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Abstract
In this thesis, we study inclusive decays of the B meson. These allow one to determine
CKM elements precisely and to search for physics beyond the Standard Model. We
use the framework of effective field theories, in particular the Soft-Collinear Effective
Theory, which is a suitable method when the decay products include a jet-like set of
hadronic states.

We derive factorization theorems for AQcD/mb corrections (including all orders in
a,) to B - Xy and B -- XFV in the shape function region, where m2 < mbAQcD.
A complete enumeration of AQcD/mb contributions is provided. We also point out the
presence of new shape functions that arise from four-quark operators. These induce
an additional uncertainty in certain inclusive determinations of IVub.

Next, we derive the triply differential spectrum for B -+ e+e- in the shape
function region, consideration of which is necessitated by experimentally required
cuts. It is shown that the same universal jet and shape functions appear as in the
decays B - Xsy and B -, Xuev. We also show that one can treat the perturbative
power counting above and below the scale = mb independently, using a procedure
we call "split matching". This resolves the conflict between what is suitable in each
of these regions.

Finally, we use these results to calculate the fraction of the total rate that is mea-
sured in the presence of a cut on the hadronic invariant mass, mx. We find that the
effect of this cut depends strongly on the value of mt and is approximately univer-
sal for all short-distance contributions. This feature can be exploited to minimize
hadronic uncertainties and thereby maintain sensitivity to new physics.

Thesis Supervisor: lain W. Stewart
Title: Assistant Professor
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Chapter 1

Introduction

1.1 B Physics

We are in the middle of a very fruitful era in B physics. The experiments at the

B factories, BABAR and Belle, have been resoundingly successful. In addition, the

Tevatron is running and LHCb is scheduled to begin taking data in 2007. On the

theoretical side, much progress has been made within the context of effective field

theories. One of these is the Soft Collinear Effective Theory (SCET), which describes

processes involving energetic hadrons and is useful for studying QCD effects systemat-

ically and model-independently. This provides the framework for the original research

in this thesis.

One of the main goals of heavy-quark physics is to test the flavour structure of the

Standard Model. This is the least understood sector of the Standard Model, raising

a host of so-far unanswered questions, including the following: Why are there three

generations? Why do we have a hierarchy of fermion masses? What is the mechanism

of electroweak symmetry breaking?

One would also like to learn about CP violation. Unlike typical extensions of the

Standard Model, the Standard Model has only one source of CP violation l, namely

the single phase in the CKnM matrix. Furthermore, it is well known that the observed

1Not including the QCD term, which bounds on the neutron's electric dipole moment imply
mIust })e tillny.
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barvon asymmetry of the Universe cannot be accounted for by the Standard Model.

The B meson is particularly suitable for probing QCD and flavour physics, from

both theoretical and experimental points of view. Consisting of a heavy b quark and

a light anti-quark, it is the simplest hadron. (No meson involving the top quark ex-

ists, since it decays too rapidly for hadronization to occur.) The large mass of the b

quark relative to AQCD provides a useful expansion parameter, AQCD/mb 0.1. Con-

sequently, theoretical expressions will typically involve both an acs expansion and a

power expansion in this parameter: the former gives perturbative corrections, whereas

the latter gives non-perturbative corrections. On the phenomenological side, the large

available phase space for possible decay states implies a rich decay spectrum. (It is

usefill to characterize B decays as either exclusive or inclusive. By inclusive, we mean

that one sums over all hadronic final states in a given class, e.g. B - Xfvp in-

volves all hadronic decay states with one net c quark: Xc = {D, D*, Dir, D7r7rr,...}.)

Furthermore, B's have a long lifetime, e.g. = 1.6 ps for B±, and are abundantly

produced in the B factories.

The payoff of the B physics program is, on the one hand, precision measurements

of Standard Model parameters and, on the other hand, high sensitivity to new physics,

i.e. physics beyond the Standard Model. We now consider each of these in turn in

more detail.

1.1.1 Precision Measurements and the Unitarity Triangle

Precision measurements provide determinations of elements of the the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, which parameterizes the mixing between quark

flavours in the Standard Model. A well-known example is the semileptonic decay

B - X(.4V. which allows measurements of IVcbl, mb and m,, through moments of the

decay spectra. Analyses of this type are performed at BABAR [13, 16], Belle [2],

and CLEO [64], where simultaneously fitting a few fundamental hadronic parame-

ters keeps the theoretical uncertainties under control [80]. From measurements of

B --+ Xi,,j we can also determine lVub [15, 78, 94].

The CK\ I matrix appears in the part of the Lagrangian goverIling charged-current

16



weak interactions.

= -L'Y CKMdLW,+ + h.c.,·C -f2.. CKIL~

where i, j

terized in

(1.1)

= 1, 2, 3 are family or generation indices. It can be conveniently parame-

terms of the Wolfenstein variables A, A, p and r1 as

VCKM =

=(rCR/ 

ov 

Vud

Vcd

Vtd

Vus

ys

Vts

Vub

Vcb

Vtb )

1-A2
2

-A

AA3 (1 - p - i)

1

-A

A3

AX

1

-_A2

A

1- A2
2

-AA 2

AA 3 (p - i)

AA 2

1

+ (A4 )

3

, 2

1

where A = IVu,, - 0.22 is a small parameter. Note that the 0(A4 ) terms are kept in

current fits of these variables [57].

Now, unitarity of VCKM, namely 1 = VtKMVCKM, leads to unitarity relations in-

volving the elements in pairs of rows or pairs of columns. For example, from the first

and third columns, we have

VUdVb + VdVb + VtdVt*b = 0 (1.3)

This relation canll be represented as a triangle in the complex plane, as shown in

Fig. 1-1. This triangle is referred to as the unitarity triangle.2

Thus. obtaining the CKM matrix elements is equivalent to obtaining the angles

2There are actually six unitaritv triangles. The one shown here is particulally interesting, because
all of its sides are coml)arable in magnitude. The other triangle with this property is distinguishable
friom this onlle onlyv whenl we include higher-order terms.
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(1,0)

Figure 1-1: The unitarity triangle. p = p(1 - A2/2) and fj = 1](1 - A2/2).
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P

Figure 1-2: Global fit of the unitarity triangle [57].

and sides of the unitarity triangle. By overconstraining these, the flavour structure of

the Standard Model is subjected to rigorous examination. The current global fit of the

unitarity triangle is shown in Fig. 1-2. Here, CK is a CP-violation parameter related

to the decays K2,s ~ 7[+7[- and K2,s ~ 7[07[0. f:1md (f:1ms) is the mass difference

between the two BO (B~) mass eigenstates and is measured through the BOBO (B~ B~)
oscillation rate. The work described in Chapter 3 is relevant for determining the Vub

side of the triangle.
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1.1.2 Rare Decays and New Physics

In searching for physics beyond the Standard Model, an obvious approach is to try to

create and observe new particles directly at particle accelerators. A complementary

approach is the indirect search, in which one looks for discrepancies between measure-

ments and theoretical predictions, signalling quantum corrections due to those new

particles. This requires precise control of experimental and theoretical uncertainties.

Of great importance in the latter endeavour are the so-called rare decays, namely

those channels involving flavour-changing neutral currents (FCNCs). These not only

allow measurements of CKM matrix elements, in particular Vts and Vtd, but are also

highly sensitive to new physics, since they do not occur at tree level in the Standard

Model. What this means is that the effects of, say, Higgses and charginos in loops

can be comparable to the Standard Model contributions.

Among the inclusive rare B decays, the radiative process B - Xs has received

the most attention, having been measured first by CLEO [4] and subsequently by other

experiments [18, 1, 62, 11]. These measurements have provided significant constraints

on extensions to the Standard Model. The decay B -+ Xs+f - is complementary to,

and more complicated than, B - Xsy. Belle and BABAR have already made initial

measurements of this dileptonic process [95, 12, 14].

1.2 Effective Field Theories

Heavy-quark physics involves disparate scales mw > mb > AQCD and the complex in-

terplay between electroweak and strong interactions. A powerful, model-independent

method for dealing with these complications is to use an effective field theory (EFT),

which may be regarded as the low-energy limit of some more fundamental theory (ei-

ther known or unknown). Many well-known theories are actually EFTs. For example.

the Standard Model itself is an EFT.

The EFT is constructed from only the relevant infrared degrees of freedom and

involves an expansion in sonle suitable snmall paramneter. The resulting effective La-

19



grangian will take the form

Lff - (n) = L()+Z Cio(n) (1.4)
n>O n>l in

where cin are dimensionless coefficients, A represents the fundamental scale below

which the EFT is valid, and the local operators O(n) have the same symmetries as

the underlying theory. This is an infinite series, but the higher the dimension of

the operator the more powers of A it is suppressed by. In other words, the lowest-

dimensional operators will be the most important ones.3 Thus, in practice, one can

truncate the series at some order dictated by the desired accuracy, so that one is

left with a finite number of operators and hence a finite number of parameters ci, to

determine. If the underlying theory is known and weakly coupled, one may be able to

compute the parameters. Otherwise, one can take them to be experimental inputs.

EFTs have many advantages. They enable one to decouple long-distance and

short-distance effects, a process known as factorization. This is a crucial step ill

studying QCD, for example, since the short-distance contributions are perturbatively

calculable, whereas the long-distance contributions are non-perturbative. Further-

more, the power counting (in the small parameter) is transparent and power correc-

tions can be systematically incorporated. Sometimes low-energy symmetries that are

not manifest in the underlying theory become explicit. In this case the leading-order

Lagrangian () exhibits the symmetries, which are broken by higher-order correc-

tions. We shall see an example of this in the next chapter, when we consider the

Heavy Quark Effective Theory (HQET).

Nevertheless, the influence of the EFT approach extends beyond just providing a

tool for tackling otherwise intractable problems: in fact, it has profoundly changed

our mnderstanding of renormalizalbilit. The traditional belief was that, in order to

lie l)re(lictive, a quantum field theory should bte renornmalizable, i.e. at any order

ill perturbation theory loop divergences can be absorbed into the same finite set of

3We have been describing a typical EFT. More generally, the expansion parameter need not be
simply related to the mass dimension. For example. NRQCD and SCET use different kinds of power
counting.
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d u

d u

v 1

v 1

Figure 1-3: Integrating out the W boson.

parameters of the theory. A non-renormalizable theory, it seemed, would require

an infinite number of experimental inputs. It is now clear that non-renormalizable

theories still retain predictive power; there is simply a finite accuracy associated with

these predictions, and renormalization is carried out order by order. Moreover, we

do not claim that any quantum field theory is exact up to arbitrarily high energies.

(One might be able to carry out exact calculations within some theory, but this is

not the same as having that theory exactly describe the physical world at any scale.)

On the contrary, a renormalizable theory such as the Standard Model itself can be

viewed as an EFT, in which non-renormalizable terms have been neglected.

1.2.1 Effective Electroweak Hamiltonian

In Fermi theory, the four-fermion Hamiltonian is

4GF
Heff 4= GF (ILYIVL) ('ULY1LdL) + h.c. (1.5)

The modern interpretation is that this is an effective low-energy theory, in which the

ll- boson has been removed as an explicit, dynamical degree of freedom. Pictorially,

this corresponds to Fig. 1-3. In other words, terms of 0 (k 2/A2 .) have been neglected

in the propagator. This process is commonly referred to as "integrating out" the heavy

particle. a termI with origins in the path-integral formalism.

Generalizing this idea to incorporate the particles and interactions of the Standard

21



Model leads to the generic form

(1.6)
GF CK!i()RN.eff = CF c N P)O 
vSV ( i

The Oi are the local operators relevant to the process being studied; the strengths of

these operators are determined by the CKM factors VCKM and the Wilson coefficients

C(/g). We can regard the latter as the effective coupling constants of the effective

vertices.

As an example, let's consider the effective Hamiltonian for B -, Xs-y. This is

given by

f X4GF 8
Neff - VtbVt E Ci(L)Oi()p).

i=l
(1.7)

The operators Oi come from the Feynman diagrams shown in Fig. 1-4. The W boson

and top quark are integrated out and the resulting operators are [85, 86]

Current-current:

QCD penguins:

Elec(tronagnetic penguin:

Chrollomlagnetic penguin:

where PR.L = (1 ± -5)/2, a, 3 are

a(nd glllonic field strength tensors.

1 = (SL-A~bLO)(CLa CLa),

)02 = (sLc-ybL)(CL Y' CL,),

e)03 = (LcbLc) E (qL'yqL),
q=u,d,s,c,b

04 = (SLaY bLl) E (qLp') qL5),
q=u,d,s,c,b

05 = (La-ybLa,) 5 (qR,?Y'qR3),
q=u,d,s,c,b

06 = (L.ybL3) 5E (qR7qRa ),
q=u,d,s,c,b

e
07 = 167r2 sF i (ribPR + /rPL)b,

g
08 = 16r2,T" 1,j9,(inb + PasPL)bOGQPv

16lr2 g~^ru(bP 

(1.8)

colour indices, and F"v and G` are the photonic

It is common to neglect the mass of the strange
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W
b S

b)

b

W

W

u,c,t

Y

d) e)

Figure 1-4: Feynman diagrams corresponding to
gluon penguin, c)-d) magnetic photon penguins,

B Xy: a) current-current, b)
e) magnetic gluon penguin. The

cross indicates a mass insertion. Diagrams with wave-function renormalization are
not shown.

quark in 07,8, since ms/mb is of the order of a few percent.

Note the common CKM factor VtbVt in Eq. (1.7). We can see from the diagrams in

Fig. (1-4) that we originally also had terms with VubV.s or VcbVc*. However, VbVl is

suppressed by A2 relative to VtbVt (see Eq. (1.2)) and so can be neglected. Similarly,

we can use the unitarity relation from the second and third columns of the CKM

matrix to eliminate VcbV:

VbV* + bVcbVc + VtbVt = 

= VCbV = -b (1 +
,)Vtb Vt 

= -VtbVt* + (A2). (1.9)

At lowest order in c,. only O7 contributes. The full operator basis listed consists

23
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of dimension-6, gauge-invariant operators that have the right quantum numbers to

contribute to b - s and are compatible with electroweak symmetries. 4 These dom-

inate over higher-dimensional terms, because the latter are suppressed by powers of

m2/liJVv. If we keep all of the terms (of all dimensions) in the series, then the result

is equivalent to the original ("full") theory.

1.2.2 Matching and RG-Improved Perturbation Theory

The procedure for using the effective Hamiltonian (1.7) to obtain the amplitude for

B -- Xsy is as follows. First, we match the full theory on to the effective theory at the

scale /i = (9(Mw). What this means is that we calculate matrix elements in the full

theory and in the effective theory. Comparing these gives the Wilson coefficients Ci.

For this purpose, any external states - even unphysical ones - may be used, since the

Wilson coefficients are independent of these, i.e. independent of the particular decay

considered (just like gauge couplings, which are universal and process independent).

It is important, however, that the same infrared regulator is used on both sides of

the equation. The scale is large enough that this matching can be done in ordinary

perturbation theory. The Wilson coefficients will, in general, depend upon the masses

of the particles integrated out, namely the W boson and top quark.

Now, whereas the quark-level decay is governed by the electroweak scale /w ,W

mw, the typical energy of the B meson is of order mb < mw. Thus one en-

counters the problem of large logarithms of the form log(mw/i), ,u , mb, with

as(mb) log(mw/mb) - 1. Terms of the form

z (mb) log (mb/mw) (leading log [LL]),

oSn (mb) log (mb/m.W) (next-to-leading log [NLL]),

are significant and should be resummed to all orders in a, to get accurate values for
4 There are actually ten two-quark operators, but by using the equations of motion and various

gamma.-matrix identities we caln reduce these to linear combinations of four-quark operators and
07.8 [85].
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the Ci.

The solution is to use the renormalization group equation (RGE) for C(,u). Once

again, this is completely analogous to the case of gauge coupling constants, which run

and obey renormalization group equations. To illustrate that running down from the

scale ,p mw to p- mb takes care of large-log summation, consider the one-loop

running of the strong coupling constant,

a (mZ)
xs( () =

1 + o0 (z) log ( m)

= o(mz) 1 + E ( as(mz) log ( ) (1.10)

where we have expanded in a,(mz). Thus, solving the RGE

/-(d as=-/3 0 a (1.11)
dp L 271

automatically sums the large logarithms.

The renormalization group equation for C can be obtained as follows. The bare

and renormalized operators are related by

0z= Z(il)> (1.12)

i.e. in general, renormalization will involve mixing between operators. Then, because

the bare operator is /u independent,

0 = Ldo o= t Z + Zo+Zo(p i (99 , (1.13)

so that

P d-io, -'Y7o0/, (1.14)dtlI YtI 
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where

7co = [l (,)] ,d [Zo([t)]k (1.15)

is the anomalous dimension matrix.

Finally,

d0 = /l-- eff (1.16)

d (Ci i

= ( dca) 2-

which (because the Oi are independent) implies that

d = j. (1.17)

The use of this equation to run the Ci(p) down to the desired scale is known as

RG-Improved Perturbation Theory.

The amplitude for the decay B f is

(fIHeffIB) 4G VcKMCi(P)(fOi()B) (1.18)

The Wilson coefficients Ci([u) summarize the physics from all scales greater than u,

whereas the matrix elements of the operators O, summarize the contributions to the

amplitude from scales less than p. In other words, the problem has been separated

into two parts: the short-distance calculation of the C(j,) and the long-distance

calculation of the matrix elements (j(L)). When we evolve the scale down from

[tl, rn m, to a, we transfer information about physics in the range between and

rni.u from the hadronic matrix elements to the C: equivalently, we split the logarithm
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of the full amplitude:

log ( 2w) = log 2 + log (2 (1.19)

where p2 is an infrared regulator.

