by 1672 [136, 108]. These
power corrections provide the dominant source of theoretical uncertainty in current
measurements of |V,,;| and are the focus of this chapter, so we discuss them in more
detail.

To build some intuition, it is useful to contrast the power expansion in the endpoint
region with the expansion for the local OPE. For the local OPE, all contributions can
be assigned a power of (Aqcp/ms)* 3. The power of Aqep and thus k is simply
determined by the dimension of the operator, and the —3 accounts for the dimension
of the HQET states, (B,|---|B,). For example, the set of local operators up to

dimension 6 is

O*=hyh,,  O0°=hy(iDr)*h,,  O% = gh,0,3G**h,, (3.3)
0% = h,(iDT)(iv- D) (iD2)h, 0% = ie*P%v;5 h, (iDy) (iv- D) (iDg)vyYs o
0% = (hev*q1) (@ Yahw) 0% = (hy q1) (@1, ),

0% = (hT°7"q1) (7. T*Vahw) , 0% = (hyT°q) (7, T* ha),

where dimensions are shown as superscripts, a superscript/subscript 7" means trans-
verse to the HQET velocity parameter v#, and an L means left-handed.? Dimension-4

operators are absent so there are no 1/m; corrections, except the trivial ones that

3We write 0% in terms of HQET fields, although strictly speaking at lowest order this is not
necessary.
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Figure 3-1: Comparison of the ratio of annihilation contributions to the lowest-order
result. In the total decay rate, b) is ~ 16m2(A3/m$)AB ~ 0.02, while c) is ~
4mas(mp)(A3/my) ~ 0.003 when compared to a). In the endpoint region, b) is ~
16m2(A?/m2)AB ~ 0.16, a large correction, while c) becomes ~ 4ma,(us)(A/my)e’ ~
0.6¢', a potentially large correction.

may be induced by switching to hadronic variables. For dimension-5 and 6 operators
there are two naming conventions in common use. For (B,|{0%, 0%, 0%, 0%}|B,),
the parameters are {1, Az, p1, p2} or {ur, e, ph, p3g}. These operators are generated
by connected graphs from the time-ordered product of two currents, as in Fig. 3-1a.
On the other hand, the four-quark operators 0%¢ give parameters f%B , and are
disconnected (or rather connected by leptons or photons only), as shown in Fig. 3-1b,
and thus exhibit a phase-space enhancement relative to Fig. 3-1a. The simplest way
to see this is to note that for the total rate to B — X, £D, we would cut a two-loop
graph for Fig. 3-1a, while Fig. 3-1b would be at one-loop level (the ¢-7 loop). For
later convenience, we also consider the perturbative correction to the four-quark op-
erators shown in Fig. 3-1c, which is suppressed by a,/(4) relative to Fig. 3-1b, and
gives the operators 0%/, In the total decay rate, if we normalize so that Fig. 3-1a

~ 1 then

A3 A3
Fig 3-1b~ 167> — AB ~0.02,  Fig. 3-lc ~ dray(ms) —ze ~ 0.003¢. (3.4)
b ‘b

Here AB = By, — By ~ 0.1 accounts for the fact that the matrix elements of the
operators generated by Fig. 3-1b vanish in the factorization approximation. The
factor of € accounts for any dynamical suppression of Fig. 3-1c. The definitions of

B1‘2 are

2
<B,.l [/—1.1.'7(,(11‘] [(jljyfhl.} ,B,,) = félT;B [(Bl — B3)gor + (4By — Bl)z,v,,sz] . (3.5)
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Without the AB suppression factor, Fig. 3-1b would dominate over other 1/m? op-
erators rather than just competing with them. The O(a;) corrections to annihilation
are still a small contribution in the local OPE, for any € < 1. In particular, possible
enhancements of these contributions have been shown to cancel for the total b — u
decay rate [42].

In the endpoint region there are extra enhancement factors and the dimensions
of the operators no longer determine the size of their contributions. The fact that
annihilation effects are larger in the endpoint was first pointed out in Ref. [42]. The
power counting in SCET organizes these contributions in a systematic fashion and
allows us to be more quantitative about how large these contributions are. Since some
background material is required, we postpone this power counting until Sec. 3.3. The
derivation given here is more heuristic, but leads to the same results. For Fig. 3-1a the
intermediate quark propagator becomes collinear, giving an m;/A enhancement. This
explains why a larger portion of the decay rate is concentrated in the endpoint region.
For Fig. 3-1b there is no quark-propagator enhancement but also no reduction from
the phase space. A numerical estimate for this contribution was made in Ref. [136].
Finally, for Fig. 3-1c in the endpoint region there can be three collinear propagators,
giving a large m}/A3 enhancement to this diagram. In Sec. 3.6 we show that this
graph contains the maximum possible enhancement. In summary, if we consider the

rate integrated only over the endpoint region then Fig. 3-1a ~ 1 and

A2 A
Fig. 3-1b ~ 1672 T—n—2AB ~0.2,  Fig. 3-1c ~ 4ma,(1.4 GeV) — € ~0.6¢.(3.6)
b b

The non-perturbative function that gives € differs from the local operators that give
¢ in Eq. (3.4). Since ¢ ~ 0.3 is possible?, we conclude that it is possible that the
contribution from Fig. 3-1c gives a significant uncertainty in extracting V,, with
methods such as Ey, or m% cuts that depend on the endpoint region. It has not been

considered in recent error estimates in the literature. The main phenomenological

4The only rigorous scaling arguinent for a dvnainical suppression that we are aware of is the
large- N, limit, where AB ~ 1/N,. For Fig.3-1c the ¢g contraction gives a matrix element that is
leading order in N.. If these contributions are small, then a rough estimate is ¢/ ~ 1/N,. ~ 0.3.
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outcome of our analysis is a proper consideration of this term for endpoint spectra.

Theoretically, the main result of our analysis is a complete theoretical description

for the NLO term, I'®, in the power expansion of decay spectra in the endpoint

region,
dr’ dr®  4re
Sl ==+ (3.7)
dZ; endpoint dZ; dz;

Here Z; denotes a generic choice of the possible spectrum variables, { P*, P~, E,, ¢%,
SHyMp, -..+. At NLO we use SCET to determine the contributions to the spectra.
These contributions are tabulated in the body of the chapter, but the generic structure

of a term in (1/T)dI'®/dZ; is
/ [dzw | H™ (20, 0, Z1) / (k] T2 (2w, bip, PF) f9) (77 (38)

where the number of convolution parameters varies fromn =1ton =3 and n' =1
or 2, and for n = 2 [dk}] = dkidk$ etc. The dependence on the z, parameters
appears only in jet functions that vanish at tree level. In Eq. (3.8) the (j1), (j2),
(j3) powers indicate whether the power suppression occurs in the hard, jet or soft
regions respectively. The power corrections start at O()2?), which is ~ 1/m,, and so
J1 + j2 + js = 2. Here j;3 > 0 while j, can be negative. Phase-space and kinematic
corrections give an H® with the same jet and shape functions as at leading order.
Other more dynamic power corrections involve new hard H©® functions, and obtain
their power suppression from the product of jet and soft factors. We show that the
operators at NLO allow —4 < j, < 2 and 0 < j3 < 6. The largest jet function
(jo = —4) occurs for exactly the endpoint contribution generated by the four-quark

operators (j3 = 6) from Fig. 1c.

Our analysis can be compared with the closely related physical problem of deep
inelastic scattering with Q% > A?, in the limit where Bjorken z ~ 1 — A/Q. With
no parametric scaling for z, the power corrections in DIS at twist 4 were computed

in Refs. {92, 93, 68, 67, 133, 132]. As z — 1 the relative importance of the power-
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suppressed operators changes and the importance of contributions from four-quark

operators has been discussed in Ref. [73].

The outline of the remainder of this chapter is as follows. In Sec. 3.2 we give
the basic ingredients needed for our computations, including the weak Hamiltonian
(Sec. 3.2.1) and expressions for the hadronic tensors and decay rates (Sec. 3.2.2).
In Sec. 3.2.3 we give a detailed discussion of the endpoint kinematics and light-cone
variables, and in Sec. 3.2.4 we briefly summarize a few results obtained using the
optical theorem for the forward scattering amplitude, and the procedure for switching
between partonic and hadronic variables that is relevant in the endpoint region. In
Sec. 3.3 we turn to the discussion of the SCET heavy-to-light currents. Many of the
ingredients necessary for our computation are readily available in the literature. Of
particular note are expressions for the heavy-to-light currents at O(\?) [38], which we
have verified. In Sec. 3.4 we review the derivation of the factorization theorem at LO,
but do so in a way that makes the extension beyond LO more accessible. We consider
power corrections of O(\) in Sec. 3.5, and show that they vanish. In Sec. 3.6 we discuss
the true NLO factorization theorem, which is O(A\?). In particular, in Sec. 3.6.1 we
switch to hadronic variables and re-expand the LO result, in Sec. 3.6.2 we enumerate
all the time-ordered products that occur at this order, and in Sec. 3.6.3 we show
that the tree-level matching is simplified by using the SCET formalism. In Sec. 3.6.4
we give definitions for the non-perturbative shape functions that appear, and then in
Sec. 3.6.5 we derive the factorization theorems for the most important contributions in
some detail. Finally, in Sec. 3.6.6 we summarize the hard coefficient functions for the
subleading time-ordered products. Next, in Sec. 3.7 we present a useful summary of
the NLO decay-rate results, including the phase-space corrections. We also compare
with results in the literature where they are available. Our conclusions and discussion
are given in Sec. 3.8. Further details are relegated to appendices, including the
expansion of the heavy quark field and calculation of the power-suppressed heavy-
to-light currents at tree level in Appendix A, and a review of constraints on the
currents from reparameterization invariance in Appendix B. For the reader interested

in getting an overview of our results while skipping the details, we suggest reading
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Secs. 3.2. 3.3 and 3.4, the introduction to Sec. 3.6, and Secs. 3.6.1, 3.6.2 and 3.7. A

reader interested only in final results may skip directly to the summary in Sec. 3.7.

3.2 Basic Ingredients

In this section we give the ingredients necessary for studying the decays B — X,y and
B — X, £ in the endpoint region to NLO. A proper treatment requires a separation
of the scales mf, > m? >> myAqep > Adcp in the form of a factorization theorem.

This is accomplished by the following steps:

1) Match on to the weak Hamiltonian, Hy, at % = m%, and run down to u? = m2,

just as in the standard local OPE.

2) Match Hy at u? ~ m?2 on to SCET, with collinear and usoft degrees of freedom
and an expansion in A ~ y/Aqcp/me. Run from p? = m? to pu? = p2 ~ mpAqep.

3) At p? = p2 integrate out the collinear modes, which, given a complete factor-

ization in step 2), is trivial. Then run from p? = pf to p® ~ 1GeV? 2 Adqp.

In Sec. 3.2.1 we discuss the weak Hamiltonian. The kinematics and differential decay
rates for the endpoint region are given in Sec. 3.2.3. Then in Sec. 3.3 we give the

necessary effective-theory currents to O(A?).

3.2.1 Weak Effective Hamiltonians

For B — X, ¢v the effective Hamiltonian is simply

4G .
uoo= —— LV (av,Pb) (v PLuy) (3.9)

V2

and the current 7y, Ppb is the basis for our analysis of the QCD part of the problem.
The Hamiltonian for the weak radiative decay B — X, v was given in Chapter 1,
Eq. (1.7).

For the total B — X,v rate the perturbative corrections are known at NLO [53,

90]. Effective scheme-independent coefficients C¢%, are defined in a way that includes
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contributions from the penguin operators (Cs_g). A totally inclusive analysis is con-
siderably simplified by the fact that at leading order in 1/m,; the matrix elements
can be evaluated directly in full QCD rather than first having to match on to HQET.
For an endpoint analysis, the matching at my and running to u ~ m; is the same.
However, at the scale yp >~ m, the operators in Hy need to be matched on to oper-
ators in SCET before the OPE is performed. In performing the matching, the only
subtle complication is the treatment of the charm mass. For simplicity, the approach
we take here is formally to let m, ~ my, so that charm-mass effects are all hard and
are integrated out in matching on to SCET. This agrees with the treatment of the
Oiz7 advocated in Ref. [126] for the endpoint region. Since numerically m? ~ myA,
perhaps a better alternative would be to keep charm-mass effects in the operators of
SCET until below the jet scale myA. This second approach is more involved, and in
particular it is clear from Ref. [51] that it would necessitate introducing two types of
collinear charm quark, as well as soft and ultrasoft charm quarks. For this reason, we

stick to the former approach and leave the latter for future investigation.

At lowest order in the A power expansion, there is only the SCET analog of the
50, Prb current called J© (cf. Eq. (3.51)), and O,_g can make contributions to its
Wilson coefficient. At NLL order in a; the effect of the other operators can be taken
into account by using [81, 63]

el As e e e m
Colpnz) = GO + 20w + 3 CE O [rele) + 95" (5] (3.10)
k

in place of C7 when matching on to SCET. Here the dependence on p = m?2/m? enters
from the four-quark operators with charm quarks. In the endpoint region the O(a,)
effects from the process b — svyg all appear in the jet and shape functions. For later

convenience, we define

o
A (1, p) = Ch;j;%%%—y (3.11)

The photon in B — X,v is collinear in the opposite direction to the jet X, so
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propagators connecting the two are hard. Thus, beyond LO in the power expansion.
the photon will typically be emitted by effective-theory currents J® (which could
be four-quark operators). We shall discuss the matching on to these subleading
currents for O only. Some of the contributions from the other O; will just change
the Wilson coeflicients of the subleading currents and thus not modify the structure of
the power-suppressed factorization theorems (indeed some of them are already known
since they are fixed by reparameterization invariance). These other operators may
also induce time-ordered products that would involve operators with quarks collinear

to the photon direction, but these are not considered here.

3.2.2 Hadronic Tensors and Decay Rates

In this subsection, we summarize general results for the hadronic tensors and decay
rates, without restricting ourselves to the endpoint region. For both decays B — X,

and B — X4, momentum conservation for the hadrons gives
Py = mpv* = py +¢*, (3.12)

where ply is the sum of the four-momenta of all the hadrons in X, g# is the momentum
of the  or the pair of leptons (¢£7), and the velocity v* satisfies v2 = 1. For B — X,7,
¢" =n-gn*/2 = E.,7a#, where v-gq = E, is the photon energy in the rest frame of the

B meson. In this case ¢ = 0 and
m%, = mp(2Ex, — mp) = mp(mp — 2E,), (3.13)

so the differential rate involves only one variable, mx or E,. For B — X, /v, Eq. (3.12)

implies

m2 2 2
myg+myx —q

2m. B

EX:/U'I)XZ U.q:mB—EX:Ee-{—EU. (314)

where p3 = m3. The differential decay rate involves three variables. several common

choices of which are {E;. E,. ¢*}. {E¢.v-q,q%}, or {Ey, m%, ¢%}.
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To derive the inclusive decay rates for B — X,y and B — X,¢7, the matrix
elements are separated into a leptonic/photonic part Ly, and a hadronic part W,.

Here

1 . _ —
Wi = 5— > (2m)°8"(ps —q — px)(BIJ}IX)(X|],|B)
Mg

= '-g;le + 'U;L'UUW2 + ieuuaﬂvaqﬁwli + qitqu4 + (Uuqu + 'Uuqu)WS ) (315)

in which we use the hadronic current J and relativistic normalization for the |B)

states. For convenience we define projection tensors P! so that

W; = P* W,,. (3.16)
They are
1 ¢ '’ + ¢*q” — v-q(vig” +v"g¥)

P[.Ll/ —_ __gﬂll , 3.17

! 2 2[g% — (v-g)?] (3.17)
P;w _ 3(]2 wa + qQQHV - q#q” Puu — '_iewjaﬁqavﬂ

2 [42 — (v-q)?] ’ T2l - (vg)?)’
T g — vtv¥ + 3P P — g"”+4P{‘"—Pé‘”—q2Pi‘”'

¢ — (v-q)?] 20-q

Contracting the lepton/photon tensor L*” with W* and neglecting the mass of

the leptons gives the differential decay rates

dre s SE. s s s
dE = FO m_£(4‘yl - 27 2E’Y 5) ’ (318)
~y )
d*re 96

— Tu 2 213 2 7 2 _ U 2
s, = ([PW] + QEB, — /W3 + ¢*(E. - B,)Wy|0(4E.E, - ¢*).

where W; = W;(¢?, v-q) and the normalization factors are

G2 m%
3274

s *|2 — N2 veff(0) 2 u _ GEmiy
0 [VioViel® ctem [ (m)]*1C7 7 (M) [ I's = 19973

|Vis|13.19)
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Here 7m,(1) is the MS mass. For convenience, we have pulled out a Wilson coefficient

C;H(()) eff(0) .

so that contributions from other coefficients appear in ratios C;/C; " in the
SCET Wilson coefficients (for example the quantity A, in Eq. (3.11)). Note that we
have chosen to stick with hadronic variables here (using mpg rather than m;). When
we eventually compute the W, we shall have to deal with switching between partonic
and hadronic variables. However, we shall see that the situation is quite different
from that in the local OPE (as we discuss further in Sec. 3.2.4 below). In particular,

it is the hadronic phase space that turns out to be required.

In Eq. (3.18), 0 < Ey, E, < (m% — m2)/(2mp). A set of useful dimensionless

hadronic variables is

2F 2F, q m?
zl, = — Ty = —, =, sy = —X . 3.20
H mp H mp yH mZB H mZB ( )

In terms of these variables,

oF 2F
Y =1—sg+yg—Ty, —>=14syg—yu, (3.21)
mp mp

and W; = Wi(yg, sg). For B — X7,

drs 2cH
— = I} R—Z;{4Wf W —mg x;',W;} , (3.22)
H

with 0 <z, < 1—m%./m%. For B — X, (v,

d3r*

1
— = I't24m { W+ - |(1—x — —xsy| Wy 2
dry dyy dsg 0 ByYyuWy + [( Ty )(TH—Yu) 3711"1{] 2 (3.23)

2

1 ru
+5 MBYH (2o +sy—yn—1)W; }9[(1_x]1)(IH—yH)_mHSH] ,

and, depending on the order of integration, there are several useful combinations of

the limits, which are shown in Table 3.1. If we integrate over all values of x; (cases
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i) O0<zxy<1-r12 r2<sy<1—zy 0<yy <zy—$H

i) 0<zy<l-r2 0<yw <z IZZZ TﬁSSHSI—;Ei@H“yH)
i) r2<sp<1 0<zyg <1-spy OSyHS.rH—ST’%

iv) ri<sy<1 0<yn < (1-— \/:9_;)2 T S

v) 0<yr<(l-r)° r2<sp<(1-yn)’ 2P <ay <P

vi) 0<yyg < (1—7‘,,)2 T < xpy < TH* r2<syp<1l+yg-— %;i — Ty

Table 3.1: Limits for different orders of integration in B — X,f0 with vari-
ables {zy,sy,yn}. Here rp = m,/mp, while {z5> B} = [(1 +yyg — syg) £
V1 +yr — si)? — 4dyr | /2 and {z5***, zBin*} = {z0>, 25}, _.2. Results for the
phase-space limits of partonic variables are obtained by dropping the H-subscripts
and setting 7, = 0.

iv) & v)), the rate becomes

d?T
dyu dsy

T 2mpy/(1—yn+su)’—4sg {12yHW1“ (3.24)

+[(1~yu+su)*—4sy] Wé‘} :

3.2.3 Light-cone Hadronic Variables and Endpoint Kinemat-
ics
We are interested in the jet-like region corresponding to Aqecp < mx < Ex for both
B — X,y and B — X,£4p. In this region, the hadrons in the X occur in a jet in the
B rest frame with Ex ~ mp and m% < mpAqep-® The momentum of the states X
is therefore restricted, but they still form a complete set for Eq. (3.15). The width
of the jet is determined by noting that the typical perpendicular momentum between
any two final-state hadrons is Ap; < VmpgA ~ 1.6 GeV, where we use A ~ 0.5 GeV
to denote a typical hadronic scale for B-mesons (examples being Aqcp and A). We

also assume that there are enough states with m% < mpA that the endpoint region

is still inclusive and Eq. (3.46) is valid. As we shall see below, the factorization in

"In Refs. [27, 47] an intermediate situation, m3. < A? with /mpAqep € A < mp, was also
considered, but we do not consider it here.
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this region gives non-perturbative shape functions rather than just local operators.

As previously discussed, it is natural to introduce light-cone coordinates, in which

some useful decompositions are

1 ' 1
gi" = g — 5(71"7‘1” + n”ﬁ”), géiu = g —o'”, €T/ = ifwaﬁﬁanﬁa
n-p n-p _
PL=p -t -, pp=pt =g, (3.25)

where we take €% = 1.

Note that the subscript 7' means transverse to v*, so
ply # p/|. For the final factorization theorem for the differential decay rates we shall
use a frame where ¢/ = v/ =0, and v* = (n#+7*)/2.% Thus ¢* = Agn*/2+nqnH/2

and

n-¢g=mpg—n-px, fi-q =mp — N-px - (3.26)

For B — X,y the photon momentum is taken along the 7 light-like direction, i.e.

q. = Eyn,, and

ﬁ-pxsz, n-px=m3—2E,y=mB(1——x;’1). (327)

For B — X, v the phase space is more complicated and for convenience we define

the dimensionless variables

_ n-px n-Dx
Yg = mg ’ U = mp . (328)
Now m% = n-pxn-px and n-px + fi-px = (m% — ¢*> + m%)/mp, so
SH = tuHv Yo = (1 - UH)(]‘ - yH) : (329)

SIf one desires, he or she can take v = (1,0,0,0), n = (1,0.0, —1), and i = (1,0,0.1). A more
general frame is required only for working out the constraints from reparameterization invariance.
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?) OSIITI-[Sl—T?T T‘%SUHS:l—CI?H Il'l&X{l'-'.TH, }<yH<1

. 9 r2 _ 2
it) 0<zyg<1l-—r72 max{l——:vy,ﬁ}ngSl _—"<uH<1—a:H

‘d

iii) r:<uy <1 0<zy<l-—uy max{l—xH,afI-}SyHgl
ww) 1t <uy<l1 max{%,uH}nggl l-gy <zg<l-uy
v) e <y <1 L <upg < Gy 1-9y <ag<l-uy
vi) T, <Yy <1 1— yH<xH<1—-y—’2'— gﬁ-g #<l—zy

Table 3.2: Full phase-space limits for B — X, ¢ with variables zg, Ty, and ug. The
parameter 7, = m,/mp. Results for the phase-space limits of partonic variables are
obtained by dropping the H-subscripts and setting r, = 0.

and, making the choice 7 > uy, we have

{Un, un} [1 —yn+sut /(1 —yu+su)?— 4sH] : (3.30)

DN =

So far we have not made any restriction to the endpoint. The variables 7 and
ug provide an equally good description of the full B — X, £ phase space as yz and
Sy, namely

LT otmp@y—u { () (1) W (3.31)
—_— fomand m —_— _— _— .
T% dzy dyy dug B\Yg —UH H Y)WV

1
5(1 Tr—un)(Za+7y—1)Wy

+ —21?- (l—uH)(l——yH)(2a:H+uH+yH—2)VV§‘} ,

where 1 = Wj(uy.7y) and we have suppressed the theta function from Eq. (3.23).

Integrating over xy from Table 3.2 (cases iv) & v)) gives

1 J’T"

— —_— u 1 — ru
F—m?’-l'T”B(yII‘UH)Q{(l“UH)(I—yH)Wl + —('IJH_U-H)QWQ } - (3.32)

12
The full limits for y;; and uy are given in Table 3.2.
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Figure 3-2: Allowed phase space for B — X, {0, where m, < mx <m 5. The second
figure shows the same regions using the variables defined in Eq. (3.28). We indicate
the region where charm contamination enters, mx > mp, and the region of phase
space where annihilation contributions enter. Also shown is the region where the

SCET expansion converges, which is taken to be uy /¥y < 0.2 and corresponds to
m%/(4FE%) < 0.14.

In Ref. [48], it was pointed out that a natural set of variables in the endpoint

region consists of the hadronic variable n - px and partonic variable 7 - p, where

ip = Apx+my—mp=Tn-px —A+...,
Ca nt
P = S Pt 5 px (3.33)

They are natural because the LO factorization theorem dictates that the kinematic

variables appear in the jet functions and soft functions only as
J(@-pk*),  flnpx — k"), (3.34)

where k* is the convolution parameter (cf. Sec. 3.4). We shall see that this remains
true of the shape functions and jet functions at subleading order in the power expan-
sion. For a dimensionless version of n-p we use ¥ = n-p/my. A comparison of the phase
space with the variables {yy = ¢*/m%, /sy = mx/mp} and {uy,yy} is shown in
Fig. 3-2 and corresponds to the limits shown in columns iv) and v) of Tables 3.1 and
3.2. The figure on the right is the analog of Fig. 1 in Ref. [48] with dimensionless

variables.
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For a strict SCET expansion we want

n-px
n-px

<Ak, (3.35)

where the expansion is in the parameter Ay. Eq. (3.35) is equivalent to ug /7y < \%.

For B — X,v, Egs. (3.13) and (3.35) imply that the endpoint region is
E, 2z (mp/2—A) ~21GeV. (3.36)

For B — X, ¢, satisfying the criterion in Eq. (3.35) with values A% ~ 0.2 is equivalent

to

mx < )\H
2Ex ~ 1+ X2,

=0.37, (3.37)

or yg S 1—2.68,/sg + suy. Not exceeding a given expansion parameter in Eq. (3.35)
corresponds to specifying a triangular region of phase space (shown for ug /7, < 0.2
in Fig. 3-2). We refer to this as the SCET region of phase space.” As can be seen from
Fig. 3-2, the simpler restriction yy < 1 — 2.44,/sy gives a very good approximation

to the SCET region since the boundary is roughly linear in the ¢ and myx variables.

In calculating decay rates at subleading order, it is important to define carefully
how the phase-space integrals are treated once we compute doubly differential or
singly differential decay rates. The philosophy we adopt for B — X4V is that we use
SCET to compute the W;, and hence the triply differential decay rate, for the SCET
region in Eq. (3.35). In general, one may wish to integrate this rate over a larger
region of phase space, and thus need to construct the full W;’s. This could be done

using

”’fiﬁl“ = ”?CET()()‘?‘IEH —uy) + "I"iOPE()(UH - )‘1%1?}1) ) (3.38)

"Note that the SCET expansion here is actually in powers of A2 since odd terms in SCET; teud
to be absent [39]. In Sec. 3.5 we show that the O(X) contributions for inclusive decays indeed vanish.
Thus A% = 0.2 is not a large expansion parameter. A smaller value /\:;’{ = 0.1 could be chosen if
desired.
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where the SCET expansion in A is used for the first term and the standard local
OPE in A/my is used for the second term. Thus, Ay does not play the role of a
strict expansion parameter, but rather provides us with a means of interpolating any
differential spectrum between the full OPE and full SCET results by varying Ay
between 0 and 1. We only consider the first term in Eq. (3.38) here. Depending on
the final spectrum that one looks at and the other cuts imposed, the error in including
a larger region of phase space than the SCET region may be power suppressed. The
parameter Ay provides us with a way of testing this by considering the difference
between taking Ay = 0.2 and Ay = 1. We present our final results in a manner that
makes it easy to take the Ay — 1 limit for situations where a large enough region has

been smeared over that this is the case.

One can also refer to a shape-function region, corresponding to the region 0 <
ug S 0.1 where the non-perturbative function f is important. The expansion for

B — X7 to second order in A\, where 1 — x}; ~ A2, is

d]:‘s S 2 S S S 3 8 ]
&g =T {{41/[/1 — W5 —mg Ws} - (1—3:},){4W1 — W3 —2mp W }} . (3.39)

For B — X,¢0, if we integrate over all zy and expand in uyg ~ X2, then from
Eq. (3.32) the first two orders in the expansion are

1 dr

4
- =201 _ = Tu y_H_ u
T dyy dun 24m3{{y”(1 T)Wi + 35 W | (3.40)

=3
9 v Y
+uH{yH(y.‘2{+yH—2)VVI - :I qu}} .

By the endpoint region in zy we mean x§; < 7y < 1 — 72, where 1 — 2§, ~ 0.1
corresponds to making a cut on the lepton’s energy spectrum. The limit on uy forces
it to be small, uy < 1 — 2%, so shape-function effects are important here. This cut

still allows a large range for 3. Expanding the triply differential rate in Eq. (3.31)
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and keeping the first two orders in the expansion for 1 — x5 ~ uy ~ A% give

1 d31"u . 7n,B@'H
— = 2ump [{y,(1—7y) (W o |
e - e M)
i u m —_— —_— —_— U
—un{ (1-g3)Wi + 5 Un 2=~ W; }

=2
+1-an—un){ B W§ - maga (1m0}
Finally, to consider the dI'/(dg?dm%) spectrum in the endpoint region we let { =
1 — yy + sy and expand in sy /¢?, which to linear order gives

1 dr™
Fg dyH dSH

= 2mjp [{124(1—()W1“ + c3w;} + 92—H{2(<2+2g—2)wlu - (2W2"}] .
(3.42)

In each of Egs. (3.39)-(3.42) there will also be an expansion of the W; themselves,

which we discuss later on.

The results in this section can easily be extended to any desired order in A/mp

by expanding to higher order in the phase space.

3.2.4 OPE and Partonic Variables

We have not yet made use of quark-hadron duality or formulated the method for
computing the W;. The usual procedure to compute the W; is to use an operator
product expansion and calculate the forward scattering amplitude

1

T = g (BITuIB) (3.43)

= —g/le + U/AUUTQ + Z.Eyun,l.i"?’nqﬁTfi + q;IQUTi + ('qu:/ + Uqu)T.a .
where

Tw = —i /d“a:e‘iq"”TJ;(x)J,,(O), (3.44)



and for the Ti(‘“'“)(qQ, v-q) we use the corresponding hadronic currents, which are
JS = 5i0,,q Prb, JU = ay PLb. (3.45)

Here J;; comes from the operator O7. The operator product expansion relates the

W™ to the forward scattering amplitudes through

W, = —% ImT;. (3.46)

When we compute the W; with an OPE, the partonic variables depending on m; and
the hadronic variables involving mp will need to be related order by order in the 1/m;,

expansion. In particular, the heavy meson mass to second order is

A 3er(p)a(p)

= A —
mB ™y + Zmb me

I (3.47)

where we shall also use Ay = cp(u)A2(1) as a definition of the non-perturbative matrix

element that has the perturbative coefficient cx(u) absorbed.

In applying the local OPE, part of the expansion involved in switching to hadronic
variables occurs because the phase-space limits are partonic. In fact, if we calculate
the triply differential rate for B — X, ¢v with the local OPE. and then consider
integrating it over the hadronic phase space, then the integrand has support over the
partonic phase space only, so the limits are reduced to this more restricted case. In

the local OPE the signal for this is the occurrence of factors like
5™ [(mpv — q)7], (3.48)

which must be smeared sufficiently so that quark-hadron dualitv can be used. For
the o[(myv — ¢)?] that occurs at LO, integrating once to get the doubly differential

rate gives a theta function that imposes partonic limits.

On the other hand, with the SCET expansion in the endpoint region the support

of the triply differential rate is larger. We never encounter singular distributions like
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the one in Eq. (3.48), but instead obtain a non-trivial forward B-hadronic matrix
element that gives f(©O(¢*). This function knows about the difference between the
hadronic and partonic phase space already at leading order in the power counting,
and more generally the LO factorization result with O(a;) corrections (cf. Eq. (3.82)
below) does not cause a restriction of the hadronic phase space. Therefore, we shall

use the full hadronic phase-space limits in our computation.®

3.3 Heavy-to-light currents

To derive the expansion of the 7; in the endpoint region, we determine the SCET
currents and Lagrangians in a power expansion in A, and use this expansion to sepa-
rate the collinear jet-like effects from the non-perturbative ultrasoft shape functions.
This will allow us to determine results for the 7; order by order in the expansion. We

write
T, = TO+TO+19 + ... (3.49)

The ingredients required for this include expansions of the Lagrangians and currents
to second order in A\. The Lagrangian expansions were given in Chapter 2, while the

heavy-to-light currents are presented here.

For simplicity, we work in a frame where v; = 0. Expanding the J* current to

O(A?) gives

Tt = e‘i(ﬁ%‘*’lh*—mb“)‘x{z /dwc§v>(w)J;‘(°>(w)+Z /de§”)(w).J;‘<"(w)
J J

+ / dwAP (W) JH® (w)} , (3.50)

where the superscript (0), (1), (2) indicates the order in \. We have an analogous

8Note that this might imply that direct calculations of less differential subleading spectra must
be treated with care. For example, if one directly computes a singly differential rate by tying up
lepton lines then the partonic phase-space restrictions might appear to creep back in if one is not
sufficiently careful about the structure of the factorization theorem.
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result for J* with (v) — (t) and u — s. After one makes the field redefinition in

Eq. (2.48), the leading-order SCET heavy-to-light current is [23]
(0 — (£ )yt — v (0)
‘]j (w) - (&nW)ij (Y hv) - Xn,ij Hv, (351)

where j = 1-3 for v and j = 1-4 for s. Despite the fact that the operator in J© is
O(M*), we use the superscript (0), to indicate that it is the lowest-order current. At
the first subleading order, we have the O()\?) currents (59, 37, 31, 130]

la 1, & 1
Jw) = —(%aiD&), 15 Mo, (3.52)
1 1 16
']J( )(wlr w2) = My v Xnw (ZchJ_ w2 TS : H, .

The subscript w notation in Egs. (3.51) and (3.52) indicates that the field carries

momentum w, for example

Xn,w = Xn 5("‘) - 751-) ’ (?'QB )wz (ZgB _L) 5(w2 - PT) (353)

Finally, at second order we find that the basis of O(\®) currents consists of

W) = g X TR DL M,
I (w) = 1 = X Y@ pLay,, (3.54)
Jj(gc)(w) _ ( n v ign-B. )ngzc) H, .

J;Zd)(whu&) = ’1)an1 (zg:f )w2T§~2d) Hy,

TV wrwn) = e (i DEL),, (0B T e

T (w1 wy) = -1 Xn“l(n 1757ng ngfL) TP H, .

These currents were first derived in Ref. [38] (see also [37]) and we agree with their
results. Two differences are that in Eq. (3.54) we have determined the functional

dependence and the number of parameters w;, and that terms from the separation
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of label and residual momenta (or equivalently the multipole expansion of the fields)
are treated differently here from Ref. [38]. In Appendix A we give a more detailed

comparison, along with the details of our calculation.

For the LO Dirac structures we use the basis from Refs. [59, 130], which is the

most convenient for considering reparameterization invariance, i.e.

n
@ = PR{ bk :_v}’ 9 = pr g, {w’” Ay } (3.55)

nv = nw

Here we slightly reorganize the basis in Ref. [130] to reflect the constraints from RPI

and to use subscripts 7 > 11 for the currents that vanish when v; = 0. This gives

wle) PR{VT_%V“,%%U“,vi%n"—Zgi“ } o) —PR{W“ﬁ,v"ﬂ ,n“vj"_,gi“},
ot ot it

1 ’ ] ?
T1 a) _ = Prq, {Z’M 5 Lo | 4% 27[u,vv1 A% 27‘“’”"} + zgi[u M ’Yﬁ%nm M — zgj‘_“‘ v"‘} :
T = Pra, {io™7%, Y40, A nag, natiag, gty g e, ggt ’n”‘}

(3.56)

Note that we do not list evanescent Dirac structures that can become necessary when
computing perturbative corrections in dimensional regularization (see for example
Refs. [40, 34]). For our purposes, the Dirac structures for the J® currents that

appear at lowest order in a,(m;) will suffice; these are

THR) = Pying, YU = Ppaglon  yu_p o yueo_p ut

12 4’
2
11 = Py vﬂi 2737 11 = Py va
1% = Prict™ygg., T =Ppns zi"“’qf, 1389 = Pric*"g,,

3% = Py io’”%@’ i) = Py ‘/Jjw“ TQTZ%, 11D = Prio*" g7k -

(3.57)

The complete tree-level currents for arbitrary v, are given in Appendix A, and in

Appendix B we show how the v dependence is necessary to satisfy the full constraints
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from RPI at this order. When the O()\?) currents that show up at order ag(my)
are determined, the number of possible ng) structures will increase, as occurred in
Eq. (3.56). However, this will not affect the form of the factorization theorems we
derive, since they are expressed in terms of traces of the ng) factors; this makes it

trivial to incorporate new Dirac structures that arise beyond tree level.
At lowest order in a,(my), the non-zero coefficients in Eq. (3.50) are
o =c? =B =BY) = -B{" = (3.58)

The one-loop results and RGE-improved coefficients C; can be found in Ref. {23]. Our

coefficients are linear combinations of these:

CO@ 1) = 1- %{21&(@) +2Lis(1—0) + 1n(w)(3f_‘ 2) 4 7;—2 + 6}
N =
(o) - e (000 5}
CH@,1) = 14 A, (ms,p)
—3?(%7‘;)—62{21 (@) + 2Liy(1 w)+ln(¢b)(4f}__2)+i;+6}

Cét)(‘;}? 1) = 0,
cO@,1) = as(mb)CF{—Zw In(w) }7

4 1—-w
cH@,1) = o, (3.59)

where & = w/my, and A, (my, p) was given in Eq. (3.11). Thus, non-zero values for
Cévg) and C(t) are generated at one-loop order. while Cé 1 are still zero at this order.
For the J(% currents, the one-loop matching coefficients were derived in Ref. [40], and

the anomalous dimensions and RGE-improved cocfficients were computed in Ref. [87].

By reparameterization invariance B!",(w) = C"(w) and Bit_)4(w) = C’fﬂ(w),

so their one-loop matching coefficients are in Eq. (3.59). For the O(A?) current
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Hard, Jet, and

T-product Example Diagram Shape Functions

Usoft Operator

T0) I J«))’r Blol 7(©) £(0) Ro(x) Ry (0)

Table 3.3: Lowest-order insertion of SCET currents. The double lines are heavy
quarks and the dashed line is a collinear light quark.

coefficients the RPI constraints are

v v L, v v Y Y
AP A9 =LA 00, AP = AP = AP = B ).

1
AV =40 = ZAP =), AP =AD = AP = B (wi,w). (360)

Note that we have not included effects associated with a non-zero strange-quark
mass in our basis of subleading SCET operators, and it would be interesting from a

formal view-point to consider the possibility of such power-suppressed terms in the

future (cf. [109]).

3.4 Leading-Order Factorization

In this section we review the leading-order factorization theorem [99] as derived using
SCET (30]. The result is discussed in detail, which will allow us to refer back to this
section when some of the steps are repeated at NLO. Throughout this section we shall
suppress the u and s superscripts, since all the manipulations are identical in both
cases. B — X /v and B — X;v.

To derive the leading order Ti(o) we need ouly consider 1152) given by taking two

LO currents .JJ, as shown in Table 3.3. The phase factor in Eq. (3.50) gives

e—i(q+12’-75—m.bv)-n: = e irx (361)
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and exp(—iP, - x). The current has ¢, = 0, so this P, term will contribute only to
fixing the perpendicular momentum of the jet function to be zero. The large label

momentum in the phase in Eq. (3.50) also gets fixed by momentum conservation:

P=my—n-q=mp—mp+n-px =0-p, (3.62)

where n-px is the large momentum in the jet X. Then the remaining momentum

r# ~ A since A -r =f-g+P —mp =0 and
n-r = N-q—Mp=mp—"My —N-Px. (3.63)

At lowest order

n-p="n-px, n-r=A-n-px, (3.64)

where both A,n - px ~ A (and higher-order terms in mp — m; will be needed only
when we go beyond LO). For the time being we stick to the partonic variables 7i-p and
n-r; later, we shall perform the expansion involved in switching to hadronic variables.

Using the states defined with HQET, we get

—1

Separating out the hard Wilson coeflicients, we have

7O = Z /dwdw Ci(w)d(w' —a-p)(—1) [dize ™ T I (W' 2) IO (w,0).
(3.66)

The effective-theory currents in the remaining time-ordered product depend only on
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collinear and usoft fields describing momenta p?> < m2, i.e.
0 ~ 1(0) -
T IO W', 2) S0 (w,0) = [HTjXnw](@) [XnuT e H,](0), (3.67)

where ' = 7°T40. It is useful to group the collinear and usoft fields into common

brackets by using a Fierz rearrangement. For spin and colour we can use

191 = %kZ:F,?@F,g’ (3.68)
- ed) + (e ) + (Fhe(te)
)0 () + (-t 0 (1) + (ppr) o (BT,

Equation (3.68) is valid as long as the identity matrices on the LHS are inserted such

that on the RHS the F] appear as £, AF]B¢,, where A and B do not contain #
0)

u and to the

factors. In Eq. (3.67) we insert identity matrices to the right of the f;
left of the '\, which gives

v

_ . _ -1) _ =0 _
(Bo|T ION ) I (w,0)By) = % (Bo|T [Fo(@) Ty, Fy T H,(0)] | By)

X <O|T[5Zn,w(0) FI? Xn,w’(x)] l0> . (369)

Here the states |B,) have HQET normalization, (B,(k')|B,(k)) = 20°(2m)363 (k' —k),
and are defined as energy eigenstates of the LO usoft Hamiltonian generated from

£9.

Only the vacuum matrix element with k£ = 1 is non-zero:°

<0lT[zn.w(og’%ﬁxn,wl(x)] 0) = <0|T[<EnW)w(0)27V{.
.+
= (—2i)5(w—u’)52(1:L)5(z+)/%%— e~kTeT/2 gO )ty (3.70)

(W) (2)]]0)

Note that in Eq. (3.70) 6%(21) ~ A?, since from the momentum-space view-point it is obtained
by combining integrals over both the label momentum p; ~ X and residual momenta k; ~ A2,
rather than just the latter.
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This definition of 7.” agrees with Ref. [30].1° Owing to the forward matrix element.
the momentum-conserving delta function gives the d(w’ — w), which can be used to

eliminate the w’ integral in Eq. (3.65), and the delta function in Eq. (3.66) then sets
w=np. (3.71)

The appearance of the §(z™) ensures that in the remaining usoft matrix element in
Eq. (3.69) time ordering is the same as path ordering along z~. Up to order a,, the
one-loop diagrams plus counterterms give
—wkt—i —wkt —ie 2
Oty =Y Jq as(u)Cr 2 1n2 (_u)_31 (.L_> 7
T (k7) wk++ie{ + 47 " u? . u? + 31J)7
(3.72)

which agrees with Refs. [27, 47].

Next, we simplify the spin structure of the B matrix element in Eq. (3.69) using

the formula

2

PTP, = P,,T&c[%Pvr] + s,m[ - %S“F] =3 PhTr(PAT), (3.73)

m
m=1

which is valid between heavy quark fields. Here, P} = P,, PH = P,/2, P} = s,,
Pyl = —s#/2 for P, = (14 ¢)/2 and s, = Pyy.~sP,. For our LO matrix element the
s* term vanishes and, taking into account the delta functions in Eq. (3.70), we have

only a function of

 =n-xnt/2, (3.74)

10Ty check this, one must note that here we contract colour indices on the LHS and have an extra
minus sign, since the x,, fields are in the opposite order to Ref. [30].
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Figure 3-3: Momentum routing for leading-order insertion of currents.

namely
(BT [F(@) Ty & 10 14,(0))18) = Te[ 2 T0, 2 1) (B Ru(@)Y (2, R 0)1By)
(3.75)

where Y(,7) = Y(2)Y(§) = P exp (z’g fyz__ ds n-Ay(sn/ 2)) Combining the phases
from Eqgs. (3.65) and (3.70) and noting that d*z = (dz*dz~d%z,)/2, we see that the
matrix element in Eq. (3.69) is now
70 ¢ (O) + —'m: “(rt+kN)/2 70) (1.4\/ D L (& = '
i Te[ 2 1“] NETO] [ TO (k) (By|Foo(2)Y (3, 0)ho (0| B,)
(3.76)

After we pull out the large phases, the residual momenta are as shown in Fig. 3-3,

where £t = r* 4+ k*. Equation (3.76) involves just the leading-order shape function

£ = 5 [Ge O BB @)Y (30 0)| B

2 ) 4m
= 5 (BR(* ~in- D)h|B.). (3.7

Note that we have taken m; > A, and that Eq. (3.77) depends only on the residual
momentum and masses that are of order A. Since we are free to integrate by parts in
the forward matrix element, it is evident. that f(0(£¥) is real. Momentum conservation
implies that the residual momentum of the b-quark should not be larger than the
residual mass A of the B-meson, so f(¢*) is non-zero only for ¢+ < mg — my = A.

Inserting r+ from Eq. (3.63). this implies that k™ < p%. In MS the renormalized

shape function depends only on ratios of the dimensional regularization scale ;1 and
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momentum scales ~ A.

To derive the leading-order jet function we need the imaginary part of (—7) times
the result in Eq. (3.76), which is the imaginary part of J\° (k+) f ©)(¢+). Although
the B matrix element integrated over x~ is real, it does provide a theta function
that restricts k¥ < p} and therefore cannot be ignored in taking the imaginary part.
The function Jugo)(k*') has an imaginary part for ¥ > 0 only, so we have support
for the imaginary part over a finite interval only. The crucial point is that these
theta functions are generated by dynamics within the effective theory and occur even
though we have taken the m;, — oo limit. For the leading-order jet function for

B — X, s we therefore have [w = 7-p]
J(O)(w k) = —% Im[jLSO)(k+) O(pk — k+)9(k+)] ) (3.78)

By RPI-III invariance [118], this J@ is a non-trivial function of only the invariant
product (wk™), times an overall factor of w and the theta functions. For notational
convenience, we suppress these extra dependences when writing the arguments of 7@

as wkt.

Since 7+ = n-q — m, < £+ <A, or equivalently 0 < k™ < p}, it is convenient to

use the variables p? = fi-pn-px and z, where
kT =z p%, (3.79)

so that wk* = 27-pn-px = zp?, and Jf,o)(kt+) is non-zero only for 0 < z < 1. At

order oy, taking the imaginary part of Eq. (3.72) gives

w as(1W)CF (o 2 D v
TO(z,p2n) = F{(S(z) [1 + —%—— (21112 i 31n " +7— wz)} (3.80)
2

poltlCe[ (402 s (122 -3) | o900

< &

with the standard definitions for the plus functions. Our definition for the jet function

agrees with Refs. [27, 47] once we compensate for the extra #(p} —k™) that we included
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in Eq. (3.78). The jet function depends only on the dimensionless parameter z and

ratios of ;2 and the momentum at the jet scale, p2 ~ QA.

At this point we have separated momentum scales in SCET; , and, combining
Egs. (3.65), (3.69), (3.70), (3.78), (3.75), and (3.77), we arrive at the LO factorization

theorem in terms of partonic variables,

W = hi(a-p,m, p) / det JO (-p(et —r*), ) O, ) (3.81)

A—rt
= np,mb,u)/ dk* TO(-pkt, p) FOKY+rt, ).

Using Eq. (3.64), the final LO result in terms of hadronic variables can be written as

A
WO = hi(px,ms, ) /_ et 7O (px (e* —=K+pk), w) FOE, u)

A—p;

p¥ _
= hi(px, Mo, 1) / dk™ JO (px K, p) FORT+A—p}, ) (3.82)
0

1
= hi(px> Mb, 1) p}/ dz JO(zm%, 1) fOA - ph(1-2),4).
0

For practical applications we would also make use of a short-distance mass definition
for m; (the cancellation of infrared renormalon ambiguities for the shape function
was demonstrated recently in Ref. [73]). Here, the dependence on whether it is X, or
X, occurs only in hz(-o) and the values of the kinematic variables 7-p and n-px. The
functional forms of J© and f© are independent of which process we consider. The

hard coefficients are given by

£ 7 F“”] P™ . (3.83)

hi(w, mp, 1) ZC’ (w, mp, )Cj(w. mp, pt) Tr [ iy

3’
with the projectors P/ defined in Eq. (3.17).
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Taking the traces in Eq. (3.83) for B — X, {7, we find that

1
h = Z[Cl')]z, (3.84)
o - el + e + 0] ()| (neg) [(CF) + 2010
2 (n-g—n-q) 4 (n-q—n-q)? ’
. (Cf)? . O (2c + )
h3 = > h4= o ,
2(n-q—n-q) (n-q—n-q)
e _ _LOP+0PeR + GG [(CF) +207C g
° 2(n-q—7i-q) (n-q—n-q)?

For B — X7, where fi-q¢ = 0, the traces give

2
. . 1
h = (—"4‘1—)(0}” - %cgt’ -0)?, m=0, hy==2(cf -0 -cP)’,
B = __1_ 30(t) _ QC(t) _ 20(t) _ C(t) C(t) _ zc(t) + C(t) ,
4 4 1 2 3 4 1
. 1
hy = AP -0 - o). (3.85)

Here the h?"’s depend on In(u/my) and in addition ¥ = f-p/m; through the O(a;)

corrections to the C;’s (see Eqgs. (3.59) for results at u = my).

The factors of ng = mpz};, (for B — X¢v) and fog = mg(1—yy), ng = mp(l—ug)
(for B — X, ¢v) are purely kinematic and so can be directly replaced by these hadronic
variables. Expanding to leading order about z}, = 1 and uy = 0 gives the results
that should be used at LO in the SCET expansion. For notational convenience, we
write

RE=h R RS =AY AT (3.86)

1
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For B — X, (v we have

R = i[q‘”}?, (3.87)

B = [ PHC O O ) + L+ L [el e o).
Yu 4 Yu

By = zm;yf, (7). h= ——m;ﬁ o5 (2017 + ).

hQ ‘—Qm;}, [(Ci2 e e+ ] — Ei—y—% o 20t + i),

while for B — X,v we have

2 1 1
htl)s _ @(Cl(t)__ C'éw*—Cét))?, hgs =0, hgs _ %(Cl(t)_Ecz(t)_c,ét))fz7

M= —1(300 20 200 —cP) (€ -200 +CY),

1
e = (Cf— e )2, (3.88)

The results in Eqgs. (3.87) and (3.88) agree with Refs. [27, 47]. At NLO in the power
expansion, it will be necessary to keep the next term h?/f from the expansion of the

kinematic prefactors in Egs. (3.84) and (3.85). For B — X,¢v we find

/

P = (3.89)

2

/ -y v v v v v 2(1-y v v v
hgu _ UH{( _yH) [(C§ ))24_0{ )Cé )+C§ )Cé )] + ( —3yH) [(C§ ))2+2C£ )C§ )]}7

Yu Yu
hg/u _ 'ler; C(L’))Q ’
2mpyy,
/ 2U () (o) | ()
it = S o 20 + oty
14 mL g 3 (20 5 )
/ 1 O v ' 2 (v v v
Y = _u,,{ A e e o) o) 4 B8 o g o ]}
27’713’ 1 mByH
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while for B — X,y we have

/ 7?1,2 x?t ——1 1 ’

RS = ———B(ZH )(Cf”-ﬁcgt)— 2, R =0, (3.90)
, mp(z],—1 1 ,

hy® = —-——-—B(IQH )(C{*>—§C§”—C§”)2, hg® =0,
s mpe(zh—1) , o 1 2

Ry = o (C{>—§C§)—C§t>) :

In Ref. [99], the LO triply differential rate for B — X,f7 was found to satisfy
d*T* /dzdydyy < (x —y)(yo— ). In terms of the A%, this corresponds to the relations
h3* = 4h%* /gy and mph$* = 2h{*/gu (where at LO we can set y = (1 —ug)(1 — 75),
Yo = 2 — ug — Yu). Eqgs. (3.87) agree with this result at tree level in the hard
functions, but give non-zero corrections to the first (hJ*) relation of order a,(m;)

from the Wilson coefficients CS”) and C{").

3.5 Vanishing Time-Ordered Products at O()\)

To work out the factorization beyond LO is now simply a matter of going to higher

order in A in SCET. At order A the time-ordered products are

Fla _ —z‘/d4a: o~irT T[J(O)’r(x) J(1a)(0)+J(1a)’r(x) J(O)(O)}, (3.91)
T o~ /d“z e—ire T[J(O)T(z) J(lb)(0)+J(1b)T(x) J(W(O)]y
L /d4a: dby e i T[J(O)J‘(a:) iL&)(y)J(O)(O)] )

We shall see that these time-ordered products give vanishing matrix elements for
B — X,y and B — X, fv. The result follows almost directly from chirality and the
fact that the currents in Egs. (3.51), (3.52) and (3.54) all involve left-handed collinear
quark fields. However, we must be careful to check that terms proportional to the
chiral condensate do not contribute. We follow an approach similar to the previous
section: by using the Fierz transformation in Eq. (3.68), we can collect the usoft and

collinear fields into separate parts J ® S, and the matrix element then factorizes to
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give (0]J10) ® (B,|S|B,). These parts are still connected by indices and spacetime

integrals, which are represented here by the ®.

For T'® and T°, we take the expressions for the currents from Egs. (3.51) and
(3.52). The same usoft fields appear as in the leading-order TO, and so the T-

products involve soft matrix elements that are similar to the one in Eq. (3.69), namely

]ua

<B IT[ (10) Fr F(O) ] |

Tjia

<BU|T[7_{v(x) ) F2 Y09 1,(0)]|B.),
w) s (3.92)

with similar matrix elements for T but with T(la) — T(.,lb). The first term in

i'n
Eq. (3.92) is multiplied by the collinear matrix element
1 — _
J090,2) = — (0|7 (4D (0) Ff xEu(@)] o) (3.93)

while the second term is multiplied by [7(%)(z,0)]!. For T* the analogous result is

TP, = —— (O[T [ (0) (ig B2 )un(0) Y xh(2)][0) - (39)

In both 7% and J1® the fact that we need an overall colour singlet eliminates the
possibilities k£ = 4,5,6. Owing to the presence of the o L-index, rotational invariance
also eliminates k = 1,2, leaving only FJ = —771733_ /(2N.). However, this term has the

wrong chiral structure and also vanishes, i.e.
XEFIXE o< Xn PRV, PLxn =0, (3.95)
so both T'® and T give vanishing corrections.

For T we need to use the Fierz identity in Eq. (3.68) twice to group together all

usoft and collinear factors. This gives the usoft matrix element

(B,|H,(z (‘”Fk,(m7 ) () FpTiOH,(0)| B,) (3.96)
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multiplied by the collinear matrix element of a four-quark operator, which we claim

satisfies

(0| [%hw) Fexs @)] [0 B2 D2 ) w)] o) = 0. (3.97)

To prove Eq. (3.97) we begin by noting that colour now allows T° terms as long
as they occur in both F'’s, so either k, k' € {1,2,3} or k, k' € {4,5,6}. For either
possibility the argument is the same, so for convenience we take the former case.
Rotational invariance now demands that one of k, k' is equal to 3 and the other is
1 or 2. If ¥ = 3, then the first pair of collinear quark fields vanishes, just as in
Eq. (3.95), while if £ = 3, then the second pair of collinear quark fields vanishes.
The results in Egs. (3.95) and (3.97) rely on the underlying assumption that there
is no structure in the vacuum that can flip the chirality. In QCD we know that
this is not the case, since the chiral condensate (and instantons) take L < R. The
above argument is valid because we have used chirality only at the u? ~ QA scale
where we are matching perturbatively, and not for u? ~ A2 <« QA, where it is badly
broken. The same argument applies when perturbatively matching on to the weak

Hamiltonian at p ~ my > A.

3.6 Factorization at Next-to-Leading Order

Since the order A contributions vanish, the first power corrections occur at order
A? = A/Q and will be referred to as NLO corrections. The NLO contributions to the

decay rates have several sources, including the following:

i) expansion of kinematic factors occurring in front of the W; in the decay rates

given by Egs. (3.31) and (3.32).

ii) expansion of the kinematic factors appearing in the h; at LO, i.e. in Eqgs. (3.84)

and (3.85),

iii) expansion associated with the conversion from partonic to hadronic variables,
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given in Eq. (3.100),

iv) higher-order operators contributing to the time-ordered products, given in

Eq. (3.105).

Once the region of phase space where the SCET expansion is valid is properly defined,
as in Sec. 3.2.3, the corrections in i) and ii) are straightforward to compute. The
corrections from i) do depend on the choice of how the zy charged-lepton variable
is treated, for example whether we integrate over all of zx or instead look at an xy
spectrum with a cut. Results for i) are given in Egs. (3.40), (3.41) and (3.39). For
ii) the required terms are derived by keeping one more term in the Taylor series in
passing from Egs. (3.84) and (3.85) to Egs. (3.87) and (3.88). We give the results
for i) and ii) in Sec. 3.7.2. Note that these terms are already in terms of hadronic
variables and are therefore unaffected by the conversion in iii).

The NLO terms from category iii) are discussed in Sec. 3.6.1 below. The contribu-
tions from category iv) require several sections. In Sec. 3.6.2 we give a complete list
of the time-ordered products arising at second order in SCET (category iv)), along
with a summary of the jet and shape functions they generate. In Sec. 3.6.3 we carry
out the tree-level matching calculations for these time-ordered products and define
the jet functions at leading order in a;. In Sec. 3.6.4 we give operator definitions for
the shape functions. Detailed derivations of the NLO factorization theorems for these
time-ordered products are presented in Sec. 3.6.5. Finally, results for the computation
of the traces that give the NLO hard coefficients are given in Sec. 3.6.6.

Note that the final results for contributions from i), ii), iii) and iv) are summarized

in Sec. 3.7.

3.6.1 Switching to hadronic variables at order \?
At LO the factorization theorem in terms of partonic variables was given in Eq. (3.81):

A—rt
WO = Wompm ) [ Ok ) SO ) (399
40
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In this expression, the variables 71 - p and n - r have a series expansion once we switch

to hadronic variables. For the accuracy needed at NLO we have

_ — A 3\
mp

Expanding Eq. (3.98) gives the LO term in Eq. (3.82) plus the NLO terms

A+ 3) _ PX _
(WO = —“Tmbi) B (P, ) fo dikt T (px k) (3.100)
df O (k++A—pf +
x{ if = Px) —5(k+—p})f(0)(k++1\—p})}

FOK+A—p%)

PY d
By + 0z, O (7.0 kLt
A/o dk dﬁ-p{h’(n p,my) T (-pk )}

A1 + 3\ _ FI0) X
Ot ) my)[79 @ FO) (55, 237)
mp

— K (W TOY ® fO)(v%, %)

Note that in taking the derivative with respect to fip we differentiate only the C;(7ip)’s
in hY and not the prefactors depending on 7-g. For later convenience, we switched to
hadronic variables in the final line of Eq. (3.100) and defined

pk O (r+1 A _pt
0 y

(7@ ® fO) (o}, %)

—6(k+—p;)f<°><k++x—p;>},

' p} d
[(h,o'[j(o)) ®f(°)}(p},p}) — /(; dk* %{hw’(ﬁ,p’ mb) j(o)(ﬁ-pk+)}

% O +R-p}).

n-p=px
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Hard, Jet, and

T-product Example Diagram Shape Functions

Usoft Operator

. Ty t - :
Ry ‘%k IOFP R (0L ()
Ly
y
0 x
~2a) 00000 @r=-----d) e 1,2 7(0) £(2) _v( z)(Dr,1hy)(0)
7 /@; qﬁ\ TP R (D )(@)h(0)
J J

"Q, °? p34 jl(;2) f(4)

e TR @D
h* ~73,4 934
0 Ly Ly Fot }5:6 J( 4) f(ﬁ)

7(2q) "7’”””’\“* hy(2)q(y)q(2) by (0)
/ %\ ho~ 8j2( :) 9&6)10

Table 3.4: Time-ordered products that are of order A2 = A/mj, overall, and that are
non-zero at tree level. The power of A\? is obtained by adding the powers from the
jet functions J to those from the shape functions f or g. We suppress colour and
Dirac structure in the usoft operators listed, which can be found in the text. The
time-ordered product in the last row has not been considered in the literature and is
enhanced relative to the other entries by a prefactor of 4mas(ExA) ~ 5.
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Hard, Jet, and

Shape Functions Usoft Operator

T-product Example Diagram

7(25) hi2 73 f00) hy () (0)
i) x h2d 72, £O hio ()P (0)
feto) § -'?M* A2 70 6B Ru@)Di)h(0)

7(2Lb) /- ‘;;fld(zm A got hl2L8l ‘71-(/0) 9&?14 hy ()7 D(y)hy(0)
133

7O - _.____, (on‘

(2LL) 0 Rl2LL] J( 2) g(? o

>

o(2) D1 (y) D1 (2)hy(0)

(1)

Table 3.5: Time-ordered products that are of order A/m;, but have jet functions that
start at one-loop order. The last three rows introduce new shape functions that were
not present at tree level. Vertices that are not labeled are from llé?
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Hard, Jet, and

T-product Example Diagram Shape Functions

Usoft Operator

A J(O)T B _
F(2Ga) hi26al 70 £ hy(2)(D1D1) ()R (0)
) Jw)’r o (2 _
T(2Lb) h[2Lb] .,7](/ ) g§3314 h’v (I)ﬁD(y)h"v(O)
ot
F(2La) heLd 70 g3, hu(z)D(y)h.(0)

Table 3.6: Examples of non-abelian terms in time-ordered products that are of order
A/my and have jet functions that start at one-loop order.