The third step (after matching and running) is to calculate the hadronic matrix

elements, which are non-perturbative (in as). For exclusive decays, this is a difficult

problem: one must determine a considerable number of form factors, which leads to

the dominant theoretical uncertainties in the decay amplitudes. Semileptonic form

factors have begun to be determined by lattice QCD, while form factors for other

channels are related by symmetries. For inclusive decays (including the example we

have been considering, B -- Xs-y) the theoretical situation is better: one can exploit

quark-hadron duality and use the heavy-quark expansion, which gives an expansion

in inverse powers of mb. The leading term represents the decay of the b quark and

can be calculated in RG-improved perturbation theory. The next term is suppressed

by 1/mb.

From the optical theorem, the inclusive decay rate is

r(Bst-+X y) Im[iJd 4x eiqx(BlTietff(x)neff(0)IB)] (1.20)

One can proceed by using a local operator product expansion (OPE), which writes

the product of operators separated by some distance x as a series of local operators:

T [O1(x)02(0)] = -- C2()Ok(0). (1.21)
k

Non-perturbative matrix elements are defined with the help of the Heavy Quark

Effective Theory (HQET), which will be discussed in mlore detail in the next chapter.

At leading-log order, one must perform (o(a° ) matching. which corresponds to

matching at tree level on to four-quark operators from Fig. 1-4a), and at one-loop

level on to 07.8 from Fig. 1-4e)-f). The running requires the anomalous dimension

matrix to order (>l; for the mixing of 01-6 into 07.s, this involves the calculation of
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two-loop diagrams. Finally, one needs the matrix elements of the operators at order

o(-. This step includes calculating ('(01, 2[b) at one-loop level and (sO(97lb) at tree

level. The leading-log result with 1/m 2 corrections is [70]

F(B X,-y) = 32 4tbVts 12 aemC7(mb)[2 1 + - a +... , (1.22)

where A1, A2 0 AQCD are non-perturbative parameters that are matrix elements of

local operators. Here, C7 has been evolved down to the scale mb. This takes care of

the summation of leading logarithms. At next-to-leading order, the Standard Model

predicts that the branching fraction, 13(B X,y) = F(B -- X.sy)/Frtt, is [72, 52]

B(B -+ Xsy)I- = (3.73 ± 0.30) x 10-4 . (1.23)

Averaging the experimental results of the various collaborations gives [19]

B(B Xsy) = (3.55 n 0.24+0.o9 ± 0.03) x 10 - 4 (1.24)

where the quoted errors are combined statistical and systematic, systematic due to

the shape function, and the b -- dy fraction, respectively. This is in good agreement

with Eq. (1.23).

1.2.3 The Endpoint Region

The studly of inclusive B decays circumvents the need for hadronic form factors,

thereby allowing model-independent tests. However, there is often a trade-off between

theory and experiment, because cuts are necessary experimentally, but these less

inclusive spectra make the theory more complicated. For B - X,-, a lower cut onil

the photon energy is used to eliminate softer photons. In B --, XJT. phase-space

cuts are ipnortant to remove the dominant b - c background. In such cases, we are

restricted to a region in which mX 2 mbAQCD and the local OPE breaks down.

Consider. for example. the photon energy spectrum for B -+ X,-. for which the
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OPE gives [124]

dl G m IVtbVt*2 lC7((mb) 1(21 + 2 ) (1.25)
dx- 32 4I 2m2 

x [6(1-x) Ai1 +- 2 x)- 26(1 ) 2n 5'(1-x) 6- .b 6 mb

where x = 2Ey/mb and the primes indicate derivatives of the delta function. This

must be interpreted as a distribution, i.e. one must integrate it against some smooth

weight function. In this way, one can obtain moments of the spectrum. The series of

the most singular terms takes the generic form

T1he et (1.26)
n! n=O

The experimental cut puts us in the so-called endpoint region, where 1- x -

AQcD/mb. A weight function of width a AQcD/mb results in all terms in (1.26)

being of the same order of magnitude.

These most singular terms can be summed into a non-perturbative shape function

[125, 124], which we shall denote by f(O). This is analogous to parton distribution

functions in deep inelastic scattering. Similarly, series of subleading delta functions

and their derivatives result in subleading shape functions. Since shape functions are

non-perturbative, they are not calculable analytically. However, because they are

properties of the B meson, they are universal, i.e. process-independent. At leading

order, one can measure the relevant shape function from the photon energy spectrum

of B -- Xs?- and use the result in determining Vubj from B -- XEip, thereby avoiding

model dependence. (In Chapter 4, it will be shown that the same function also occurs

ill B -- X+f-.) As we shall see, at subleading order the situation is far more

complicated. with several universal shape functions present, which occur in different

collbilat ions.

The studv of the shape function region is greatly facilitated by using an appro-

priate theoretical mIethod. When mX , mbAQcD, the set of outgoing hadronic states

becolles jet-like and the relevant degrees of freedom are collinear and (ltra)soft
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modes. SCET is a powerful tool in this region. To summarize, we list the different

regions of phase space, with the applicable theoretical methods shown in brackets:

am M m, totally inclusive (local OPE, HQET),

Am - mbAQcD, endpoint region (Factorization, SCET), (1.27)

AmX AQCD, resonance region (exclusive methods),

where Am" denotes the region of m2 extending out from Xmin

1.3 Outline

The outline of the rest of this thesis is as follows. Chapter 2 is devoted to background

theory: we provide a summary of HQET, followed by a review of the Soft-Collinear

Effective Theory. Chapters 3 to 5 describe the original research of this thesis, which

focuses on inclusive B decays.5

In Chapter 3 we derive a factorization theorem for AQCD/mb power corrections

(to all orders in a,) to the inclusive decays B -+ XPev and B -, Xsy in the endpoint

region. Our analysis separates perturbative corrections that appear at two different

scales from the non-perturbative shape-function physics. We derive the complete

set of subleading corrections for the triply differential spectrum and show how it

factorizes into hard, jet and shape functions. This provides one of the only examples

of an endpoint factorization theorem that has been worked out at subleading order.

The triply differential decay rate thus obtained is important for phenomenological

analyses of Vb. We also point out the presence of four-quark-operator contributions

that have previously been neglected in the literature; these induce an additional

uncertainty in certain inclusive determinations of IVub I.

In Chapter 4, we investigate the decay B -- XJ+V- . Here, experinletally re-

quired cuts are made in the dileptonic mass spectrum to remove the largest c res-

onances, namely the J/ and ¥'. This leaves two perturbative windows, the low-q2

5 This research is covered in somnewhat less detail in Refs. [106, 107, 105].
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and high-q2 regions. The low-q2 region has the higher rate, so experiments will ob-

tain precise results for this region first. However, at low q2 an additional cut is

required: a hadronic invariant-mass cut is imposed in order to eliminate the back-

ground. BABAR's current cut of mx < 1.8 GeV means that, here also, we must deal

with shape-function effects. We derive the spectra for B -- Xse+- in the shape

function region for the first time. Without these results, no model-independent com-

parison between the Standard Model and experiment can be made: although the

existing literature on this decay is vast, what has been calculated previously is dif-

ferent from what is actually being measured. We also show that the order of the

perturbative expansion above A c_ mb can be decoupled from that below i _ mb, i.e.

formulated so that the u dependence cancels independently in the two regions. This

is important because it turns out that the standard perturbative power counting for

,u > mb is no longer appropriate in the region tL <_ mb.

In Chapter 5, we apply the result of this analysis to calculate an experimentally

important quantity in the low-q2 region, namely the fraction c of the total rate that

is measured in the presence of a hadronic invariant-mass cut, mut. Experimentalists

can use our ratio to relate their measurements to theoretical predictions for short-

distance coefficients in the Standard Model. We find that has some noteworthy

features:

1. it has strong m3ut dependence, and

2. the individual terms in the differential-decay-rate expression display a universal-

ity, yielding the same value of (to a good approximation), which demonstrates

that hadronic uncertainties do not spoil the interpretation of short-distance

measurements. In other words, we can still maintain sensitivity to new physics.

WVe conclude in Chapter 6.
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Chapter 2

Soft-Collinear Effective Theory

2.1 Heavy Quark Effective Theory

Consider a physical system that consists of a heavy quark interacting with light

degrees of freedom (quarks, antiquarks and gluons) that have four-momenta much

less than the heavy-quark mass, mQ. An example is a meson Qq containing one

heavy quark, Q, and one light quark, q. The hadronic length scale is rQCD 1/AQcD

and typical momenta exchanged are of the order of AQCD. The heavy quark's four-

velocity, v = pQ/mQ, thus changes by an amount of order AQCD/mB, which goes to

zero as mQ - oc. The appropriate effective theory is then the limit of QCD when

rnQ -+ oc, with vl constant. This is known as the Heavy Quark Effective Theory

(HQET) [82, 66, 74].

Since the heavy quark's Compton wavelength, AQ - 1/mQ, is much less than

the confinement scale, rQCD, the light degrees of freedom cannot resolve the heavy

quark's quantum numbers beyond its static colour charge. Consequently, its mass

(and hence flavour) and spin become irrelevant in the heavy-quark limit and the

effective theory exhibits a spin-flavour symmetry, namely SU(21Vh), where Nh is the

nullber of heavy flaours. It is interesting to compare this approximate symmetry

with chiral symmetry, SU(3)L x SU(3)R, which manifests itself in the limit where the

light-quark masses, rn,, md and m, are taken to zero. Approximate chiral symmetry

is thus a result of the fact that mu, md < AQCDI: it exists even though the light-
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quark masses are not even roughly equal. Similarly. heavy-quark symmetry results

from the fact that m.b, m, > AQCD, and exists even though Tmb is not close to mc.1

Corrections to predictions in the chiral limit, mq - 0, are of order mq/AQcD. We

shall see that corrections in HQET can be systematically incorporated and are of

order AQCD/mQ.

2.1.1 The HQET Lagrangian

The terms in the QCD Lagrangian pertaining to the heavy quark are

zQCD = Q(i-p-mQ)Q. (2.1)

We wish to expand this in inverse powers of mQ in order to be able to take the heavy-

quark limit. This can be done by scaling out the factor exp(-imQv x) from the field

Q. Thus, write

Q(x) = e- imQVX' [hv(x) + Xv()] , (2.2)

where

hv(x) = e +imQ' v 1 + Q() X(X) = e+imQv·x 1 Q(Z). (2.3)
2 2

Note that 2 = 1. so it follows from Eq. (2.3) that yhv = h and )Xv = -Xv

Substituting Eq. (2.2) into Eq. (2.1) and using these facts, we obtain

L = }.,'ihPh.. + .i/iX, X! - 2mQXvXv + hvi)pXv + Xt;iphv

= + . ,1 + I -5._-= " h" + y 2 iP 2 Xv - 2nQ, 'k .1! + .h.j.iPX , + ZiPhv

= h?,,i. Dh,.- X,(iv . D + 2mQ)X + hvipXv + Aivph (2.4)

IRecall that the top quark does not hadronize, and so is not relevant her-e.
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Now. define the transverse component of a four-vector, V", to be

VT = VI -V V, (2.5)

i.e. so that v VT = 0. Then, since hv#Xv = 0, we can replace P by PT in the last two

terms in Eq. (2.4).

Since Xv has mass 2mQ, we integrate it out. At tree level, we can eliminate Xv

using its equation of motion, which we obtain by varying the Lagrangian with respect

to h,. This implies that

1
Xv = D iThv .

iv · D 2mQ
(2.6)

Since we have factorized out the large component of the momentum in defining the

heavy-quark field, the covariant derivative acting on h scales like AQCD. Hence

Eq. (2.6) shows that X is suppressed by AQD/mQ. This is as expected, since h is

off-shell by only a small amount.

Substituting Eq. (2.6) into Eq. (2.4), we obtain

L = hiv Dh,

= hiv Dhv

1

+ hv iPT 2mQ + iv D iT

1- i
+ 'hv iP ipTh + o

2mQ mQ

The second term can be recast in a physically instructive form. First note that

= ,,,.,vYDTDT =
I I I 

, 1 

1 1 + , D,,{3,' yV}D D +[y [,'VDTDT2 it ,/ /I I.

(2.8)

In terms of cu1,' = [,;,, }V] and igG,, = [iD, iDv], we then have

= hD 2 hv 9- ha""G .
2
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where the fact that h1, = h, allows us to drop T labels in the second term.

Our HQET Lagrangian is thus

L = 0 +Lo + --. , (2.10)

where

Lo = hviv.Dhv, (2.11)

1 C1 - hvD2h + 4 ha'VG,,Vhv. (2.12)
2 mQ 4mQ

We also have the relation between the QCD and HQET heavy-quark fields: Eqs. (2.2)

and (2.6) give

=eiQvx [i+ h +9 12Q (2.13)

We can see that the leading-order Lagrangian 20 has both spin symmetry and

flavour symmetry. The first term in the subleading Lagrangian L1 corresponds to

kinetic energy. It preserves the spin symmetry but breaks the flavour symmetry, since

it explicitly involves mQ. The second term in L1 corresponds to the (chromo)magnetic

moment and breaks both flavour symmetry and spin symmetry, since it has a non-

trivial Dirac structure.

When we take into account perturbative loop corrections, the chromomagnetic

operator acquires a scale-dependent Wilson coefficient, CF(l). The above tree-level

matching shows that cF(mQ) = 1 + (as(mQ)). In contrast, the kinetic operator

remains unrenormalized to all orders in perturbation theory. The reason for this will

be discussed in the next subsection.

We can now read off the HQET Feynnlan rules from Lo. Write the monleltum of

the heavy quark as

p = mQ',"l + k" (2.14)
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where the residual momentum k is of order AQCD. For the heavy-quark propagator,

we then have

(2.15)
2 v k+iE12)i

The vertex for interactions between a heavy quark and a gluon is given by

igvl'TA. (2.16)

The same rules result when one takes the heavy-quark limit of the corresponding

QCD Feynman rules. For the vertex, note that it is always sandwiched between

quark propagators, so one can insert factors of the projector (1 + #)/2. Thus,

igTA -- igTA + +
2 2

= igTAv, + -~ igTAvM'
2

(2.17)

Finally, note that the non-perturbative parameters Al and A2 encountered in Chap-

ter 1 are essentially matrix elements of the terms in L2:

1)2
A1 -(Blhv(iD) 2 hvlB),

2
(2.18)

1 - 1
A2 = (Bhv gauVG,,hvB ) .

6 2

At this order, one can use D2 instead of D2 in the definition of Al, using the equation

of motion v. Dhv = 0, i.e. the difference is higher order.

2.1.2 Reparameterization Invariance

Introducing v establishes a preferred frame and hence breaks Lorentz invariance.

This is restored order by order in 1/rnQ by reparamneterization invariance (RPI) in

r'" [114]. The decomposition of the heavy quark's mroInentum in Eq. (2.14) is not
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unique. since p is unchanged under

V 1+ -- + C"/rnQ, (2.19)

where AQCD. Whatever the choice of the four-velocity, it must satisfy v2 = 1,

which at linear order in implies that

v f=O. (2.20)

Furthermore, maintaining the constraint pihv = h requires

hv - hv + hv,,

such that

(h + hv) = h + h.

Hence, at linear order we obtain

(1 - )6hv hv.
mQ

One solution is

6h hV2 mQ

Other solutions are related to this choice by field redefinitions.

Thus. RPI amounts to invariance under

Vp' _ ., I + C'Ill/.7Q .

hv ei ( + It,)'
2inQ.c

38

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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where the factor eiE' x corresponds to k - k - e.

Transforming Lo according to Eq. (2.25) and simplifying using Eq. (2.20) (e.g.

Eq. (2.20) and hv = h, imply that hh, = 0), we obtain

1 -
5L = -- hv(ie. D)h, . (2.26)

mQ

The change in L1 is due entirely to the kinetic-energy term and precisely cancels the

change in Lo:

1 -
L1= -- hv(iE- D)hv. (2.27)

mQ

Thus L = £0 + L1 is reparameterization invariant, provided that the coefficient of the

kinetic-energy operator is exactly unity. On the other hand, the magnetic-moment

term is not protected from being renormalized by RPI.

We shall see that SCET also possesses a reparameterization invariance that con-

nects operators at different orders in the power counting. Hence, one can obtain

information about Wilson coefficients at higher orders from knowledge of coefficients

at lower orders.

2.2 SCETI

For processes that involve energetic light hadrons, there is an additional (intermedi-

ate) scale. HQET alone is not sufficient for describing the jet-like and soft degrees

of freedom: one also requires SCET [22, 23, 33, 30]. The large mass of the B meson

means that many of its decay channels fall into this category, including exclusive

dccavs such as B -4 Dir and inclusive decays in the endpoint region. Since the light

particles move close to the light cone, it is convenient to use light-cone coordinates, in

which one introduces light-like vectors n and . such that vr2 = n2 = 0 and n = 2.

For examlIle. one possible choice is n"r = (1.0, 0. -1) and 1il = (1. (),0.1). Any
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four-vector, pi, can then be written as

p = n *p-- + p-- + p , (2.28)

and one can refer to the components as (p+,p-,P1) = (n -p, n p,p). Note that

p2 = p+p- + p2.

2.2.1 Modes and Power Counting

The fast, light hadrons have energies much larger than their invariant masses and

are described by collinear modes. Collinear hadronic states in the n direction have

momenta scaling as Q(A2, 1, A), where Q is the large energy scale in the physical

process and A is a suitable small parameter. For exclusive decays A - AQCD/Q,

whereas for inclusive decays A AQD/Q. For example, consider B - D7r. In

its rest frame, the pion has momenta of the order of the confinement scale: p -

(AQCD, AQCD, AQCD). Boosting this in the n direction gives p (AcD/Q, Q, AQCD).

On the other hand, inclusive decays in the endpoint region have m 2 mbAQcD, and

hence jet momenta scale as p - (AQCD, Q, /AQCDQ), with Q mb.