3.6.2 Time-Ordered Products at order )2

To enumerate all the possible time-ordered product contributions at this order we

consider all possible combinations of SCET currents and Lagrangians from Sec. 3.3,
Jtpn2) L plng-1) glng) (3.102)

where n; +...+n; = 2 for NLO, i.e. O(\?). 1t is useful to divide these time-ordered
products into two categories, those that have a jet function that starts at tree level
and those whose jet function starts at one-loop order only. To determine into which
category a time-ordered product falls, we first note that the jet functions are vacuum-
to-vacuum matrix elements. so all collinear fields are contracted. Since there are no
external L-momenta, at tree level all collinear lines have no 1 -momentum and factors
of P, all vanish. (This is also true beyond tree level for factors of P, that act on
all collinear fields in a J or J!.) Thus, for example, the product J1®t (5 has a jet
function that starts at one-loop order since we must contract both the collinear quark

and gluon lines. A second example consists of time-ordered products that involve a
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Eg? insertion, in which neither the 7, nor the A7} in the DS can contribute at tree
level.
The time-ordered products that appear already at tree level will be most important

phenomenologically, and include

TEH) — /d“a: d4y e =i T[J(O)T(a:) iﬁf) (y) J(O)(O)] ’ (3.103)
Fe) /d“x e 37 T[J@H(z) JO(0) + SO (z) S (0)]
k=a,b
PR~ /d4x d'y e T[JON(z) iLE () J®(0)]
T = —% / d*z d'yd*z e T[JOM(2) iﬁg)(y) iﬁéz) (2)J@(0)] .

These time-ordered products give jet functions that are either the same as at lowest
order, namely J(©, or enhanced by two or four powers of A, namely J(~2%_ The
corresponding shape functions are power suppressed relative to f(©) by two, four and
six powers respectively.

The most pertinent information is summarized in Table 3.4, along with examples
of Feynman diagrams and the forms of the non-perturbative usoft operators. The
overall power of )\? is obtained by simply adding the superscripts in the operator
insertions. Dividing this overall power into that of the jet and usoft terms is slightly
more involved since it depends on the individual operators. At tree level it is simply
that every additional collinear propagator enhances the corresponding jet function by
A2, Generating additional propagators requires inserting subleading operators with
additional usoft fields that produce power-suppressed shape functions. The power
counting in SCET] restricts us to consider at most two (O(\) operator insertions, so
this guarantees that the greatest enhancement from the jet function is O(A™*) and
the set of possible terms is finite.

From Table 3.4, we see that for T7(* and T the collinear fields give a jet
function that is identical to J(@ defined in Eq. (3.78), but have A/Q-suppressed
shape functions f1(22) and féQ). For TL) we find an enhancement of Q/A in the jet

function J(~2 but shape functions that are further suppressed, namely féft,), which
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are down by A?/Q*! Finally for T®? we have the biggest enhancement, Q?/AZ,
through the jet function J(%, and a shape function féi.) involving a four-quark

operator, which is down by A3/Q3.

In Table 3.4 we also notice that it’s only the J© currents that appear, plus
the subleading currents J® and J®) whose Wilson coefficients are related to the
coefficients in J© by reparameterization invariance (see Appendix B). This implies
that the logarithms encoded in the running of the subleading hard functions A'~® are
the same as the logarithms that can be resummed in A°. (Here the term “logarithms”
includes Sudakov double logarithms as well as the usual single logarithms.) This
result depends on the fact that the Lagrangians that are inserted do not run. This
implies that the logarithms resummed between the scales m2 and myA are universal
for these terms (besides the simple HQET running from cp(u) in cﬁf), which is easily
taken into account). Additional logarithms occur below the myA scale and there is no
reason to expect that they are universal. A computation of the anomalous dimensions
of the corresponding soft operators would allow these additional logarithms to be
resummed. Finally, for the time-ordered products that appear at one-loop order in
the jet functions, even the logarithms between m? and mA are not the same as at
LO. They are, however, entirely determined by the running of the J() currents that

were calculated in Ref. [87)].

At one-loop order in the jet function, the remaining time-ordered products start

Note that in the subleading Lagrangian Lg? the two L derivatives appear at the same spacetime
point. providing a simple explanation for why this occurred to all orders in the twist expansion in
Ref. [26].
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contributing. They are

T = / d'ze™™® Y T[JMi(z) JM9(0)], (3.104)
k=a,b,f=a,b
T — —; / dizemm® Y T[J(z) JO(0) + SO (z) J*(0)]
l=c,d,e,f
T(2La) = —j /d4IE d4y e~ir'w Z T[J(ln)’r (IL') Z,Cé? (y)J(O) (O) + J(O)T (JI) Zﬁé? (y)J(ln) (0)]
b K=a,b

—i / d'zd'y e Y " T[JU (@) iL) (y) T (0)+ T () iL$y) (y) T (0)]

k=a,b

TCLY) — /d4x diye ? T[J(O)T(z) iﬁgb) (y)J(O) (0)]

) /d“x dty e T[JO(z) i) () J©(0)],
FeL) — - / dizdiydiz e T[T () il (y) ily) (2)7(0)]

—i / d'z dtydtz e T[JON(2) iL$ (y) iLP (2)JO(0)]

-2 / d'z diy dtz e T[T @) iL® ) iL®(2)T9(0)]
TG = _; / d'z dy e T[JON(z) iLE (y) T (0)] .
Information about how these time-ordered products contribute to the factorization
theorems at O()\?) is summarized in Tables 3.5 and 3.6. Note that 7 and T
match on to subleading jet functions and the leading-order shape function, and so
these O(as) corrections can be calculated without introducing new non-perturbative
information. The remaining T-products give new subleading shape functions that
were not present at tree level. Together the terms in Egs. (3.103) and (3.104) provide

the complete set of time-ordered products that contribute at this order in )\ and at

any order in ay.

Adding up the contributions from the various subleading time-ordered products,

99



we find that

BOf (5.
Wfi(Z)f _ 12(;;1)) / dk+ j(o (R pk+,ﬂ) (2)(k+ 7#) (3.105)

- h! (7i-p) 2 0 2 (1+ o ot
+ZT/, ak* TO@pkt, ) SO (K 1% p)
hrf
+Z /dk+ dky T52 (mepkf,u) £ (kF + 7%, 0)
hrf
+Z (7-p) /dkfdk;dkg TV @k, ) £O (K + 1+, p)

00f (.
+hi nin p) / dk‘+ J(O)(npk+ 'u’)g )(k++r >,U')
b 1}

4 rf/—
h;" (7-p —2) /-
+Z~—(T;;—)/dki* dki Tzt (mpki, u) ¢ (kf + 1%, 1)
Tf
+Z hi (7 p) dkidkfdki T30 (Aep K, u) 6 (k5 + 1, )
=5

hrf
+ E (7 p) dktdk; dkf [J 4)(n pk t o) g® (k}t +rt, 1)
r="7

+7@ep k“-?, 1) 9% (K + 1%, )]
h[% ™21, 22, 7i-p)

+ > /dzld22 - /0 dkt TP (21, 20, px k) fO (Kt +A-p%)

m=1,2

[2¢c]m+8/— p¥
h; n x _ —
¥ Z WD) [Pk 705 k) £O U+ R-p)

m
m=3,4 b

[2¢]m+8
/dzlh (21,7-p) / dkt TP (21, px kF) FO kT +R~p})

m=5 Mo
+ W g1
+ ‘/Vi[%b]f[ 95?1.1]
+ WP V918 5]
+ "'I'Yi[zcu]f[ §41) J.
where j = 1,2 and j' = 1,2,3 and Jli? = Jl(_Z) + .72(_2) for r = 3,4 respectively.
Recall that f = s for B — X,y and f = u for B — X, /0. If we work at tree level
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in the jet functions. then only the first four lines of Eq. (3.105) are required (with
shape functions fy-¢). In our notation, the f; denote shape functions that appear
from tree-level matching, while the g; denote shape functions that show up only when

one-loop corrections are considered for the jet functions.

3.6.3 Tree-Level Matching Calculations

In this section, we show how computing the four tree-level diagrams in Table 3.4
immediately allows us to obtain the tree-level jet functions, properly convoluted with
the non-perturbative shape functions that show up at NLO order. Note that no sum-
mation of operators is necessary. An operator-based derivation of the factorization

theorems at all orders in the jet functions is given later, in Sec. 3.6.5.

First consider the computation of Fig. 3-3 using the LO jet function from the
time-ordered product in Eq. (3.65), with currents as in Eq. (3.67). Working entirely

in momentum space and contracting the collinear quark fields in the diagram gives

R (TP 1oy (o
(i) e s TOM(67). (3.106)

where 7i-p is the large momentum flowing through the collinear quark propagator.

Taking (—1/7) times the imaginary part gives
JOKY) = 6(k%) + O(os), (3.107)

for the tree-level jet function. which is equal to 6(¢* —r*) by momentum conservation

since
=kt +rt. (3.108)

Thus, from Eq. (3.106) we can directly write the convolution of jet and soft factors
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Figure 3-4: Momentum routing for a) 7% and b) 7). In a), the operator with
one gluon comes from [iPLiPL].

as
—Tr[PUTLO)%I‘VO)] / d€+{j(°)(£+ —r+)} {va(ﬁ—m-a)yfhv}, (3.109)

where we have used H, = YTh,. Performing the integral at tree level gives the well-
known fact that the decay spectrum is determined by the shape function evaluated
at r*. Note that in SCET we needed to compute only one diagram rather than

resumming an infinite sum of operators.

At NLO the tree-level diagrams are shown in Table 3.4. The graphs for 7(H)
and T involve the same calculation as in Eq. (3.106) but just leave different soft

operators.

For T?L) the momentum routing is shown in Fig. 3-4a. Contracting the collinear

quark propagators in the graph gives

(—i)(0)*H, (ﬁ)r“”ﬁ ”p [zsz iPh1(e — ) i%g——ﬁ—'?——n‘,‘”m(f?)

1 (onzi 1 .
= — F(O) e [iDLE iDL (e — e +
il }(kiﬂ‘e)(k;ﬂ'e) o)D" 1D (6 =60 o (8)
_1__ (0)¢ L (0) 1 T (RN Le LBt g\t .
+2ﬁ'PrH[ T gty ](kHz‘e)(k; Tiey )P D (6 — 17 M (6)

(3.110)

where momentum conservation sets ki = ¢} —r* and k' = ¢ — r*. Taking (-1/7)
times the imaginary part gives the tree-level jet function

O(ky) — 6(k3)

(=2) (1.

+O(ay), (3.111)
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and the convolutions
(0) _
o pTr[P T Z ;rg")} /d@jdf;{f 2er -1}
x{RY8(tf — in-0)Y iDLHDLY 8(6f —in-0)Y 'h, |

1 Y S B
+2ﬁ.pT‘”[Ser "'Ya'YgF,(,)] aer et { 72 ~ 1))

x{ﬁvw(ﬁ in-0)Y1iDL2 DLBAT N YV §(4f — in-0)Y Th, } (3.112)

Finally, we consider the NLO time-ordered product 7(? with the momentum

routing in Fig. 3-4b. This graph gives

(00 e? [Fu(e)T _m YT wus(zg—e;)]m (3.113)
7 t__np

[l =R T e D)

_ 1 g9’ =(0) ﬁ A A Lt (0)

= T r g el g7 T ] [T 0 5O,

where ki = ¢ —r*, ki = ¢ —r*, and kf = £} — r*. Taking (—1/7) times the

imaginary part gives the tree-level jet function

(=) 1y _ S(ky) d(ky) 0ky) o
)= G * o * ey ~ IR @

Writing out the convolutions for these four-quark operators, we find

b + 10+ 79+ ] 7(=4) (p+ +_; (Wi Ayt
- /dfl de; d£3{j (ef =) }[RoYs(es ~in-0)T LriTAY qus]

x8(£5 —in-0) [qusy:r%fgr(o)ow in-0)Yh, } (3.115)

3.6.4 NLO Soft Operators and Shape Functions

In this section, we define the shape functions that can appear in the NLO factorization
theorem. At tree level, many of these functions have already been defined in Ref. [26]

(we use a sequential enumeration of these functions. and translate to the notation in
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Ref. [26] in Table 3.7). We also define the additional shape functions with four-quark
operators that are not given in Ref. [26], and later in section 3.6.5 the shape functions

that appear only beyond tree level in the subleading jet functions.

We begin by enumerating the usoft operators. For the time-ordered product of

the LO shape-function operator and the subleading HQET Lagrangian we define

0@ (r+) = /Egrle—%w* /d4yT[ﬁ,,(az)Y(az,0)h,,(o) iOn(y)].  (3.116)

With igGY | = [iD.*,iD}Y], the remaining ultrasoft operators that play an impor-

us ?

tant role include

dz~ i -
= %Ev{wi, §(£Y—in-Dys) }hy, (3.117)

of(e%) [H.(@&)DLH)©) + (he., & 0)]

AT _igrp-[=5 /- = -
P = [Tt [Hv(x)ﬂ»yf,(mfsm)(O)+(h.c.,zHO)]

1 -
= 5 ho{iDL, 6(¢7~in-Dus) }rshe

os(ery = dgfr; eatte” [—-z'Tﬁv(a”:)(istHv)(O) + (h.c., T < 0)]

_ éﬁv[z‘Dﬁ §(€*—in-Dy) o,

us?
diL'— ___%e-'—a:—
— €
8

hy [iDB, 5(£F—in- Dys)| v 5he -

P(e*) [—iT_ﬁv(:‘r)ﬁ,"{%(iﬁfs’}iv)(()) + (he., F o 0)]

us

Fub(6f —in-Dy) (iDL, iDEY 6(6+ —in- Dy)he

us us

]
2
3 . dxr~ dy~ I JURS = p
Of;d(flr{j) _ /'Z Y 6—5221 e——i(ﬁ*(;)y [H,L,(i){’iDJ'“,l'Di‘sd (g)HU(O)]
1
2

Pyl ) = / e 3 o3 W [H () iDL, iDE)(5)v] s Ho (0))
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and the four-quark operators
o dw‘dy‘dz_ g + _py,— +_pFyo— _
O 3( )__/_1%7;3_6 2{23 +(€5 =43 )y~ +(¢] Z;’) }[H ( ) ﬁp T4¢us( )
X YR (2 PLT4M,(0)] (3.118)
1.-
= 5 {hu6(€3 —in-Dys) Y PLTAG} 608 —in-0) {q"y*PLo(¢f —in-Dys) TRy }
drx—dy=dz= _igp. -
aB Y + +_ g+ etz -
08¢ty 5) /—1%3_6 S - G~ ) [, (37 Pl (5)
X g2}y Po My (0)]
L.+ . 7 . P :
=3 [Rod(£3 —in-Dys)v? PLg™] 6(£3 —in-8) [q*v* PLo(€f —in- Dys)hsy) -

Here ¢, = (7if)/4¢us and the flavour of the quarks in these operators is s for
B — Xy and u for B — X,¢0. Note that a minimal basis of Dirac structures for
the bilinears is h,{1, Y55 }hy. In the second line for each operator we have used our
freedom to integrate by parts since only the forward part of these usoft operators
is required. The operators in Eq. (3.117) were obtained by matching with tree-level
quark propagators in Ref. [26] and we agree with these.'2 The four-quark operator O2”
appears when gluon propagators are included at tree level, as we discuss further below.
The operator [ d¢fdéFOg® occurs from the disconnected annihilation contribution,
as shown in Ref. [108]. However, since this contribution is of order (A/m;)? in the

endpoint region, we do not include it in our analysis here.

When O(as) corrections are included in the subleading factorization theorems,
then in general we require additional usoft operators. For example, at O(a;) there
are two additional soft operators generated by T, and six additional operators

from 79 Definitions for these operators can be found in Sec. 3.6.5.

The subleading shape functions of the operators in Eq. (3.117) are defined by the

"2It seems that Ref. [26] has a typographical error in the phase factor of 04" and P} and that
it should read e!(»1—w2dtie—iwntz in which case the variables in that paper are related to ours by
wi = —f,/my,

! ! 2
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matrix elements

(BlOo(th)|By) = £57(e%), (3.119)
_ _ B8

(BIOY(ENIB) = (v'—==) P,

(BJIPP(e)By) = € g (e,

(Bo| PENB,) = € f2(e"),

(B,|OP(e)|By)y = ¢ £i0(et,4}),

>, Q > a n
(BUPLE)IB) =~ (= 2) £0(e.6),

where we take v, = 0 and ef_’\ = €#*"y,n,/(n-v). For the four-quark operators we

need

nans(BolOP (6,5 By) = FOF,6,83) (3.120)

(925 — ielp)(Bu|OZP (], 5)1B) = (O, €5, 68) .

Recall that we use the notation f; to indicate shape functions that appear from tree-
level matching and g; to indicate shape functions that show up only when higher-order
perturbative corrections for the jet functions are considered. Definitions for all the
g; functions are given with the derivation of the factorization theorems in Sec. 3.6.5.

For the f;, we give the translation to the notation in Ref. [26] in Table 3.7.

In Ref. [26], it was shown that the equations of motion for h, imply that
P (w) = 2wfO(w), (3.121)

which reduces the number of NLO unknowns, and that the B matrix element of the
operator (J,; vanishes. so we shall not need it for our results. The same is true
of two additional operators, O5” and P2, which are the analogs of P2® but with
anticommutators. Ref. [26] also removes Pl'B/\ from the basis by noting that all the

moments of the corresponding shape function vanish. However. we keep this operator
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Our Notation Notation in Ref. [26]

FO(et) f(=&+)
(e t(—0+)
2 (et g1(=2%)
£2(e%) hy(—E%)
;0,68 g2(—F, —£3)
f4§4) (ET’ e;) h2(_éii-v _g;-)

6 ((?’,[{,E;) '_

Table 3.7: Relation of our f; functions to the notation in Ref. [26], up to an overall
normalization. Here, ¢t = £% /m,,.

since it is unclear whether the moments are sufficient to define the function completely
beyond tree level in the jet function. (We do show, however, that this operator is not

matched on to at tree level in the hard function.)

3.6.5 Factorization Calculations at O()\?)

We now derive the factorization theorems for the subleading O(\?) terms. We show
that it is exactly the soft functions defined in the previous section that appear in
the decay rates, and give operator definitions for the jet functions that can be used

beyond tree level.

Calculation of 7%

For T(H) the factorization is identical to that at LO in Sec. 3.4, except that the final

usoft matrix element is the time-ordered product

dz~ io— =
-I_p—izl et /dly <Bu

T [Ru(2)Y (2.0}, 0) iOh(y)] 1B.) - B (510

8t 2my, 2my,
The factorization theorem for 72H) is therefore
A (2) 0+
in(211) = hY(7A-p. my. p) / det TO(a-p(0* +my—n-q), p) -[0——2(——&) (3.123)
Jn-g—my, my
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As noted in Ref. [26], the function f{* can simply be absorbed into the LO f©. since

at this order they always appear together in the combination

Iy (3.124)

0)(pt+
U + 5

Calculation of 72

For the remaining time-ordered products, the factorization is more complicated. How-
ever, some aspects of the LO analysis in Sec. 3.4 remain the same at subleading order.
In particular, we still have the exp(—ir - ) phase factor in Eq. (3.61), a §(w’ — 7i-p)
appears in the separation of hard Wilson coefficients, as it does in Eq. (3.66), and the
vacuum matrix element of collinear fields still gives a §(w — w’). For convenience, we
integrate over w and w’ and remove these delta functions right from the start when

considering 7?4 T(L) and T(9,

For 72 the analog of Eq. (3.66) is

Te) = ZZ > Cy(n-p)A A (- p)/d4xe —ire (3.125)

33’ k=ab

xT [J}}j(n-p, ) J(zn)(n -p,0) + J(%H(n ‘D, T) J ) (7, 0)],

where Ag-z'i) (w, p) are the Wilson coefficients for the J@*) currents, as in Eq. (3.50).

The products of currents in square brackets are

(2a 2a (0) _ a) -~ To
TP + PN = [Hr X ] (2) [Xn o T2 iDL H, ] (0)
+ —1——[H (—z)D“’T 2y 1) (@) [Knw T, (0)
27nb us K j v ?
JONEY 1 g@t O = 2[RI\ ] () [ YD M, (0)

[(Ht,(—i)Di:)—T—ja Xn w]( ) [Xn w’F H ](0) (3'126)

Next we insert identity matrices to Fierz transform using Eq. (3.68) and take the
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(By| - - -|By)/2 matrix element. These two terms then become

(TP TR 4 g2 Oy = )} {<B |Ho(@)T Fp Y29 (DTeM,)(0)|B,)  (3.127)

Smb

— (B.|(HutD 1) () T3 F{TY v(o>|Bv>}<o| %o (O) Ff X (2)]0)
1 O Fp a
(TP 4 g1 5Oy = yr {(B.| ()T Fp T (D eH,)(0)| B.)

- <Bv|(ﬂn‘ﬁiﬁ)(x)‘féi”’F;r§9>Hv(o> [B) }{0] %00 (0) Fi X ()]0)

where it is understood that we have w = w’ = 7i-p, and we have used ¢, = 0 in order
to integrate the iD* derivatives by parts in the J®» terms. From Eq. (3.127) we see
that the collinear vacuum matrix elements are the same as in the LO case. Hence
they are non-zero only for kK = 1 and are given by the LO jet function Ju(,o)(k’L) from
Eq. (3.70).

Using the trace formula in Eq. (3.73), we can simplify the spin structures in the
usoft matrix elements in Eq. (3.127), where we can now set FJ* = 7t/2. Here both the
P, and s* terms in the Fff matrices will give non-zero contributions, so ¥’ = 1,2 and

we have

_ Tr{P F (0) Vi [ gaﬂ T(2a)A 2a) ga/3 T (2b) A(2b)] }<B |TH Pk,(ZD (0)!Ev>

21L8my, 7 4n-p
+Te{ Pl [.ga_ﬁT(.ff) AP _ 497‘:'31)1*‘2"’/1(2*’)] # [ }(Bo| T (HiD2,) () PiH.(0) | By)

:—lTr{XB =11(B,|(0? + iOf)|B,) + T.r{“" “N(B,|(=0 +408)|B,)

— —Tr{x “2HB,|(PP +iPY)|B,) + Tr{’)fjA 2V(B,|(—PP +iPf)|B,),

(3.128)
where
4 qa} (2a) 4(2a) gaﬂ (2b) 4(2b)
X¥ = PF(‘W[ 120 4(20) _ o p(2) 4 ]
I8 Ldm, I pep T
vk _ pH qm? 2a) ,(2a) %3 (2b) (26)1 T (0)
X o= B [4r71;T’""A 2n‘p Yjand; }21_‘]”' (3.129)
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Note that the second trace is the complex conjugate of the first with (u < v), since
Yo(Ftyy = FJf and Tr[X] = Tr[XT] = Tt[X*] = (TrX)*. These usoft matrix
elements give the shape functions fi, go, and f; in Eq. (3.119) at any matching order
in a,. The index @ is transverse to v, as follows from Eq. (3.128) with v; = 0.
Combining Eq. (3.128) with the delta functions and prefactors from the jet function
and the (—i) from 7% gives

/ dk* IO () [T { X5+ X5 _E) @ (k417 (3.130)
Iy  ==k'=2 —o <=k'=2y.
+Tr{Xg,\_2+X5/\ € g(()z)(k++7"+) + Tr{Xg)\J—Xm }zeﬁf‘ 2(2)(k++7‘+)] :

We include these traces in the definition of the hard coeflicients at subleading order,

as was done in Eq. (3.83), defining

hzall ZC A(2G)TI‘{PI‘§0217§( :U>‘I‘§2a‘?+(hc /j,(—-)l/)}PwI (3.131)

al
AP = 2 e { Prys7f Ry & # [“l T g0 L™ Do AR

J'e 2 Jjav =g 1%, p Jav=g
+ (h.c. p 1/)} P
9
[2a =) 7€ (2a) 4(2a) €] €17 b ~(2b) 4(2b)
=320 Rt pE §[ A - Trra]

+ (h.c. p u)} P*.

For the Dirac structures Y and Y(*) that are present at tree level h£2a]00 is zero, so

q((,z) comes in with a,(m;) suppression. We were unable to prove our suspicion that

g,() ) would not appear beyond this level.

Using Eq. (3.131) with Eq. (3.130) and taking (—1/7) times the imaginary part
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gives the NLO factorization theorem for W**:

2a]l,
1"1"71-(2@ _ h£ ! (Tlmi, mb,,u) /0 dk* j(O)(n pk‘+ ,LL) (k++7' ,,u) (3'132)
hEZap(” *Ds My, 1) + 7(0) + +
+ o / dk™ TV (n-p k™, u)f (k +rt,p)
h[2a100(” P, My, K + 7(0) + @)1+ .+
+ o dk‘ T npk™p) gy (KT+r%,u).

Explicit results for the coefficients h?a] are summarized in Sec. 3.6.6.

Calculation of T

For T?L) the heavy-to-light currents are identical to those in 7@, and so the same

Wilson coefficients appear as in Eq. (3.66), i.e

TN = ch 7-p)C;(A-p) /d‘* /d4ye vz T [JON72-p, 2) £89(4)J9 (2-p,0)]

(3.133)

The difference is the extra Lagrangian insertion with mixed collinear and usoft fields,

namely

TN ) LE ()T (0) (3.134)
= (AT ) @) [oiPh P E S ) (R 0

- %i [, ()T B (wﬂpz, )W) Tm,(0)]

k.k'=1

X [Xn (W) Fi X o ()] [X5 (O)FR"1

5\ (y)] -
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where in the second line we have used analogs of the Fierz formula in Eq. (3.68) that

are appropriate with left- and right-handed projectors,

rot = Ly sort = l{(Erje ) + CEiant

1
2

+(2AP,T*)® (P -’g T°) + (=S PLT?) ® (PLZ%‘iT")},
1
T2

(e )0 (L) + (Pe )0 (K2 P

4
1
Pr®l = -2-21? 5 :

N, 2N,

0y o (T o 8wy o (HVB b
+(2PriT) @ (LPRT?) + (~PaiiT) @ (2 PaT?)] . (313)

The vacuum matrix element of the collinear four-quark operator in Eq. (3.134)
must be a colour singlet, implying that either k, k' € {1, 2}, so that both F™’s have
no T%s, or k, k' € {3,4} and the colour structure gets reduced when we take the
matrix element, using 7% ® T® = T4 ® T4 §%°/(N?~1). Rotational invariance then
implies that the matrix element gives dxx so we do the sum over k' and set k = k'.

This leaves four terms in [Xn FE xE|[}E Ffxn):

n i 3 Hie,
[Ff] @ [Fi] = b []—?,:PL] ® [%PL] + ko (92 > a0) [ZZYVLP | ® [7;57\;\ Pr]
‘ L +iel ab
b gy WP © (0P 4 B0 S (B ) (B .

(3.136)

When we use Eq. (3.73) to reduce the Dirac structure between the heavy quark fields
in Eq. (3.134), and take into account the §*’s from Eq. (3.136), the usoft operators

become

n—»li—"

2
Z [ I L"w-'jﬂgFﬁRF;.o)] [ﬂv(x)pk,,(pla D) (y )Hl,(())], (3.137)
2

Z T [PE T FE Ty l'Z}«“,:”“T@] [l Fl T4 (iDE 1D ) (0) T H,(0),

us us

»Pal*—‘

for & € {1.2} and A € {3.4}, respectively. The spin-trace that occurs in both terms
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can be simplified with 4{y7# = (¢7" -1 7s)7t and ﬂv'i'yf = pi(gi*j —zﬁe‘iﬁ%):

(0 n.o.T n oT - OT
Tr [Pk{i F;/)FkL 7’¢7¢%Fk RFP} = [(5k1 + 6k3) (97 —ieT)
0)

(B + 8ra) (9T +i€T7) (93 —ie3”) | Tr |PETS %pRrg.O)] . (3.138)

The (gjl_ﬂ —i€%?) terms contract with the (9a5+i€x5)/2’s in Eq. (3.136) to give a 2.

From Eq. (3.136) there are four jet functions:

(o] oot Bt @] [0 B2 Za0)] o) (3.139)
_ —4)(w—w")

w

20| [t ) Fd e )] [R50 Ly )] o)
_ —4é(w—w')

dk dkT i - (=
= 52(3cL)5(x+)52(yL)6(y+) /_(éw_);_ e—E[kS'a: +(kf—kF )y ]‘72(w 2)(k;)’

dkrdk¥ . z _ -1 (=
52(33J_)5(CC+)52(’!JJ_)5(Q+) /(;T)fe kg z—+(ki—kF)y ]m(w 2)(/6;'),

= (O [Pk )] [RE ORPT A 00 0)

[

—46(w—u' ;
_ ~¥(w-u) 6*(x1)8(x™)8* (yL)d(y™) / %ﬁikz—z’

: e~ e+ =EDYT) 70D (k)

g (O [t AT @] (20 PaT 50 w)]J0)

—46(w—u' dkt dkt . o
= __(Z_w_)52(IJ_)5(a:+)52(yL)5(y+) /_(;W_);’_ e—i[k;m +(kt=kF )y ]‘74(“1 2)(k;).

At tree level, only Jl(; ? is non-zero. It has the value

1 1

(=2) n-ki.n-ko) = .
(k. m-ko) [n-ky + i€] [n-ka + ie]

lw

(3.140)

-2 . . -2 -2
At one-loop order. 7., " will become non-zero, while Jg(w ) and \74(w ) are non-zero
only at two-loop order. The expansion here is in a; at the jet scale, u? ~ m%. We

denote the imaginary parts by

Ly -1 .
I = (=) mgS?. (3.141)

™
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Eqs. (3.136) and (3.138) also show that if we work at any order in «a, there are four

shape functions generated by T ie.

dr=dy™ iyt _ L AL /- =
(gcrr 48 i )/ 327T2 ¢ 2[ 2ty KN <BUIHU(I)FI?”(ZD$S ZD’L%S)(y)HU(O)IBU>

n,
= 61:”1 f?(giﬂgg_) -+ 5/(”2 (@n_;l_r;)fél(fi,g;-) ’

; dz”dy~ —ia~ - R |1 (4 g TN (7 »
(gci",,.—lej})/ J € 2[ [;‘H} q] <Blev(x)Fl?”TA( DJ_ DL )(y)TAHv<O)'Bv>

322

n
= Opr1 g3(£F, 03) + o (%"ﬁ)gzx(ﬁ,@) :

dCL‘ d ity = — . o- N\ [~ —
(95 +ies,) / S el (B [, (3) P (IDETDAT) (3)H.(0) B

mn
= Oy f3(€F,€3) — Owmo (Un'";%) fallf,43),
“dyT - - _ _
(92 +iek,) f %y——[ G (B, [1,(2) Bl TA (iDL D ) () TAH,.(0)] B,)
n

= 6k"’l g3(£IL7 g;) — 5/(:“2 (’Un— ;%)94(£_1{-, g;) . (3142)

Here the index 7 is from Fy = Pv'y?; vsP,. At tree level in the jet function, only the
first of these four combinations occurs. The functions f; 4 were defined in Eq. (3.119).

The definitions of g3 4 are

(BJOSP(eM)|B,y = g% g0t 1),

D, O D, « n
(Bo|PR(E)|By) = —ef(m—;ﬁ;) gs" (05, 63), (3.143)
where

dx~ d oty )
022(ef 1) = /—-—y— T HE W [ ()T, iDAP Y (3)T M, (0)]

3‘)7T2 us
dr~ dy-
P;’f(ef.e;):i/ i

3272

AP (e (H (#) T D DN G) T8 45 H(0)]

uns

(3.144)
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The hard coefficients can now be defined to be

B3 _ My ZC c Tr{ p(o) ﬂp F }Pi/“’ = RY,  (3.145)

2L]4 Mp n 0 =(0) 1 0
hE ] = ;z—_p Z Cj/ Cj #IZ—JTI'{?’)/%’}%PUFJ-/ EPRI‘; )} _Pil“/ .

Combining equations, we get the final result for the T2L) contributions:

h[2L13(

WD ) [aktait { [0 k) + TP @ k) S )

m
+[J: =2 (. pk+)+J4 (n-Pkf)] 93(’“f+’"+)}

(2L}4
+ 2P o (50 0pk) - I 2@k filk+r)

+[FPap k) - TP kD] sk +r} . (3.146)

Explicit results for the hard coefficients h?L] are summarized in Sec. 3.6.6.

Calculation of 79

For T(29) the heavy-to-light currents are also identical to those in Eq. (3.65), but now

we have two insertions of the Lagrangian £ je.

g’
T ¢ = —ir-z =

T80 = =5 3 Cywp)Cylnp) [z [dye =TI (0, 2) L8 0) £8(2) I, 0)].
(3.147)

Owing to the hermitian-conjugate terms in ecach Cé;) . there are two ways to gencrate
the four-quark operator shown in Table 3.4, where the positions in the figure are
labeled either 0 — 2 —y — z or 0 — y — 2 — . This average over z < y cancels

the 1/2 in the definition of T??. Fierz transforming the product of operators with
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Eq. (3.135) in order to group the collinear and usoft fields, we have

T @) L0 () £8) (2) T (0) (3.148)
= [FLT Xh) (2) R B | 9) s (—1985) X (2) [R5 TSP, (0)
= 3 3 [(wish) ) FE A (0| R (OB (~i B 0 ) (2)

k
X [y (@) T FE s (9)] [Bus (2) FRETOH, (0)] + (3 o 2).

The vacuum matrix element of the collinear operator must be a colour singlet, so
either k, k' € {1,2} or k, k' € {3,4}, and then rotational invariance implies that

k = k’. This leaves four non-trivial collinear operators, which are given by

| (Rni B2 ) () FR X (2) | %6 o OV FE™ (—i9 B xa ) (2), (3.149)

with the decomposition of F'L ® Ff® given by exactly Eq. (3.136). For the usoft
operators we always have %wus = R, so this projects on to two components of the
light quark fields given by ¢7 with Y7 = 0. The Dirac structure can therefore be
simplified by noting that

QZZSPL,RFHv = TI‘[’%PL,RFP] PL R¢H + TI‘[ ﬂ]tﬁI‘P] ZSPL,R’Y_(IT_va

H,I Pr ), = Tr[TPp i P,| H ZPR s+ Te [0 r# Yy P HoY  Protl,,  (3.150)

and using rotational invariance of the usoft matrix element to determine that v and

47 terms are restricted to appearing together. Thus [ﬂvfg,)) FEmapys) [@USF,Z‘RFE-O)'HU]
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together with the (gjﬁ—kiejg)/? factor from Eq. (3.136) gives

O {Tr Iy gpgﬁpv] Te [P, %F? R [ﬁvg—Pngs] (s '/PRH ]

+Tr [F P Z"/J_P ]H[“/_T_%PRFS'[))PU] [Hv’%— PRL’us] {Uusvo' PRH ] }

o (Gasties, |
_Om(ﬁd_;_@l{T ro GPRP]T}[%”L%FRP;“)PU] 7, ;‘pwm] [%sgpm]

2
+6A3{ } +5k4{ } (3.151)

Tr{r P gﬁ_ﬂa]ﬂ[%M_PRFPPU] [Hovt Pl [0 F PLH, ]}

where the structures for the ;3 (0r4) term are identical to those of &, (02) except

with extra 74 ® T factors in the operators. Simplifying the Dirac structures and

using rotational invariance of the (B,|---|B,) matrix element gives
5“{%[F§?) e | T [WP P, [HUZPR%S] [uuSZPRH ]

Tf[ Wi”uPLP ]TT [”/I%PRF;O)PUJ (Mg Prvi ] [5T PrH,] }
~dio{ 0 Pep e [ Bt o B 1 S Pt [ E )
Te T3 PePy | Te [ PAT P P, [Pyt Pl ) [0, P, }

+(5k3{...}+5k4{...}, (3.152)

From Eq. (3.149) the jet functions are

. Lp A a 4
J\,;_l<0‘[x‘"nglﬁ](y)wxﬁ,w/(m)\m( M[ Bi\a](2) } >

2
B 4N /d/rf dk,:}L dkgL
- (2m)3

e—%[k;l‘*ﬁ-(k’;—k;),zl_Hlx‘f!k;r):‘} jl< -1 A+) )

o

(o] vt 00 2t vt 0T o o)

2N
= N5 [k dky dhy sl e (e =k )y + (k=K )z Ll ( J)
(27)3 2w ’

o
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o (O B T () 6O 00 2 0)

41 NO dky dk+ dk+

lk+ - k+—}\+ - k+ k+
e~ zlkse™+( )y j% ( : 18

<o’[>zngz$1]< WVL L e 0) B [0 ] (2)]0)

_ 4N /alkfr dk3 dk3 o~ k3 e+ (R =k )y ~H(k k3
(2m)?

Ik (3.153)

w

where the common prefactor is N5 = §(w—w')6%(x1 )0(z )6 (y1)0(y*)d%(2,)0(2F) and
the 1/P factors in the operators do not act outside the square brackets. At tree level,

only J 4)(ls’L) is non-zero. It has the value

1
U (neky, nekg, noks) = . 3.154
L) [n-ky + i€][n-ke + i€][n- k3 + i€ (3.154)
As before, we denote the imaginary parts by
(-0 _ (1 (-4)
g = (=) m st (3.155)

From Eq. (3.152) there are eight shape functions with different Dirac and colour
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structures, namely

dz=dy=dz™ _it,- TS .
/ gy e O HE W THE DTN B[, () PRy (§) 9 (2) PR (0) | By)

= go(&1 . 43, 43),

12873
= 910(£-l+-’ Ej, e;) s

dr=dy=dz™ _igpte- ot oty V=Y B 1/~ e _
/ e e T DTN B, (2) Py, (80, (2) #PLH(0)| B

= g5(4, 43, 43),

2 [E e ot B @) Pt ()02 (s P (0)1Bu)

dr~dy~dz~ — e . N _
2 / e T DTN B R (&)y] P, ()9 (27 PuH(0)]By)

= 96(6?_7 E+7 E;) ?

/Me—%[ ]<Bv|ﬂv(§7) %PRTA Zs(g) _17_:5(2) ¢PRTAH"(O)IB”>

12873
=g7(£—1|—r£;-7£;)’
dx—dy~dz~ —i[ 1B |9 A7 4 _
2 [—{5g3 € ° U By Hy(8)Y] PRT 97, (§) %5 (2) vy PRT*H,(0)| By)

= gs(f'f, f—;v f;’) )

drx=dy~dz™ _ij .1, 5 117 /= e )
/1‘12:;”32 e 5l ]<B”|Hv($)¢PLTA¢uS(y) us(z)'ViPLTAHv(ONBv)

— f5(€+,€+ €+)

dx—dy~d i — o TR _
2/ 12:;71-32 e—‘[ ](BI (x)’YJ_PLTA ( ) us(z)’ny)_PLTAHv(O)IBU>

where Y. = (jih)/4 wys and the ellipses denote exactly the same exponent as in the
preceding expressions. Only the last two of these shape functions show up when we

work at tree level in the jet functions.
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We define the hard coefficients to be

P2 %%%E:CﬂCfﬁ{ m¢ﬂ71>} { }PW

> ZC C; Tef P Py} Te{ PP }P“”

h’£2Q]7 — }1:1; Z Cy Cj T‘I‘{Pvfi?) %%PL} Tr{PUﬁ'—jPal“ﬁ»O)}ﬂ#”,

= S (et b oS o
33

[24)7
Wi = L/ dkf kg ki { 0 (ep k) go (F +1%) + T (mep k) grlkf+17) )
myp
h[2q]8 (- 4) (—4)
+ /dk+dk+dk {j4 (7-p k) gro(kf +r5) + T3V (Rep k) gs(kF +7+ )}
b
h[2<115 )
+ - /dk+dk+dk {J (A-p k) )gs(kf+r") + TV (A-pk;) fs(k;?+r+)}
h[QQIG ) a
+77?/ dkdig ki { T (ep K)o (kF +17) + TV (Ap k) folky +1)}
(3.158)
Explicit results for the hard coefficients h?qb‘(j are summarized in Sec. 3.6.6.
Calculation of 7" and 72
For later convenience we set
B gt 4 gUn) jab / dwidwy B (wi.wn) T (wrows).  (3.159)
where
1
!];1)("‘}1‘“}2) = ——Yn.\.ul(j’ng}L)wz T§2 Hu . (3160)
: my



and Bj(-”f(wl,wz) = —B;la)f(wl-%-wg) my/ (w1 +wsq) for j = 1-3 when f = u, and for

j =1-4 when f = s, and B;l)f(wl.wz) = Bj(lb)f(wl,wg)/(n-v) for the remaining j’s.

Both 7 and 729 have jet functions that vanish at tree level but are non-zero

at one-loop order. The steps are the same as in previous sections. Here we have

T(Qb) = —3 Z /dwldLUde3dW4 B_gl)(UJLQ)BJ(-,I)(W3,4)5(W3+W4—ﬁ'p)

x / d*z e T[J (ws4, ) J{2 (w1,2,0)] - (3.161)

To Fierz transform we can use

Po = (Er0) @ Gh-P) + ERar) o (3227), (3.162

and we can drop the second term, since colour implies that it does not contribute in
the matrix elements. Thus,

wt ;o _ L W R )
JO W~ zmgrﬁ[ X TM, £ pa! ][ (:r)’H()] (3.163)

[(Xn wlngwz)(O) i PL(_Zchw4an3)(x)] ,

where we have used the fact that the second term in the reduction in Eq. (3.73) gives
a vanishing matrix element. Between B mesons, the soft operator in Eq. (3.163) gives
the leading-order shape function f(®. The matrix element of the collinear operator

gives the jet functions

(0| [(Xn,wﬂgBéng)( )%PL(—ngmlxn ) ] |0) (3.164)
A+
—_—‘ (*22)(&)1"‘ U)Q) (5((4!1 —l—wg—u';;—u'4)(52(1°i_)5(1'+) %}:ﬂ'— 6_%k+x_

x g5 TE) (k) + iet™ T2 (k7))

and their imaginary parts are denoted by J\2 (w ikt) = (=1/m)Im T, (k). Noting
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the delta functions in Egs. (3.161) and (3.164), we define the hard coefficients to be

P, 7O ¢T

2bj¢ - p v
W (21, 2, 78p) = ZBJ(/I)(W3.4)B](-1)(UJ1.2)Q o TF[Q ion g ]a,,]P“

33

h£2b]10(21’ 29,70-p) = ZBJ('II)(WSA)B](-I)(WI 2) ZE_L p TI‘[ T 7‘ T(l) ]Puu

]aﬂz jow

(3.165)

where w; = 217i-p, wo = (1—21)7-p, w3 = 290+, wy = (1—25)7A-p. This gives the

factorization theorem

[2619
w® = /dzldzgh (21, 25,7-p) dk+ @) (21, 20, p3 k1) FO K+ +K—p})

my

hl'zb] y L2y 10" A
+ /ledZQ i (2n27p) / dk* 2(2)(21, 22, px kF) f(o)(k++A'"P;rc)-
. 0

mp
(3.166)

For 729 we have

T) = 4 [dws) (w—7-p) Cy w)A(.u)(wn digzeire
J J

3J' €=c,d.e,f
T [JN (7-p, 2) T2 (Wn, 0) + T2 (W, ) TS0 (R-p,0)],  (3.167)

where we have n = 1 for / = cand n = 1,2 for ¢ = d, e, f. For convenience we set
J]w)( n) = an T(%)Hv, so that C?® contains the product of collinear fields in each
current. Fierz transforming 79 with Eq. (3.162) (again we need the first term only)

and then reducing the Dirac structure using Eq. (3.73) gives

SO 20 51201 50 (3.168)
-1 - P
__1_ tr l: 5 T (2¢) ¢P I_" (0) “+ h. C] [Hv(I)Hv(O)} [X’n.w(()) ﬁ',v/ Cn w1, 2(.1:) + (h C, T 0)]
e D (24)75 ©) v RPL 00y |
+ [TZ—TJ. L Pl —h.c.] [HL.(Q:)HP(O)H (0T () = (he. 2 0)] .

The usoft operator here gives the leading-order shape function f®. Next we define
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the jet functions

p
(~1){0] (0 )ﬁ\f({-ﬁzgn Bolxa) (@)% (b = 0)f0) (3.169)
—2% Akt e (2
= — (w—w)(@2)0(ah) [ e B I ("),
1 P,
~ b( )77%\[ [(ignB.) —wp Xnwn | (z) £ (hoc., z « 0)]0)
~2i Akt .
= S —w)B()det) (S e HT I, )
0 WDL gBr (iD° + (h 0)|0
‘_—< l ”“’ A'Vc Wl[ c,— wz(?“ c_LXﬂ)wl](x) ( €y T = )l >
2i Akt e
= ~m—:5(w w1=wn)0(@)3(e") [ eI (),
1 Pl
?n_b<0|>zns“’(0) %NCL:J_Q[( B-La ?’Dcl)dzxn WI](:’C) + (h.C., I > O)lo>
22 d]i‘,+ 18 T .
B -n;fa(w wi=wa) 0@ )3 Er"ej“l T 102K,

and their imaginary parts Ji% (wik*) = (=1/m)Im Tpe, (%), as well as the hard

coefficients

h£2cj11.12(ﬁ_p) 2n - ZC 7i-p) A(2c (7i-p) Tr[ T(2c) Zﬁ_ (0) h.c.} P

in 9 Ui
h[Qc}L:s 14 (2d) Py (2a) ?/i (0) "y
; (zy.7-p) ZC wi2) Tr QTM 2F + he|PY,
[2e]15.16 Ce) Py =2e) 1 o) ] w
P, 2}:0 AP 1) Tr| 2 T3 BT dhe | P
pRITIS 5 ZC’ p) AP (W) Tr[fi N I+ he. ]PW (3.170)
i 5 ik 9
where wy = 2y 7-p and wy = (1—21)7-p.

Putting all the pieces together we have

-(2¢) 22 /’?F]'Hg(ﬁ'm A A AN Ey .
m=3.1
tQ [2(m+8
. h;
+ /dq ml”””/ Akt T2 (= po k) fOR +R-pl).

m==5
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Calculation of the remaining 7®’s

The remaining T®’s for which we have not yet defined hard, jet and soft functions
include T(?t@) T(Lb) TQRLL) and T(6%)  These time-ordered products all have jet
functions that start at one-loop order and, unlike 7?*29), they also induce new shape
functions, g;. Factorization formulae can be derived for these contributions by follow-
ing similar steps to the previous cases. Rather than going through this exercise, we

instead list some of the soft operators and shape functions that would be required.

For T(L%) we have

dx—dy~ ipto— _i(pt_ 157 /=728 /~
F\(ta) = f T e 4 H - [, (2)DL (@) 51 (0)]

3272
Pt = [T et e s (R (B TABLGT i s,(0)]
(By| P (tty)|Byy = €2 g2, (08,83), (3.172)

while for T2 we find

dx—dy~ i _ i _
Otfa) = [ e 9% et (R, (2WDL @)H.(0)]
Oty = [ it (R @) TABL[) T H(0)].
(B,|fg Ofo(£F,)|By) = g4 (61, £5) . (3.173)

For both T and T(?% | the induced jet functions are of order A°.

For T(?LL) the necessary soft operators are

O‘f‘(ﬁi(ff‘_) 3) — 2’/%e—%{f:n‘"+(Z;~e;)y_+(3f—[;)z_} [H ( ) Dla(' ) rD_Ld( )HU(U)] ’
2. ' T

B fdr~dy~dz= _ o _
Ploli(él}—.z..'i) = L/W }[_ iDL (§)iDy ()75 s Ho (0 )] . (3.174)

together with operators Q% 15(¢12.3) and Pf"ﬁ 15x(£123) that have different colour

contractions between the gauge-invariant objects H,, iD+®, ¢D+# and H,. The
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shape functions are

(By|OSE 15821 Be) = 9%° g8 sollh 4, 8),
D, O D Q. n
(Bv|Ploﬁ—15,\(€I2,3)'Bv> = _EJ_ﬁ (Uz\‘n__/\v‘) QS)—%(ET, &,45).  (3.175)

For TLL) the jet functions are O(A~2).

Finally, for T(25%) the time-ordered product has a structure that will produce the
same soft operators, 02° and P2, as T®L) and thus has shape functions f{*(¢F, )

and f{*(¢F,€F). The jet functions for 7?5 are O(A~2).

3.6.6 Summary of hard coefficients

To determine h)/ ™% we need to compute the traces in Egs. (3.131), (3.145) and
(3.157). Since there is no possibility of confusion, we shall now drop the bracketed
factors, [2—], in the superscripts. For B — X eb (f = u), expanding to leading order

in gy > uy gives

1 2—14 1 -1 4—7
T e s 3
8 23/}1 dmpyy MYy 4mpiy
h2u_—1 h2u — 41711—,@%—2 h2u _ —1 h2u _ 2?7};{_2 h2'u. _ g%I_GgH+4
1= M T T M=o M = e, Ry = T
Uy mpYH BUH 2mpyy
-1 -1 . -1 1
h3u___ — h3u = —, hdu — , h3u — 0’ h3u — .
Y 4gn 2 5 2mpyl ‘ > 2mpyd’
. 1 w_ Yu—2 . 1 —2 I
h‘{’:z@—, hy' = === Ryt = 55, h'=——. W= 5T
Yo Y ZMmBYg mpYy mpl
1 2 — 27 < -1 2 -
h]?u: 5 h;u = Yo h§u — — hiu — e hgu — _L _’_JQH) '
Yu mpyn Myl mpYy
. 2 . . 2 . -2
h‘f“zO, hg“ = =, h? =0, hf}“ =——, hg“ = —- .
Yu mpBYy mpyy
(3.176)
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For B — Xy (f = s) we expand around ry = 1, which gives

h‘is = —%%7 h‘%s=07 hilisz_r_ri_lza his::g—’ hész_%é’
2 7

WE o= TR R0, RP=TE A=, m=TE
m2 m 3 mg

pds — _ B 3s _ pis — . °B pis = 2 3s . _ .

! 0 =0 2’ R 2
2 5

W= ZE mg=o0, Ry =TE =2, me=TE
m2

h?s = - 231 h’gs=07 h§s=_va hi)s_:z, hgs=_mBa

1
M o= hy=hy=0, k=g, h'=0. (3.177)

3.7 Summary of Decay Rates to NLO

3.7.1 Discussion of NLO results

To facilitate the computation of the NLO corrections to the decay rates, they were
divided into several pieces, as discussed at the beginning of Sec. 3.6. The full results
at order A/my and all orders in oy are quite complicated. However, now that factor-
ization for the NLO rates has been achieved, we are able to expand consistently in
factors of a5 evaluated at perturbative scales. In this section, we discuss which terms

are kept for phenomenological purposes.

The most complicated contributions are the NLO correction to the W, namely

I'Vi(2)f, where f = s for B — X,y and f = u for B — X, #U. From Eq. (3.105) in
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Sec. 3.6, the NLO factorization theorem is

, % (- 30
i) / dk* JO(R-pkt,p) f37 (k* + 1%, 1)
2 lrf _ +
hi’ (7i-p) /Px ~
4= dkt 7O (m.pkt @) (p+ 4 o+
+ ST [ Tk S
SR [ e 20 k) FO (k4
+ Z ™ dky dky T 7 (Rep ki, ) fr (kf +rt, 1)
r=3
6 hil (7-p) bt )t s L
+ A /allc1 dkfdki TV (a-pkS, ) £O (K + %, )
r=5
o (3.178)

where j = 1,2 and 5/ = 1,2,3. The ellipses denote terms given in Eq. (3.105) that

have jet functions 7 that start at one-loop order. These additional terms are of order

(o) A (3.179)
™ myp

where po ~ \/myAqcp, so they are suppressed relative to the terms displayed in

Eq. (3.178). They also induce dependence on new unknown shape functions, go—2,

which makes it prohibitive to include them phenomenologically. Thus, throughout

this section we shall stick to the terms displayed in Eq. (3.178), which enter at order

A/my, (r = 0-4) and 4mwa,(uo)A/my (r = 5,6). For convenience we drop the subscript
(~2-4)

1 on J; in this section, since there is no possibility of confusion. At tree level,

the jet functions were computed in Sec. 3.6.3 and are

- S(k{) — 8(k3)
0) 1.+ + (-2)/1.+) 1 2

o(kt) ok . olk)
DD T RDGD T k()

(3.180)

TV(kF) = 4mas(po)

w20 (k{)o(k3)o(kS) | -

The result for 7© at one-loop order can be found in Eq. (3.80). Examples of diagrams
that contribute to Eq. (3.178) can be found in Table 3.4. Results for the hard functions
K7 were given in Egs. (3.87) and (3.88) and for A}~ in Egs. (3.176) and (3.177).

The running of the h,:f’s in Eq. (3.178) is the same as the running of the h?f’s in
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Eq. (3.87), and the h;’’s depend only on the running of the C;’s computed in Ref. [23].
The shape functions féﬁ)ﬁ are defined by Egs. (3.119) and (3.120).

More O(A?) power corrections occur when one switches to hadronic variables in
the LO factorization theorem; these were given in Eq. (3.100). For phenomenological
purposes terms that start suppressed by the factor in Eq. (3.179) are not included,
so we include the (A\; + 3);) term but not the A term.

Finally, the simplest source of power corrections is the kinematic expansion of the
prefactors in the decay-rate formulae, which depend on which rate we consider (see
Egs. (3.39)-(3.41)).13 In addition there are corrections from the expansion of n-q in
the h;’s; these give the h?,f ’s in Egs. (3.89) and (3.90). Both of these sources involve
the same jet function and shape function as the LO contributions but different hard

coefficients, which we shall denote by G%, G, ,,, and GP in the next section.

3.7.2 NLO Results for the Endpoint Decay Rates

In this section we combine the pieces to arrive at the NLO results for decay rates.

The hadronic dimensionless variables that we use are

v 2E, _ 2B, G _mk _ _ @px _npx
Ty= v TH= y YH= 3 SH= 5 Yg= y UH= )
mpg mpg mpg mpg mpg mp
(3.181)

where only the first one is for B — X,y and the rest are for B — X, ¢. Note that
sH = upYy and yg = (1—ug)(1—7g), so these variables are not independent. The
decay rates derived with SCET are valid for spectra dominated by the endpoint or
SCET region, in which ug /¥y < A4 and 1 -1}, < A%, where A% is a small expansion
parameter which one can choose to be ~ 0.2 or ~ A/m;, =~ 0.1. In this region we

write the decay rates as

1dl (14l LO+ 1dr N“’+ (3.182)
rdz  \l'dz rdz o '
131f one desires. he or she can straightforwardly treat zy in the doubly and triply differential

rates in a different manner from what we have done here, by using Eqgs. (3.31) and (3.32) instead of
Eqs. (3.41) and (3.40) and making the desired expansions.
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where Z denotes a generic choice of phase-space variables. The doubly differential
and triply differential decay rates that we consider were discussed in Secs. 3.2.2 and
3.2.3. We caution that if the SCET expansion is used for decay rates integrated over a
larger region of phase space than the SCET region then it is important to check that
sufficient smearing has occurred so that the contributions outside the SCET region do
not cause the power expansion to break down. In Eq. (3.38) we proposed a method
one could use to combine results from the local OPE with those from SCET even if
a larger region of phase space was desired (which becomes relevant when radiative
corrections are included). Note that the Ay parameter provides a means of testing
for cases where a pure SCET expansion is valid. Here we present results for arbitrary
Am, and leave the investigation of the expansion in different decay rates to future
work.

For convenience, we define a shorthand notation for the convolutions that appear

at LO and NLO:

TGk = [dk Tz k) S +K-phon). (3189

At LO we simply combine the h®’s and h?*’s from Egs. (3.87) and (3.88) and find
L dr ™ S [70) g O
s 39 = H [..7 ® f ](m3(1~$1’{), mB) y (3184)
Iy dzy
1 T ro T
1 dTr — HT(.) [70 g £© -

1 e \*°
(7)) = #26) 79 7)o magi),
0

where the convolution of the LO jet function and shape function is given by Eq. (3.183)

(with one integration variable k%) and the hard coefficients are

., 1
HS(1) = my [c§"—§C§”~C§“]2, (3.185)
] _ — — 2
Hr(u, Yy) = 12mp yH(l—yH)[Cfv)] )

HP(1.y) = 2mp T2 {(3—2@H)(Cf”))2+20§”)(Cé")+5/{)ﬂ0§"))+(G§“’+?—/2ﬂ0§’))2}.
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Note that we have suppressed the functional dependence of the coefficients, which
once perturbative corrections are included is Ci(t)(u. mp) and Ci(v) (g, mp.Gy). Our
VVi(O) ’s for both B — X,/ and B — X7, and hence the corresponding LO triply and
singly differential rates, respectively, agree with Ref. [27]. These results also match

those of Ref. [47].