We see that the effective theory has two cases, which we refer to as SCETI (which

describes inclusive decays) and SCETII (which describes exclusive decays). The rele-

vant degrees of freedom and power counting for the associated momenta are summa-

rized in Table 2.1, in which we distinguish between the power-counting parameters

for SCETI and SCETII by renaming the latter r7. Note that the ultrasoft (usoft)

EFT Power-counting Modes Momenta p2
parameter pit

SCETI A = /AQC collinear Q(A 2, 1. ,\) Q2A2

ultrasoft Q(A2, A 2 A2) Q2 A-
SCET 1 iAQCD collinear Q(7 2. 1. 1) Q2.12

soft Q(r, r, 7) Q2 12

Table 2.1: Ifrared degrees of freedom and power counting for momllenta in SCETI
and SCETII.
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modes of SCETI are actually the same as the soft modes of SCETIL. Since this thesis

deals with inclusive B decays in the shape function region, we shall henceforth discuss

only SCETI.

The collinear fermion propagator can be obtained by expanding the standard QCD

propagator to leading order in A. This gives

i/5 .+i n p
p2 i 2 n · p · p + p + i._ / 1

=- (2.29)2 n p + p /. p + i sign(n p) 

In any gauge, the collinear gluon propagator remains the same as in QCD. We can

now derive the power counting of the SCET fields. This is done by assigning a scaling

that makes the kinetic terms in the action of order A°, or, equivalently, by counting

powers of A in expressions for the two-point functions. For the collinear quark field,

denoted by , we have

(OITn(x>)(0)O) =e - 2 (2.30)(27r)4 n php+p + i

Since d4p = (1/2)dp+dp-d 2pl ~ A4, the right-hand side scales as A2 and we obtain

n -0 A. For the collinear gluon field, All

Here e p c+ is AVe ( - p (2.31)

Here some care is required. In a general covariant gauge, the scaling will be that

of pp and so A" scales like a collinear momentum. The scaling of the remaining

fields can be derived in a similar fashion. Note that for ultrasoft fields the measure

will scale as A . There are no heavy collinear fields, since they have hard off-shellness

(p2_ Mr2 Q 2 ) and hence are integrated out. Table 2.2 sunmmarizes the fields and

their scaling properties.
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Field
Scaling

Table 2.2: Fields
the scalings qs, 

Collinear U1

quark gluon light quark h
_ n.p (A+, A, A) qus

A (A 2 , 1, A) 3

and their scaling in SCETI. In SCETII,
r/3/2 and AH r.

ltrasoft
.eavy quark

hv
A3

soft quarks

gluon
At'As
A2

and gluons have

2.2.2 Leading-Order Lagrangian

The procedure for obtaining the leading-order SCET Lagrangian is analogous to,

albeit more complicated than, that for HQET, which was described in the previous

section. We start with the QCD Lagrangian for massless quarks, namely

= i~, (2.32)

where D" = 0" - igAA. Later, the gauge field will be split into collinear and ultrasoft

fields. Recall that in HQET the momentum was decomposed into large and residual

pieces (p = mbv + k), and the velocity v became a label on the fields. In SCET, one

does something similar, writing

p = +k,
1where 1 =(. 2p)n + p , (2.33)

and labelling a collinear field with its large momentum components, P. A phase

factor involving p is scaled out and the four-component spinor is separated into two

two-component spinors (c.f. Eqs. (2.2) and (2.3)):

W>() = e ipx (?+P + n-P)

= S e-iL'x ("p + &n,p) , (2.34)f)-,I~~~~~~~~~~2.4

where the superscript + (-) corresponds to particles (antiparticles) and

n.p - -- 4 ( r. 1 -- ) rp) +4f. --- (nU),p 0 - P) 'J. -p (2.35)
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Note that #0/4 + 0i/4 = 1. We do not include : = 0 in the sum in Eq. (2.34).

because that mode is covered by the field q (which one must include when deriving

the subleading Lagrangians). Equation (2.35) implies that

Inp = rnp' 9/i, = (2.36)

4 i.p = p, .= 0

Substituting Eq. (2.34) into Eq. (2.32) and using the relations above, we obtain

£ = e-(- [np2 (in .D),np + ip' ( p + i D)np
,PI

+G,np'($ + i) ),p + ,p '(fI + il)n] · (2.37)

The small-component field (n,p is integrated out by using its equation of motion. By

varying the Lagrangian with respect to (F,p,, this is found to be

='P = .p + in . n ( ±+i ±) Gn,p (2.38)

Substituting Eq. (2.38) into Eq. (2.37) gives

e-i(-i')'XnP ' in + (i+i iL) PI .+ i) n,p 

(2.39)

The collinear gluon field has large momentum components, so it is useful to rescale

it, as we did with the collinear quark field:

.~A',(x) = E '-A~q(r). (2.40)

One can then factorize out the large phases from operators with arbitrary numbers

of collinear quarks and gluons by introducing a label operator, pp = n2 P + P [33].

This acts on the large labels of a product of fields as follows: for an arbitrary function
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f ( ) 0q, ' q 'm .P . (2.41)-f(n Pl + + npn n' . . . . . . qm) -l'*'* 'qm2Pl pn,
with an analogous equation for P 1 . Here, p can be a collinear quark, n,p, or a

collinear gluon, AH,p. The label operator thus satisfies

ia&te-Px n,p(x) = e-ipx'(plI + i")Onp(x), (2.42)

which facilitates the explicit separation of (A0 '1 ) and O(A2 ) contributions, since i9,

acting on ,p or An,p gives a momentum k of order A2 .

Now it is straightforward to expand Eq. (2.39) in powers of A. The resulting

leading-order Lagrangian is

C() = e-izP S' n,p [in. D DC D 2 (2.43)
labels

where

in. D = in + gn An,q +gn . Au,, (2.44)

in D = P + g An,q,

iD = 'PI + gA,q'.

One can adopt the convention that field labels are summed over. Furthermore, the

overall phase factor imposes conservation of large monlenta (label conservation). The

reason for this is that the exponential of a large phase will oscillate rapidly, and so

the integral of this against a slowly-varying function will tend to a delta function as

A - 0. One can therefore also suppress the phase factor if one remembers to maintain

label conservation. Consequently, the Lagrangian can be written in the form [23, 33]

(i ) = f'n,p' in' D _+_ c i - "'P (2.45)[ iP IF ;D 
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Both termls are of order A4 in the power counting. Since p x = (1/2)p+x - +

(1/2)p-x + + pi x, x scales as (x+,x-,zx) (1. A-2, A-') Hence, d4 x A-4

and the action scales as A0.

This was a tree-level derivation. One can, however, use gauge invariance and

reparamleterization invariance to show in full generality that Eq. (2.43) is the unique

leading-order collinear-quark Lagrangian [30, 118]. From this, one can read off the

Feynman rules for interactions involving a collinear quark. These are shown in Fig. 2-

1.

(p, k) i nkip+
2 n-k n-p +. 2-

= igTA n 
A2

= ig TA [r

-ig 2 TA TB
n.(p-q)

+ I

I7 OL T 

· 9:mrm A

np n-p'

-_ A'y)L h -
n.pn-p

- __- -i 

-P n 2

Wip nI + .iprt.pnihlvJ 2

! _
+ n b n n 2

Figure 2-1: Collinear-quark Feynman rules in SCET [23].

The Lagrangianl for collinear gluons can be obtained in a sinlilar manner. The

result is [30]

L(n)cg
1=- -tr

2g2 { ([iDZ + gA. gA i + gAq,])2} + g.f. (2.46)

2 DuS + P+ pn (wit =ie +y gA~) and g.f. stads forwhere I i'D="7"o i-r ±,,s + 2p (with iD' - g a stands for
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gauge-fixing terms.

2.2.3 Decoupling Ultrasoft Fields

In the leading-order collinear Lagrangians for quarks and gluons, L:() + L(°) , the usoft

gluons can be decoupled from the collinear fields [30]. This is achieved by introducing

the usoft Wilson line

Y = Y(x) = Pexp (ig ds n As(x+ns)), (2.47)

where P denotes path ordering, and making the field redefinitions

Sn -+ Yn , A -- YAnYt. (2.48)

The Wilson line satisfies [in DUY] = 0, which implies that

Ytn D,,Y = n . (2.49)

Therefore, the result of making the substitutions (2.48) in Eq. (2.45) is

L(() nnp [i n+9.n -Anq +yliADcp 2p (2.50)

since Y commutes with 'P. Likewise, in the gluon Lagrangian (2.46),

iZDi,4 il0 = i n + P + p2- . (2.51)
(0) 2 2

We have folund that the leading-order Lagrangians are independent of the usoft fields

after the field redefillition. The usoft fields have not been removed entirely. since they

appear in external operators or currents. They also appear in subleading collinear

Lagrangians. Nevertheless, this result is an important ingredient in derivations of

soft-collinear factorization theorems.
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2.2.4 Reparameterizaton Invariance

We saw previously that, in HQET, Lorentz symmetry manifests itself as reparame-

terization invariance. Similarly, RPI appears in SCET, in which it comprises a larger

set of transformations.The choice of the light-cone vectors n and must satisfy

n2 =2= 0, nn = 2, (2.52)

but otherwise is arbitrary. Therefore one can make the following reparameterization

(RPI) transformations [59, 118, 130]:

( I) --|n+A + ) n, (III){ n,(+)n (253)
n - - + En n, - (1 - a) nl

where A' A, e' , AO and a - A are infinitesimal parameters. (In order to

maintain Eq. (2.52) to linear order, A' and el must satisfy ins = n -e = . A =

n A = 0.) Each parameter is assigned the largest scaling that leaves the power

counting of collinear momenta intact. To derive the way in which the decomposition

of a vector V" is changed by the transformations, we impose the condition that V"

itself is invariant, i.e. V - V'. For example, under type-I transformations the

components of VI' = (n . V, n . V, VA) change to

n-V -- (n+A )-V=n - v+A' -V (2.54)
n-V --- nV,

-* nn

V = V 1- V--n VV
L 2 2

hL-L h VnI' ± AIV -(n+ )v n _,n). Vl I _
2 2

V x // An V nAl A' V
' 2 2

Similarly, nder type-II transformations,

(n . rn V, V + -n -·V I . (2.5.5)' I2 2-
417



We can now see that if V"' is collinear, scaling as (A2 , 1, A), then it will stay collinear

after a type-I (type-II) transformation if A' A (E' -A °). Just as h, transforms

to maintain the condition h, = hv in HQET, ~, transforms to maintain -n" = -n,

n -= 0. One can derive the transformations as follows. From Eqs. (2.34) and (2.38),

we find

= S e-i P [I + 2n,p (2.56)
p,q

where the covariant derivative D includes both a and 7P. This is invariant under the

RPI transformations, i.e.

5e~P [1± +n. 2] (n (2.57)
P,q

E e [1I+ ¢1 D , 
- Sei.[i+1DA -DI i2
pI,qI

where the prime indicates a transformed quantity. Multiplying both sides of this

equation by T" leads to the following expressions for np under the three RPI trans-

formations:

nP I + _AL ) p (2.58)

II. (1+ 1/ ±) np,

III
Wnep "'- a n,p.

We summarize all of these results in Table 2.3.

48



Type I Type II Type III

n -- n + l n n n - (1 + a)n
nt n n --*,n + n - a) 
n . V -, n .V + .V n V n V n V (1 + e)n V
n .V n V n V * V + .V l I n - V (1 - ) . V
VL - V -" r i V-- v_- V VIn' V V- n VV

w-÷w 2 1 1( 1 -W---W () +1+1 w-wL)

W W W [(1- nD -D1) W] .W --

Table 2.3: Effect of type-I, II and III RPI transformations. VP is a vector, which may
be the covariant derivative. For completeness, the table includes the transformation
of W, which is the Wilson line constructed from n Ac gluons.

2.3 Heavy-to-light Currents

The weak-decay processes that we are studying have effective Hamiltonians of the

form

'Heff - 4FVCKMC(i)Jhad J ,
,/=VC M

(2.59)

which involves the QCD current Jhad = qrb (with the relevant Dirac structure, F)

and the leptonic or photonic current J. For example, for the decays B -- XJev and

B - Xsy the hadronic currents are

J_i - ua PI b (2.60)and J = iqPR b,

respectively (the latter coming from the operator 07). In the endpoint region, in

which the light quark is energetic, qrb is matched on to an SCET current. WVith no

collinear gluon, we simply obtain (,rh,,. However, since f- A,, A, an arbitrary

mnb)er of such gluons can )e included without inducing any power suppression.
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Consider then the case with one Aq gluon attached to the heavy-quark line. The

propagator in this diagram has momentum

p = mbv + -- ni q + O(A)
2

= p2 _ m2=:~~p -mb 2n vmbr·q±*- m -b (2.61)

This large off-shellness means it must be integrated out. Expanding to lowest order

in A, we obtain

ri( + mb) igTAh
pnr2 - migTA"hp -mb

- (mb(1
-_f 

Ynj -I n
T

- h - A= _- ZrT
2.q

= U-- r TA h,.
n q

vmbr · q
,InTAh
2

(4(1 -) + n v)
h,n v

(2.62)

Thus, the Feynman rule for the SCET heavy-to-light current with no (one) gluon is

F" (-gnl'/. qFrTA). When we add arbitrarily many A- gluons, we obtain FW,

where W is the Wilson line built out of A- gluons:

W = (-9) n An,qm "n An,q

m=O perms ! -qln (ql + q2) .* A - (Em qi)

= /~-exp( n A,,q
-perms

(2.63)

where "perms" means all permutations of the indices 1 . . ., m. W satisfies the equa-

tion [in . DeTV] = 0, from which it follows that f(in D) = Wf((P)Wt.

The resulting heavy-to-light current is thus [23]

J = Ci(p. P)(.pV1Fl v, (2.64)

in which the Wilson coefficient may depend upon the large component of the total

jet momlent urn.
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The form of this current is actually determined by gauge symmetry [33, 30]. The

allowed gauge transformations are those that leave us within SCETI. We are left

with two classes, namely collinear and ultrasoft gauge transformations, denoted by

Uc and V,,, respectively. These are defined by the scalings "cU,(x) - Q(A2 , 1, A) and

Vus(X) Q 2 . Under a collinear gauge transformation,

n Uc n (2.65)

A W UrAUt +-c[iiD, t] ,

W -, UcW,

where U,n is shorthand notation for Eq(U,)p-q,q. Ultrasoft fields are not trans-

formed by U, since otherwise they would not maintain their momentum scaling.

We can now see that n,pW is a gauge-invariant block. The current n,pWrh is

gauge invariant, whereas n,prFh is not.

We finish this section by noting that the Fourier transform of the momentum-space

Wilson line is

Wn(y) = Pexp (ig

Recall that

Y(x), given

we have already encountered an ultrasoft Wilson line in position space,

by Eq. (2.47). This is the Fourier transform of

Y = E E (-g) n.Aul... n A . A,
X=0 permm! nn(kl+2).. n s(n k])?n=O perms i=l

Tam ... Tal (2.67)

The latter object arises when one sums all diagrams of attachments of ultrasoft gluons

to a collinear-quark line.
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2.4 Subleading Lagrangians

In order to include AQc D/m b power corrections, which we do for B - Xy and

B - X,,ei spectra in the next chapter, we need the subleading Lagrangians and

heavy-to-light currents. As will be discussed, we require these to second order in

A /AQcD/mb, i.e.

j = J(o) + j(1) + (2) (2.68)

In this section, we summarize the results for the Lagrangians.

The LO Lagrangian for usoft light quarks and usoft gluons, L(0), is identical

to full QCD. For usoft heavy quarks we have the leading and subleading HQET

Lagrangians, which were given in Eqs. (2.11) and (2.12). We repeat these here with

slightly modified notation (showing that the gluon in HQET is ultrasoft, and that in

SCET, our power-counting parameter is A):

£(o) = hviv Dushv ,

h 2 Ohb2 mb

(2.69)

Oh = hv(iDT)2 hV + CF(I1) hv,,. gGus hv.
2 us 1 'V 

For convenience, let's also define

lv = Yth.,

Xn = t t(7,

Xus = ytqus,

D, = WtDCW,

Du = YtDusY

igB3/= [Wt[in.D,iD"]W].

The leading-order collinear Lagrangians (after one makes the field redefinitions (2.48))

are then

r ,= ., [ir.)DE. + i - Xn,4~~~~~ 2 £C() = -tr [G"G,,i] + g.f.,

where igG!v = [iDsl, iD']. Here, in. D, = in. + gn A,, and the other components

of D,. are as given ill Eq. (2.44).
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The subleading Lagrangians that we require are all available in the literature [37,

130]. To obtain these Lagrangians, one must include qu, in the Lagrangian (2.32), by

writing = Z e-i'PX (r ,p + in.p) + qus, and expand to the desired power in A. Here,

one encounters a potential complication related to the choice of the full covariant

derivative. One possible reparameterization-invariant choice is ini. D = i D, +

in DU,, iD' = iD} + iDj . With this choice, one must redefine hn Ac and A if

one wants the Lagrangian to be invariant order by order in A under collinear gauge

transformations [32]. This turns out to be equivalent to the choice

in.D = in.O+gn.Ac+gn Aus, iDi = iD' + UiD Wt ,

in D = in Dc+ Wi DU,Wt , (2.72)

with the covariant derivatives defined in terms of the new gauge field. Furthermore,

the Wilson line built out of the new gauge field has the same equation of motion as

previously, and hence the same transformation law. Hence, using the redefined gauge

field is simply a matter of using Eq. (2.72) above. The results that follow are written

in terms of the redefined gauge field.

After one makes the field redefinitions (2.48), the subleading quark Lagrangians

we require are [32]

Loo Xn it:Ls ~p i 2 Xn + h.c., (2.73)

L(1) = n iglfus + h.c.,

L(2a) 1 

(2b) X= nicin usp 2 2 i Xn.