At NLO, combining all contributions, as discussed in Sec. 3.7.1, leads to the

following expressions:

s \NLO —
(1 dr ) _ _Mﬂs(mb) [TO ® fO](mp(1—2];), ms)

T3 arl 2

+(1-z}) G° [TO ® fO)(mp(1-2}), ms)

+Y_ Hi(mg) [70 @ f;](mp(1-2}),ms), (3.186)

§=0

(1 43T )NLO (A1 +3)2)

— - ) =TI pgry ©) & £(0) Mg
F})‘ dx‘j,}“ d@H dugy omp (ZJH) [J ® f ](mBuH mByH)

+ [uu Gla(@n)+ (ug+zn—1) G?,,@H)] (7O ® fO](mpug, msyy)
6
+ > H (@Gw) [T ® f;] (mpun, msyy), (3.187)

J=0

( 1 4T )"’LO_ (3

- HP (g ) g £O 7
T% dyy, dun Ime @) [T @ fO](mpun, mpyy)

+uy GP (@) [J(O) ® f(o)] (mpuw, mpYy)

6
+ ) HP(Gw) [T7 ® f;](mpun, msyy). (3.188)

J=0

where ny = n; = ny, = 0, ng = ny = —2, and ns = ng = —4, and the notation
[T @ f;] denotes the convolutions displayed in Eq. (3.178) (see also Eq. (3.101)).
From the NLO phase-space factors in Egs. (3.39), (3.41) and (3.40), and from the
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NLO terms in the expansion of the h;, i.e. Egs. (3.90) and (3.89), we find that

G*(my) = —37"/3(0?)—% P-cf)?, (3.189)
GL@y) = 12mp(gh - 1)(CP)?,

) = 12ms{20-7,)(CPY - [P+ + o))

G*@w) = 2msTn|(205—6)(CI") - Tu(@a+3)(C" +C8) CF

—TH(C")? - 201+7g) (200 + I P

By using Egs. (3.176) and (3.177), we find that the hard coefficients for the terms

with subleading shape functions are

HS 1
69=2mB’ His=—§’ Hégzla H:f:—]_’ Hf:]_’ Hg=—27 Hg::o’
HT _ _ _ _ _
Hg: §m—B’ HY =6yy(1-9y), H; =-1255(1-7x), H; =-12(1-gn),

HT =12(1—3y), HY = —24(1-7y), HT =0,

HP ~ B o o
0= 9ms’ HY =951 - 25y), HY =24(20% +¥x —2), HP =475 — 67y,
HY = 2%y — 45 H = 87y — 87y, HY =47y . (3.190)

The H;_¢ factors displayed here will be corrected by a,(mp)/m terms at one-loop
order. Note that the shape functions fs ¢ depend on the flavour of the light quark in
the four-quark operator and therefore differ for B — X, and B — X,,.

Equation (3.186) describes B — Xy in the endpoint region. In Egs. (3.187) and
(3.188), convergence of the SCET expansion requires uy < yg. For Eq. (3.187), we
have in addition made a cut on zg such that 1 —z5 ~ A2. In contrast, for Eq. ( 3.188)
the full range of ry has been integrated over. We can also straightforwardly obtain
the rate d?I™/dq*dm%. or equivalently d*I™/dsydyy, by changing variables from
{Yy,un} to {yy.sy} in the W; and re-expanding. This is done by using §y =
¢ —sug/¢C—...and uy = sy/C+ ..., where ( = 1 — yg + sy and the ~..." terms

are not needed at NLO in the power expansion. The result may then be substituted
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into Eq. (3.42). Integration over yy then gives the m% spectrum, dI"™/dsy, for which

restriction to the endpoint region requires cut(sy,yn) = {su/¢? < A4 /(1 + 2\%)?}).

3.7.3 Singly Differential Spectra

In this section we give results for singly differential spectra at NLO that are useful
for measurements of |V,;|. Since our goal is to explore the effect of the subleading
shape functions, in this section we shall work at lowest order in a, for the hard and
jet functions, both at LO and NLO. For the shape functions we shall use f1(2) (w) =
2w (w) [26] and define

- 1 - A1+ 32 -
+y — fO(R _ o+ (2)A—+-—1 2 201 (K _ o+ 1
F(p™) foA p)+—-—2meo( p") “omg 1 (A—p"), (3.191)
Rp*) = [(A-pY),
where a prime denotes a derivative, as well as
S(kT) — 6(kF -
F3a(p) = /dkf’dk;{ (22_,632)] S0k + A - pt), (3.192)
2 1

_ (k) | 0(k3) (k)
Fig(p*) = / dki k3 dkg [(k;)(kg) D R
xféfg(kj +A—pt).

m28(kT )0 (k30 (k)

We shall put an additional superscript s or u on Fsg(p*) to distinguish the origi-
nal four-quark operator with strange- and up-type quarks. For B — X,v the rate
dI'*/dz}; in the endpoint region is equivalent to making a cut on z};. The necessary

results already appear in Egs. (3.184) and (3.186) and combining them gives

1 dIs
I§ dz,

=mp[l — 3(1-2z})| F(ms(l-2})) + [ma(1—2}) =K ] F(mp(1—12}))

+ Fg(mB(l—xL)) — FJ(mB(I—.rL)) + F4(m3(1—a:'}_1))

— 8ma, (o) Fi(mp(l—x})). (3.193)
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where 1 — z§; ~ A%. Here the —3(1 — z};) term comes from expanding the kinematic
prefactors, while the term that depends on [mp(1 — zy) — A] comes from reducing
fl(z) to f© (and we write it in terms of F for convenience, even though this includes
some formally higher-order terms). The rate in Eq. (3.193) for B — X,v has been
computed previously at NLO in Ref. [26]. The relation of our shape functions to
those in Ref. [26] is shown in Table 3.7. Our result in Eq. (3.193) agrees with theirs,

up to the EL-ES) term, which was computed here for the first time.

To compute dI'™/dzy for B — X, €0, we can use Eq. (3.31) and case i) of Table 3.2.
Treating 72 = 0.026 ~ A*, we can set 7, = 0 even at NLO. To ensure that the SCET
expansion converges requires that one makes a cut on uy. First consider the zg
spectrum. Since uy < 1 — zy, making a cut zg > x5 restricts uy to the desired
small values. However, at NLO accuracy this is not equivalent to our uy < A%yy,
definition of the SCET region of phase space, and an additional term, K(\g, zg), is
added to correct for this. Depending on the choice of other cuts, the error in including
a larger region of phase space may be power suppressed. The parameter Ay provides
us with a way of testing this by comparing Ay = 0.2 and Ay = 1. We present our
final results in a manner that makes it easy to take the Ay — 1 limit for situations
where a large enough region has been smeared over that this is the case. For the z

spectrum the result is

min{l-zy 2%}

1 dr# _
fg dz ;szx%’ =2 / dup {mB(l — duy)F(mpug) + (A—mpuy) F(mpuy)
gy ~H 0

- Fg(mBuH) - 3F3(mBuH) + 3F4(mBuH) — 247‘1’0{3(#0) F;(mBUH)}

+ KOy, 7). (3.104)

MIn making this comparison, note that Ref. [26] gave their result with partonic variables, whereas
we have expressed ours in terms of hadronic variables here.
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where

min{l-zy,2%}

2
I{(/\H, -TH) =2 / duH {KTH (2uH—3)\§1) [mBF(mBuH) (3195)
(1_"””))‘%{ " .

+ (A—=mpup)F(mpuy) - F2(mBUH)]

u
- ')\TH (ur—2X%) [3F3(mBuH) — 3Fy(mpuy) + 24WQS(NO)F;(mBUH)]
H
2u (Bug(l—xg)A% 4+ud, —3(1—z1) % —3u2, \2
_ 1 (3un( )\l ;\16 ( )\ HAH) [mBF(mBUH)]}-
H

The Ay-dependent term, K (Mg, zy), arises when one writes the integral over 7y as
fll,_degH + f:;f;%dygﬁ (%ﬁj -1+ xH), which is done to ensure that ugy < \47,.
After inputting models for the shape functions one can use the K(Ay, zy) term to
check the consistency of the operator product expansion with this level of smearing.

The rate dI'*/dzy has been computed at NLO in Ref. [25] and we can compare
our result with theirs. To do this we take Ay — 1, which sets K(Ag,zy) — 0,
since the restrictions we imposed on the phase space were not considered there. We
also must convert back to partonic variables, which means dropping the (A;+3XAs)
term in Eq. (3.191). After doing this, we find agreement with their Eq. (35) '® on
the coefficients of the LO F term and the F» and Fj terms, but we disagree on the
ug F term and the Fj term. (Again the F5 term is computed for the first time here,
so no cross-check on this is possible.) The coefficient of our F3 term also disagrees
with the RPI constraint derived in Ref. [56], which predicted that it occurs in the
combination mgF — F3.'® We found that this combination occurs for B — X,v, but
not for B — X, /U. In the next section, we present a non-trivial cross-check of the
coefficients of our result in Eq. (3.194), namely that when re-expanded it correctly
reproduces terms in the local OPE up to 1/mj.

Next we consider the py spectrum. namely dI'/dg,. Integrating the doubly differ-

"We found that they have an overall 2 typographical error in this equation (see also [127)).

16Note that. from the point of view of the factorization theorem, such a reparameterization con-
straint. would be very interesting, since it would give a relation between the jet functions J(~2
and 7 to all orders in a;, even though these operators appear to be defined by unrelated matrix
elements. Eqs. (3.70) and (3.139).
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ential rate from Eqgs. (3.184) and (3.188) with a cut on up, i.e. uy < A% §y. restricts

one to the triangular SCET region shown in Fig. 3-2 and gives

1 dre
It diy

M, 9m
= 2 / dug {mB[(3g§,—2g§1) + 2ug (§3 —39u)| F(mpus)
(0]

ap< LTy

+ (A—mpun) (G5 —205) F(maun) + (254 +07 —25n) Fa(mpug)
+ (2% —39u) Fs(mpun) + (§u —20%) Fa(mpun)
+ 1670 (10) (T —Fu ) 5 (mpug) + Sﬂas(ﬂo)Z?HFé‘(mBuH)} :

(3.196)

Another possibility is to consider the p% spectrum, which is dI'/dug, where we now

integrate with the cut on gy, obtaining

1 dr
Fg duH

= {mB [(1—2a3+a4) — uH(5—6ﬂ2+ﬁ4)] F(mpup) (3.197)
.m,z}g

1 1
— ~(A—mpuy)(1+24*—3a*) F(mpuy) — 5(1—6ﬂ2+2ﬁ3+3&4) Fy(mpug)

w

1 1
- g(5—9r¢12+4ff") Fs(mpuy) — 33-(1+3ra2—4a3) Fy(mpug)

_ 16ma;s (MO)

3 (1-3a2+24°) F¥(mpug) + 8mas (o) (1—12) Fg‘(mBuH)},

where @ = uy /)% is a parameter of order 1 for Ay ~ 0.2. Given sufficient smearing,
one can take Ay — 1 and the @ terms become subleading. The subleading terms
in dI"™/duy provide power corrections to the phenomenological analysis using this
spectrum in Ref. [48]. We leave the derivation of dI'™/dsy with phase-space cuts to

future work, and so have not compared this rate with Ref. [55].

3.7.4 Comparison with the local OPE

A non-trivial check on our power-correction results can be obtained by expanding the

subleading shape functions in a manner appropriate to the case where the local OPE
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is valid. Essentially this means expanding
6((* —in-D) =6(£*) - & (T)in-D+ ... . (3.198)

The comparison will be made at the level of the partonic dI'™/dx decay rate, and we

define w = mpuy — A. From Eq. (3.194) we have

Ldrt _,me\t [ O L@ g
war =20) |t {ma(1 = dum) 1O E-mgun) + 317 R rgun)

A +3)\ Vel A A A
_ —( - 9 2)‘f(O) (A—mpuy) + (A—mpuy) f(o)(A_mBUH) - 2(2)(A”mB“H)

— 3F3(mpug) + 3Fy(mpuy) — 24mas(o) FS“(mBuH)} + KA, zH)

mpg\4 [me(1=2) dw 4A 1 . w
_o(Ms _Aw A o) L@y W oo
(mb> ['X d’ll){[l my mb]f ( w)+2mb 0 ( 'LU) mbf ( w)
1 @, 3 ., 3 o 24mos(po) Ly | E
30 (w) — Bt R) 4 - Fy(wK) - = R R (wK) |
+ K(Aa, zh), (3.199)

where z = 2E;/m;, and T% = mg/m%T%. In writing the second equality, the (A, +3)s)
term was cancelled by the change in the upper limit of integration. The —4A/m; term
cancels the leading term in the expansion of (mpg/ms)*, while the terms that cancel
higher terms are beyond order A? in the SCET result. The Fy term gives an a,/m3
term, which we shall drop below. In expanding the shape functions, we obtain singular
functions peaking at z = 1, so it is safe to take Ay = 1 and drop K(Ay,zy). For the

remaining shape functions, the local expansion gives [25]

fO(—w) = §(w) - %5”(11)) - f—é 5" (w) + ...,

FP-w) = —(A+3X0) 8 (w) + %6"(71}) +...

f2(=w) = Ao (w)+ p—;d"(w) o

F(Aw) = —%)\1 O(w)+ ...,

Fi(A+w) = =Xb0(w)+..., (3.200)
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where ;. Ay, p1. po are the standard HQET parameters, which are matrix elements
of local operators, 7 is a combination of time-ordered products of HQET operators,

and terms beyond 1/mj have been dropped. Substituting this result into Eq. (3.199)

and integrating by parts using the relations [25] [ dw[wé”(w)] = [ dw[—26'(w)] and
[ dw[wd”(w)] = [ dw[—38"(w)], which are valid with smooth test functions, we find
1 dr+ A1 AL 11X,
—Z = 201 -2)- 2L 51— 1 - .
P dz (1-1z) 3m2 (1-—z)— 32 —d(l—2x)— = (1 —1z) (3.201)
+__ 5/(1 _ 1') pl 5”( x) 5,01 5[(1 _ ) _ 2 6/( )

2m3 om3 3m3

This agrees exactly with the result obtained from the local OPE in Refs. [119, 79].
(Note that we do not compare the 1/m? annihilation term, which does not arise from

one of the shape functions appearing at order A\? in SCET.)

Of the terms in Eq. (3.201), it is those proportional to A; and p, that test the
difference between our results and those in Ref. [25]. Ref. [25] also obtained the \;
result in Eq. (3.201), and even though we disagree on the uy f(® and Fj terms, the
combination of the two gives the same A; result. For the p; terms, their p,4” term
agrees with Eq. (3.201), but the p;4’ term does not. In the very recent paper [117] it
was pointed out that from the local OPE the coefficient of the p,d’ term should be
—5/3, as in Eq. (3.201), rather than the —1/3 quoted in [25].

Ref. [117] went further to advocate a different approach to the shape-function
region that involves using an unexpanded b-quark field, and doing this obtained a
result with subleading shape functions whose expansion is consistent with the local
OPE in Eq. (3.201). However, their result for the power-suppressed dI'*/dx decay
rate does not agree with the rate obtained here. In particular, our —4uy F term is not
present there, and instead of our —3F3 term they have the result “4F, + 2G, — 3G3”.
Their “G,” term is defined by operators that, in our analysis, can only show up
suppressed by at least one factor of a, through jet functions. In fact, the operator
structure of our result actually agrees with the original one in Ref. [25], rather than
the one in Ref. [117]. No proof of factorization has yet been achieved for this approach

with the unexpanded b-quark field. and it is conceivable that this may help to explain
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why a different structure of operators was obtained.

3.8 Conclusions and Discussion

In this chapter, we have computed a factorization theorem for the leading-order power
corrections to inclusive B — X,y and B — X, /U decays in the endpoint region, where
the X is jet-like. In particular, we have shown that these power corrections can be fully
categorized and thus treated in a systematic fashion using the Soft-Collinear Effective
Theory. A main result of our analysis is that perturbative power corrections to the
decay rates can be systematically computed, and our result explicitly disentangles
hard factors of a;(m?), collinear jet-induced factors of as(m%), and soft (“as(A?)”)
non-perturbative QCD effects.

In addition, our results can be used as a starting point for the systematic resum-
mation of Sudakov double logarithms in the power corrections. To achieve this, one
needs to compute the anomalous dimensions of all the operators we have defined that
appear in the subleading factorization theorem. Some of the terms here are already
known. In the body of the chapter, we have shown that if we consider only subleading
terms with non-vanishing jet functions at lowest order in oy, then the logarithms that
can be resummed into the hard function in these NLO contributions are identical to
the analogous logarithms in the LO result. (These logs can be thought of as occurring
between the scales m? and m,A.) There are additional logarithms that are sensitive
to the split between the jet and soft functions (logs between myA and A2), which
require knowledge of the anomalous dimensions of subleading soft operators. The
latter are very unlikely to be universal, and have not been computed here.

Our main final decay-rate formulae have been collected in Sec. 3.7. At lowest order
in ay, they include a derivation of the power corrections for the triply differential B —
X L0 rate. Results have been derived in the literature for dI'/dE., in B — Xy [26]
and the singly differential B — X, €0 rate dTI'/dE, [108, 25, 117] (and dT'/dm% [55]),
and a comparison was given in Sec. 3.7.3. Agreement was found for B — X,v. but

for dI"/d E; we found disagreement on two terms at subleading order. (A check on our
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dI'/dE, result was obtained by expanding it to compare with the local OPE, and full
agreement was found up to 1/mj, as discussed in Sec. 3.7.4.) Using our results, we
found it straightforward to present the power corrections to doubly differential rates,

as well as other singly differential rates such as dI'/dp% and dT'/dp¥.

On the phenomenological side, a potentially interesting result is the identification
of two new shape functions, which involve four-quark operators and have not been
previously considered in the literature. They are denoted by fs56 (F56), and definitions
can be found in Eq. (3.120). In the endpoint decay rates they induce power-suppressed

terms, which are quite large, of order

A
dro,— . (3.202)
myp

Since 4ma;s ~ 4, these power corrections might numerically dominate over those that
are simply of order a® A/m,. We have given results for the effect of these shape
functions in all the considered decay rates. In our results for the decay rates, the
numerical prefactors for fsg turned out to be sizeable (e.g. 24ma; for f5 in dI'/dE,),
which justifies including the factor of 4 in Eq. (3.202). For the extraction of |V
from dI'/dE,, the important thing to consider is the difference between how these
new shape functions affect B — X, ¢v and B — X,v. In this case, comparing the

combinations of F' and F3 in Egs. (3.193) and (3.194), we see that the mismatch is
~ —8ma,(uo) [3FE — F3], (3.203)

where the index u or s denotes the fact that these shape functions involve different
flavours of light quark. To obtain a numerical estimate we approximate F¥/(mgF') ~

FZ/(mpF) ~ A/mpe’ ~ 0.1¢ and find that they can cause a deviation of
—16mag(po) 0.1’ ~ (180%)¢’, (3.204)

where ¢ denotes any additional dynamical suppression from the non-perturbative

functions. This suggests that, even for ¢ ~ 0.1 — 0.3, these terms provide a size-
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able new uncertainty for the cut spectrum dI'/dE, approach to measuring |V
From Eq. (3.197) we see that the situation seems to be only slightly better for a
cut dT'/dp} spectrum. On the other hand, since the completion of the research
described in this chapter, other groups have used model-dependent arguments, in-
corporating the vacuum-insertion approximation and numerical work, to estimate
that the effects of fs6 are ~ 5% [128, 36]. One possible future direction is to de-
rive experimental bounds on the new subleading shape-function effects by comparing
endpoint-dependent methods with different spectra and different cuts on the phase
space. It would also be useful to find model-independent ways of determining the
size of the subleading shape functions that go beyond the simple dimensional analysis
used here.

Theoretically, there are several avenues for future work on B — X,y and B —
X lv. These include the calculation of perturbative corrections in the factorization
theorems at subleading order, as well as a complete resummation of Sudakov log-
arithms. It would also be interesting to consider the structure of the subleading
factorization theorems in moment space, as opposed to the momentum-space ver-
sion considered here. Starting with our triply differential B — X, ¢U result, one
could derive other doubly and singly differential decay spectra and consider their
phenomenological implications. More formally, it remains to be checked that the
convolutions that appear in our subleading factorization theorems actually converge
when the functional forms of the jet functions are considered at higher orders in a.
From a formal standpoint this is necessary for a complete “proof” of these results as
factorization theorems. However, from a pragmatic standpoint this can be checked
as each new phenomenologically relevant term is computed. We are not aware of
any factorization formulae where convergence problems occur at higher orders in the
perturbative expansion of the kernels when they are not present in the leading non-
vauishing kernel results (the convergence of which we have checked). Finally, it should
also be possible to extend the techniques used here to closely related physical cases

such as deep inelastic scattering for £ — 1 (i.e. Bjorken  ~1 —A/Q).
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Chapter 4

Shape-Function Effects and Split
Matching in B — X /10~

4.1 Introduction

In this chapter, we study B — X £t¢~ (£ = e, u) in the shape function region for the
first time. We derive the proper theoretical expression for the leading-order triply
differential decay rate, which incorporates non-perturbative effects that appear at
this order and a correct treatment of the perturbative corrections at each of the
scales. Using the Soft-Collinear Effective Theory (SCET) we prove that the non-
perturbative dynamics governing the measurable low-g? spectra in B — X /¢~ is
determined by the same universal shape function as in endpoint B — X, and
B — X v decays. We also prove that the decay rate can be split into a product of
scale-invariant terms, capturing physics at scales above and below m;. We show that
this procedure, which we call “split matching”, can be used to deal with a tension
between the perturbative corrections that come from these two regions. Implications
for relating the B — X /"¢~ measurements with the m x cut to the Wilson coefficients
arc presented in Chapter 5.

As stated previously, the inclusive rare decay B — X,ft{~ is complementary to
B — X,v in the search for physics beyond the Standard Model. Provided that one

makes suitable phase-space cuts to avoid c¢ resonances, B — X ¢T¢~ is dominated
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by the quark-level process, which was calculated in Ref. [84]. Owing to the disparate
scales, my, < myy, one encounters large logarithms of the form a?(my) log" (my/mw)
(leading log [LL]), a7*!(ms)log™(ms/mw) (next-to-leading log [NLL]), etc., which
should be summed. The NLL calculations were completed in Refs. [54, 121], and the
NNLL analysis, although technically not fully complete, is at a level that the scale
uncertainties have been substantially reduced, after the combined efforts of a number

of groups [45, 63, 10, 8, 75, 9, 44, 77, 76].

Non-perturbative corrections to the quark-level result can also be calculated by
means of a local operator product expansion (OPE) [131, 58, 43, 119|, with non-
perturbative matrix elements defined with the help of the Heavy Quark Effective
Theory (HQET) [120]. As is the case for B — Xy and B — X,{0, there are no
O(1/my) corrections. The O(1/m2) corrections and OPE were considered in Ref. [70]
and subsequently corrected in Ref. [7]. The O(1/m}) corrections were computed in
Ref. [21, 20]. There are also non-perturbative contributions arising from the ¢z inter-
mediate states. The largest cC resonances, i.e. the J/¢ and ¢/, can be removed by
suitable cuts in the dileptonic mass spectrum. It is generally believed that the op-
erator product expansion holds for the computation of the dileptonic invariant mass
as long as one avoids the region with the first two narrow resonances, although no
complete proof of this (for the full operator basis) has been given. A picture for the
structure of resonances can be obtained using the model of Kriiger and Sehgal [101],
which estimates factorizable contributions based on a dispersion relation and experi-
mental data on o(ete” — ¢¢ +hadrons). Non-factorizable effects have been estimated
in a model-independent way by means of an expansion in 1/m, [61, 50] which is valid

only away from the resonances.

Staying away from the resonance regions in the dileptonic mass spectrum leaves
two perturbative windows, the low- and high-¢ regions, corresponding to ¢ < 6 GeV?
and q® > 14.4 GeV? respectively. These have complementary advantages and disad-
vantages [77]. For example, the latter has significant 1/m;, corrections but negligible
scale and charm-mass dependence, whereas the former has small 1/m; corrections

but non-negligible scale and charm-mass dependence. The low-¢? region has a high

142



rate compared to the high-¢? region and so experimental spectra will become pre-
cise for this region first. However, at low ¢* an additional cut is required, making
measurements less inclusive. In particular, a hadronic invariant-mass cut is imposed
in order to eliminate the combinatorial background, which includes the semileptonic
decay b — c¢(— setv)e 0 = b — sete™ + missing energy. The latest analyses
from BABAR and Belle impose cuts of my < 1.8GeV and myx < 2.0 GeV respec-
tively [14, 91, 12, 95], which in the B-meson rest frame correspond to ¢° > 2.3 GeV
and put the decay rate in the shape function region. This cut dependence has so far
been analyzed only in the Fermi-motion model [5, 6].

Existing calculations for B — X *{~ are based on a local operator product
expansion in Aqcp/mp. When m% < myA ~ (2GeV)?, this operator product ex-
pansion breaks down, and, instead of depending on non-perturbative parameters
(A1, Ag,...) that are matrix elements of local operators, the decay rates depend on
non-perturbative functions. Furthermore, in this region the standard perturbative o
corrections to the partonic process b — s¢*£~ do not apply, since some of these cor-
rections become non-perturbative. Thus, even at leading order there does not exist
in the literature a model-independent computation of the B — X /*¢~ decay rate
that can be compared directly with the data at low ¢°.

As should be clear from Chapter 3, the endpoint region has been the focus of much
work in the context of B — X,y and B — X, U (see e.g. Refs. [125, 124, 41, 99, 30,
113, 112, 111, 116, 27, 47, 26, 108, 25, 106, 49, 36, 102]). Recall that in B — X, ¢v
this is because of the cuts used to eliminate the dominant b — ¢ background. In
B — X,v, it is known that cuts with ¢° > 2.1 GeV put us in the shape function
region.!

In the small-¢? region of B — X /T~ with ¢° > 2.3 GeV, shape-function effects

also dominate rather than the expansion in local operators. To see this, we note that

the mx cut causes 2mpEx = m%+m% —¢*> > m%. Decomposing 2Ex = pk+px with

'In Ref. [129] it was pointed out that even a cut of E, > E; = 1.8GeV, corresponding to
mx < 3GeV, might not guarantee that a theoretical description in terms of the local OPE is
sufficient, owing to sensitivity to the scale A = my — 2Eg in power and perturbative corrections.
Using a multi-scale OPE with an expansion in A/A allows the shape function and local OPE regions
to be connected [27, 47, 129].
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Figure 4-1: The kinematic range for px and p} given the experimental cuts of q2 <
6 GeV? and mx < 2.0GeV for B — X 00,

m% = pxp%, we see that the X; is jet-like with p3 > p¥, and the restricted sum over
states in the X, causes the non-perturbative shape functions to become important.
For the experimental cuts on ¢2 and my, values for p,i( are shown in Fig. 4-1. It should
be clear from this figure that the measurable spectrum is dominated by decays for
which py > p}.

To compute B — X ¢* ¢~ in the shape function region with renormalization-group

evolution requires the following steps:
i) matching the Standard Model at u ~ my on to Hy,
ii) running Hy to p ~ my,
ili) matching at p ~ m; on to operators in SCET,
iv) running in SCET to pu ~ VmyA,

v) computation of the imaginary part of forward-scattering time-ordered products

in SCET at pu ~ v/m,A. This leads to a separation of scales in a factorization
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theorem, which at LO takes the form?
4310 — H/dk j(o)(k) f(o)(k),

with perturbative H and J©, and the LO non-perturbative shape function

7o,
vi) evolution of the shape function f® from Aqcp up to p >~ /mpAqep -

For the shape-function decay rate, steps i-ii) are the same as the local OPE results for
B — X £*¢~. Furthermore, based on the structure of leading-order SCET operators
that we find for B — X ¢*¢~, we demonstrate that results for other inclusive endpoint
analyses can be used in steps iv) and vi) [22, 23, 47].3 Because of this our computations
focussed on steps iii) and v). In step iii) we show how to implement the split-matching
procedure to formulate the perturbative corrections, which we elaborate on below. In
step v) we derive a factorization theorem for B — X £*t¢~. This includes computing
the hard coefficient functions H at NLL order and formulating the structure of these
terms to all orders in a,. It also includes a derivation of formulae for the decay rate
and forward-backward asymmetry that properly take into account the effect of the
current experimental cuts and the perturbative and non-perturbative corrections.
At leading order in the power expansion the result of steps i)-vi) takes the schematic

form

1 = E(pw)Uw (1w, po)B(po) Us (po, pi) T (1) Us (i, ltA)f(O)(MA) )

Hw =My, Ho = Mp, /J'i:(mbA)l/27 ,LLAZ].GEV, (41)

where £, B and J represent matching at various scales, and Uy, Uy and Ug represent

the running between these scales. Eq. (4.1) shows only the scale dependence explicitly,

Note that the operator product expansion used here occurs at u ~ v/mpA, rather than at m#,
as in the standard local OPE.

3In step iv) we can run the hard functions down using results from Refs. {22, 23]. In step vi) we
can run the shape function up to the intermediate scale using the simple result from Ref. [47]. An
equally valid option would be to evolve the perturbative parts of the rate down to a scale p ~ 1 GeV,
as considered earlier [112, 113, 111, 27, 22].
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not the kinematic dependences or the convolutions between 7. Us, and £, which

we describe later on.

In a standard application of renormalization-group-improved perturbation theory
(LL, NLL, NNLL, etc.), the results at each stage of matching and running are tied
together, as depicted in Eq. (4.1). Usually this would not be a problem, but for
B — X 0*¢~ the nature of the perturbative expansion above and below p ~ my is
different. Above u ~ m; the series of (o, In)* terms are of the traditional form, with
a basis of ~ 10 operators (including four-quark operators), whose mixing is crucial.
Below p >~ my we demonstrate that the evolution is universal (to all orders in «y) for
the leading-order operators, but there are Sudakov double logarithms of the ratios of
scales, which give a more complicated series. It turns out to be convenient to decouple
these two stages of resummation so that one can consider working to different orders
in the o, expansion above and below y = m;. There is a simple reason why this
decoupling is important: for g > m; the power counting and running are for currents
in the electroweak Hamiltonian and dictate treating Co ~ 1/as with C7; ~ 1 and
C1o ~ 1. However, at p = m,, the coefficients Cy and Cyp are numerically comparable.
For 4 < m, in the shape function region we must organize the power counting and
running for time-ordered products of currents in SCET rather than amplitudes, and
it would be vexing to have to include terms «x C¢ to O(a?) before including the C2
and C? terms at order O(a?). Thus, once we are below the scale my, a counting with

Cy ~ Cyo ~ C7 ~ 1 is more appropriate.