WVe also nee(l the subleading terlll in the mixed usoft-collinear gluon action,

L(1) -2 tr [g'V " , ]SgV + g.f. (2.74)

C(2a) t[r JH4IIV'HT[]AgI - tr [IL Tt tr [ -u ] gI gV + g.f.cg [= /1IT [,' it + gV 
~C~!2,b) = -L.[f~b`t:I'J7 )vflr+g.f.:
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Ig , =1 1 - v[ iD, iDc] IT,' ig v =- t[iDs iDs]Y 

7ig 'F> = [I1T/tiDP~IT. YtiDY] I (2.75)

and g.f. denotes gaulge-fixing terms that are required by reparameterization invari-

ance.
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Chapter 3

Factorization and Power

Corrections to B --+ X and

B Xufv

3.1 Introduction

In this chapter, we derive factorization theorems for AQCD/mb power corrections to

B -- X7y and B -+ Xe in the shape function region, where rn: mbAQcD. For

b -+ u decays this region is important, because of cuts on Ee or m2, which are used to

eliminate b -+ c events. In this region both the perturbative expansion and the power

expansion become more complicated. In particular, there is the usual perturbative ex-

pansion at the scale /u2_ mb, as well as a second perturbative expansion at the smaller

scale u2 - m2. The rates also exhibit double Sudakov logarithms. In addition, in-

stead of depending on non-perturbative parameters (A1, A2,...) that are matrix ele-

ments of local operators, the decay rates depend on non-perturbative shape functions.

W~e shall refer to the expansion parameter for this region as A2 m2 /m B AQcI)/mTtb

to distinguish it from the 1/mb expansion for the local OPE. In the endpoint region.

the standard OPE no longer completely justifies the separation of short- and long-

distance contributions. Instead, we must consider a more involved derivation of a

QC'D factorization theorem, as is the case in processes such as Drell-Yan and DIS as
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x - 1 [123, 134].

For B --e X/ and B -- X0 at leading order (LO) in A, the factorization

theorem for the endpoint decay rates was determined in Ref. [99]. It separates QCD

contributions that are hard (H), collinear ((0)) and soft (f(O)), so that, schematically,

a differential decay rate takes the form

dr = H x j(O) ® f(0) , (3.1)

where x is normal multiplication and 0 is a one-parameter convolution. Here the

hard contributions are perturbative at the scale /z2 m 2, the collinear contributions

in j(0) are associated with the inclusive X jet and are treated perturbatively at the

scale yu2 mnbAQCD, and the soft contributions are factored into a forward B-meson

matrix element giving the non-perturbative shape function f(O) [124]. In Ref. [30]

this factorization theorem was rederived using the Soft-Collinear Effective Theory

(SCET) [22, 23, 33, 30]. The attraction of the effective-theory method is that it

provides a formalism for extending the derivation of factorization theorems beyond

LO in the power expansion. The main goal of this chapter is to derive a factorization

theorem for B -* X,y and B - XJev at subleading order, i.e. O(A2), using SCET.

This factorization theorem allows us to separate perturbative and non-perturbative

corrections to all orders in a,.

One method for studying the endpoint region is to start with the local OPE and

sum up the infinite series of the operators that are most singular as we approach the

mn2 mbAQCD region. This technique was used in Refs. [124, 125, 41, 115, 69, 65],

and provides a method of defining the non-perturbative functions. At LO the result

is the shape function1

1 (I)k 6(k) (+) (Bvlh,(in D)ht,.l B,) (B, Ih6(e+- in.D) hlBv)

= f(0) (+). (3.2)

t'We arbitrarily use the term "shape function" for f(e+) rather than "distribution function".
Sometimes in the literature the term "shape function" is reserved for the distribution that enters
dF'(B --* X,,fm)/dE(, which is an integral over f.
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The result is simply the matrix element of a non-local HQET operator, where the

states B,) and heavy b-quark fields h are defined in HQET, and n" is a light-like

vector along the axis of the jet. This approach allows direct contact with the extensive

calculations made with the local OPE, which give terms in the power series. There

are several reasons for considering an approach where f(f+) is obtained without a

summation. In particular, it is difficult to go beyond tree level with the summation

approach. Also, owing to the presence of a kinked Wilson line [97]. the renormalization

of the local operators in the sum and final delta-function operator are not identical [27,

47] (see also [99]), essentially because the moment integrals introduce additional UV

divergences.2 For this reason the expansion in Eq. (3.2) should be considered to be

formal, and care must be taken in drawing conclusions from operators in the expanded

version, such as the fact that they have trivial dependence on n". Care must also be

taken in calculating the hard factor H, as pointed out recently [27, 47], since the one-

loop matrix element for f(o)(f+) has finite pieces in pure dimensional regularization.

This implies that the quark-level QCD computation does not directly give the hard

contribution, unlike factorization theorems involving massless quarks such as in DIS.

The matching calculation in SCET handles this in a simple manner because matrix

elements of the effective-theory graphs are necessarily subtracted from the full-theory

graphs in order to compute H.

For any precision calculation, perturbative corrections play an important role,

and both the resummation of large logarithms and fixed-order calculations need

to be considered. The position-space version of Eq. (3.2) has a kinked Wilson

line along v-n-v, which leads to double Sudakov logarithms [97, 99]. These occur

between both the m2 -- mbAQCD and the mbAQCD -- AD scales and can be

summedt using renormalization-group techniques. In moment space the leading and

next-to-lcading anomalous dimensions can be found in Ref. [99]. For phenomeno-

logical purposes, formulae for the differential rates with resummed logarithms are

2Froin the p)oint of view of effective field theory this makes sense. since the sumnlation in Eq. (3.2)
attemllpts to connect one effective theory (HQET) to a region with a different expansion palameter
that is described by a different effective theory (SCET). Generically the renormalization in two EFTs
is not intercollllected.
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of practical importance and were obtained using inverse Mellin transformations in

Refs. [113. 112. 110, 3]. These resummations have also been considered in SCET, both

in moment space [22, 27] and for the differential rates [47]. Finite-order perturbative

corrections are currently known to order os for the H and J functions [23, 27, 47].

Since in the endpoint region AQCD/Q 1/5 to 1/10, it is important to consider

the effect of power corrections for precision phenomenology. By matching from QCD

at tree level, contributions of subleading NLO shape functions have been derived for

B -+ Xsy [26] and for B -- Xev [108, 25], followed by further analysis in Refs. [100,

55, 127]. A single NNLO contribution has also been considered, corresponding to the

"annihilation" contribution, which is phase space enhanced by 167r2 [136, 108]. These

power corrections provide the dominant source of theoretical uncertainty in current

measurements of Vubb and are the focus of this chapter, so we discuss them in more

detail.

To build some intuition, it is useful to contrast the power expansion in the endpoint

region with the expansion for the local OPE. For the local OPE, all contributions can

be assigned a power of (AQcD/mb)k-3 . The power of AQCD and thus k is simply

determined by the dimension of the operator, and the -3 accounts for the dimension

of the HQET states, (BI ... IBV). For example, the set of local operators up to

dimension 6 is

03 = h h,, 05a = h(iD) 2 h, 0 5b = g hopGOhv , (3.3)

06a = hv(iDT)(iv.D)(iDc)hv, 06b = ieaP6v6 h(iD 0 )(iv D)(iDo)yYy5 hv,

0GC = (LyyqL) (qLyhv), 0 6d = (h, qL) (L h),

06e = (hT" -y'qL) (LTahv), 0 6f = (hvTaqL) (qL Ta h) ,

where (lillensions are shown a.s superscripts, a superscript/subs(rifpt T means trans-

verse to the HQET velocity parameter v" , and an L means left-handed. 3 Dimension-4

operators are absent so there are no l/m.b corrections, except the trivial ones that

:3 WXNe write O0 in terms of HQET fields, although strictly speaking at lowest order this is not
I1ec(ssal'V.
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a) U)

b gq

Figure 3-1: Comparison of the ratio of annihilation contributions to the lowest-order
result. In the total decay rate, b) is - 167r2 (A3/m3)AB ". 0.02, while c) is -
47ras((mb)(A:3/m3) c- 0.003 when compared to a). In the endpoint region, b) is
167r2 (A2/m2)AB _- 0.16, a large correction, while c) becomes 47ras(ujl)(A/mb)E' 
0.6E', a potentially large correction.

may be induced by switching to hadronic variables. For dimension-5 and 6 operators

there are two naming conventions in common use. For (Bvl{Q5 a, O5b, 06a, 06b}lBv),

the parameters are {A1, A2, P1, P2} or {,, I, P, Ps}. These operators are generated

by connected graphs from the time-ordered product of two currents, as in Fig. 3-la.

On the other hand, the four-quark operators O6c,6d give parameters fB 1, 2 and are

disconnected (or rather connected by leptons or photons only), as shown in Fig. 3-lb,

and thus exhibit a phase-space enhancement relative to Fig. 3-la. The simplest way

to see this is to note that for the total rate to B -- Xu£P, we would cut a two-loop

graph for Fig. 3-la, while Fig. 3-lb would be at one-loop level (the t-v loop). For

later convenience, we also consider the perturbative correction to the four-quark op-

erators shown in Fig. 3-1c, which is suppressed by as/(47r) relative to Fig. 3-lb, and

gives the operators 0 6e6f. In the total decay rate, if we normalize so that Fig. 3-la

1 then

Fig. 3-lb - 167r2 3 B - 0.02, Fig. 3-lc - 47raS(mb) --¥~ 0.003c. (3.4)
rnz m/b

Here AB = B2 - B1 - 0.1 accounts for the fact that the nlatrix elemellts of the

operators generated by Fig. 3-lb) vanish in the factorization approximation. The

factor of accounts for allny (lamical suppression of Fig. 3-1(. The efinitions of

B 1.2 are

(B I [y -qi ] [qIr'v] B ) 1 2 [(B1i -B 2 )9 aT + (4B 2 - Bl)T7T] ] (3.5)
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Without the AB suppression factor, Fig. 3-lb would dominate over other /m2 op-

erators rather than just competing with them. The O(a,) corrections to annihilation

are still a small contribution in the local OPE, for any e < 1. In particular, possible

enhancements of these contributions have been shown to cancel for the total b u

decay rate [42].

In the endpoint region there are extra enhancement factors and the dimensions

of the operators no longer determine the size of their contributions. The fact that

annihilation effects are larger in the endpoint was first pointed out in Ref. [42]. The

power counting in SCET organizes these contributions in a systematic fashion and

allows us to be more quantitative about how large these contributions are. Since some

background material is required, we postpone this power counting until Sec. 3.3. The

derivation given here is more heuristic, but leads to the same results. For Fig. 3-la the

intermediate quark propagator becomes collinear, giving an mb/A enhancement. This

explains why a larger portion of the decay rate is concentrated in the endpoint region.

For Fig. 3-lb there is no quark-propagator enhancement but also no reduction from

the phase space. A numerical estimate for this contribution was made in Ref. [136].

Finally. for Fig. 3-1c in the endpoint region there can be three collinear propagators,

giving a large m./A 3 enhancement to this diagram. In Sec. 3.6 we show that this

graph contains the maximum possible enhancement. In summary, if we consider the

rate integrated only over the endpoint region then Fig. 3-la - 1 and

A2 A
Fig. 3-lb 167r2 -AB 0.2, Fig. 3-1c 47ra,(1.4 GeV) - ' 0.6 ' .(3.6)

bmb ~ ~ ~ ~ mb

The non-perturbative function that gives ' differs from the local operators that give

e in Eq. (3.4). Since ' 0.3 is possible 4 , we conclude that it is possible that the

contribution from Fig. 3-1c gives a significant uncertainty in extracting Vb with

nlethods such as Ee or mn. (llt.s that depend on the endpoint region. It has nlot beei

considered in recent error estimates in the literature. The main phenomenological

4 The only rigorous scaling argument for a dynalnical suppression that we are aware of is the
large-NA limit, where AB - 1/N,.. For Fig.3-lc the qq contraction gives a matrix element that is
leading order in N,. If these contributions are small, then a rough estimate is ' 1/NV,. - 0.3.
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outcome of our analysis is a proper consideration of this term for endpoint spectra.

Theoretically, the main result of our analysis is a complete theoretical description

for the NLO term, F(2 ) , in the power expansion of decay spectra in the endpoint

region,

dF~ dr(o ) dF (2 )

-__~ + _- ~+....~ · (3.7)
dZi endpoint dZi dZi

Here Zi denotes a generic choice of the possible spectrum variables, {P+, P-, E,, q2,

sH, mb, ... }. At NLO we use SCET to determine the contributions to the spectra.

These contributions are tabulated in the body of the chapter, but the generic structure

of a term in (/ro)dr( 2 )/dZ is

j[dz.]H(i)(z,, mb Z) |[dk+] .l(i2)(zt,, k+ p) f(i3)(k+) (3.8)

where the number of convolution parameters varies from n = 1 to n = 3 and n' = 1

or 2, and for n = 2 [dk+ = dk+dk + etc. The dependence on the z, parameters

appears only in jet functions that vanish at tree level. In Eq. (3.8) the (jl), (2),

(j3) powers indicate whether the power suppression occurs in the hard, jet or soft

regions respectively. The power corrections start at O(A2), which is l/mb, and so

jl + j2 + j3 = 2. Here l1,3 0 while j2 can be negative. Phase-space and kinematic

corrections give an H(2 ) with the same jet and shape functions as at leading order.

Other more dynamic power corrections involve new hard H() functions, and obtain

their power suppression from the product of jet and soft factors. We show that the

operators at NLO allow -4 < 2 < 2 and 0 < j3 < 6. The largest jet function

(j2 = -4) occurs for exactly the endpoint contribution generated by the four-quark

operators (j3 = 6) from Fig. c.

Our analysis can be compared with the closely related physical problem of deep

inelastic scattering with Q2 >> A2, in the limit where Bjorken x 1 - A/Q. With

no parametric scaling for x, the power corrections in DIS at twist 4 were computed

in Refs. [92, 93, 68, 67, 133, 132]. As x -- 1 the relative importance of the power-
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suppressed operators changes and the importance of contributions from four-quark

operators has been discussed in Ref. [73].

The outline of the remainder of this chapter is as follows. In Sec. 3.2 we give

the basic ingredients needed for our computations, including the weak Hamiltonian

(Sec. 3.2.1) and expressions for the hadronic tensors and decay rates (Sec. 3.2.2).

In Sec. 3.2.3 we give a detailed discussion of the endpoint kinematics and light-cone

variables, and in Sec. 3.2.4 we briefly summarize a few results obtained using the

optical theorem for the forward scattering amplitude, and the procedure for switching

between partonic and hadronic variables that is relevant in the endpoint region. In

Sec. 3.3 we turn to the discussion of the SCET heavy-to-light currents. Many of the

ingredients necessary for our computation are readily available in the literature. Of

particular note are expressions for the heavy-to-light currents at O(A2 ) [38], which we

have verified. In Sec. 3.4 we review the derivation of the factorization theorem at LO,

but do so in a way that makes the extension beyond LO more accessible. We consider

power corrections of O(A) in Sec. 3.5, and show that they vanish. In Sec. 3.6 we discuss

the true NLO factorization theorem, which is O(A2 ). In particular, in Sec. 3.6.1 we

switch to hadronic variables and re-expand the LO result, in Sec. 3.6.2 we enumerate

all the time-ordered products that occur at this order, and in Sec. 3.6.3 we show

that the tree-level matching is simplified by using the SCET formalism. In Sec. 3.6.4

we give definitions for the non-perturbative shape functions that appear, and then in

Sec. 3.6.5 we derive the factorization theorems for the most important contributions in

some detail. Finally, in Sec. 3.6.6 we summarize the hard coefficient functions for the

subleading time-ordered products. Next, in Sec. 3.7 we present a useful summary of

the NLO decay-rate results, including the phase-space corrections. We also compare

with results in the literature where they are available. Our conclusions and discussion

are given in Sec. 3.8. Further details are relegated to appendices, including the

expanlsion of the heavy quark field and calculation of the power-suppressed heavy-

to-ligllt currents at tree level in Appendix A, and a review of constraints on the

currents from reparameterization invariance ill Appendix B. For the reader interested

in getting all overview of our results while skipping the details, we suggest reading
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Secs. 3.2, 3.3 and 3.4, the introduction to Sec. 3.6, and Secs. 3.6.1, 3.6.2 and 3.7. A

reader interested only in final results may skip directly to the summary in Sec. 3.7.

3.2 Basic Ingredients

In this section we give the ingredients necessary for studying the decays B Xsy and

B - XiJO in the endpoint region to NLO. A proper treatment requires a separation

of the scales m 2 > m2 > mbAQCD > A in the form of a factorization theorem.

This is accomplished by the following steps:

1) Match on to the weak Hamiltonian, Hw, at t 2 = m v and run down to 2 = m2,

just as in the standard local OPE.

2) Mlatch Hw at p2 ~ m on to SCET, with collinear and usoft degrees of freedom

and an expansion in A - AQcD/mb Run from /t2 = m to u2 = 2 mbAQcD.

3) At u2 = U2 integrate out the collinear modes, which, given a complete factor-

ization in step 2), is trivial. Then run from u2 = / j to / 2 - 1 GeV2 > A cD.

In Sec. 3.2.1 we discuss the weak Hamiltonian. The kinematics and differential decay

rates for the endpoint region are given in Sec. 3.2.3. Then in Sec. 3.3 we give the

necessary effective-theory currents to O(A2 ).

3.2.1 Weak Effective Hamiltonians

For B - XJp the effective Hamiltonian is simply

eff - 4G VUb(iiUYPLb)(e3 PLv) (3.9)

and the current -l-yPLb is the basis for our analysis of the QCD part of the problem.

The Hamiltonian for the weak radiative decay B - X! was given in Chapter 1,

Eq. (1.7).

For the total B --, Xsy rate the perturbative corrections are known at NLO [53,

90]. Effectire schelle-independent coefficients C7ff are defined i a way that includes.8i 8CI; UII~ L11C1VLY IIQ.III LL;
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contributions from the penguin operators (C3_6). A totally inclusive analysis is con-

siderablv simplified by the fact that at leading order in 1/mb the matrix elements

can be evaluated directly in full QCD rather than first having to match on to HQET.

For an endpoint analysis, the matching at mw and running to - mb is the same.

However, at the scale - mb the operators in Hw need to be matched on to oper-

ators in SCET before the OPE is performed. In performing the matching, the only

subtle complication is the treatment of the charm mass. For simplicity, the approach

we take here is formally to let mc, mb, so that charm-mass effects are all hard and

are integrated out in matching on to SCET. This agrees with the treatment of the

Oi,7 advocated in Ref. [126] for the endpoint region. Since numerically m2 - mbA,

perhaps a better alternative would be to keep charm-mass effects in the operators of

SCET until below the jet scale mbA. This second approach is more involved, and in

particular it is clear from Ref. [51] that it would necessitate introducing two types of

collinear charm quark, as well as soft and ultrasoft charm quarks. For this reason, we

stick to the former approach and leave the latter for future investigation.

At lowest order in the power expansion, there is only the SCET analog of the

satvPRb current called J(O) (cf. Eq. (3.51)), and O1-8 can make contributions to its

Wilson coefficient. At NLL order in a, the effect of the other operators can be taken

into account by using [81, 63]

Cy((, z) = C0 eff(O)(t) +as eff(l) (,) + E Cff(O)() l)n ( mb)]
k

in place of C7 when matching on to SCET. Here the dependence on p = 'rn9/mn enters

from the four-quark operators with charm quarks. In the endpoint region the 0(a,)

effects from the process b - syg all appear in the jet and shape functions. For later

conveiielice, we ldefine

\ (G, p) = CY(W' P) -1. (3.11)
e photon in is collinear in the opposite irectio to the jet X so

The Ihoton in B - X is collinear in the opposite direction to the jet X, so
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propagators connecting the two are hard. Thus, beyond LO in the power expansion

the photon will typically be emitted by effective-theory currents (i) (which could

be four-quark operators). We shall discuss the matching on to these subleading

currents for 07 only. Some of the contributions from the other Oi will just change

the Wilson coefficients of the subleading currents and thus not modify the structure of

the power-suppressed factorization theorems (indeed some of them are already known

since they are fixed by reparameterization invariance). These other operators may

also induce time-ordered products that would involve operators with quarks collinear

to the photon direction, but these are not considered here.

3.2.2 Hadronic Tensors and Decay Rates

In this subsection, we summarize general results for the hadronic tensors and decay

rates, without restricting ourselves to the endpoint region. For both decays B -- Xsy

and B - Xuev, momentum conservation for the hadrons gives

PB = mBV ' = pI + q , (3.12)

where Px is the sum of the four-momenta of all the hadrons in X, q" is the momentum

of the -' or the pair of leptons (), and the velocity v" satisfies v2 = 1. For B - Xy,

q = n.q i/2 = En.h, where v . q = Ev is the photon energy in the rest frame of the

B meson. In this case q2 = 0 and

mxs = mB(2ExS - mB) = mB(mB - 2E7), (3.13)

so the differential rate involves only one variable, mx or E. For B - Xu, Eq. (3.12)

implies

Ex = . px = B + q =mB - E = E + E, (3.14)2m.

where p = n . The differential decav rate involves three variables, several common

choices of which are {Ee. E. (1 2}, {E . t 2q, q2}, or {Ee, mi, q2}.
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To derive the inclusive decav rates for B - Xs7 and B - X,,, tile matrix

elements are separated into a leptonic/photonic part L,, and a hadronic part T14,.

Here

14,
1

2mB (27r)364 (PB - q - px)(BIJ I X)(X I J IB)

= -g,vWl + v, vvW2 + iuvavq3W 3 + qpqvW4 + (vq,, + vqt)W 5, (3.15)

in which we use the hadronic current J and relativistic normalization for the IB)

states. For convenience we define projection tensors pv so that

Wi = P W . (3.16)

They are

FL V
1

2

P4

q2 v/,vV + qqV, _ v.q(vqV + Vqt,)
2[q2 - (v.q) 2]

_ 3q2 pl + q2g9 - q/Iq

[q2 - (v.q) 2 ]

gulV - vUv, + 3P1"
p5"

[q2 - (v.q) 2]

(3.17)

_ieVP - rZq vp
3 - 2[q2 _- (v.q)2] '

g/V + 4plV - P21v - q2q V

2v.q

Contracting the lepton/photon tensor L' with W"V and neglecting the mass of

the leptons gives the differential decay rates

dFs

dEy

d 3 rF

dEedq2dEr

8E .= Fg -E(4Wf~ - W2 - 2E.W),
rnB

r 96 [q21,VrT + (2E E, - q2/2)Wr + q2(Ee - Ev)W3] (4EeE, - (2)

where WlVi = Wi (q2, v q) and the normalization factors are

-r G= 2m Ig1tbVt .[12en [Hfb(m.b)] Cf (rnb)I2 
32w4
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Here mb(I1) is the MS mass. For convenience, we have pulled out a Wilson coefficient

Cff( ) SO that contributions from other coefficients appear in ratios CiC7eff (° ) in the

SCET Wilson coefficients (for example the quantity A in Eq. (3.11)). Note that we

have chosen to stick with hadronic variables here (using mB rather than mb). When

we eventually compute the Wi, we shall have to deal with switching between partonic

and hadronic variables. However, we shall see that the situation is quite different

from that in the local OPE (as we discuss further in Sec. 3.2.4 below). In particular,

it is the hadronic phase space that turns out to be required.

In Eq. (3.18), 0 < Ee, E < (m2 - m2)/(2mB). A set of useful dimensionless

hadronic variables is

Xy 2EY
mB

2EeXH- 
mB

q2
YH = m2 

M mX
SH = 2 -mB

(3.20)

In terms of these variables,

2EV
= 1 - SH + YH - XH,

mB

and Wi = Wi(yH, SH). For B - Xy,

drF

dxiH
0- rF {4VV- W -mB xXHW },

with 0 < x? < 1 - m2 /m2. For B - X,,v,

d3ru
dx 1, dyH dsH Ir 24mB {Yl11'i + 2[(1-XI)(XH-Y1)-XHsH]WW2 (3.23)1 -))(HSH]

m'rlyBH(2xr +sH-YH -1)I V.KLj[(l-XII)(XH-YH)-XHSII]2~~~~~
and, depending on the order of integration, there are several useful combinations of

the limits, which are shown in Table 3.1. If we integrate over all values of xil (cases
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mB
(3.21)
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i) < x 1- r O2 r2 < SH < 1 YH < XH - SHXH

iii) < SH < < XH < 1 -SH O < YH <H - 1-H
2 _ __ V/--- min <lXH < x -Xm H

it) r< SH < 1 O < YH - SH) X <XH 1Xmi) Ony <xu- _ -

v) OYH• (1-r) r H< SH (1- Y) 2 XH4 < XH Xma

vi) 0<•YH (1-r) 2 X~<•XHR< X~r2 < SlSH < 1 + YH--X

Table 3.1: Limits for different orders of integration in B - X£eiP with vari-
ables {XH, SH,YH}. Here r = m,/mB, while {XHaX,xi n } = [(1 + YH - SH) 

(1 + YH- sH) 2 - 4YH ]/2 and {XHX, xH i* } = {x M, in }IsH=r2. Results for the
phase-space limits of partonic variables are obtained by dropping the H-subscripts
and setting r = 0.

iv) & v)), the rate becomes

d2 ru - rF 2mBV/(1-yH+s)2-4s{ 12yHWl (3.24)
dyH dSH

+[(1-YH +sH)2-44s]W H] } .

3.2.3 Light-cone Hadronic Variables and Endpoint Kinemat-

ics

We are interested in the jet-like region corresponding to AQCD < mx < Ex for both

B - X'-y and B - XuV. In this region, the hadrons in the X occur in a jet in the

B rest frame with Ex ' mB and m < mBAQcD.5 The momentum of the states X

is therefore restricted, but they still form a complete set for Eq. (3.15). The width

of the jet is determined by noting that the typical perpendicular momentum between

anv two final-state hadrons is Apl < 'mA - 1.6 GeV. where we use A - 0.5 GeV

to dellnote a typical hadronic scale for B-mesons (examplles eing AQCD and A). We

also assume that there are enough states with mx < rrtBA that the endpoint region

is still inclusive and Eq. (3.46) is valid. As we shall see below. the factorization in

'In Refs. [27, 47] an intermediate situation. m2rn A2 with V/1BAQCD << A << 77B, was also
conlsid(ered but we do not consider it here.
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this region gives non-perturbative shape functions rather than just local operators.

As previously discussed, it is natural to introduce light-cone coordinates, in which

some useful decompositions are

9i = gI9 - (n"n' + ninY,),

p_ = p/l- 2 2l2
2 2 

gV = gV _ VV v ,

PA = - Av.p ,

1V = IC8vaPn, ,
(3.25)

(3.25)

where we take 0123 = 1. Note that the subscript T means transverse to v, so

pT -$ pA. For the final factorization theorem for the differential decay rates we shall

use a frame where q_ = v = 0, and v = (n +n)/2. 6 Thus q" = iqn/2 +n.qn/2

and

n.q = mB - npx , n.q = mB - nPx (3.26)

For B --+ Xsy the photon momentum is taken along the f light-like direction, i.e.

qL = Efiy,, and

n px = mB , n Px = mB - 2Ey = mB(1 - xH). (3.27)

For B - XuJ the phase space is more complicated and for convenience we define

the dimensionless variables

n Px
YH =-

mB
n.Px

UH =
m.B

(3.28)

Now rrix = r, px rnpx and n.px + npx = (m2 _ q2 + m2)/mB, so

S$t = UIYH , (3.29)YH = (1 - UH)(1 - j1)

6If one desires, he or she can take v = (1,0,0,0), n = (1.0.0, -1), and ii = (1,0,0. 1). A more
general fralle is required onlv for working out the constraints from rparanieterization invariance.
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i) O < xrf < 1-r2

ii) O < xH < 1- r2

iii) r2 < U<1

iv) r2< UH<1

v) r7r_ < I< 1

vi) rr < yH_< l

r2 < UH < 1 -XH

max{ 1-XHl-H } < YH < 1

O < XH < 1 -UH

max rUH} < H < 1

_4 < UH < YH
YH 

1 -YH <XH < YH

max{L--xH, ' } < YI 1

. <UH < 1 XH

max{1-x. I-XH, } < YH < 1

1 -YH < XH < 1- UH

1 -YH <H 1 -UH

= < UH < 1-XH
YH -

Table 3.2: Full phase-space limits for B - Xufv with variables XH, YH, and UH. The
parameter r, = m 7r/mB. Results for the phase-space limits of partonic variables are
obtained by dropping the H-subscripts and setting r = 0.

and, making the choice YH > UH, we have

{YH, UH} = 2[1-YH+SH V(1-yH+SH)2-4SH].
2 

(3.30)

So far we have not made any restriction to the endpoint. The variables YH and

UH provide an equally good description of the full B - Xuev phase space as YH and

SH, namely

1 d3 u

FU dX d d(-U (1 (3.31)

1

+ 2(1- XH-UH)(XH+H-1)Wt

+where ) ad we have suppressed the theta futio from Eq. (3.23).

where ToT = ['¥}('s,.'l) and we have suppressed the theta fuxnctio fro ETable 3.2 (3.23).

Integrating over XHe froml Table 3.2 (cases iv) & v)) gives

' 24 1 1H 12 (3.32)

The full liniits for JjI and uI are given in Table 3.2.
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Figure 3-2: Allowed phase space for B ~ XuR.iJ, where m7r < mx < m~. The second
figure shows the same regions using the variables defined in Eq. (3.28). We indicate
the region where charm contamination enters, mx > mD, and the region of phase
space where annihilation contributions enter. Also shown is the region where the
SCET expansion converges, which is taken to be UH /YH :::; 0.2 and corresponds to
m~/(4E1) ;S 0.14.

In Ref. [48], it was pointed out that a natural set of variables in the endpoint

region consists of the hadronic variable n .p x and partonic variable fi 0 p, where

fi. P fi. Px + mb - mB = fi 0 px - A + 0 •• ,

nIL filL

It - 2fiop + 2n.px . (3.33)

They are natural because the LO factorization theorem dictates that the kinematic

variables appear in the jet functions and soft functions only as

(3.34)

where k+ is the convolution parameter (cf. Sec. 3.4). We shall see that this remains

true of the shape functions and jet functions at subleading order in the power expan-

sion. For a dimensionless version of fi.p we use Y = fiop/mb. A comparison of the phase

space with the variables {YH = q2/m1, /SH = mx /mB} and {UH, YH} is shown in

Fig. 3-2 and corresponds to the linlits shown in columns iv) and v) of Tables 3.1 and

3.2. The figure on the right is the analog of Fig. 1 in Ref. [48] with dimensionless

variables.
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For a strict SCET expansion we want

~nPx < A2 < 1, (3.35)
'-Px

where the expansion is in the parameter AH. Eq. (3.35) is equivalent to UH/YH < AH.

For B - Xsy, Eqs. (3.13) and (3.35) imply that the endpoint region is

E > (mB/2 - A) 2.1 GeV. (3.36)

For B -- XWjF, satisfying the criterion in Eq. (3.35) with values A2 - 0.2 is equivalent

to

mx< AH
2Ex + = 0.37, (3.37)2Ex " 1 + A 

or YH < 1 - 2.68/S-H + SH. Not exceeding a given expansion parameter in Eq. (3.35)

corresponds to specifying a triangular region of phase space (shown for UH/YH < 0.2

in Fig. 3-2). We refer to this as the SCET region of phase space.7 As can be seen from

Fig. 3-2, the simpler restriction YH < 1 - 2.44/H gives a very good approximation

to the SCET region since the boundary is roughly linear in the q2 and mx variables.

In calculating decay rates at subleading order, it is important to define carefully

how the phase-space integrals are treated once we compute doubly differential or

singly differential decay rates. The philosophy we adopt for B - Xep is that we use

SCET to compute the Wi, and hence the triply differential decay rate, for the SCET

region in Eq. (3.35). In general, one may wish to integrate this rate over a larger

region of phase space, and thus need to construct the full Wi's. This could be done

using

I'rfutill = wiSCETo(A2y - + t ,OPE -i UH- H), (3.38)

7 Note that the SCET expansion here is actually in powers of A2 since odd terms in SCETI tend
to be absent [39]. In Sec. 3.5 we show that the O(A) contributions for inclusive decays indeed vanish.
Thus A2 = 0.2 is not a large expansion parameter. A smaller value A = 0.1 could be chosen if
desired.
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where the SCET expansion in A is used for the first term and the standard local

OPE in A/mb is used for the second term. Thus, AH does not play the role of a

strict expansion parameter, but rather provides us with a means of interpolating any

differential spectrum between the full OPE and full SCET results by varying AH

between 0 and 1. We only consider the first term in Eq. (3.38) here. Depending on

the final spectrum that one looks at and the other cuts imposed, the error in including

a larger region of phase space than the SCET region may be power suppressed. The

parameter AH provides us with a way of testing this by considering the difference

between taking AH = 0.2 and AH = 1. We present our final results in a manner that

makes it easy to take the AH --+ 1 limit for situations where a large enough region has

been smeared over that this is the case.

One can also refer to a shape-function region, corresponding to the region 0 

UH 0.1 where the non-perturbative function f is important. The expansion for

B -- X8-y to second order in A, where 1 - -, A2, is

d = S2 [{ 4W -W -mBW} -(1-x'){4W- 2 W - 2mB W5 }] (3.39)= 0 MB [

For B XfeJ, if we integrate over all XH and expand in H A2, then from

Eq. (3.32) the first two orders in the expansion are

r d2ru 2 4
1-d-Fu 24mB [YH(1-YH); + 12 W} (3.40)P d 1,, d2H HY}12

+Uj(I 2 - . 1u-HW

By the endpoint region in XH wNe mean x < x1 1 - r , here 1 - 0.1

corresponds to making a cut on the lepton's energy spectrum. The limit on UH forces

it to be small, UH < 1 - xC, so shape-function effects are important here. This cut

still allows a large range for TYIl. Expanding the triply differential rate in Eq. (3.31)
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and keeping the first two orders in the expansion for 1 - XH ' H 2 give

1 d 3 rF

FO dxHut dH duH = 24mB [{YH(1-)(l + r BYH) }

-UH{(1-YH)/V; + 2 YH(2 -H yH )W 

+(1-xH-H){ 2 W2 -- mBYH(-YH)W 3 }] .

Finally, to consider the dF/(dq 2 dm 2 ) spectrum in the endpoint region we let 

1 - YH + SH and expand in SH/( 2 , which to linear order gives

F dyHdsH 2mB 12(1 ()Wu+ W + + - {2(±2+2 -2)W1 - 2W} j
(3.42)

In each of Eqs. (3.39)-(3.42) there will also be an expansion of the Wi themselves,

which we discuss later on.

The results in this section can easily be extended to any desired order in A/mB

by expanding to higher order in the phase space.

3.2.4 OPE and Partonic Variables

We have not yet made use of quark-hadron duality or formulated the method for

computing the Wi. The usual procedure to compute the Wi is to use an operator

product expansion and calculate the forward scattering amplitude

1 -
= (BTIv)lB)

= -g91vTi + V vT 2 + iElvolSqi! + (+qqT + (vLq,, + qvq, 1)T5.

(3.43)

where

t = -Z d xe-i TTJt (x)Jv (O), (3.44)

7-1
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and for the T(8l'" L) (q2, v q) we use the corresponding hadronic currents, which are

J = siau,q PRb, Ju = I'PLb. (3.45)

Here J comes from the operator 07. The operator product expansion relates the

W?(US) to the forward scattering amplitudes through

1
Wi - Im T. (3.46)

When we compute the Wi with an OPE, the partonic variables depending on mb and

the hadronic variables involving mB will need to be related order by order in the 1/mb

expansion. In particular, the heavy meson mass to second order is

-Al 3CF(t))2(Lt)mB = mb + - _ 3F()A( (3.47)
2rb 2mb

where we shall also use A2 = CF(p/)A2(/I) as a definition of the non-perturbative matrix

element that has the perturbative coefficient CF(L) absorbed.