To decouple these two regions for B — X ¢/~ decays we make use of two facts:
i) for u > my the operator Oy involves a conserved current and has no operators
mixing into it, so it does not have an anomalous dimension, and ii) for u < m; all
LO biquark operators in the Soft-Collinear Effective Theory have the same anomalous
dimension [23]. We shall show that the operators for B — X ¢*¢~ are related to these
biquark operators. These properties ensure that we can separate the perturbative
treatments in these two regions at any order in perturbation theory. This is done by

introducing two matching scales, o ~ m;y and up, ~ my. The two aforementioned
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facts allow us to write

Uw (1w, 120)B(10) Urt (10, 143) = Uw (1w, 1t0) B(po, 16) U (1o 17)

= Uw (uw, o) B1(10) Ba (o) Unr (p, i) (4.2)

with well-defined B; and B;. We define B, (u;) by using the matching for the operator
Oy and extend this to find B; matching coefficients for the other operators using
property ii) above. The remaining contributions match on to B;. Diagrams which
are related to the anomalous dimension for i > m; end up being matched at the scale
to on to Bi, while those related to anomalous dimensions for p < m;, are matched at

a different scale, up, on to By. This leaves

1O = |Euw)Un (i, 50) By (o) | [ Ba(hso)Unn (t, 1) 7 (1) Us (s, 1) £ (1)
(4.3)

which is the product of two pieces that are separately u-independent. We refer to
this procedure as “split matching” because formally we match diagrams at two scales
rather than at a single scale. The two matching u’s are “split” because they are
parametrically similar in the power-counting sense.

We organize the remainder of this chapter as follows. We begin by using split
matching to determine the hard matching functions, B = B B,, for B — Xt/ in
SCET; this is one of the main points of this chapter. It is discussed in Sec. 4.2.1 at
leading power and one-loop order (including both bottom-, charm-, and light-quark
loops and other virtual corrections). The extension to higher orders is also illustrated.
Steps i) and ii) arc summarized in Sec. 4.2.1, together with Appendix C. In Sec. 4.2.2
we discuss the running for step iv) and give a brief derivation of why the anomalous
dimension is independent of the Dirac structure to all orders in «,. In Sec. 4.2.3, we
discuss the basic ingredients for the triply differential decay rate and the forward-
backward asymmetry in terms of hadronic tensors. A second main point of this
chapter is the SCET matrix-element computation for B — X,¢*¢~, step v), which is

performed in Sec. 4.2.4. In Sec. 4.2.5 we review the running for the shape function,
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step vi). In Sec. 4.3 we present our final results for the differential decay rates at
leading order in the power expansion, including all the ingredients from Sec. 4.2 and
incorporating the relevant experimental cuts. The triply differential spectrum and
doubly differential spectra are derived in subsections 4.3.1-4.3.4. Readers interested
only in our final results may skip directly to Sec. 4.3. We compare numerical results
for matching coefficients at m; with terms in the local OPE in subsection 4.3.5. In
Appendix D we briefly comment on how our analysis will change if we assume a
parametrically small dileptonic invariant mass, g2 ~ A2, rather than the scaling ¢ ~
A% used in the body of the chapter. (For the case ¢ ~ A2, the rate for B — X ¢4~
would not be determined by a factorization theorem with the same structure as for

B — X, ¢v.)

4.2 Analysis in the Shape Function Region

4.2.1 Matching on to SCET

We begin by reviewing the form of the electroweak Hamiltonian obtained after evo-
lution down to the scale yu ~ my, and then perform the leading-order matching of
this Hamiltonian on to operators in SCET. For the treatment of 5 we use the NDR
scheme throughout. Below the scale u = myy, the effective Hamiltonian for b — sf*t¢~

takes the form [84]

e 10
Hw = ——\7—£wa:§ Ci(p)Oi(p) , (4.4)
2 i=1

where we have used unitarity of the CKM matrix to remove V.,V dependence and
have neglected the tiny Vy,, V), terms. The operators O;(u) to Og(u) are the same ones
we have already encountered in studying B — X,v. The two additional operators
are

2 2

= L 7. €
5LaV'bralyul, O = 1672

= 16n2

O,

gLa’)'“bLaEV'uWSEa (4'5)
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In the following, we shall once again neglect the mass of the strange quark in O . For
our analysis. m; is not needed as a regulator for IR divergences, which are explicitly
cut off by non-perturbative scales ~ Agcp. In the shape function region, the m,
dependence is small and was computed in Ref. [60]. Non-perturbative sensitivity to
ms shows up only at subleading power, while computable O(m?/myAqcp) jet-function

corrections are numerically smaller than the Agcp/me, power corrections.

At NLL order, one requires the NLL Wilson coefficient of Oy and the LL coeffi-
cients of the other operators. For Oz 10 these are given by [121, 54]

3
16 8/ _1a _1l '
CFPMu) = o™ ColMw) + 5 (ro® =19 ) Ga(Mw) + Y _tirg™,  (46)
i=1
. Y (m?/ M2
CEPR(u) = PYP%)+ ST agm ) + Pl Bl M)
Y (m? /M
Cuoi) = Cua(y) = ~ L),

where C7(mw), Cs(mw) and the Inami-Lim functions Y, Z, and E are obtained
from matching at y© = my, and are given in Appendix C. The u-dependent factors

include [121, 54]

™

8
PNDR = ——— [ —-0.187 ;o %t 1.2468
NDR ()} as(Mw)( 0.1875+ Y pi +1.246

i=1

8
—a; NDR -1
+ To (Pi + 8Ty ) )
i=1

8
Pg(u) = 01405+ Y girg™", ro = _os(m) (4.7)

i1 - as(mw)

The numbers t;, a;, pPR

, Si, g; that appear here are listed in Appendix C. Re-
sults for the running coefficients of the four-quark operators, C;_g(1t), can be found
in Ref. [54]. We have modified the standard notation slightly (e.g. 7o(u)) to con-

form with additional stages of the RG evolution discussed in sections 4.2.2 and 4.2.5.

Contributions beyond NLL will be mentioned below.
At a scale g =~ my. we need to match b — s¢+¢~ matrix elements of Hj;- on to
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matrix elements of operators in SCET with a power expansion in the small parameter
A, where A? ~ Aqcp/my. For convenience, we refer to the resulting four-fermion scalar
operators in SCET as “currents” and use the notation Jg. In SCET we also need
the effective Lagrangians. The heavy quark in the initial state is matched on to an
HQET field h,, and the light energetic strange quark is matched on to a collinear

field &,. For the leading-order analysis in A/m; we need only the lowest-order terms,

Gpa * 0
Hw = - Van (VaoVis) Jz(?) , L= Cg)()QET + ﬁéc):ET ; (4.8)

where Je(?) is the LO operator.

To simplify the analysis we treat both m, and my, as hard scales and integrate out
both charm and bottom loops at pu ~ m;. At leading order in SCET, the currents

that we match on to are

Jlg)) E= Z Cg,'(S) ()Zn,prz(v)qu) (57'7“8) + Z 0101;(3) ()“(n,pfl(.v)”’Hv) ((T’yﬂ’)/g,f)

i=a,b,c i=a,b,c
- Z C7j(5) 2mp ()Zn,pr§'t)qu) (E_'Yug) ’ (4.9)
j=a,...,d

where the sum is over Dirac structures to be discussed below. The simple structure of
these LO SCET operators is quite important to our analysis: for example, by power
counting there are no four-quark operators that need to be included in SCET at this
order. The B momentum, total momentum of the leptons, and jet momentum (sum
of the four-momenta of all the hadrons in X,) are

1 I 1 ﬁ# n“

Pp = mpv*, 9" =P + - Px =npx & +7px o (4.10)
respectively.  As in the previous chapter. we shall use the hadronic dimensionless
variables

2E,- n-px n-px ¢

Uy = = 4.11
mg mep mg y m% ( )
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In SCET the total partonic 7 - p momentum of the jet is a hard momentum ~ my,
and also appears in the SCET Wilson coefficients. At LO, fi-p = (m? — ¢2)/m; and
demanding that 7-p is large means only that ¢* cannot be too close to mZ. For
example, neither ¢> ~ 0 nor ¢? ~ m?/2 modifies the power counting for #-p. Thus,
there is no requirement to impose a scaling that ¢? be small. For convenience, in the

hard coefficients we write

2

Q

C(ﬁ’pa My, N(),Mb) - C(s)mbyﬂmub) > s = s (412)

m

SN

since the partonic variable s is a more natural choice in b — s£*¢~ and is equivalent
at LO. For purposes of power counting in this chapter we count s ~ \°. We shall
see in section 4.3.5 that varying s causes a very mild change in the coefficients. In
Appendix D we briefly explore a different scenario, in which s ~ A\2. A distinction
between two matching scales o and p;, is made in C in order to separate the decay
rate into two p-independent pieces, as displayed in Eq. (4.3). For power counting
purposes, po ~ pp ~ mp and formally gy > py. For numerical work one can take
Mo = M.

In Eq. (4.9) we begin with a complete set of Dirac structures for the vector and

tensor currents in SCET, namely

fy[“nT] n[ﬂvT]

m
™ = PR{fy“ oM, ;Ln_v} , Fffld = Pg % {ia‘”,'y[“v'r] , } . (4.13)

nv = nw

These come with Wilson coefficients Co,p,. and Crqpcq respectively. This basis is
over-complete for B — X £*¢~, but considering a redundant basis makes it easy to
incorporate pre-existing perturbative calculations for the currents into our computa-
tions. Ouly the coefficients Crq9, appear at tree level, but for heavy-to-light currents
it is known that the other structures become relevant once perturbative corrections
are included. For simplicity of notation. we treat the 1/¢? photon propagator in th)

as part of the effective-theory operator.?

If we instead demand that the momentum ¢2 be collinear in the 7 direction, with s ~ A2, then
the SCET operator with a photon field strength should be kept, and will then be contracted with



To reduce the basis in Eq. (4.13) further, we can use i) current conservation,
g0yl = 0, i) ¢*fy,vs¢ = 0 for massless leptons, iii) a reduction of the tensor
I'® Dirac structures into vector structures, since they are all contracted with g,.
Constraint ii) allows us to eliminate Cjo.. Taken together, constraints i) and iii)
allow us to reduce the seven terms Cy; and C7; to two independent coefficients. For

our new basis of operators we take

7. 2 T [~ . uT =
T = Co (tnp P ) (Byud) = Cr = 55 (X Pric"Ho) (Pl)

+ Ci0a ()—(n,pPR’Y”Hv) (E’Yu’}’se) + Cion (Xn,pPRU“Hv) (Eﬁ’uﬁ’sf) , (4.14)

and find that

C. 2 Cre — Crg) + n-q C
Co = Coy + =2 — mp Cry + mp(Cre 7‘f) n-q Qc’ (4.15)
2 n-q n-q—n-q
C n- 1 —q? _
Cr=Cr— n_ 4 Cop + — [ 1 CQc_n'qC7c+n'qC7d] )
2 dmp n-qg—n-ql2mpg

ClOa = C"10(1, )

2n-q
Cios = Crop + ———— Cioc -
n-g—n-q

Our Dirac structures for the Cg and C7 terms in Eq. (4.14) were deliberately chosen, in
order to make results for the decay rates appear as much as possible like those in the
local OPE. The fact that the basis of SCET operators for B — X £*¢~ involves only
bilinear hadronic currents at LO means that in the leading-order factorization theorem
we find the exact same non-perturbative shape function as for B — X,y and B —
Xufv. This is immediately evident from the operator-based proof of factorization in
Ref. [30], for example. While the coefficients Co;, Cr, Cio; in Eq. (4.9) are functions
only of s = (n-q) (7i-g)/mZ, the reduction of the basis of operators brings in additional
kinematic dependence on 7-q and n-q for the C;’s (which is also the case in analyzing

exclusive dileptonic decays [83]). At tree level we have Oy 19 contributing to Cy, and

an operator with collinear leptons within SCET. In this case there will also be additional four-quark
operators needed in the basis in Eq. (4.14).
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b

Figure 4-3: Graphs in SCET for the matching computation.

Cl0a, and a contribution from Q7 with the photon producing an £+£~ pair, which give
C9 = Cgl)\IDR(NO) ) C7 = T—:'r%li) C—I;\IDR(,LL()) y ClOa = C]O y ClOb =0. (416)
B

Beyond tree level there will be C; dependence in Cy, and Cy dependence in C.
Eq. (4.16) indicates that with our choice of basis the same short-distance depen-
dence dominates in SCET: Cy = Cy, etc. We explore this further in Section 4.3.5. In
Eq. (4.16) there is no distinction as to whether this matching is done at p = pp or
it = . The effective-theory operator in Eq. (4.14) was defined with a factor of mp

pulled out so that the y-dependent factors m,CYPR are contained in the coefficients

Cr.

At one-loop order, the full-theory diagrams needed for the matching are shown
in Fig. 4-2 (plus wave-function renormalization, which is not shown). At this order
the four-quark operators O,_¢ contribute through Fig. 4-2a. The one-loop graphs
in SCET with the operators in Eq. (4.14) are shown in Fig. 4-3 (plus wave-function
renormalization, which is not shown). There are no graphs with four-quark operators

within SCET since we treat ¢ ~ A%, so Fig. 4-2a matches directly on to Cy.
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As discussed in the introduction, we perform a split-matching procedure from the
full theory above my; on to SCET below m,;, making use of two matching scales pyg

and up. Contributions from this stage of matching therefore take the form

B(o, ps) = Bi(1o0) Ba (1) - (4.17)

Since Oy has no anomalous dimension above m; and there is a common universal
anomalous dimension for all the operators in Jég) below m, there is a well-defined
prescription for carrying this out. We take all contributions that cause perturbative
corrections to Cig, and Cigp to be at the scale up, so for this operator B;(ug) = Cho,
and at one-loop order Ba(u) includes o () In®(up), as(ps) In(ps), and o (1p) terms
from matching the vertex diagram Fig. 4-2b and wave-function diagrams on to SCET.
The analogous contributions from vertex diagrams for Cy and C; are also matched at
i = i to determine their By(p)’s (for C; the full-theory tensor current has a Inp
that is matched at u = pg). The universality of the anomalous dimensions in SCET
guarantees that this procedure remains well defined at any order in perturbation
theory and can be organized into the product structure displayed in Eq. (4.17). For
Co and C; there are additional non-vertex-like contributions that are matched on to
Bi(uo) at a scale ug > pp. These include contributions from four-quark operators

O;_¢ in the full theory, which will match on to Cy and C; in SCET.

The difference between the full-theory diagram in Fig. 4-2b and the SCET graphs
in Fig. 4-3b,c is IR finite (where we must use the same IR regulator in both theories,
as is always the case for matching computations). In the UV the full-theory graph
in Fig. 4-2b plus wave-function renormalization is u-independent since the current is
conserved. The graphs in SCET induce a u dependence and an anomalous dimension
for the effective-theory currents. These terms are matched at y = y,. We start with

the basis in Eq. (4.9) and find

Qg L s
Croa(fto- ) = Chio [1 + % wy (s, Mb)] .
U
Chov.aoc(ft0- 15) = Chg (i) W;{c(s)-. (4.18)
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with a constant pg-independent Cyg. The perturbative coefficients were computed in

Ref. 23], and setting 7-p/my, = (1 — s) we find

wY (s, mp) = ——;- [21112(1—5) + 2Lis(s) + 1n(1—5)<1_38) + 7;—;— +6
+21n? (mb) +51In (mb) — 4In(1-s)In (mb) ] ,
wy (s) = %[2 + 2(1s; s) In(1- s)] ,
WY (s) = %[(28_13)2(1_8) In(1—s) — (1;3)]. (4.19)

For the matching on to Cgqp. in the basis in Eq. (4.9) we have the same pertur-

bative coefficients wq,p . as for Cigqp,c, because only the leptonic current differs:

Cunlpio ) = O3 (o) [1 4+ 288 ¥ (4, )],

CQb,Qc(.“’Ov,u'b) = lex( 1) {a Srﬂb) W;,/C(S)] . (4.20)

However, for Cy; there are additional contributions, CF*(ug), from the matching at

1 = po, which at one-loop order and O(a?) includes Fig. 4-2a:

. 2 1
C{;“x(uo) = C{;VDR(/L()) -+ 5 (303 + 04 + 305 + Cﬁ) — §h(1, S) (403 =+ 4C4 + 305 + C@)

c 1
+h(*5,5) (3C1 + Ca +3Cs + i +3C5 + C) — 5h(0,5) (G5 +3C1)
b

(o)

+

+ Cmx Y (4.21)

where all running coefficients on the RHS are C; = Cj(ug). We shall discuss the
relation of C* to CS in in the local OPE analysis [121, 54] after Eq. (4.28). In
Eq. (4.21) the functions h(1.s), h(z,s), and h(0.s) for the b-quark. c-quark, and
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light-quark penguin loops are [84, 121]

h(z,s) = gl(’““’)—gln +—;i7+ c—g(2+<) 11—
{ (_m.;_l 1+"1_.C_)+9(C—1)2arctan r-_——cl_l :
h(0,s) = §?+§1 (“—2)—91ns+9 (4.22)

with ¢ = 42%/s. Higher-order O(as) corrections in Eq. (4.21) are denoted by the
Cr*(1) term. An important class of these corrections from mixing can be determined

from the NNLL analysis in Refs. [10, 8, 75, 9, 77, 76]:

Cénix(l) (N ) CNDR HS—»Q(S, No) + Ch /ﬂ?1—>9(5, Mo, Thc) + Cs f‘éz—+9(3, Ho, Thc) . (4-23)

To determine these terms one must be careful to separate out the factors in square
brackets in Eq. (4.20). However we shall not attempt to include all NNLL terms
consistently here. Contributions to C*™*™ from the penguin coefficients Cs_g are

unknown but expected to be small (at the ~ 1% level).

Lastly, we turn to the results for C7;. From the vertex graphs we have

Cra(tt0, o) = lex( 0) [1 + grub) 3(37 “b)] ’

0 .
Cro1e,1d( o, ) = CP&(110) Srub) w{ad(s). (4.24)

The w! perturbative corrections are again determined from the SCET matching in

Ref. [23], which (switching to s) gives

1
Wl (5, ) = =3 [21112(1—3) + 2Lia(s) + 111(1—.9)( + 55 +6

ows (%b;) rh(:lb) i1 —s)ln(::;)],

2—43) 2

(4.25)



Additional contributions from other diagrams are matched at the scale pg into CF* ().
Note that, unlike the vector currents, the tensor current for O; gets renormalized for

it > m, and we must include the corresponding In(po/myp) in CF*(uy), i.e

) = L) fcyong [ 2o (103

3 my

where, much like in the case of C'““x we have
O™ (uo) = Cg PR K8 (s, po) + C1 KL (s, pos M) + Ca K2(8, po, he) (4.27)

and the results for kg ,7(s, to), K1-7(8, o, Mc), and Ke_7(s, o, M) can be found in
Ref. [81]. Contributions to C**® from the penguin coefficients C3_g can be found

in Ref. [52].

Using Eq. (4.15), A-gn-q/m% = yy, and n-q/mp = 1 — uy, we can use the above
results to give the final coefficients for our basis of operators with the minimal number

of Dirac structures, namely

o e )
O N (s ]
) — Cmix ) { as(ub erto - Lo el
- [ TR (]
Croa = C’m{l 4% Er“b) Vis, m,)}
Ciop = Cho & WY —1—1;)’—‘”_)% w).’(s)] , (4.28)

where the terms have the structure of a sum over products Bj(uo)Ba(us), as desired.

In using the results in Eq. (4.28) one can choose to work to different orders in
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the juy- and p,-dependent terms, as shown in Eq. (4.3). For the py dependence,
C%(119) and CP*(yg) include terms from matching at my and running to my, as
well as matching contributions at m, that cancel the py dependence from the other
pieces. Thus, these coefficients have only a small residual py dependence, which is
canceled at higher orders, just as in the local OPE. The C; coefficients depend on u,,
both through a,(u) and through explicit u, dependence in w! and w?. The In
dependence in w) and w! is identical, as expected from the known independence
of the anomalous dimension on the Dirac structure in SCET. The u;, dependence
in C;(up, o) is universal, and will cancel against the universal u;, dependence in the

jet and shape functions, which they multiply in the decay rates. We consider the

phenomenological organization of the perturbative series for py and pp terms in turn.

First consider the po terms. Because of mixing, the sizes of contributions to C{'PF
are comparable at LL and NLL orders [121, 54|, so a reasonable first approximation is
to take the NLL result (just as for the local OPE decay rate). This entails dropping
the O(as) matching corrections Cy' (1) and Ccy ix(l), and running Cy at NLL order
with C7 at LL order. As an improved approximation, we would then adopt the
operationally well-defined NNLL approach [10, 8] of running both Cy and C; to NLL

order and keeping the O(a;) matching corrections at my,.?

Below m,, there are Sudakov logarithms. For the p, dependence, the RG evolution
in SCET sums these double-logarithmic series. As a first approximation we could take
the LL and NLL running in Ug(us, 1:) and Us(u;, 1) in Eq. (4.3), while using tree-
level matching for Ba(pus) and J(u;). This is consistent because the NLL running is
equivalent to LL running in a single-log resummation. As a second approximation
we could then take NNLL running in both terms and include one-loop matching for
both By (s,) and J(u;). However since the scales m? > myA > 1GeV? are not as
well separated as m3, > mZ2, we could instead consider the secoud approximation to
include the one-loop matching for By(p) and J(pr;) with NLL running, but without

including the full NNLL running (for which parts remain unknown).

"We assume that matching at the high scale, my-, is always done at the order appropriate to the
running of Uy (- o) in Eq. (4.3).
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Our procedure for split matching above was based on the non-renormalization of
Oy in QCD. It can also be thought of as matching in two steps. First one matches

at o on to the scale-invariant operators

J(O) = Cénix (EPR’)’ub) (Z’Yﬂf) + ClO (§PR’Y“b)(Z’7ﬂ"/5€)

x 2MBGr 0 _ . o =
_ ;mx ql;q [(SPRZO'M b)(,uzmb)](ffyuf), (429)

to determine the coefficients C¥&*. These coefficients are po independent at the order
in perturbation theory to which the matching is done. Secondly, the operators in
Eq. (4.29) are matched on to the SCET currents in Eq. (4.14) at the scale u; to
determine the coefficients C7, Cy, Cigap. In Eq. (4.29) the operators for CF* and Cyq
are conserved, but the tensor current has an anomalous dimension, and so we take
it = my as a reference point for matching on to a scale-invariant operator. This choice
corresponds to the Inm,, factor in Eq. (4.26) for C3*. A different choice will affect
the division of a,(puo) or as(us) terms. Note that Eq. (4.29) should be thought of
only as an auxiliary step to facilitate the split matching; there is no sense in which
the running of the tensor current is relevant by itself. In general the split-matching
procedure could be carried out in a manner that gives different constant terms at
a given order, but any such ambiguity will cancel order by order in C; and Cy (and
explicitly if po = pp)-

Finally, note that our w, differs from the result for w°FE identified in Ref. [121]

for the partonic semileptonic decay rate when using the local OPE,

5+4s> 25(1+s)(1-2s)

1
OPE — __12In(s)In(1—s) + 4Li In(1- (
Wsemi = ~3 | 2() In(1 =) + 4Lia(s) + {1 =) 7357) + = 557795)

In(s)

(5+9s—652) 27r2} (4.30)

C2(1-s)(1+2s) ' 3

OPE

Here w,,,,; contains both vertex and bremsstrahlung contributions evaluated in the

full theory. Grouping these contributions with the Wilson coefficient for Oy gives

cal mix s O
Cp= () = O () + PP () U 0 (131)

semi
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which is Cf in the notation in Ref. [54]. At LO. the restricted phase space in the
shape function region causes bremsstrahlung to contribute only to the jet and shape
functions, and not at the scale u ~ m,. The shape function and jet function also
modify the contributions from the vertex graphs. Thus, instead of wOFE the final
results in the shape function region are given by our w} and w! factors appearing in
Cy; and Cr;. Consequently, the main difference is in the terms we match at p = py,

while the terms matched at p = o that appear in C* and C* are identical to

terms appearing in the local OPE analysis.

4.2.2 RG Evolution Between pu, and p;

The running of the Wilson coefficients in SCET from the scale p2 ~ m2 to u? ~
mpAqcp involves double Sudakov logarithms and was derived in Refs. [22, 23] at NLL
order. The SCET running is independent of the Dirac structure of the currents, which
is a reflection of the spin symmetry structure of the current. We briefly outline a short
argument for why this is true to all orders in perturbation theory. The leading-order

currents in SCET have the structure
J = (&W),I'(YTh,), (4.32)

and we wish to see that their anomalous dimension is independent of I'. The anoma-
lous dimensions are computed from the UV structure of SCET loop diagrams, with
the leading-order collinear- and heavy-quark Lagrangians. Soft gluon loops involve
contractions between the Wilson line YT and the A, and do not change the Dirac
structure. Next consider the collinear loops. The attachment of a gluon from the
Wilson line W to the collinear quark gives a factor of a projection matrix, which can
be pushed through v, ’s to give £,7i1t/4 = &,. Thus it does not modify the Dirac struc-
ture, so only insertions from the i)-1/(in- D.)il)* term are of concern. These terms

(u)  p1p2

give structures of the form iy, "4 v{? - - - ¥/ Fuf,b) , Where all u; indices are contracted

with each other. Using {v},7} = 2¢%" and v/~;- = d—2, we can reduce this product
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to terms with zero -y, ’s since all vector indices are contracted. Hence all diagrams

reduce to having the Dirac structure that was present at tree level, ﬂﬁf‘) Fuf,b).

Thus, all the LO coefficients obey the same homogeneous anomalous dimension

equation,
31 = [ = Tampla) n (5) + e i) (4.33)
- [ ~ Teusp(@s) In (ﬁib) + {a(as) + Teusp(ts) In (%) }}ci(ﬂ) .

This must be integrated together with the beta function § = ud/dp as(u) to solve

for Uy in

Ci(ps) = vV Un (i, ) Ci(pp) - (4.34)

In the second line of Eq. (4.33) we used the fact that P gives the total partonic 7i-p
momentum of the jet X in the B — X t¢~ matrix element, and we introduced
artificial dependence on the matching scale p;, in order to make the 7i-p dependence

appear in a small logarithm. Here 7i-p = my, — 7i-q. We write

oo

o0 00
s _ 5 pousp &)"“ S P &)"“ = 20,3 (%)"*1
F - Fn (47_‘_ ’ Y= Tn 47T ) /3 - 2a5 ﬂn 477' '
n=0 n=0

n=0

(4.35)

At NLL order we need 3y = 11C4/3 —2n;/3, 1 = 34C%/3 — 10Cans/3 —2Cpny and

cus Y cus 67 71'2 o ~
FO P = 4C'F, Pl P = SCFB = SCF [CA(E——G—)——TLJC] sy Yo = *501:', (436)

where Cy = 3 and Cr = 4/3 for SU(3). For the number of active flavours we take
ny = 4 since we're running below m,. The cusp anomalous dimension I'{"*" was
computed in Ref. [98, 96], and the result for 5" was recently found in Ref. [122].
RG evolution in SCET at NNLL order has been considered in Refs. [129, 104]. For

the NNLL result one needs I';*", ¥;, and 3,. For 4, an independent calculation does
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not exist, but a conjecture for its value was given in Ref. [129] based on the structure
of the three-loop splitting function [122]. For the sake of clarity we stick to NLL order

here. The result is

Ui, ) = o5 | 2 1210, 9)| (437

where the independent variable is p; and

o (i) 2m
) = _ , 4.38
M) = G )~ 3+ B () i ) (438)
with
_4nC
ao(r) = ; OF [T_l 14 lnrl] (4.39)
C 1
g1(ry,fi-p) = —%ﬁl [1 —r+rlnr — 511127‘1]
0
CF Y4 2CFB
+—/6:[‘——21 (ub)]lnT’l— /88 [Tl—l—'ln’r’]].

This is the form for the universal running of the LO SCET currents found in Ref. [23].

Switching to as(p:) as the independent variable, with 71 = a(u;)/as(us), gives

- D _E Inr 290(7-1) N :]
Un (s, o) = +2 , 4.40
wluw) = (50) ° 7 e [as o 2 (4.40)
where go(r) is as in Eq. (4.39) and
. CrBy 5Cr Cp
ai(r) = 25 In®r + oy Inr, + — s (2BBo—B1)(1— 71 +1nmy) . (4.41)

This form of the evolution with a,(u) as the variable was used in Ref. [47], and is
also the one we adopt here. The decay rate is computed from a time-ordered product

of currents and so at the intermediate scale u? ~ mpA will involve products

Ci(is o) Ci(tis f10) = Un(pti- 1) Ci(ts, p20) C5( 1t o) , (4.42)
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explaining why we used a notation with /Uy in Eq. (4.34).

4.2.3 Hadronic Tensor and Decay Rates

In the last two sections we constructed the required basis of SCET current operators
with matching at p3 ~ p2 ~ m? and evolution to u? ~ myA. At the scale y; we
take time-ordered products of the SCET currents and compute the decay rates using
the optical theorem. In this section we discuss the tensor decomposition of the time-

ordered products and results for differential decay rates.

In order to simplify the computation of decay rates it is useful to write the sum of
hadronic operators as a sum of left-handed and right-handed terms since for massless

leptons we have only LL or RR contributions [7]. Doing this for our current, we have

jz(eo) = [Co = Cioa) (XnVuPr Ho) (£7* P €) + [Co + Croa) (Xn ¥uPL Ho) (£~*Pg )

2mpq”

+CIOb ()—('n vuPR Hu) (Z7#75 e) - C7 q2 ()_(n iour Hv) (l_7u l)
= (Jru L’z + Jru L’fz) , (4.43)
where
L} = Ey* P t, Lh=1~04"Pgt, (4.44)

2mpy*
Jom = XnPr [(Cg F Ci0a)7" + Cr _527_?4 F Ciop v“] H,

Xn I gy Ho -

Thus, the inclusive decay rate for B — X *¢~ is proportional to (WL LY +

WL ). where the leptonic parts L}(gy and hadronic parts W/ are given by

Lty = D [a@d) v w®-)] =)+ lr (p1)]
spin
= 2[php” + PP — 9" peom- Fie P piapog], (4.45)
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and

WHR = ——% (2m)%6"(pp — ¢ — px)(B|JFPNX)N(X|JER|B)  (4.46)

uv
= —guWi® + 0, W5 tieuasr Wi R + g WP

L(R
+(vuqy + vuqu)Ws (R)
The optical theorem relates W,fV(R) to the forward scattering amplitude defined as

TL = -Z-Zni /d‘*xe-m (BITJ (x)JE(0)|B) (4.47)
B

= —guuT1L + 'Uu'UuTzL + ifuuaﬂvaqﬂTgL + quqqu + (U;J.QU + 'Uuqu)TsL 3
with an analogous definition for T, giving

1

wrk =1 ImT!, WE=->ImTE. (4.48)
™

Contracting the lepton tensor L p with Wi, and neglecting the mass of the
leptons give the differential decay rate
d°T 96

I

—_— = _— 2 . 2 2 _ _ 2
TP dE, = (W + QE_E, — @/2)Ws + @(E- — B )W;|0(4E_E, — ),

(4.49)
where Ey = v-py, Wy = WE+ WE, Wy = WE + WE, W3 = WE — WE and the
normalization factor is

GZm5y o?

0™ 19273 1672

[VisVial? - (4.50)

The W7 arc functions of g2 and v-q = v - (p4 + p_). Another quantity of interest is

the forward-backward asymmetry in the variable

V-p_—-py

cosf = —.
(v-9)* —¢?

(4.51)
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where 6 is the angle between the B and £* in the CM frame of the £T¢~ pair:

2 1 i 3 2
d?Arg / d(cos6) sign(cos §) T 48¢ [(v L) — q2] Ws. (4.52)

dv-q dg? = ) 'y dv-qdg®dcosé - m%

In terms of the dimensionless variables

2F,- _ fi- n-
Ty = d , Yg = Px ) Uy = Px y (453)
mp mpg mpg

the triply differential decay rate is

1 d*T

S Yy — - 1-yy)W 4.54
r o g = 24mp@a—un{ (- (1=7)Wa (454)

1
+ 5(1_$H_UH)(IH+@_H—1)W2

+ 22 (1—um)(1=Tw) (on+un+Ta—2)Wa

where W; = Wj(uy,Jy). For a strict SCET expansion we want n-px < f-px i.e.
uy < Yy. However, it is useful to keep the full dependence on the phase-space
prefactors rather than expanding them, because it is then simpler to make contact
with the total rate in the local OPE, as emphasized recently in Refs. [135, 104], and
so we keep these factors here. We shall also keep the formally subleading kinematic
prefactors in our hard functions rather than expanding them as we did in Ref. [106].

Other variables of interest include the dileptonic and hadronic invariant masses,

Yu = miz;, SH = T—mn;);, (4.55)
where
Sy =ugYy , yg = (1—uy)(1 -7y,), (4.56)
so that [g, > uy]
{Uy-un} = %[1 —yg + st /(1 —yy + s1)? - 4311] : (4.57)
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A few interesting doubly differential spectra are

1 T (@ —u )2{(1—u V1= )W + — (G —u )QW} (4.58)
To djp dun = B\Yyg —UH H Yua)"1 12 Yy —UH 20 .

1 d°T

-2 1— 245y 3 12ygWh + [(1— 2—dsy|Way,
Ty dum dsn mev (1—yu+sy) SH{ YaWi + [( Yu+8H) SH] 2}

1 dr 2mp 2 (1-up)?~yu1?

— = 1-—- 2_ 12y W ——— 1 Wy,

FO dyH duH (1'-—’U,H)3 [( UH) yH] { yri+ [ (I—UH) ] 2}

1 dT  2mp(sp—u}

)2 21\2
ﬁdSH duy o u‘;’l {12UH(1_U’H)(UH SH)WI + (SH UH) Wz}

For doubly differential forward-backward asymmetries we find

d’A _ _
Ty ;EH = 6mp Ty —un)’(1—um)(1-Fu) Ws, (4.59)
d?A
dyy J:H = 6m5p yu [(l—yH+3H)2 - 4sH] Wi,
d?Arg _ 5 YH [(I—UH)2_"!/H]3 W
—=_ =6m% _ -
dyy duy (1—ug)
LAry o (on—uh) (un —on) (L) g,
dSH dUH uy

4.2.4 LO Matrix Elements in SCET

At lowest order in the A/m, expansion, the only time-ordered product consists of two
lowest-order currents JZ(ZO) as shown in Fig. 4-4. The factorization of hard contribu-
tions into the SCET Wilson coefficients and the decoupling of soft and collinear gluons
at lowest order are identical to the steps for B — X,y and B — X,¢7, and directly
give the factorization theorem for these time-ordered products [30]. The SCET result
agrees with the factorization theorem of Korchemsky and Sterman [99]. However, the
structure of a(v/myA) and o, (my) corrections differs from the parton-model rate, as
mentioned in Refs. [27, 47]. Beyond lowest order in a(m;) the kinematic dependences
also differ, as mentioned in Ref. [106]. For B — X, ¢i, the final triply differential rate
with perturbative corrections at O(a;) can be found in Refs. [27, 47].

The factorization and use of the optical theorem is carried out at the scale y1 = p;,
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Figure 4-4: Time-ordered product for the leading-order factorization theorem.

and we expand W; = W,-(O) + VVi(z) + ... in powers of A ~ (Aqcp/ms)Y? (with no
linear term). For B — X ¢*¢~ we have bilinear hadronic current operators in SCET

in Eq. (4.14) and so, as is the case for B — X, 40, we find

Px —
W = hi(p},p},ui)/ dk* T (0™ k) fO K +A—pk, ). (4.60)
0

This result is important, since it states that the same shape function f© appears in
B — X *¢~ as appears in B — X,y and B — X,¢p. This formula relies on the
power counting s ~ yg ~ A° that we adopted (and would not be true for the counting
s ~ A? discussed in Appendix D). At tree level the structure of this factorization

theorem is illustrated by Fig. 4-4. The hard coefficients here are

_ | I Ty 1T =R Y
b1 (%, P, i) = 3 Tx | P, T, T | PP + ST [P, T TS| P2,

_ | B R Tomww 1o [ =R y
ha(pk Py i) = 3 Tx | P, T, 4L | P + ST [P E] g,

_ | [ g 1w Lol =R v
ha(pk, P ) = 7Tt [P T, i TE| P — ST [P, T T P (4:61)

with P, = (1 +#)/2 and T = 4°T*4°. In Eq. (4.60) we have the same leading-order

shape function as in B — X,y and B — X, /0.

4.2.5 RG Evolution Between py and y;

The function f® cannot be computed in perturbation theory and must therefore be
extracted from data. This same function appears at LO in the B — X,v, B — X (v
and B — X,¢*¢~ decay rates. In practice, a model for f( is written down with a

few parameters, which are fitted to the data. The support of f(A —7r*)is —co to A
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since r* € [0, 00). It is often convenient to switch variables to f© (r*) = fO(A —r+)
which has support from 0 to oo, although we shall keep using f® here. A typical
three-parameter model is [108, 103]

_ n b (,+\b—1 R
PO = ux) = PO, ) = i e (S5 )o0), (4)

where a, b are dimensionless and L ~ Aqcp. These parameters can be fitted to the
B — X,y photon spectrum and the function f(® can then be used elsewhere. The
most natural scale to fix this model at is p = up ~ 1GeV, at which it contains no
large logarithms. The result of evolving the shape function to the intermediate scale

is then [47]

— 1 rt f(o) (‘A‘_,r.+/ L )
O (A—rt 1) = eYsina) drt HA) 4.63
FOR—rt) = e A s (469
(The structure of this result also applies at higher orders in RG-improved perturbation

theory [129], and at one-loop order a similar structure was considered earlier, in

Ref. [17].) At NLL order

[cusP —A4x /61 [eusP /31 1
Ve, ) = =2 | =2 (ry—1=Inry)+ 2 In?rg (=2 — 21} (121
S(.u’ ,,ler) 2/88 as(u‘A) (T2 nr2)+2,80 n°re+ (I-\gusp /30 ( 1'17'2)

r
rg= 0 2
- Inrg — — Inry,
o YE 2 B 2
Pcusp
n=-2—1Inr,. (4.64)
Bo

Here, ro = as(pa)/as(u:), Tg " and T'{™P are the same as in Section 4.2.2 and vy =

—2CF. For numerical integration this can be rewritten in the form

FOF—r ) = S (7‘*

n 1
—_— | — O (A _t+(1 _ $1/n
T(1+7) m) /Odtf (A=r*(1—t""), pp) . (4.65)
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4.3 B — X/t¢~ Spectra in the Shape Function Re-

gion

4.3.1 Triply Differential Spectrum

At lowest order in the power expansion, Egs. (3.17) and (4.60) give the result

0 PX _
Wi( ) = hz(p;()pg-() my, /J,,,) / dk+ j(O) (p— 7k+7 ,U"L) f(O)(k++A—p4);7 Un) ) (466)
0

where RG evolution from the hard scale to the intermediate scale gives

hi(pxs Pk, 13) = Un (s, i) hi(0%, D3cs is) (4.67)
and the results at p = u, are determined from the traces in Eq. (4.61):

2Re[C7CQ*] n 2 |C7|2

(el + lewel) + 5,7+ g

(4.68)

_ 1
hi(px, D%, o) = 3

2(1- Caor |2
ha(px Vi i) = (éH__—Z'Z_;(IC9IQ+lCIOa(Q-i-Re[CwaCfBb]) +—| 1206|
__slef’
(1=9u)(Ju—un)’
—4Re[Ci0. C7 2 Re|Ci0s C
h'S(p;Op—)*-ﬁMb) = e[ 10 7] _ e[ 10 9]

mp(l — gu)(Ju —un)  mp(Gy —uy)’

Here C; = Ci(px,Dp%, i, ko, M), 50 these hard coefficients also depend on m; and
have residual po scale dependence. Explicit formulae are given in Eq. (4.28). For

convenience we define

Pk _
FO k. px) = UH(NhUb)/ dk* T (™, kt, ) FORT+A-pk, u)
0

1
= p% UH(Nz‘:Nb)/dz T~ 2pf ) fOA-ph(1-2), ). (4.69)
0
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where py = p~ + A. In terms of this function,

W = hi(pk, px, 1) FO(p%, px) . (4.70)

We find that to NLL order

FO(p%, px) = Un(ui, o) fO (A—p¥, 1) (4.71)
as(p;)C P Pk P P% -
+ Un (i, Mb)——zm—F{ (2 In? fo —3In N%X +7- 7f2)f(0) (A—p¥k, mi)
ld — ot _ _
+ / Z [am 22 P 3] [ O (R—pf(1-2), ) —f(°>(A—p},ui)]}.
0 < M

Note that, until we include the a; corrections from the jet function, F(® is indepen-

dent of py, so that all of this dependence is in the h;(p%,p%, ) functions.

Now, the triply differential decay rate in Eq. (4.54) becomes

1 d*T

_ _ 1 _
Ty dopr 4y dug = 24mB(yH—UH){(1—UH)(1—?JH)h1 + s(I—zy—up)(xg+7g—1)h,

2
m —
+ —2—3 (1_UH)(1—@-H) (2$H+UH+§H—'2)"L3}F(O) (mBuH, mByH) y
(4.72)

with hy 93 from Eq. (4.68). As a check on this result, one can make the substitutions

Coa = —Cioa = 1/2, C;=Cipp =0, (4.73)
Gpa 4C:F

—= VaVis —= V.

\/iﬂ' th ts - \/5 b

after which the h, and h, terms in Eq. (4.72) agree with terms in the leading-order
shape-function spectrum for B — X4 [27, 55]. The h3 term for B — X, ¢¢ was the
difference of products of left- and right-handed currents and so should not agree in

this limit.
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4.3.2  d°T'/dg*dm?% Spectrum with ¢> and myx Cuts
X

Next we discuss doubly differential rates and forward-backward (F.B.) asymmetries.
For d?T"/dq*dm% the rate is obtained from Eq. (4.72) by integrating over zy and
changing variables. In terms of dimensionless variables yg = ¢?>/m% and sy =

m% /m?% we have

1 d’r

g = B mpF© (mBuH(yH,sH),mByH(yH,sH)), (4.74)
i d?Arp = K"(yg, su) mBF(O) (mBUH(yH su),meyu(yn SH))

FO ddeSH ’ ’ ’ . ) 3

where

Hys(yH, SH) = 2\/(1—yH+sH)2—4sH {12th1 + [(1—?JH+SH)2—4SH] hg} s (475)

K¥(yn, su) = 6yn[(1—yu+su)® — 4su]hs

and we need to substitute ko3 from Eq. (4.68) and uy(yy, sy) and Yy (yy, Sy), as
given in Eq. (4.57). When one takes experimental cuts on ¢% and m%,
min

Yy <Y <Yg o, 0<sy<sy, (4.76)

the limits on the doubly differential rate and F.B. asymmetry in Eq. (4.74) are

1) yi" <ym <yp™, 0 < sy <min{sy,(1-\yn)’},
2) 0<sy<sY, yin < yp < min{y"H’ax , (1—\/sH)2} . (4.77)

depending on the desired order of integration.
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4.3.3  d’T'/dm%dp% Spectrum with ¢°> and myx Cuts

The hadronic invariant-mass spectrum and forward-backward asymmetry can be ob-

tained by integrating the doubly differential spectra

1 d2F SH
— = K3 F© ( 27
To dsndun (s#,un) mp mpuy, Mp UH) ,
1 dZAFB SH
— K® FO .S 4.7
Ty dondup (sH,un) mp (mBuH,mBuH) (4.78)

over uy. Here

4(81-1 - ’U,%I)z

H?(sg,uyg) =
(s un) (umr — su)ufy

{(1—UH)(UH—SH)(3UH*2SH—U%I)(|Cg|2 + ‘C10a|2)

-+ 4uH(3uH—sH—2u%{)|C7|2 + 12’U,H(1—'LLH)(UH—SH)RG[C7 Cg*]

(up—sp)(sg—uf)? 2
|Clﬂbl P

+ (L= (s = sur) (51~ ) Re [Croa Ci] + Tug

- 122 () er — _
K (g, uz) = 12(sg—u?)*(ug—su)(l—ug) {Re[CgC’{Oa]+ 2y Re[c7cf0a]}y

uty Uy —SH
(4.79)
and the limits with ¢? and mx cuts are

0<sy<sy, maX{sH ,ul(sH)} < ug < min {\/SH ,uz(sH)} :

1+3H—y2in——\/(1+sH—y§i“)2—-4sH
ul(SH) = 2 3

1+SH_,ymax_ 1+SH_ymax 2__4SH
us(sp) = =V 5 ) . (4.80)

4.3.4 d’T/d¢*dp% Spectrum with ¢?> and myx Cuts

From Eqgs. (4.58) and the above results, we can obtain the dileptonic invariant-mass

spectrum and forward-backward asymmetry, for example by integrating the doubly
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differential spectra

1 d2F 1——yH—uH
_ = HY(yy, FO , — ), 4.81
[y dyydup (Yw,un) ma (mBUH mE o ) (4.81)
1 dQApB 1——yH—uH
— - KV F(O)( 7 Z_JH "H
P() ddeUH (yH’UH) ms Mplu,MB l—uH )
over ug. Here
4((1—ug)?—yu)?
HY(yp, ug) = (1= ur) yaH] {yH[(l“uH)2+2yH] (ICof? + |Cr0al?) (4.82)
yu(l—un)

+ [8(1—um)*+4yn] IC7|* + 12yu (1 —um)Re[Cr C5]

1—ug)?2—ygyl?
+ (1= us)?—ya] Re[CioaCly] + Y= ) —vi] lcmbf},

4(1—UH)2

— 129 [(1—ug)? —yu)? L. 21— .
K¥ (g, u) = —24 E(l_ul:{)?,, v {Re [CoClo] + ‘L‘y;u_H) Re[Cr ClOa]} ;

and the limits of integration with cuts are

; ) 148 —yg — /(14 5% —yy )2 —45°
Ya <y <yg, OSuHSmm{l—\/y_H, T VA G el T :

2
(4.83)
The opposite order of integration is also useful:
0<ug <1, wi(uw)<yw <y2un),
. 1—u uy—s° . m
yluy) = max{yg‘“, ( H)u(HH ) } . yaluy) = mm{yHa", (l—uH)z} . (4.84)

The doubly differential rate can also be expressed in terms of the coefficients CJ'*,
CP_and Cyp. This is one step closer to the short-distance coefficients Cy, C7, and Ciq

of Hyy, which we wish to measure in order to test the Standard Model predictions for
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the corresponding FCNC interactions. Substituting Eq. (4.28) into Eq. (4.82) gives

4[(1 —uH)z—yH]2
(1—up)3

+ [|Ce™ (s, Mo)|2+c1%] [2yH Q4(s, wo) +(1—um)? Q3 (ya, us, s, Hb):'

+ Re[CP™(s, o) O™ (s, 10)*] [12(1—UH)QE(S, ub)] }

i 8(1—ug)?
{IC?‘"‘(S, uo)|” [495(3, M,)+_(_“fi

HY(yy,un) = Qz%(saub)]

KY(ya,un) = —221 E(llfui’glz"yH]z {Re[cs“i"(s,uo) Cro) (s, e)

n 2(1—uH)

1) Re [0 (5, ) Ciol (s )0 (o) . (485)

where s = ¢°/m? and

0, = 1+ 28 (s ), (4.86)
_ as(t) [ v v (1-up)’-yu v
Qg = 1+_7—r'_ [wa (87 .u'b)+wc (Saub)"— 2(1—UH)2 Wh (Sa”b)] )
e
Qc =1+ ssr'ub) [WZ(S,ub) — wj (s, ) — W:{(S,Nb)] :
as(p) (1—up)’+yn
Qp =1+ [WZ(S, o) — w, (S, 1) — Wwb (S,,U«b)] )

O = (2QAQD + 9390)/3

This is the form that turns out to be the most useful for the analysis in Chapter 5.

4.3.5 Numerical Analysis of Wilson Coefficients

As shown in Fig. 4-1, for the small-¢> window (¢ < 6 GeV?) we have p} < px.
Generically, the hard contributions in Cy, C7. and Cigq105 from our split-matching
procedure depend on the variable ¢2. In Fig. 4-5 we plot the ¢ dependence of the
rcal part of the coefficients and see that there is in fact very little numerical change
over the low-¢* window. Here Re[C}{*®] varies by £1.5%, Re[C§**] by £1%, and the
real parts of {Cy, C7,Ci04,Crov} by {£1%, £5%. +2%, +3%}. The imaginary parts are

either very small or also change by only a few percent over the low-q window. The
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Figure 4-5: Comparison of the real part of Wilson coefficients at py = py = 4.8 GeV
with m./myp = 0.292, (1) = 4.17 GeV, and m;, = 4.8 GeV. For Cy, C7, and Cip we
take p} = 0.

analytic formulae for the ¢ dependence mean that there is no problem keeping the
exact dependence, but this does make it necessary to perform integrals over regions in
¢* numerically. A reasonable first approximation can actually be obtained by fixing

a constant ¢ in the hard coefficients, while keeping the full ¢?> dependence elsewhere.

Since the coefficients change very little with ¢? we continue our numerical analysis
by fixing ¢> = 3 GeV>. If we then take o = u, = my = 4.8 GeV, (o) = 4.17 GeV,
me/my = 0.292 and p} = 0 we find that Eq. (4.28) gives

. ) mix Cmix
Co = 0.826 C3"™ + 0.097 C7™ = 3.448 E,—Ig—lﬁ —0.030 E\%ﬁ :
9 7
. ) mix C'mix
Cr = 0.823 C™ +0.001 C* = —().239 gz—mz + 0.005 Z—;’Tﬁ : (4.87)
7 9

These numbers indicate that, despite the entanglement of C¥* in C; 4 due to a,(my)
corrections, numerically Cy is dominated by Cy and C; is dominated by C7; in the

Standard NModel.



For the coefficients at g> = 3.0 GeV?, with the other parameters as above, we have

CP™ = 4.487 + 0.0461 , Chx = —0.248
Co(up = 0) = 3.683 + 0.038i, Cr(uy =0) = —0.198 + 6 x 107°
Co(ug = 0.2) = 3.663 + 0.038i Cr(ug = 0.2) = —0.193 + 10~*
Ci00 = —3.809, Ciop(ugr = 0) = 0.214,
Cros(un = 0.2) = 0.237. (4.88)

The relevant range of p% in Fig. 4-1 gives 0 < uy < 0.2. From the above numbers it
is easy to see that the uy dependence of Cq, C7, and Cjgp, is very mild over the range
of interest. The perturbative a, corrections due to in’T reduce both Cy and C; by
17% relative to C* and C™* respectively, and Cjo, by 15%. This can be seen both
in Fig. 4-5 and in Eq. (4.88), when one notes that Cyp = —4.480. Comparing with
coefficients in the local OPE, we note that the w2PZ factor, which accounts for the
difference between Ci°°® and CI, is significantly smaller than the combination of oy
corrections in the w) terms that shifts Cy from its lowest-order value.

In quoting the above numbers, we have not varied the scales pp and yp. The main
point was to compare the size of the hard corrections in the shape function and local
OPE regions, and to see how much deviation from Cm"‘ they cause. The dependence
on po for the C; is similar to that in the local OPE analysis at NLL [121, 54] and
will be reduced by a similar amount when the full NNLL expressions are included
in C&*. The y, dependence of the C; is fairly strong because of the appearance of
double logarithms, but it is canceled by the u; dependence in the function F(® which

contains the NLL jet and shape functions.

4.4 Conclusion

In this chapter we have performed a model-independent analysis of B — X ¢t~
decays with cuts giving the small-g> window and an mx cut to remove b — ¢ back-

grounds. These cuts put us in the shape function region. We analyzed the rate for
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the formal counting with ¢® ~ X\° and m% ~ A\? and showed that the same universal
shape function as in B — X, /v and B — Xyv is the only non-perturbative input
needed for these decays. We also developed a new effective-theory technique of split
matching. Split matching between two effective theories is done not at a single scale
u, but rather at two nearby scales. For B — X,¢*¢~ this allowed us to decouple the
perturbation-theory analysis above and below m;, which simplifies the organization
of the o, contributions.

In Section 4.3 we presented the leading-power triply differential spectrum and
doubly differential forward-backward asymmetry with renormalization-group evolu-
tion and matching to O(a;). Above the scale m,, we restricted our analysis to include
the standard NLL terms from the local OPE, but illustrated how terms from NNLL
can be incorporated. Below m;, we considered running to NLL and matching at
one-loop (NNLL evolution will be straightforward to incorporate if desired). We then
computed several phenomenologically relevant doubly differential spectra with phase-
space cuts on g2 and mx (from which the singly differential spectra can be obtained
by numerical integration). In section 4.3.5 we discussed the numerical size of our
perturbative hard coefficients and compared them to the local OPE results.

Our results for the doubly differential rate in Egs. (4.81) and (4.82), together with
F© from Eq. (4.71), determine the shape-function-dependent rate for B — X ¢/~
Using as input a result for the non-perturbative shape function f© from a fit to
the B — X,v spectrum or from B — X, /U gives a model-independent result for

B — X £T¢~ with phase-space cuts.
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Chapter 5

Universality and m y-cut Effects in

5.1 Introduction

In this chapter we compute the B — X £/~ rate with an mx cut in the low-¢? region
in a model-independent framework, using the results of Chapter 4. This enables us
to carry out a full investigation of the mx-cut dependence and phenomenology. An
intriguing universality of the cut dependence is found, which makes the experimental

extraction of short-distance Wilson coefficients in the presence of cuts much simpler.

To be more specific, we shall compute

cut

res — / d /m)‘dm Re(cic}) —el— Ty (5.1)
i q X iC dq2dmx .

FO (mZ . q2)2
= mSt, d¢®Re(cic?) 21—~ G, ,
M3 (M, 4. qz)mB/q% q* Re(cic)) -~ .
where 75 = {77, 99. 00. 79} label contributions of time-ordered products T{()}, 0;}.
The 7;;’s contain the effects of the mx cut, and the short-distance coefficients ¢z 9
track the C79.19 dependence in the effective Hamiltonian. Here c; = CF*(¢?), ¢g =

Cx(¢?), and ¢y = ('} can he obtained from local OPE calculations [54. 121] at each
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order, as discussed in Ref. [107]. The functions

Goooo = (2¢°+mj), (5.2)
G = 4m23(1 + 2m§/q2) ,

G7g = 12m3mb

arise from kinematics. Here and below, m, is a short-distance mass, such as m},s [89,
88], and [y = [GZm3/(19273)] [a2,/(472)] [V V;2|?. We also study i (0™ 6t 63),
which are defined by

+cut
X

a3 P
gt = dq? / dpx Re(cic})
0

a3

dg?dpx

T a2 (m2 _ q2)2
’ +cut 2 2 0 2 * b

= n;(px™ 41, ¢ —/ dg* Re(cic))~——5—"
w( X 1 )msB 2 L] mg

sz .

At leading order in Aqcp/mye and oy, mi; = 1 for m§* = mp, and n;; give the frac-
tion of events with myx < m$*. This is altered at subleading order by a; corrections,

but 7;; still determine the total rate with cuts,
ree = ) rer. (5.4)
ij

In principle, 7;; depend in a non-trivial way on ij (and ¢? and ¢2) because of their
different dependence on kinematic variables, o, corrections, etc. At leading order in
Aqcp/my, we demonstrate that 7;; are independent of the choice of 75; this is what we
mean by “universality”. We first show this formally at leading order in p}/mp < 1
for 7/(p%™*) and then numerically for the experimentally relevant n(m$*), including
the «; corrections and phase-space effects. Since the same shape function occurs in
B — X+, X,fp, and X7, the m§{* or p* dependence in one can be accurately
determined from the others. For current experimental cuts this is a 10-30% effect.

We shall also discuss another possibility: because of universality, normalizing the

B — X 00" rate to B — X,¢v with the same cuts removes the main uncertainties.
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Figure 5-1: Phase-space cuts. A substantial part of the rate for ¢? < ¢* < ¢2 falls in

the rectangle bounded by p} < pi™.

5.2 my-cut Effects at leading order

The phase-space cuts are shown in Fig. 5-1. Recall from Chapter 4 that, of the
variables symmetric in pg+ and p- (p%, Ex, ¢%, m%), only two are independent: we
work with ¢* and p% or my. As discussed in Chapter 3, for the p} < px region,
factorization of the form dI' = HJ ® f (©) (where H contains perturbative physics at
iy ~ my, J at u; ~ \/mm—b, and f© (w) is a universal non-perturbative shape
function) has been shown for semileptonic and radiative B decays. In Chapter 4, we
found that this factorization also applies for B — X ¢*¢~ with the same f ©) as long

as ¢° is not parametrically small [107].

In the ¢° < 6 GeV? region, |CI*(¢?, o = 4.8 GeV)| = 4.52 to better than 1%,
and can be taken to be constant. We neglect a, corrections in this section, using

Eq. (4.81) with F© — f(0.

2

dr _ O Lo [(ms—pe)? — ¢%
dptdq? Xmb, (mp —pi)?
L ICT 1 + R[22 + (ms — )]
) ) 2 — T 2
o+, O R[1 2mp — pi)” }

2

+ 12mp Re[C'}”ixC'éllix*] (mp — p*{)} (5.5)
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where f?(”)(w) has support in w € [0,00). As a function of p}, the kinematic terms
in Eq. (5.5) vary only on a scale mg, while f©(p}) varies on a scale Agcp. Writing
mg = my + A and expanding in (p§ — A)/mp decouple the p% and ¢? dependences
in Eq. (5.5):

dr 7 Lo [mj — ¢

(0) (.. + Cmix2 02 2 2 2 5.6
Srag — TO00 o {18+ C) 207+ mil (56)

e 2m?2 N
+4m |CFP |1+ =32 | +12ms myRe[OFCy] .

Hence, we obtain the local OPE prefactors, (mi — ¢?)*>G;;(¢%), in Eq. (5.1). For
L(pF™, 42, q2), the p} integration is over a rectangle in Fig. 5-1, whose boundaries
T’z] X 1542 X g

do not couple p} and ¢%. Thus,

= / ap% fOwY), (5.7)

which is independent of 7j and ¢7,. While the mx cut retains more events than the
p} cut, the latter may give theoretically cleaner constraints on short-distance physics

when statistical errors become small.

The effect of the mx cut is ¢ dependent, because the upper limit of the p}
integration is g*-dependent, as shown in Fig. 5-1. When one includes the full p%
dependence in Eq. (5.5), the universality of 7;;(m$, ¢%, ¢2) is maintained to better
than 3% for 1GeV? < ¢? < 2GeV?, 5GeV? < ¢2 < 7GeV?, and mSt > 1.7GeV,
because the region where the p% and ¢? integration limits are coupled has a small
effect on the 45 dependence. This is exhibited in Fig. 5-2, where the solid curves show
i (m$*. 1 GeV? 6 GeV?) with the shape function set to model 1 of Ref. [135], with
my® = 4.68 GeV and \; from Ref. [24]. (Taking ¢ = 1 GeV? instead of 4m? increases
the sensitivity to Cy 19, but one may be concerned by local duality / resonances near
q*> = 1GeV?. To estimate this uncertainty, assume the ¢ is just below the cut and
B(B — X,¢) = 10 x B(B — K®¢). Then B — X,¢ — X 10~ is ~ 2% of the
X010 rate.)