In applying the local OPE, part of the expansion involved in switching to hadronic

variables occurs because the phase-space limits are partonic. In fact, if we calculate

the triply differential rate for B -- X with the local OPE. and then consider

integrating it over the hadronic phase space, then the integrand has support over the

partonic phase space only, so the limits are reduced to this more restricted case. In

the local OPE the signal for this is the occurrence of factors like

6(n)[(mbV - q)2], (3.48)

which imust )e smleared sufficiently so that quark-hadron duality can be used. For

the [(rb,' -- ()2] that occurs at LO, integrating once to get the doubly differential

rate gives theta function that imposes partonic limits.

On the other hand, with the SCET expansion in the endpoint region the support

of the triIply differential rate is larger. We never encounter singular distributions like
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the one in Eq. (3.48), but instead obtain a non-trivial forward B-hadronic matrix

element that gives f(o)(f+). This function knows about the difference between the

hadronic and partonic phase space already at leading order in the power counting,

and more generally the LO factorization result with 0(a) corrections (cf. Eq. (3.82)

below) does not cause a restriction of the hadronic phase space. Therefore, we shall

use the full hadronic phase-space limits in our computation. 8

3.3 Heavy-to-light currents

To derive the expansion of the Ti in the endpoint region, we determine the SCET

currents and Lagrangians in a power expansion in A, and use this expansion to sepa-

rate the collinear jet-like effects from the non-perturbative ultrasoft shape functions.

This will allow us to determine results for the Ti order by order in the expansion. We

write

T = T(°) +T(1) + T(2) .... (3.49)

The ingredients required for this include expansions of the Lagrangians and currents

to second order in A. The Lagrangian expansions were given in Chapter 2, while the

heavy-to-light currents are presented here.

For simplicity, we work in a frame where vl = 0. Expanding the J current to

O(A 2) gives

J -= - +lmbV)Xz { zdwCv) (w) J(°) (w) + /dw B (D) j;L( ) (w)
J 3 W ' ()3

+ dwA(v)(w)J (2)()}, (3.50)

where the superscript (0), (1), (2) indicates the order in A. We have an analogous

8 Note that this might inlply that direct calculations of less differential subleading spectra must
be treated with care. For example, if one directly computes a singly differential rate by tying up
lepton lines then the partonic pha.se-space restrictions might appear to creep back in if one is not
sufficiently careffll about the structure of the factorization theorem.
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result for J with (v) - (t) and u s. After one makes the field redefinition in

Eq. (2.48), the leading-order SCET heavy-to-light current is [23]

Jj')(w) = (nW),rO)(Ythv) = Xn.wr(O)v.j G i ~~~~~~~~~~~~~~~i(3.51)

where j = 1-3 for u and j = 1-4 for s. Despite the fact that the operator in J(O) is

O(A4), we use the superscript (0), to indicate that it is the lowest-order current. At

the first subleading order, we have the O(A5 ) currents [59, 37, 31, 130]

J(la) (W)

j(lb) (W, W2)

The subscript w notation in

momentum w, for example

Xn,w = Xn 6(W - P

1 (~ a) _ (la)
= 1 (Xn iDCl)T bj) v,

1) H
-- X ~n,wl (igc')yo T~lb) ' v'Imb nv

Eqs. (3.51) and (3.52) indicates that the field carries

(ig3L),,2 = (igBca) 6(W2 - pt) 

Finally, at second order we find that the basis of O(A6 ) currents consists of

J2a) (W)

j(2b) (L)

j(2c) ()

J(2 d) (W1 W2 )

J(2e) (W 1 ) )

I W21)( 1 .£)

1 _a ,
2m Xn,w TJ2a) iT Itv 

- Xn,w r(2b) iD'
w j us

P(2b) -L 

_(_ fl.~ ign-re T2C) Hv

-1 ( gny (2d)
Xn 1 ni) ' e,)

mb n-vI W2

,1 (3 7 -H.,
_, b v 1 (n

1%' I 1'_ ' " .j _ jg 3 ^r(f)H i

These currents were first derived in Ref. [38] (see also [37]) and we agree with their

results. Two differences are that in Eq. (3.54) we have determined the functional

dependence and the nluller of parameters wi, and that terms from the separation
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of label and residual momenta (or equivalently the multipole expansion of the fields)

are treated differently here from Ref. [38]. In Appendix A we give a more detailed

comparison, along with the details of our calculation.

For the LO Dirac structures we use the basis from Refs. [59, 130], which is the

most convenient for considering reparameterization invariance, i.e.

u-(O) = PR{ n', }R,v [A, " , -[ ,nV- (3.551-3 R ''nV' 1-4 R qy {, ' v nv}PR n'v r-,(0) = PR q, ic n-v I n-v J 35

Here we slightly reorganize the basis in Ref. [130] to reflect the constraints from RPI

and to use subscripts j > 11 for the currents that vanish when v = 0. This gives

y u(a) _ PR ( a 0 7p, 'Yao nA - 2gap T(lb)_pn ,v"7~_ nuT7_ g±

I ~-1-3 _yL"'4 i] -4 - n- ,{2 X12 v 2 +2f2y _ gp[1v ]

TS(la) PRq, {ilY Gs ~yL'v,] al [Iln l + 2 V9[ 'v] -va 2 g v 1 I'vl },

5-nsl PRq, ia 7_ , 7I"'v~17~, '/U'n>]l n[qv,17, gV 'v a 1 } 

(3.56)

Note that we do not list evanescent Dirac structures that can become necessary when

computing perturbative corrections in dimensional regularization (see for example

Refs. [40, 34]). For our purposes, the Dirac structures for the j(2) currents that

appear at lowest order in a, (mb) will suffice; these are

r( 2a) - PR , T2(2b) PR a u(2c) ' = 'P Y

T?" ) = PR yicru 2f - q PR ,T u(2e) = PRR 7 0 ~iaaq Tu c=2 PR i YaL 

1 2
Ts( 2d) = JT ti T( 2c) =, , . I irs(2) = impT17

PR2 UiT =qPRT9 1 U qTRTQ Y1 =P0 R 'I1qTy

(3.57)

The complete tree-level currents for arbitrary vl are given in Appendix A, and in

Appendix B we show how the v' dependence is necessary to satisfy the full constraints
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from RPI at this order. When the O(A2 ) currents that show up at order a(mb)

are determined, the number of possible T(2) structures will increase, as occurred in

Eq. (3.56). However, this will not affect the form of the factorization theorems we

derive, since they are expressed in terms of traces of the T(2) factors; this makes it

trivial to incorporate new Dirac structures that arise beyond tree level.

At lowest order in acs(mb), the non-zero coefficients in Eq. (3.50) are

C(v) = C(t) = B(v) = B(t) -B(V) = 1 (3.58)

11-- 1 1 1,7

The one-loop results and RGE-improved coefficients Ci can be found in Ref. [23]. Our

coefficients are linear combinations of these:

C)(C, 1) - 1- '(mb)CF 21n2() + 2Li2)(1- ) +ln()( - _ ) + +6 6

M3 aW) cY(mb)CF { (1 2)Ci ln(w) a }

C)(&, 1) 
3 4,7r (1 -) I - ,lC(t)(, 1) = os(mb)CF{ 2 (CD) }

4 1- 
cl)(CD, ) 
C~,)(&, 1) 47r 1 -- 

C4t)(, 1) = 0, (3.59)

where a& = w/mb and A-(mb, p) was given in Eq. (3.11). Thus, non-zero values for

C(2.3 and C(t) are generated at one-loop order. while C(t) are still zero at this order.

For the j(lb) currents, the one-loop matching coefficients were derived in Ref. [40], and

the anomalous dimensions and RGE-improved coefficients were computed in Ref. [87].

By reparameterization invariance B(2)3(w) = (l)3 (w) and B) 4(w) =- ct)4(W),

so their one-loop matching coefficients are in Eq. (3.59). For the (A 2) current
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Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

0 x

(O)------- -------
(0) i (0)T(O) h[0 ] j(O) f(O)

Table 3.3:
quarks and

Lowest-order insertion of SCET currents. The double lines are heavy
the dashed line is a collinear light quark.

coefficients the RPI constraints are

A(V) = A ) = _ A(v) = C) (w)
1 = 2 

A(t) = A(t) A() = C(t)(w) 
1 -2 23 

A(v) = A(v) = A(v) = Bv)( w l , 2) ,

A(t) = A(t) = A(t) = Bt) (,w 2 ) . (3.60)4 -5 -6 -7 alW) 

Note that we have not included effects associated with a non-zero strange-quark

mass in our basis of subleading SCET operators, and it would be interesting from a

formal view-point to consider the possibility of such power-suppressed terms in the

future (cf. [109]).

3.4 Leading-Order Factorization

In this section we review the leading-order factorization theorem [99] as derived using

SCET [30]. The result is discussed in detail, which will allow us to refer back to this

section when some of the steps are repeated at NLO. Throughout this section we shall

supprellI ss the 1u and s superscripts, since all the marnipulaltions are identical in both

cases. B - X,,l'il and B --+ X.

To derive the leading order T(O) we need only consider (,). given by taking two

LO cllrlellts .7(o). as shown in Table 3.3. The phase factor in Eq. (3.50) gives

(3.61)

8()

T-product

h, (x)h, (0)

e-i(q+ P Mv- 7 -zr x2'e 2 v ·~



and exp(- ipl · x). The current has q = 0, so this Pi term will contribute only to

fixing the perpendicular momentum of the jet function to be zero. The large label

momentum in the phase in Eq. (3.50) also gets fixed by momentum conservation:

P=mb - iq=mb-mB + n'p--n p, (3.62)

where -px is the large momentum in the jet X. Then the remaining momentum

r" , A since n r = .q + 7P- mb = 0 and

n r = nq- = mq-mb=m B-mb-n px. (3.63)

At lowest order

n' = px, n. r = A- npx, (3.64)

where both A, n px p- A (and higher-order terms in mB - mb will be needed only

when we go beyond LO). For the time being we stick to the partonic variables n.p and

n.r; later, we shall perform the expansion involved in switching to hadronic variables.

Using the states defined with HQET, we get

W(O) = ( 1)Im 1(BIt0) (3.65)
V 7r 2 A

v
I 

( ) 365

t(o) = -i/dxe - irx T J()t(x) J4(°(O)

Separating out the hard Wilson coefficients, we have

T/dwdw' Ci(w')Ci()6(w'- p)(-i)d4x e-irx T J)t(w, x) J(w, 0).

(3.66)

The effective-theory currents in the remaining time-ordered product depend only on
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collinear and usoft fields describing momenta p2 << m2, i.e.

[7MvPi5Xn,w'] (x) [Xn.r,) ] (0), (3.67)

where r - yortio. It is useful to group the collinear and usoft fields into common

brackets by using a Fierz rearrangement. For spin and colour we can use

6

2k=

2 2V, 2
+2N ( 2 Y5
2N, 2

Ta

+(~Tra) _ (--jT) (

-2N 2

( 25T) + (--yTa) O(T)

Equation (3.68) is valid as long as the identity matrices on the LHS are inserted such

that on the RHS the F appear as ~nAFkBTn, where A and B do not contain #

factors. In Eq. (3.67) we insert identity matrices to the right of the V (,) and to the

left of the rF° ), which gives

(3.69)

Here the states IB,) have HQET normalization, (Bv(k')lBv(k)) = 2v0(27r)363(k'-k),

and are defined as energy eigenstates of the LO usoft Hamiltonian generated from

£(o)

Only the vacuum matrix element with k = 1 is non-zero:9

(OIT[T,.(0) 2N Xn,w(x)] Io) = (OT[(nW),(O)2 (wtlit),(x)] o0)2N, 2N,.

= (-2i) 6(,-)6 2 (x)b(6x +) d+ e-ik+x-/2 J(O)(A+)
jT W 

9Note that in Eq. (3.70) 62 (:1) - X2, since from the momentum-space view-point it is obtained
by combining integrals over both the label momentum P1 - A and residual momenta k A 2

rather than just the latter.
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101 (3.68)

(3.70)

T J(()t (W I ) P) (LLw 0)

- ( ).(.PT[R,(x·,j(01 F-(f3 I Jj10) (w, ) Jj(0 (W, 0) I ,)A VT ~0 rvO) ,(o)] B-,,,

x (O T (0)w(O Fk X,-'(X)] 10) -



This definition of JO0) agrees with Ref. [30].1° Owing to the forward matrix element.

the momentum-conserving delta fnction gives the (w' - w), which can be used to

eliminate the w' integral in Eq. (3.65), and the delta function in Eq. (3.66) then sets

w = n-.p. (3.71)

The appearance of the 6(x +) ensures that in the remaining usoft matrix element in

Eq. (3.69) time ordering is the same as path ordering along x-. Up to order ca,, the

one-loop diagrams plus counterterms give

J(0)(k+) = w +i1+(14 CF [21n2 (Wk+ 3iI)3in (k+ i)+7r 2 }
(3.72)

which agrees with Refs. [27, 47].

Next, we simplify the spin structure of the B matrix element in Eq. (3.69) using

the formula

1 r ii ~2
PrPV = PvTr [2Pv + SA[ - fsf' - PTr>[Pmr], (3.73)

m=l

which is valid between heavy quark fields. Here, P = Ps/2, P2h = Sl

P2H = -s/2 for P = (1 + )/2 and s -P vy, 5P. For our LO matrix element the

s" term vanishes and, taking into account the delta functions in Eq. (3.70), we have

only a function of

' = f- x nL"/2, (3.74)

1 0To check this. one must note that here we contract colour indices on the LHS and have an extra
minus sign, since the ,, fields are in the opposite order to Ref. [30].
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k+

(0) J(0 \

Figure 3-3: Momentum routing for leading-order insertion of currents.

namely

(Bv1T [7-(O) (0) 2ij LV7- IU,=I(, -(O)]) IB) 02 i>] (BfIh,(z)Y(zv )h,() I)2(0 ) r=Tr r 1(0)
(3.75)

where Y(J., P) Y()Yt(y) = P exp (ig fy ds n.Au,,(sn/2)). Combining the phases

from Eqs. (3.65) and (3.70) and noting that d4x = (dx+dx-d 2 xL)/2, we see that the

matrix element in Eq. (3.69) is now

i[P -c 2 r IdkJ -r-iZ (rf +k )/2,%(0) (k+) (Bvh()Y(x,O)h,(O)I B,).
2 3 2 7jr J4w

(3.76)

After we pull out the large phases, the residual momenta are as shown in Fig. 3-3,

where f+ = r+ + k+. Equation (3.76) involves just the leading-order shape function

f(I) (f+) = jde + (Bv IYhv(:)Y(, 0)hv(0) Bv)

= 12 (B h,6(+-inD)hvBv). (3.77)
2

Note that we have taken mb >> A, and that Eq. (3.77) depends only on the residual

momentum and masses that are of order A. Since we are free to integrate by parts in

the forward matrix element, it is evident that f(0)(E+) is real. Momentum conservation

implies that the residual niomentuml of the b-quark should not be larger than the

residual mass A of the B-meson, so f(e+) is non-zero only for e+ < mB -mb = A.

Inserting r + from Eq. (3.63). this implies that k+ < p+. In MS the renormalized

shape function depends only on ratios of the dimensional regularization scale and

84



momentum scales A.

To derive the leading-order jet function we need the imaginary part of (-i) times

the result in Eq. (3.76), which is the imaginary part of J(°)(k+) f(0)(f+). Although

the B matrix element integrated over x- is real, it does provide a theta function

that restricts k+ < p+ and therefore cannot be ignored in taking the imaginary part.

The function JO(°)(k+) has an imaginary part for k+ > 0 only, so we have support

for the imaginary part over a finite interval only. The crucial point is that these

theta functions are generated by dynamics within the effective theory and occur even

though we have taken the mb - o limit. For the leading-order jet function for

B - X,s we therefore have [w = ni-p]

J(0 )(wk+) =-- Im[J(O)(k+) 0(p+ k+)9(k+)] (3.78)

By RPI-III invariance [118], this j(O) is a non-trivial function of only the invariant

product (wok+), times an overall factor of w and the theta functions. For notational

convenience, we suppress these extra dependences when writing the arguments of j(O)

as wk+.

Since r+ = nq - mb < e+ < A, or equivalently 0 < k+ < p+, it is convenient to

use the variables p2 = n.pn px and z, where

k+ = Z p, (3.79)

so that ok + = z pn px = zp, and J(°)(k+) is non-zero only for 0 < z < 1. At

order aC, taking the imaginary part of Eq. (3.72) gives

= { () 4 (2 In { 3 (n -)[ 7 - 7r2 )c (3.80)
+P ) Pt )+ Jl, -3 - -) (

4with the standard definitions for the p fnctios. Our definition for the jet function

with the standard definitions for the plus fxctions. Our definition for the jet function

agrees with Refs. [27, 47] oce we compensate for the xtra (p+-k +) that we included
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in Eq. (3.78). The jet function depends only on the dimensionless parameter z and

ratios of pI2 and the momentum at the jet scale, p QA.

At this point we have separated momentum scales in SCETI , and, combining

Eqs. (3.65), (3.69), (3.70), (3.78), (3.75), and (3.77), we arrive at the LO factorization

theorem in terms of partonic variables,

A

WP°) = hi(n'p,mb, l) |d
+ )(°)(h 'p(f+-r+), p) f(0) (+,/) (3.81)

AX-r+

= hi( p,mb, P) ] dk+ j(o) (n p k+, I-) f(°)(k+ +r+, ) .

Using Eq. (3.64), the final LO result in terms of hadronic variables can be written as

A

WI() = hi(p, mb, A) di+ j(O)(p, mbA+ p ), At) f () (e+, A)

Px

- hi(px, mb,,A) j dk+ J(°)(px k+,') f(°)(k++A-p+, p) (3.82)

hi (px, mb, ) p+ dz J()(zm , A) f(°) (A - (1 ), ).

For practical applications we would also make use of a short-distance mass definition

for mb (the cancellation of infrared renormalon ambiguities for the shape function

was demonstrated recently in Ref. [73]). Here, the dependence on whether it is X, or

X, occurs only in h(°) and the values of the kinematic variables n p and n px. The

fillctional forms of j(O) and f(O) are independent of which process we consider. The

hard coefficients are given by

hi(w, mb,i, ) =y , .,r ), PFA , (3.83)
j,j

witl tle I projectors P]l' defined in Eq. (3.17).
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Taking the traces in Eq. (3.83) for B -+ XD, we find that

/ 11 = 1 [C )] 2

h =
nq [(C n.q))2 + C-v)C.q) + Cv)Cv)]

(n.q-n.q)
(CV) )2

2(n-q-n-q) '

(3.84)

+ (Cv))2 + (n.q)2 [(C(v))2 + 2C(v)C(v)]4 ( q- 
4 (n-q-.q) 2

[(c(V))2 + (V)C2( + cv c?)]
2(nq- q)-2(n-q-n.q)

For B Xsy, where i.-q = 0, the traces give

h = (n.q)2 (c( t)
1 

1 (t)) 2-2,_ 2 - 3 )2,

h = 1 (3C(t) - 2C0t) - 2C(t) - t)) ((t) -

n 2q ((t (t) (t) 2
a = -~ -2 1 2 -

Here the h'°'s depend on ln(p/mb) and in addition y = n.p/mb through the O(as)

corrections to the Ci's (see Eqs. (3.59) for results at /u = mb).

The factors of n.q = mnBX (for B Xy) and nq = rnR(1-H), nq = TrB(1-uH)

(for B X,, e) are purely kinematic and so can be directly replaced by these hadronic

variables. Expanding to leading order about x = 1 and 'U = 0 gives the results

that should b)e used at LO in the SCET expansion. For notational convenience, we

write

= ou + ho'u + .
i i +, (3.86)

87

C(v) (2C(v) + C(v))

[(Cv))2 + 2Cv)Cv)] n-q

2 (t)2~2 - C(t))2

2C(t) + ct)),

(3.85)

hs=0 h n q (C

hs ho' + h-s+ . .



For B - Xjfi we have

t,11 = I [(?t)] 2127' 1

,1 (hitT - _2 C~l ) () C(U) C) C(v)
2 - [C>+' 1 2+1 + 2 ]

,YH

121 H
2 TaBYH

I

(3.87)

+ (C2(v))2 + [(CF() +2Cv) C()]

, Cv) (2C1v) + C') ,

1
2 3- ;BYH

[2C() + C3")],
while for/B -- Xsy we have

hos E3 (C(t) 1 C(t) -C(t)2I 4 22 3

hos - (3C(t) - 2C)(t) 2C(t) - C(t)) ((t) - 2c(t) + c(t ))
h4 - 4 1 2 1

hM - B C(t) 1 (t) 
2 2 ()Ct

The results in Eqs. (3.87) and (3.88) agree with Refs. [27, 47]. At NLO in the power

expansion, it will be necessary to keep the next term hf from the expansion of the

kinematic prefactors in Eqs. (3.84) and (3.85). For B X,fv we find

h u = O. (3.89)

h2 ou = H [(CV ))2+

hO'u _ I2H (C(v) 2

2Tn,B2YL

OlL 2uzi
.14 -' 0:v (2C~v) ± 
- yBn UH

0
~ u {

+ '-- 2mB YH) C()
mBH

[2c") + c : )]}

h7t'3

hou5

(3.88)

/1 = -O' 'tH{
1

s'/2~[
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OM· + CM OM1·)

hos = hos = B _ C3 
2 3 2 1 

2 (I - y) [ (C3')) 2 + C ( C3(v ] Y \3 T~ 3 1 )
HH

I C2 c v) + C2V) C3·] 

[(C,(C))2+CI. CuCI) (') I



while for B -> X¥y we have

O. m8,"1 ( lC(t) -C)) , h°'s = 0, (3.90)Ml2 IY

's - mB(XH-1) _(t) (t) /'S 0ho's - _ C ho'= 0 (3.90)3 = 2 , 1 2 2

-' mB(XH -) (Ct)C(t) t)) 2
2 2

In Ref. [99], the LO triply differential rate for B -+ Xev was found to satisfy

d3rU/dxdydyo oc (x- ) (yo - x). In terms of the h°u, this corresponds to the relations

hu = 4h°U/YH and mBhou = 2hOu/ H (where at LO we can set y = (1 - UH)(1 -YH),

Yo = 2 - H - YH). Eqs. (3.87) agree with this result at tree level in the hard

functions, but give non-zero corrections to the first (h°U) relation of order a,(mb)

from the Wilson coefficients Ct) and C( ).

3.5 Vanishing Time-Ordered Products at 0(A)

To work out the factorization beyond LO is now simply a matter of going to higher

order in A in SCET. At order A the time-ordered products are

Tla = -i /d4x e - ir' x T[J(°)(x) J(la)() + J(la)t(x) J()(0)] , (3.91)

tl b = -i d4x e- irx T[J(o)t(x) J(lb)(0) + J(lb)t(x) J(0) ()]

tlL = -i d4xd4y e- ir T[J()t (x) iL() (y)J(O) (0)]

We shall see that these time-ordered products give vanishing matrix elements for

B - Xy and B -> Xjv. The result follows almost directly from chirality and the

fact that the currents in Eqs. (3.51), (3.52) and (3.54) all involve left-handed collinear

quark fields. However, we must be careful to check that terms proportional to the

chiral condensate do not contribute. We follow an approach similar to the previous

section: by using the Fierz transformation in Eq. (3.68), we can collect the usoft and

collinear fields into seplarate parts J 0 S. and the matrix element then factorizes to
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give (01J10) 0 (BISIB,). These parts are still connected by indices and spacetimle

integrals, which are represented here by the 0.

For T l a and T lb , we take the expressions for the currents from Eqs. (3.51) and

(3.52). The same usoft fields appear as in the leading-order T(), and so the T-

products involve soft matrix elements that are similar to the one in Eq. (3.69), namely

(BV|T [ (x) tF F; T ( ,) ,, (0) ,

(BTvT[[T (x)Tj(u) F~ r(°V) 7v(0)] BV,) (3.92)

with similar matrix elements for Tlb but with T(la) _ (lb). The first term in

Eq. (3.92) is multiplied by the collinear matrix element

J(la)(0, x) = K clw'I k ,w) ) (3

while the second term is multiplied by [Jf(la)(x, 0)]t. For Tlb the analogous result is

Jf(lb) (o, x) -(OT[,L ,(0) (igBXc),2() F)] (3.94)m~-v n,,A) 9L cA2 0F

In both J(la) and j(lb), the fact that we need an overall colour singlet eliminates the

possibilities k = 4, 5, 6. Owing to the presence of the a I-index, rotational invariance

also eliminates k = 1, 2, leaving only F3 = -y-/(2Nc). However, this term has the

wrong chiral structure and also vanishes, i.e.

XnLF3X ° XnPR403YPLXn = 0, (3.95)

so both T l a and Tlb give vanishing corrections.

For T1L we need to use the Fierz identity in Eq. (3.68) twice to group together all

usoft and collinear factors. This gives the usoft matrix element

(0(3.96)(BVXv(x))F0 (iRLs ) ()Fnr(0)() IB (3.96)
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multiplied by the collinear matrix element of a four-quark operator, which we claim

satisfies

Kof [n(v) xX(X)] [(O) (iDcX)(y)] 10) = 0. (397)

To prove Eq. (3.97) we begin by noting that colour now allows Ta terms as long

as they occur in both F's, so either k, k' E {1, 2, 3} or k, k' {4, 5, 6}. For either

possibility the argument is the same, so for convenience we take the former case.

Rotational invariance now demands that one of k, k' is equal to 3 and the other is

1 or 2. If k' = 3, then the first pair of collinear quark fields vanishes, just as in

Eq. (3.95), while if k = 3, then the second pair of collinear quark fields vanishes.

The results in Eqs. (3.95) and (3.97) rely on the underlying assumption that there

is no structure in the vacuum that can flip the chirality. In QCD we know that

this is not the case, since the chiral condensate (and instantons) take L - R. The

above argument is valid because we have used chirality only at the 2 QA scale

where we are matching perturbatively, and not for t2 2 << QA, where it is badly

broken. The same argument applies when perturbatively matching on to the weak

Hamiltonian at - mw > A.

3.6 Factorization at Next-to-Leading Order

Since the order A contributions vanish, the first power corrections occur at order

A2 = A/Q and will be referred to as NLO corrections. The NLO contributions to the

decay rates have several sources, including the following:

i) expansion of kinematic factors occurring in front of the Wi in the decay rates

given by Eqs. (3.31) and (3.32).

ii) expansion of the kinematic factors appearing in the hi at LO, i.e. in Eqs. (3.84)

alld( (3.85),

iii) expansion associated with the conversion from partonic to hadronic variables,
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given in Eq. (3.100),

iv) higher-order operators contributing to the time-ordered products, given in

Eq. (3.105).

Once the region of phase space where the SCET expansion is valid is properly defined,

as in Sec. 3.2.3, the corrections in i) and ii) are straightforward to compute. The

corrections from i) do depend on the choice of how the XH charged-lepton variable

is treated, for example whether we integrate over all of XH or instead look at an XH

spectrum with a cut. Results for i) are given in Eqs. (3.40), (3.41) and (3.39). For

ii) the required terms are derived by keeping one more term in the Taylor series in

passing from Eqs. (3.84) and (3.85) to Eqs. (3.87) and (3.88). We give the results

for i) and ii) in Sec. 3.7.2. Note that these terms are already in terms of hadronic

variables and are therefore unaffected by the conversion in iii).

The NLO terms from category iii) are discussed in Sec. 3.6.1 below. The contribu-

tions from category iv) require several sections. In Sec. 3.6.2 we give a complete list

of the time-ordered products arising at second order in SCET (category iv)), along

with a summary of the jet and shape functions they generate. In Sec. 3.6.3 we carry

out the tree-level matching calculations for these time-ordered products and define

the jet functions at leading order in as. In Sec. 3.6.4 we give operator definitions for

the shape functions. Detailed derivations of the NLO factorization theorems for these

time-ordered products are presented in Sec. 3.6.5. Finally, results for the computation

of the traces that give the NLO hard coefficients are given in Sec. 3.6.6.

Note that the final results for contributions from i), ii), iii) and iv) are summarized

ill Sec. 3.7.

3.6.1 Switching to hadronic variables at order A2

At LO the factorization theorem in terms of partonic variables was given in Eq. (3.81):

Tl'](°) = h,°(ip,mb,) / dk4 J(°)(. pk+, 1 ) f(0)(k++r+, ). (3.98)
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In this expression, the variables n p and n r have a series expansion once we switch

to hadronic variables. For the accuracy needed at NLO we have

n .p= n x -A, n r = (A-n.px) - (Al + 3A2)
2rb

Expanding Eq. (3.98) gives the LO term in Eq. (3.82) plus the NLO terms

[Wf)]NLO -_ (A1 + 3A2) ho(px , mb)
[Wi(0)]NLO __b iro

X df(°)(k++A-p + )

{ dk +

X Jdk+ d {h°(

_ (A1 + 3A2 ) hi(px, mb) I
2 mB

| dk+ (o)(Px k + )i

- A [(h°of J(°))' 0 f()] (pxPx)i P ,Px'

Note that in taking the derivative with respect to np we differentiate only the Cj (,p) 's

in h° and not the prefactors depending on n.q. For later convenience, we switched to

hadronic variables in the final line of Eq. (3.100) and defined

X dk+ ()(px k+)
foP~dk

df (°) (k+ +A-p + )
dk + (3.101)

[(h Of J(0))' 0 f(O)] (Px, Px)

-(k+ -p + )f( )(k+ +A-p ) 

d f ) d ±A p

xf()(k++A -p+)
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(3.100)

- (k+-p+)f ()(k++A-px+ ) }

p, mb) J(O)(p k+)} p= f(°)(k++A-p+)

[j(o) 0 f)] (+, Px)

[J(O) f (0)] (PX+I PX-



Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

(0)

2 ®

o X

iJ 0 J2,t
(2) J(O)t 

J

x

(1) (1)
J(0) Lrq Ltq J(O)t

&-,. -)I

ho () f(2)

hl ,2J(0 ) f(2)

h3,4 1( 2 ) f(4)J 3,4

h5 ,6 j(- 4 ) e (6)

h5-8 (-4) g(6)1h_~2-4 95-10

Table 3.4: Time-ordered products that are of order A2 = A/mb overall, and that are
non-zero at tree level. The power of 2 is obtained by adding the powers from the
jet functions J to those from the shape functions f or g. We suppress colour and
Dirac structure in the usoft operators listed, which can be found in the text. The
time-ordered product in the last row has not been considered in the literature and is
enhanced relative to the other entries by a prefactor of 4iroa(ExA) 5.

94

T-product

t(2H)

j(2a)

§j(2L)

¢j(2q)

h(x)h ()ig) (y)

h, (x) (DT, h) (O)
(hvDT,I)(x)hv(O)

h, (x) (D D ) (y) h ((0)

h(x)q(y)q(z)hv(O)



Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

t(2b)

t(2c)

ti(2La)

jt(2Lb)

¢j(2LL)

(0)

Kf t

h[2b] j(2) f (0)h[] Jo,2)

h12c] 2)1 0 f(O)

h[2L a] (° ) (2)

h[2Lb] (O) (2)h[L ]j 2
913,14

h[2LL] -2) (4)915-26

hv (x)h ()

h, (x)h, (0)

h,(x)D(y)h,(O)

h,(x)n D(y)hv(O)

h(x)Dl (y)D (z)hv(O)

Table 3.5: Time-ordered products that are of order A/mb, but have jet functions that
start at one-loop order. The last three rows introduce new shape functions that were
not present at tree level. Vertices that are not labeled are from L().
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Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

o (2a .....//- Le(o)t
a o L g ---- oCg 

L (2gb) X

h[2Ga] (-2) (4)
3'f 3,4

h[2Lb] j(o) (2)
/h g913, 14

h[2L ]Jk., 911,12

XR(O)t

Table 3.6: Examples of non-abelian terms
A/mb and have jet functions that start at

in time-ordered products that are of order
one-loop order.

3.6.2 Time-Ordered Products at order A2

To enumerate all the possible time-ordered product contributions at this order we

consider all possible combinations of SCET currents and Lagrangians from Sec. 3.3.

J(n¶)t(n2) ... £(nj_2)J(nj)

where nl +... + nj = 2 for NLO, i.e. O(A2). It is useful to divide these time-ordered

products into two categories, those that have a jet function that starts at tree level

and those whose jet function starts at one-loop order only. To determine into which

category a time-ordered product falls, we first note that the jet functions are vacuum-

to-vacuum matrix elements, so all collinear fields are contracted. Since there are no

external IL-momenta, at tree level all collinear lines have no I_-momentum and factors

of P_± all vanish. (This is also true beyond tree level for factors of Pa that act on

all collinear fields in a J or Jt.) Thus, for example, the product J(lb)tJ(lb) has a jet

function that starts at one-loop order since we must contract both the collinear quark

and gluon lines. A second example consists of tilme-ordered products that involve a
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t(2Ga)

t(2Lb)

T(2La)

h,, (x)(D I , (y) h, (0)

,(xiiD(y)h,(O)

(3.102)



£() insertion, in which neither the PL nor the A' in the DI can contribute at tree

level.

The time-ordered products that appear already at tree level will be most important

phenomenologically, and include

(2H) = -i d4x d4y e- ir T[J(o)t(x) i(2) () j(o) (0)] , (3.103)

T(2a) - -i d - ir x Z T[J(2 )t (x) J(°)(0) + J(°)t(x) J(2n)(0)]
K=a,b

T(2L) = -i d4x d4y e-irx T [J( ° )t (x) iL(2 a)(y)J(O) (0)]

t(2q) = i Jd4xd4yd4z e-ir.x T[J(O)t(x) ilg)(y) ig)(z)J(O)(0)]

These time-ordered products give jet functions that are either the same as at lowest

order, namely J(O), or enhanced by two or four powers of A, namely (- 2 ,- 4). The

corresponding shape functions are power suppressed relative to f(O) by two, four and

six powers respectively.

The most pertinent information is summarized in Table 3.4, along with examples

of Feynman diagrams and the forms of the non-perturbative usoft operators. The

overall power of A2 is obtained by simply adding the superscripts in the operator

insertions. Dividing this overall power into that of the jet and usoft terms is slightly

more involved since it depends on the individual operators. At tree level it is simply

that every additional collinear propagator enhances the corresponding jet function by

A-2 . Generating additional propagators requires inserting subleading operators with

additional usoft fields that produce power-suppressed shape functions. The power

counting in SCETI restricts us to consider at most two O(A) operator insertions, so

this guarantees that the greatest enhancement from the jet function is O(A-4 ) and

the set of possible terms is finite.

From Table 3.4, we see that for T(2a) and T(2 ) the collinear fields give a jet

function that is identical to j(O) defined in Eq. (3.78), but have A/Q-suppressed

shape functions f(2) and f( 2 ). For T(2L) we find an enhancement of Q/A in the jet

fimctioll (-2 ), but shape functions that are further supplressed, namely f(4), whichf3,4 
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are down by A2/Q2.11 Finally for T(2 q) we have the biggest enhancement. Q2/A2 ,

through the jet function j( -4 ), and a shape function f(6) involving a four-quark

operator, which is down by A3/Q3.