The LO local OPE results for 7;;(m$, ¢7, ¢3) are obtained by replacing f© (p%)
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Figure 5-2: 7;;(m$*,1GeV?, 6 GeV?) as functions of m$*. The dashed curves show
the local OPE result, the solid curves include the leading shape-function effects. The
uppermost, middle, and lowest curves are 7go g9, 779, and 777, respectively.

by 6(A—p%) in Eq. (5.5). Performing the p} integral sets (mp—p%) = ms and implies
that m% > A(mp—q%/ms). This makes the lower limit on ¢? equal max{q?, my[mp —
(m$*)2/A]}, and so the 7;;’s depend on the shape of dT;. In Fig. 5-2 the local OPE
results are shown by dashed lines, and clearly 777 # 799. However, the local OPE is
not applicable for p} ~ Aqcp.

The universality of 7;; found here could be broken by «; corrections in the H or
J functions, or by renormalization-group evolution, since these effects couple p} and

q* and have been neglected so far. We consider these next.

5.3 Calculation and Results at O(a)

The shape function model is specified at p,, and we now implement the convolution
of jet and shape functions at NLL order, including a; corrections, using Eqgs. (4.71)

and (4.65). The hard a, corrections are included by using Eqs. (4.85) and (4.86).
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The model we use for f ©) is a generalization of model 1 of Ref. [135]:

froa(rt;0,0,¢,0,9) = fumoa(r™: ca, bn(p, ), p, q) (5.8)

+ fmod(7‘+7 C(]. - a)a b n(p + 1:Q)~ D + 1’ q) )

food(rT5d, ¥, 9, ¢) = a7 (T—t)p’ exp | — (iy ,
F((p/ + 1)/(],) Y Y v
T'((z+1)/y)

") = Rt /)

The model parameters (a, b, ¢) are determined (in terms of the remaining parameters,
p and g) by the known constraints on the first three moments of the shape function [47]
converted to the 15 mass scheme. We estimate the shape-function uncertainties by
varying p and q to obtain five different models, each chosen to be consistent with
B — X,vy data. Since we also use two different values of p,, this results in a total of

ten functional forms for f©@ for each value of myS.

For each shape-function model, the deviations of the 7;;’s from being universal
when we include all NLL corrections are still below 3%. Thus, the picture of univer-
sality in Fig. 5-2 remains valid at NLL order. This means we can explore the overall

shift by just studying 7oo-

In Fig. 5-3, we plot 1go(m$t, 1 GeV?, 6 GeV?), including the o corrections. The
ten orange, green and purple (medium, light, dark) curves correspond to miS =
4.68GeV, 4.63 GeV, and 4.73 GeV, respectively, where the central values ug = u =
4.8GeV and p; = 2.5GeV have been used. The curves with slightly lower (higher)
values of ng at large m§* correspond to py = 1.5GeV (2GeV). For m§* = 2 GeV,
varying s in the range 3.5 GeV < p, < 7.5 GeV changes 79y by £6%. We find a +5%
variation for 2 GeV < p; < 3 GeV.

Using the ¢;’s at NLL order, for 1 GeV? < ¢ < 6GeV? and m$¢* = 1.8 and
2.0 GeV, we obtain I'** 75 = (1.20+0.15) x 107° and (1.48+0.14) x 10~%, respectively,
where uncertainties from my, wy, 1;, and f (©) are included. Changing po to 3.5 GeV

(10 GeV) changes both of these rates by —2% (+7%), and this uncertainty will be
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reduced by including NNLL corrections [45, 10, 44, 75, 9, 77].

The largest source of universality breaking in the 7;;’s and one of the largest
uncertainties in the rate is the subleading shape functions, which affect the rate by
~ 5% for m$* = 2GeV and by ~10% for m$* = 1.8 GeV.

If the m§* dependence were not universal, it would modify the zero of the forward-
backward asymmetry, App(q2) = 0. The quantity g2 is interesting because at LO in

the local OPE it is determined by the equation

2
q oca.
E‘%Re[q‘, (g3)] +2C)PR =0, (5.9)

which makes it sensitive to physics beyond the Standard Model. We find that im-
posing the cut m$t = 2 GeV shifts the zero at NLL by AgZ ~ —0.04 GeV?, which is
much less than the higher-order uncertainties {75, 9, 77]. We obtain the central value
g2 = 2.8 GeV?, which is lower than earlier results [75, 9]. The reason is that in the
SCET calculation of Agg, using K in Eq. (4.85), the pole mass mf‘)le never occurs,
only mg—p¥ and T, (at this order, C* = (m,/mp)CET [107]). Thus, schematically,
g2 ~ 2m}S[my(10)Cr(10)]/RelCo(g?)], and there is no reason to expand 7 in terms of
mbp°le. Using mi’Ole in Eq. (5.9) would give large central values for ¢Z.

Let’s now consider how one might best minimize the hadronic uncertainties. We
previously mentioned that one strategy is to extract the incalculable shape function
f© from the B — X,v data and use it as an input to our B — X ¢+¢~ results. In

the latter process, the theoretical uncertainties are reduced by raising the value of

m$*. Another possibility is to keep m$* < mp and measure

p_ (B = X £+0)
T T(B — X 0)

(5.10)

with the same cuts used in numerator and denominator. The point of this approach
is that we have found that the m x-cut effects are universal (to a good approximation)
for all short-distance contributions. The semileptonic decay essentially corresponds
to the |Cyo|® term (refer to Eq. (4.73)). Thus, the effects of m$, as well as the m,

dependence, are drastically reduced in the ratio R.
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Figure 5-3: moo(m$t, 1 GeV?, 6 GeV?) as a function of m$®. The orange, green and
purple (medium, light, dark) curves show m}® = 4.68 GeV, 4.63 GeV, and 4.73 GeV,
respectively.

In conclusion, we pointed out that the experimentally used upper cut on mx makes

the observed B — X ¢/~ rate in the low-¢? region sensitive to the shape function.

We found that the 7n’s for the different operators’ contributions are universal to a

good approximation. Thus, one can either use the shape function measured in other

processes or use the ratio R above, with the result that the sensitivity to new physics

is not reduced. These results also apply for B — X4¢7¢~, which may be studied at

a higher-luminosity B factory. Subleading Aqcp/myp as well as NNLL corrections to

the rate and the forward-backward asymmetry will be studied in the future.
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Chapter 6

Conclusions

Heavy-quark physics plays a crucial role in the study of physics both within and
beyond the Standard Model. Within the Standard Model, QCD and the flavour sector
can be probed rigorously. The search for new physics is aided by the examination of
FCNC processes, which are absent at tree level in the Standard Model.

On the theoretical side, effective field theories are a powerful technique. The basic
idea is that, in order to describe a physical system, one should determine the relevant
degrees of freedom, exploit the symmetries to constrain the possible interactions, and
identify a suitable expansion parameter. This enables one to provide a lowest-order
description and incorporate higher-order corrections systematically, while avoiding
any ad hoc models or assumptions.

In this thesis, we have focussed on inclusive semileptonic and rare decays in the
shape function region, to which one is restricted by experimentally required cuts.
Here, the operator product expansion is invalid. The relevant degrees of freedom
include collinear and ultrasoft modes and the appropriate effective field theory is
SCET), which has an expansion in A ~ m

In order to make predictions, one has to disentangle short- and long-distance
effects. a process known as factorization. One can then treat the hard and soft effects
separately, using whatever tool is appropriate for each. In endpoint decays, there
are three scales. The contributions at the hard and intermediate scales are both

calculable perturbatively, whereas the long-distance hadronic physics is described by
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non-perturbative but universal shape functions. SCET helps to simplify the derivation
of factorization theorems. We used it in Chapter 3 to derive a factorization theorem,
at order A\? and all orders in «,, for the processes B — X, /v and B — X,v in
the endpoint region. This involved constructing all O()\?) time-ordered products of
the form JMVTLM2) ... £Mi-1) J(3) - with 3. m; = 2, a task made possible by the
transparent power counting of SCET. We obtained the complete list of subleading
shape functions and the triply differential rate at this order for the first time. If one
works at tree level in the jet function, the relevant subleading shape functions are féo) ,

1(22), féi) and fég, the last two of which are due to four-quark operators. Now, éo)
can be absorbed into the leading-order shape function, f(©, and fl(z) can be expressed
in terms of f(®; this leaves five independent subleading shape functions. However, if
one includes one-loop corrections to the jet function, then prohibitively many shape

functions appear.

We next considered the decay B — X, ,£t¢~, in which the small-¢? region is im-
portant for achieving sensitivity to new physics, but the experimentally used cut on
my leads to shape-function effects being significant. Here, we encountered a problem
in the perturbative power counting. Above the scale m;, one usually expands in ay,
with a; log(mu-/mp) = O(1). Because of mixing with O 3, Cy ~ log(mw /myp) ~ als,
whereas C7 19 ~ 1. This power counting is important for cancelling scheme and scale
dependence in the running. However, numerically |Cg(my;)| ~ Cio. This conflict is
exacerbated by the fact that in the shape function region only the rate is calculable,
not the amplitude. It would not make sense to have to count (B|O}Oq|B) ~ aig’ but
(B|O},010| B) ~ 1. The solution to this problem was to use “split matching”, which

decouples the scale dependence above and below ;1 = m;, and thereby allows one to

use different perturbative power counting in these two regions.

The decay spectra derived were used to calculate the effect of the mx cut on the
B — X "¢ rate. We found approximate universality. i.e. the contributions from
different operators were affected in approximately the same way. Consequently, one
can minimize uncertainties and maintain sensitivity to new physics either by using

B — X.v data to determine the leading-order shape function or by normalizing with
/ . O
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respect to the B — X, £v rate with the same cuts.
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Appendix A

Expansion of the heavy quark field

and derivation of the currents

To derive the power expansion of the heavy-to-light current J = ¢@I'y® at tree
level we just need the expansion of the light- and heavy-quark full-theory fields, %9
and 9®, in terms of SCET collinear fields (£,) and soft heavy fields (h,) respectively.
19 also contains terms with usoft light quark fields, but they do not contribute for
inclusive processes until higher order, and so we neglect these terms here. For the

light quark field we have [118]

@ — . N
v Y D + Wi DuSW’r (. + WZZ?;LSW )5 |&n (A.1)

Here we have used the collinear fields [32]

in-D =in-0+gn-A.+gn-A,,  iDT =iDF+WiDEWT,
if-D = if- De+Wini- Dy W, (A.2)

which obviously will give an expansion with terms that are individually usoft and
collinear gauge covariant at each order in A.

For the heavy quark fields we start with the QCD Lagrangian £ = v®(i]p—
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my)¥®. We then divide the quark fields into on-shell and off-shell terms, ¥®) =
exp(—imuv-z)(h, + ¥p), where ¢h, = h,. Unlike in HQET, the off-shell field ¥5 does
not satisfy ¥ = —pg, since collinear gluons give off-shell quark fields that have

quark components, Yy = 1. This gives the Lagrangian

L = hyiv-Dyshy + $pliP+my($ — 1)Wp + ho(iP— P + ¥p(iP~ Phy, (A3)

where the subtraction in (7)) — P) removes the terms that vanish by momentum

conservation. Varying with respect to ¢p gives

[iP+my(p — D]vp = = (i — P, (A.4)

which is a higher-order version of the LO equation for ¢ derived in Ref. [30]. To
solve for ¥p in terms of h, at higher orders we use a strategy proposed in Ref. [37],
namely expanding ¥g = (3) + zp ..., and considering the solutions order by order

in A (noting that h, ~ A3). To facilitate this we rewrite Eq. (A.4) as

[A(O) 4Dt + A(Z)] W 4P+ )= [%gﬁ-Ac + g4 + A(z)]hv ,  (A5)

AO = gm De+mp(p—1), AP = W(gm-DuSHm)W* +%z‘n-D.

The complete set of equations to solve is then

AOYE - _.gigﬁ.Achv’ (A.6)
AOYD = i ® g alh,

AOYD = —ipyl) ~ AP +h,),

AOGE = i) _ ARy

where n > 6. Obviously, the crucial point is to invert the operator A®. When acting
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on a collinear field, the inverse [A®];! is simply given by

pop = A 059 (A.7)

2mpn-v nevin-D,

Owing to the 1/(im- D,), this solution is ill-defined when acting on an ultrasoft field

and will not suffice to solve for wg‘ZS). For the solution to the first equation we find

_ 1D g7 Adhy = (W — Dby, (A.8)

g =

which, as expected, is in agreement with the LO solution in the appendix of Ref. [30].
Thus, at lowest order the solution for the full-theory field is ¥ = h, + wg') = Wh,,.
At the next order, we find that

o = —[AOLGREW — Pk, = —[AO) L igB Wh, (A9)
_ L _ 2 willwtioBe
 myn- UZW[PW igBLW ]h” n~vW [752W 9 BJ'W]hU’

where

igBY = [in-D°,iDX"]. (A.10)

The result agrees with Refs. [37, 130], except that we have written the last term as

v-B{ to emphasize that it must start with at least one collinear gluon.

To proceed we let
W —wy™, AOW = WAO (A.11)

and then write the remaining equations for z;"};'). Using the equation of motion for W

gives

AL - -g'p'i-mb(?/’—l), [A(O)]—l = i + 1+ ?f) (A.12)

¢ 2mpn-v . nee P’
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and so. after we multiply on the left by W7, the remaining equations become

j"(())‘hgl(;) = _A )W(B4> A h@ l@us ) (A].B)
A(o)i,g) — _AC wgn 1) A@)&;_”-i.@usdg‘”,

AL = (Whp W), A® (Wiin-DW —in- D),

wlm

where n > 5.

To solve Egs. (A.13) we invert A©_ For terms with at least one collinear gluon
field. such as A2 we can use the inverse [A®]-! from Eq (A.12). Only terms that
are purely usoft, including ¢,sh, and possibly z@ust - , need to be handled with
care. For these terms a purely usoft wg” suffices, in which case A© = m(p — 1).
The subset of purely usoft terms in Eqs (A.13) is given uniquely by the terms m(p

~ DY = —iD,hy and m(p— ) Dusw "2 which are the same as we would

find in pure HQET. Thus, the solution for the pure usoft terms is

T T T ten

Yo = 2myp + 10+ Dys

where it is sufficient to use this [A@]-1 since (1 — #)/2¢% = ¢%. From Eq. (A.13),

the solution for /( ) is then

'u’)g) = W;lj:"h ~M/[ ] 1A(1)¢(4) VV[A(O)]C_IA(Q)M. (A.15)
my
AE it | aev 1L .
- Wﬁi”“—hv—W-———-—[? Yign- B, ]v_// _[T /Yign- B, ]@
Sy pr— 'PW wgn-BW (h, — W P PW tgn-B.W | h
1 1 1
1 —Whi —Whi Vik
e [,PW z.@(}w} [PW zgigjw] h,

7

my (n-v)?

y

I [PW iv- DEW | [%W*igﬁjw] h,

1
v g [t s,
* my (n-0)> LP gL W 732”/ igu-BYW D
4 1 1
(AR = ). 1 - 715 oy ST lh.
+ (n- p) [Plx w: D V‘:‘ [P‘ZH gt BL”]hu

From the expansion of the fields we obtain the expansion of the currents at tree
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level,

J = [+0? +00 +. T [Why + 9% + 98 .. ] (A.16)

E.TWhy] + [E.T0S + POTWh,] + [ET0S + §OTWh, + §PTw] + ... .

The leading-order SCET heavy-to-light current is
JOW) = (&W).Th,. (A.17)

For the currents suppressed by A we obtain

1 - 1

JO = _&ipiB 1w, - IS ——ig BiWhy
“ 24D, n-om> 2in-D,
2 1 ¢
- — &l (iﬁ.Dc)zzgv BiWh,

Making the field redefinition and putting in the most general w; dependence consistent

with RPI gives [130]*

JU(w) = %(EniﬁiW)w%F(Y*hu), (A.18)
1 -
IO ) = = Gl 9B (V).
2 (- 1
109w) = == (&gporiov BIW) T (V'hy),

!Note that for J'19) we find a field strength B¢ rather than a v-D$ acting on W'
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where B2 is defined in Eq. (2.70). For the currents suppressed by A\? we find

s L. (A
(2) _ T ;Ipus _ —fT(£E
4 &I 2m fru n-vgn 4m +i7‘z D. ) in-D,

i o1 ( 7 2
+ En ;L '——*—ZQ’U'BC Vth
D 2zn D, 2min (ifi- D )? *
1 1 - 1

ign-MWh, (A.19)

— Wi JDUSW@

1
Wh, — nl = I, - 9B, Wh
2iﬁ.fcr n-vm£ Z'r‘z-Dcu'Dj'zﬁ-DczgﬁCl Y
1 = 1 1
ol v-D: g BFLWh
+ (n-v)ng z'ﬁ-Dcw cviz'ﬁ,-DcZgE?L Y
4 1 1
n jv- DY ————igv- B Wh
T ol m Y Pe Gapge 9y BLWhe
—1—§"F¢ il L 1 i, L igv-BEWh
(n-v)?m>" Lin-D, D, "t)in.D, 90 L
where
ign-M = [in- D¢, in- D]. (A.20)
It will be convenient for us to label the terms as follows:
- ; - 1 1
J(2G) = gnFWZ"'—Eus hy , J(zb) = _Enwz(.ﬁ WT% =TWh,,
“ 24D,
2 _ v 1 .
J = §n ngn-MWhv,
1 7]i77£ 1
(2d) _ _ .
I n,vmg" 4 nngn MW h,
1 1
J = Ll r= ) he
m(‘ 2zn “5 2'—_Dczgﬁ_W )
1 -
@n - _
J n-vmgn i D m zgl}?iWh,,,
| 1 1
(29) _ r iv- D+ ; h
! (n-v)2m§" f‘-D v DC%" D 9P Why,
1
(2h)  _ gv- BS "
J (7? 1')27775 7]i _ Q‘EL( ) ng _LWh’L‘ .
JE = £, @“7‘ 19_ r igu- BSWh
n-v “2ip.D, (in-D)? s
gei - 4 £, ! z'v.Di——l——-igv-Bc Wh,. (A.21)
(n-v)2>"" in-D, ¢ (in- D,)? L
The terms J®% to J/) agree with those found in Refs. [37, 38], which use the
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position-space formulation of SCET. J® J@) and J correspond to the third.
last and fourth terms, respectively, of Eq. (41) in Ref. [38], while J?%, J2€) and J2/)
correspond to the second, last and third terms, respectively, of their Eq. (43). The
rest of their second-order terms correspond to Lagrangian insertions in our SCET
calculation. The terms J29 to J®) do not appear in Refs. [37, 38], because they
set v ~ A (more generally, the assignment v} ~ 1 used here is allowed). We follow
the common practice of dropping the v, terms in our analysis of the factorization

theorems by picking a frame where v, = 0.
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Appendix B

Reparameterization invariance for

the currents

It is useful to separate the RPI transformations according to the power suppression

in A that they cause. We shall denote this by a bracketed superscript.

transformations we have, at the same order in A,

§i(A-D) = 6;(W) =0,
AL
_“-ﬁ.Dc,

5" (n-D) = AL+. DL, .

53 (g,) =0

s (DL) = -

Type-I transformations one order higher in A are

"_l‘;l

5I(A1)(DJ_ ) + 51(’\0)(1/1/'D“L ‘;[/'T) = —7AJ_'D({_ )

ciL us, it

61(/\1)(5_71) = 11%-
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For type-II transformations we have, at the same order in A.

511(71'D) = 0.
5O pLy = Ny L.t
OII ( cu) - 2 3 c
0 0 B
590 = s8Ny =0, (B.3)

Type-II transformations one order higher in A are

€L

] 0 € ‘
sN(DE) + 80 (WDE W = ~Ln-D- f;—”Wel-DjSW*,
3ty — — 1 1 . 1
0 (E) = & Di_T%, 0 (W)= |—=——==DiW|, (B4
n-DC n c

where the differential operators do not act outside the square brackets. Furthermore,

2y = _ — 1
61(1)\ )(gn) = an @;W’Tﬁ% . (B.S)

C

Note that Table I of Ref. [118] seems to suggest that the transformation of W involves
the full covariant derivative with both collinear and usoft parts. However, the Wilson
line referred to in that table is constructed from 7-(A. + A,;); for the Wilson line built

out of 7-A. alone, the equation of motion is i7:D. W = 0, and hence o;;(W) = (51(1’\ )(VV).

Using the above transformations and the definitions (A.10) and (A.20), we obtain

S 1 .
s igBy = *Eﬁ“Ai‘ [if- D, iDX] + (6 (WiD: 1) i7- D,

1
= —SRtigAt-BY. (B.6)

since the second commutator in the first line above equals [U"é;’w’}(ZDij‘)W'T. WP =

U'[JI(’\U)(ZDjj‘). PP = 0. Similarly, we find that

(ﬂ/\u)(igBi“) =0, (SI(AO:)(ig]'r)-;\[) =g\t B (B.7)
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Then, it is straightforward to show that

5I(A1)J(1a) +6I(A°)J(2b) _—
ISR ACOINIY (R (CUINEY O (CONN (Ol oIy SRl (CONNNIN

600709 4 609,73 4 60 7@ 4 500 5@~ 9. (B.g)

It follows that BI(AI)J(I) + 51(’\0)J(2) = 0.

Repeating the process for type-II transformations, we obtain

1 H
6 (igBY) = e/liD}*,iD3*) — Z-[in- Dyyin- D]

u
nQ[mD Wiet- DEWH — [in- D, 607 (WiDirwH)]
1w B4
= zgs,,-Gd_—ngn-M, (B.9)

where gG%} = i[iD}*,iD;"]. Similarly, we find that
u
53 (igBY) = %igsl-Bi, 507 (ign-M) = 0. (B.10)

Then,

5](11\2)(](0) + 51(1)\1)J(1a) + 5()\1)J(1c) + 51(1)‘0)J(2b) + J(AO)J(R) + 5()\D)J(2i) + 5(’\0)J(2j)

- &P h it L rwn, +§n“fl DE_1_rwh,
ifi- D, 2in-D, P i D,
+&ni IP%ZM 1D 'isi-<l_) m.DCI‘Wh +&; vzpclzm 1}__) r {iﬁ-ch zzsi-D(%w} hy
+ 77’2_1‘5,,1“ (in-lD(,)Q (ie*-Dcl m-lD igu- B{Wh, — v,eiigGt Wh,
+igv-BS [l ,-1Dp 'sL-DjW} hv) gn D iv- Di————( lDr)ii.gsL-BjWh,‘
_&,ipt gﬁ_)ﬁ[_)('r (m-lD(.),zigel-BjWhv. (B.11)
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Now, since (in-D,) tige*t- B¢ Wh, = e*-(iDIW — P, )h,, we can write
1 c

1 L L/inl P
Wi hy = - ) - v T N N
{ in-D, ie™ D h zﬁ-DCE (DWW —P1)h (in- D, )?

iget-BSWh,. (B.12)
Substituting this into Eq. (B.11) and combining the first and third terms, we obtain

51(?2) JO 4 5(A1> J(la) + 60 jaa 4 5I<IA°) J@) 4 5(,\0) J@) 4 507 y@) 5O )

= & Lz)l — 1pi¢“7‘ . _rwh, +§f*m ‘E’ﬁ L rwh,

n ¢ 22mD 2;n-D,

A
+n_v§nr AL (ie*- Dt v-(DFW = Pu)h,
—{ie*-D}fv-(iD;W — P.) — (iv-D}tie*- D W — ie*-Dtv-Py) } b,

iy D* el-(z'Dch - PL)h,,)

1
= Dt — Pt +in-D Wl TWh,
( D DC P zn-(—ﬁc

n-v (m.Dc)z(i”'Dclfl"PL — et DXv-Py)h,

~ 0. (B.13)

The first term of the second-last equality above is zero, owing to the equation of
motion obtained from Eq. (2.45). In the second term, the expression in brackets begins
at one collinear gluon, ensuring that the 1/(i7i- D,) does not cause any singularities.

Thus the label operators make this term zero.

Using completely analogous manipulations, we also find the closure relation that

involves the J(1 current. Thus the type-II constraints are

(SI(I)\Z)J(O) + 51(1/\1)(](1@ + 5I(Ir\‘)J(1c) + 5I(I>\°)J(2b) 4 51(1)\0)J(2c) n 5I(f\°)!](zi) + 51(1)\0)J(2j) —0,

SO g0y §ON jea) 5O g2 4 500 gn) 4 500 @) 4 50 g0 — g (B.14)

It then follows that 6 ) J© 453 71 168 7 = 0. Dropping the J©@9)~2) currents,

these relations agree with Ref. [37].

From the results in Egs. (B.8) and (B.14) we see that the currents split into two
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sets:

JO 4 jQa) + Jia 4 J(2 + J(2o + J@) + J(29) ’

g1 + J@d + g 4 g L 529 + J@h) (B.15)

When we add non-trivial Wilson coefficients to all the currents, the number of w;
parameters they depend on is restricted by RPI, i.e. in the set with J© they have
one parameter w and in the second set with J(?) they have two parameters, w12
In the second set the combination of fields restricted to have momentum w; and ws
is determined by the manner in which the terms in the RPI-transformed currents
cancel. Making the Y field redefinition in Eq. (2.48) and putting in the most general

w; dependence consistent with RPI, we find

Jw) = s (EWILL(YIipLh,).
00 = e (s,
JIw) = -2 énr(mlp) ign- BV (¥'h),
T (W, wy) = —Efﬁ(gnw)m W( W*zgnBW) (Y'hy),
7 ) = —m(s‘niwmwﬁ ﬁ(zgzﬁ den( 1he),
TN () wp) = mmv(gn Yo ( Wi — ngj_ ) (Y'h),
SO ) = s (6, TR (Wi DL Si0B W) (YTh),
T () = m(& )T (5 W*ngfL(—%c)—z)igv-BivV)w(Y’fhv),
IO = (6P i BIW) T,
JeN () = (ni % (gnrm.chip. D}WéguBiW)w(YThu) . (B.16)
where

igBY, = [in-D.iD"]. ign-B. = [ifi- D,,in-9 + gn-Ay,] . (B.17)
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Appendix C

Wilson Coeflicients

The coefficients and functions that appear in Eq. (4.6) are defined as follows [54].

Cr(My) = —5A(mi/M3),
Co(M) =~ F(mi /M),
Y(5) = C)- B,
Z(z) = O(x)+ D@%

z(8z2 + 5:5 -7 1*2-3z1)

Alz) = oEo1p T TCESE

B(r) = 4(1$~$) 4(:53—1:—1) Inz,

Clz) = §§§_1;+ gﬂ? s

oo - s
E(z) = $(12132—(11i:17x)~3 z?) zr?(156(-1 1_61;;412)
F(z) = z(@® —5e-2) = 3 -

Az —-17 2z=1p
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w

—4, —0.6494, —0.0380, —0.0186, —0.0057

?

—12° 04086, —0.4230, —0.8994, 0.1456

b

3%, 0.0433, 0.1384, 0.1648, —0.0073

—0.3579, 0.0490, —0.3616. —0.3554, 0.0072

I

)
)
)
—0.1960, —0.2011, 0.1328, —0.0292, —0.1858),
)
)

0, 0.0318, 0.0918, —0.2700, 0.0059
(C.2)
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Appendix D

The Case of Collinear ¢*

In the body of the chapter we used g2 ~ \°. We were free to choose this counting
since the power counting for the leptonic variable ¢?> does not affect the counting
for pf( in the shape function region. (The only restriction was not to have ¢ too
close to m2.) However, we are free to consider other choices. In this appendix we
consider how our analysis will change if we instead take ¢ ~ \2. With this scaling,
new physical degrees of freedom are needed at leading order in SCET, making the
analysis more complicated. In particular we must consider graphs with quark fields
that are collinear to the collinear photon (or dilepton pair), since with this power
counting we have (¢°)2 > ¢°.

An example of a new nonzero graph is the one generated by four-quark operators
“within SCET. as shown in Fig. D-1, which involve these additional degrees of freedom.
In this graph we have a light-quark loop of collinear-n fields that are collinear to the
virtual photon. The presence of this type of diagram changes the hard matching at
iy = my. It also means that we have a more complicated pattern of operator mixing
within SCET, since divergences in the displayed diagram will cause an evolution for
Cy, etc. Therefore, the running below m; will no longer be universal. In the presence
of these diagrams the jet function will also no longer be given by a single bilinear
operator, since it will also involve some contributions with a factorized matrix element
of n-fields. which are also integrated out at p*> ~ myAqcp. Finally, the appearance of

these additional degrees of freedom might also affect the number of non-perturbative
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Figure D-1: Additional graphs in SCET for the matching computation for the case
where ¢? ~ \2.
shape functions that appear in the factorization theorem. It would be interesting to
carry out a detailed analysis of this ¢ ~ A\? case in the future.

In B — X,y at lowest order, the analog of the graph in Fig. D-1 vanishes at one-
loop order, and this argument can be extended to include higher orders in oy [129].
This relies on the fact that here q> = 0 and does not generate a scale. We find that

the same reasoning does not apply for B — X £¢ for parametrically small but finite

¢

Finally, we comment on the possibility of penguin charm-loop effects. In our

analysis we integrated out the charm loops at the same time as the bottom loops.

2

This is reasonable when treating g? ~ A°. One could also consider the case m?

~ mpA,
which is also reasonable numerically. This type of power counting was considered for
the simpler case of B — X U decays with energetic X, in Ref. [46] and it would be
interesting to extend this to B — X £¢. We remark that the problematic region for
B — 7 factorization theorems [28, 71, 35, 29|, which is near the charm threshold,

q?> ~ 4m?, is not relevant for our analysis. The experimental cuts on ¢? explicitly

remove the known large contributions from this region.
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