In Table 3.4 we also notice that it's only the J(O) currents that appear, plus

the subleading currents j(2a) and (2b) whose Wilson coefficients are related to the

coefficients in J(O) by reparameterization invariance (see Appendix B). This implies

that the logarithms encoded in the running of the subleading hard functions h1- are

the same as the logarithms that can be resummed in h°. (Here the term "logarithms"

includes Sudakov double logarithms as well as the usual single logarithms.) This

result depends on the fact that the Lagrangians that are inserted do not run. This

implies that the logarithms resummed between the scales m2 and mbA are universal

for these terms (besides the simple HQET running from CF(P) in (2), which is easily

taken into account). Additional logarithms occur below the mbA scale and there is no

reason to expect that they are universal. A computation of the anomalous dimensions

of the corresponding soft operators would allow these additional logarithms to be

resummed. Finally, for the time-ordered products that appear at one-loop order in

the jet functions, even the logarithms between mb2 and mbA are not the same as at

LO. They are, however, entirely determined by the running of the J() currents that

were calculated in Ref. [87].

At one-loop order in the jet function, the remaining time-ordered products start

11Note that in the subleading Lagrangian L(2) the two I derivatives appear at the same spacetime
point. )roviding a simple explanation for why this occurred to all orders in the twist expansion in
Ref. [26].
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contributing. They are

t(2b) = -i/d4x e-ir' C T[J(lK)t(x) J(le)(O)] (3.104)
=a,b, t=a,b

t(2C) = -i drx e- i r ' E T[J( 2t )t(X) J(0)(0) + J(O)t(X) J(2e)(0)]
£=c,d,e,f

(2La) = -i fd 4xd4y e- irx T [J()t(x)i) (y)J()(0) + J(o)t (x) iL( ) (y)J(1) (0)]
r.=a,b

- / J d4 y eirx T [J(lK)t (x) i((y) j(o) (0) + j(O)t (x) i()(y)J(ln)(0)]
-=a,b

t(2Lb) = -i /d4 d4y e - ir T [J(O)t (x) iL(2b)(y) J(o)( ]

-i d4x d4 y e-ir.x T [j(O)t (x) iL(2b) () () (0)]

t(2LL) =_ Jd4xd4yd4z e-ir.x T[J()t(x) if(l)(y) ifl) (z)J(°) (0)]

- i x d4 y d4z eirx T [J(O)t(x)iL(l)(y) iL() (z)J(O) (0)]

- / dx d4z e-irX T [J(o)t(x) iL(1)(y) iC(l) (z)J(O)(0)]
T J ~It )L (y) °(1zo (0)].

t(2Ga) =-i J x d4y e-irx T [J(O)t (x) iLc(2 a) (y) J(o) (0)] .

Information about how these time-ordered products contribute to the factorization

theorems at O(A2) is summarized in Tables 3.5 and 3.6. Note that T(2b) and T(2 c)

match on to subleading jet functions and the leading-order shape function, and so

these (a,) corrections can be calculated without introducing new non-perturbative

information. The remaining T-products give new subleading shape functions that

were not present at tree level. Together the terms in Eqs. (3.103) and (3.104) provide

the c(omplete set of time-ordered products that contribute at this order in A and at

anNy order ill a:s.

Adding up the contributions from the various subleading time-ordered products,
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we find that

T,(2)f = h (72 p)
2mb

a hrf (n p)+E 
mbr=l4 hrf (fn p

r=3 

+E hif(p)
r=5 -p

PXdk+ (O) (fi p k+, p) f 2 ) (k+ + r+, it)

f(2) (k+ + r+, [L)| dk+ () ( p k+, p)
Px

/dkl+dk+J(-2) (nip k+, ) f(4) (k++ r+, /u)

/dk+ dk+dk3 1( - 4) (.pk,,) f( 6)(k+ + r+, )1 2 3~~~~~~~~~~~ j

+ hfi P) j dk+ ()(ip k+,I) g )(k + r+ ,,u)
Mb 9

dk + dk+ J(-42) (np k+, 1L) g(4) (kj+ + r+, ,p)

Jtdkdk Jl Y 2+ k2(- 4) (n.p kj, ,) gr6)(k + r, ,)

ktdkdk+ [J3(-4)(np k, _) g 6) (kj + r+, it)

+ J4(-4 ) (n p k g(k + r, +,)]Hr+2 3

I d k + ( ) (1,2,P X k+)
ZO

+ Jdzdz2 i

m=1,2

h[2 c]m+8 ( .p)
+ .

m mbm=3,4
10

+ E dzl

mb

dk+ (2) (p k+) f () (k+ + A-X + )
o

dp +I dk
Jo

+ W 2Lalf [g(2)

13,1,1 ]

+ .iL [ 9f12 1] 1

ee j 12, 3 ad ) ) (-) for = 3, 4 respetively.

whereall th = 2 and j' , 2,3 and f = 2 for r = 3, 4 respectively.

Recall that f = s for B - Xc,- and f = U for B - XjP. If we work at tree level
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4 hf(fp)

r=3 mb
6

+ 1
r=5

+E
r=7

ihrf (7p)

n p

hif(n p)
n p

h[2c]m+8 (Zl, np)

mb

f'O (0)(+ +-p; )

'T() (z, p- k+) f O)(k+ + X -p+ 



in the jet functions, then only the first four lines of Eq. (3.105) are required (with

shape functions fi-6). In our notation, the fi denote shape functions that appear

from tree-level matching, while the gi denote shape functions that show up only when

one-loop corrections are considered for the jet functions.

3.6.3 Tree-Level Matching Calculations

In this section, we show how computing the four tree-level diagrams in Table 3.4

immediately allows us to obtain the tree-level jet functions, properly convoluted with

the non-perturbative shape functions that show up at NLO order. Note that no sum-

mation of operators is necessary. An operator-based derivation of the factorization

theorems at all orders in the jet functions is given later, in Sec. 3.6.5.

First consider the computation of Fig. 3-3 using the LO jet function from the

time-ordered product in Eq. (3.65), with currents as in Eq. (3.67). Working entirely

in momentum space and contracting the collinear quark fields in the diagram gives

(-i) (e+) (° )' 2 n'P (0)7v(e+), (3.106)- A j (.pk+ + i) 

where p is the large momentum flowing through the collinear quark propagator.

Taking (-1/7r) times the imaginary part gives

J(°) (k+) = 6(k+) + O(as), (3.107)

for the tree-level jet funlction. which is equal to (f + -r + ) by momentum conservation

since

+ = k+ + r+ . (3.108)

Thus, from Eq. (3.106) we can directly write the convolution of jet and soft factors
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a)

ti

r+S D

k+ 

Figure 3-4: Momentum routing for a) T(2L) and b) T(2 q). In a), the operator with
one gluon comes from [iksiP ].

as

Tr [P,° ] +{ (°)(-r+)} {h,Y6(+-in-)Ythv}, (3.109)

where we have used 7-I, = Ythv. Performing the integral at tree level gives the well-

known fact that the decay spectrum is determined by the shape function evaluated

at r+. Note that in SCET we needed to compute only one diagram rather than

resumming an infinite sum of operators.

At NLO the tree-level diagrams are shown in Table 3.4. The graphs for T(2H)

and T(2 a) involve the same calculation as in Eq. (3.106) but just leave different soft

operators.

For T(2 L) the momentum routing is shown in Fig. 3-4a. Contracting the collinear

quark propagators in the graph gives

,,(0) n [.p -e np
2(n pk++i)[i i s ]() fpn P 2 2 (npk++ic) v(1)

1 n [ 1E I- 2'Ya D 1z ] (t -_ _e_+)__, (e+)

2np [ 2 (4)[iD 5 sr oV A P v 1 7-t, ( r;7~l r)[V,, (V +-e+)H V s v(us 2,ii -p 2 (k+ + ic) (k + ie)(k+ +ie

(3.110)

where momentum conservation sets k+ = + - r+ and k+ = 4+ - r+. Taking (-1/7r)

times the imaginary part gives the tree-level jet function

)(k+) = (k) - (k) + O(a), (3.111)
10+ k+
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and the convolutions

2 1 [P r'O) . YKJlr(O)]
2h p u' 

+d+d i { (-2) (+ - r+)}

x{hvYa(e+ - in. )YtiDiD.l ±Y6(e1 - in.)Ythv}

1 -Tr([s) 
+2fi.p 2 ja YI ) -

x{hY6(f + - in.O)Yt1DuiiD±0y 5y5Y(f+ -in.O)Ythv}. (3.112)

Finally, we consider the NLO time-ordered product T(2 q) with the momentum

routing in Fig. 3-4b. This graph gives

1

ft~pk+2 + i
(3.113)(_i)2(i)4g2[ v(+)r(o) f np -y7T A +us(y+-f+)

,H 2 (,.pk+ie) 3 2j(- ~
X [u (+ -t ) TA (.p k +i r>0) (+)

1 2r- 2 -)TA1ip] [
ii.p(k++ie)(k±++iec)(k++iE) 2 T 

As I 2 r ()v

where k+ = +- r + , k+ = +- r+, and k+ = +- r+. Taking (-1/7r) times the

imaginary part gives the tree-level jet function

a(kf+ )

(kl+)(k)
+ ( k) _ 26(k+)6(k+)6(k+)

Writing out the convolutions for these four-quark operators, we find

-p Jd(-4) (j r )} [hYS(f+-in )r() iTAYtqs]

x6(+ -in.0) [qusYTA 2 F(°) (+ -in0)Yth] (3.115)

3.6.4 NLO Soft Operators and Shape Functions

In this section, we define the shape functions that can appear in the NLO factorization

theorem. At tree level, many of these functions have already been defined in Ref. [26]

(we use a sequential enumeration of these functions. and translate to the notation in
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Ref. [26] in Table 3.7). We also define the additional shape functions with four-quark

operators that are not given in Ref. [26], and later in section 3.6.5 the shape functions

that appear only beyond tree level in the subleading jet functions.

We begin by enumerating the usoft operators. For the time-ordered product of

the LO shape-function operator and the subleading HQET Lagrangian we define

0)(+ ) d --= 8 e-e J4yT [h, ()Y(;, o)hv(o) iOh(y)] . (3.116)

With igGus = [iD-L, iD s ], the remaining ultrasoft operators that play an impor-

tant role include

Of(+) = - t i+ [iv( ()(iZ )-s )(O) + (h.c., x 0)]
J 87us
1 -

hv {, i (t+-in Dus) hv, (3.117)

= 2 hv{iD', 5(~+-i.Ou~)} yhv 
2PO(£+) fdx

d 8- = e+z [_iTv(z)(iDusv)() + (h.c., 0)]1

- 2 s( -in DUS) {pi : iTl/} bj -iru D1l)h.1-J Idx- i e iTev(:(i') -v)() + (.c., - )]0)]
- h ( ,[iO .6( (+- in D )]7 f. 12XI ~ 87r ush, [ihDO(, J+-iin- Du,) ,h, '

rn,;3(gf!+) ~ fd- y- '+-,!+· e e i D I,, ( J:)(~i o~[z,,,,,.] (v)

h, (f -in. Du')a,,D (fi -i. D,,, ) ,

- 5 327'2 et

2 us
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and the four-quark operators

05 -1t.2 ) = 2 3 e- t+,-++ !I+)+- X iof++ +(f+ -e+)Z- ) APTA n ( )O ('1.2.3) e 13{4- )-+ 4 ' L

x () PLT A7t ()] (3.118)

= {h2 h,6(e+-in Du)7yPLTAq } 6(+ -in ) {eq-PL((e+ -in. D )TAhv}

o =Jfdx-dy-dz {X-±(4-eY- ¢q+ _+(et -)z (- _()-pL, (p )
06 (2,3) 28 3 usj)

X OU1(Z)Y PL'HV1(0)]

= 2 [hV6(3+-inDus)ypOPLq;] (f+-in ) ["yPL6(e+-in Du)hV].

Here ?/u = (~)/4;s and the flavour of the quarks in these operators is s for

B - X~7 and u for B -- XJ,,P. Note that a minimal basis of Dirac structures for

the bilinears is h {1, 7y-y5}h. In the second line for each operator we have used our

freedom to integrate by parts since only the forward part of these usoft operators

is required. The operators in Eq. (3.117) were obtained by matching with tree-level

quark propagators in Ref. [26] and we agree with these.l2 The four-quark operator O' 

appears when gluon propagators are included at tree level, as we discuss further below.

The operator f d1+d+O6 occurs from the disconnected annihilation contribution,

as shown in Ref. [108]. However, since this contribution is of order (A/mb) 2 in the

endpoint region, we do not include it in our analysis here.

When O(c(,) corrections are included in the subleading factorization theorems,

then in general we require additional usoft operators. For example, at O(a,) there

are two additional soft operators generated by T(2 L), and six additional operators

from T(2 q). Definitions for these operators can be found in Sec. 3.6.5.

The sbleading shape functions of the operators in Eq. (3.117) are defined by the

121t seems that Ref. [26] has a typographical error in the phase factor of 0"I and P4' and that
it should rea( ci('l-"2)tle - wlt2. in which case the variables in that paper are related to ours by
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matrix elements

(B, I P (f + ) Bv)(B 103 (+) Bv

(BVIP4 ( ))

(B I.P/3 (e+) B)

where we take v = 0 and cAf =

need

f (e+), (3.119)
= Evg? n ) f(2)(f+)

- /A (2) (e ') ,
= E6 f92)(e)

- - ( t ___ "~' + '
--1 2

/(). For the f4our-quark operators we

EOff72rv<n/(n-v). For the four-quark operators we

= f(6)(e+, ef) +

- 36 \ 1 2 3) '

(3.120)

Recall that we use the notation fi to indicate shape functions that appear from tree-

level matching and gi to indicate shape functions that show up only when higher-order

perturbative corrections for the jet functions are considered. Definitions for all the

gi functions are given with the derivation of the factorization theorems in Sec. 3.6.5.

For the fi, we give the translation to the notation in Ref. [26] in Table 3.7.

In Ref. [26], it was shown that the equations of motion for h imply that

f (2)() = 2wf(°)(w), (3.121)

which reduces the number of NLO unknowns, and that the B matrix element of the

operator 02). vanishes, so we shall not need it for our results. The same is true

of two additional operators, O and PS, which are the analogs of P4'3 but with

anticonmmutators. Ref. [26] also removes P from the basis by noting that all the

momellts of the corresponding shape function vanish. However. we keep this operator

106

nn(9, (BV1- 5 (1, 2,3)IBV)ao-i,%) <.Bv 5 (1, 2,3) I B)



Our Notation

f(0) (e+)
f(2) (f+)
f1(2) (+)

f22 / (e+)
f3(4) (f+,+)

f4(4 )(e, e)

f6(e, e, e 3
f(6) y+e+ e+ e +

J6\1 2 3 

Notation in Ref. [26]

f(-+)
t(-e+)
g1 (-i+)
h (-+)

92 (-4+, -+)
h2(-4 +,-4)

Table 3.7: Relation of our fi functions to the notation in Ref. [26], up to an overall
normalization. Here, + = e+/mb.

since it is unclear whether the moments are sufficient to define the function completely

beyond tree level in the jet function. (We do show, however, that this operator is not

matched on to at tree level in the hard function.)

3.6.5 Factorization Calculations at O(A2)

We now derive the factorization theorems for the subleading O(A2 ) terms. We show

that it is exactly the soft functions defined in the previous section that appear in

the decay rates, and give operator definitions for the jet functions that can be used

beyond tree level.

Calculation of t(2H)

For T(2 H) the factorization is identical to that at LO in Sec. 3.4, except that the final

usoft matrix element is the time-ordered product

Th -tr tn' T t[heY( 0)ho (0]) f( (3.122)The factori th 2mb r 2ib

The factorization theorem for T(2 11 is therefore

Af (+ )
t/ (2H) = h °( 'p.rnb t ,, 1) d(+ J(0)(i .p(+ +mb - n q),) f()

. n q-Tm b
2 mb

(3.123)
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As noted in Ref. [26], the function f(2) can simply be absorbed into the LO f(O), since

at this order they always appear together in the combination

f(0)f 1 f(e+ 2)(+ ) (3.124)

Calculation of t(2a)

For the remaining time-ordered products, the factorization is more complicated. How-

ever, some aspects of the LO analysis in Sec. 3.4 remain the same at subleading order.

In particular, we still have the exp(-ir x) phase factor in Eq. (3.61), a 6(w' - h.p)

appears in the separation of hard Wilson coefficients, as it does in Eq. (3.66), and the

vacuum matrix element of collinear fields still gives a 6(w - w'). For convenience, we

integrate over w and w' and remove these delta functions right from the start when

considering T(2 a), T(2L), and T(2 q).

For t(2a) the analog of Eq. (3.66) is

t(2a) - -E E Cj(np)A 2 ) (np) x eir. (3.125)
j,jt r=a,b

xT [J( -)t(n.p, x) J(2)(n.p, 0) + (2 ) t(i. p, x 0)J ( .p, 0O)]

where Af 2) (w, u) are the Wilson coefficients for the J(2k) currents, as in Eq. (3.50).

The products of currents in square brackets are

j(o)tj( 2 a) + j( 2a)t j(O) _ r' -0, r-(2a) _ iv](0)

1
27. [7't(-i) -s'T (rjXn.w] (x) n,wr )v](0) 

,J(() j(2b) + j(2b)t = [rT) r.] (.) [I. n T( Vu2b Et] (o )

+ -[Rv (-i)t. )jc Xn,] () [Xn ,wr() V] (0) (3.126)

Next we insert identity matrices to Fierz transform using Eq. (3.68) and take the
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(B,... IB,)/2 matrix element. These two terms then become

(()tJ( 2a) +J( 2 a)t J(o) (-1)
8mn,

(3.127)

- ( v (-zuiF) (x)T j ) rF ) F ) , v(0)lBv)}(0[ Xnw(O)F; Xn,,(z)lO)

(Jot (2b) + (2b)t (0) ) 1

4n-p

- (Bv I (7(i ) (x)rtb) Fr,( v ,(0) Bv)} (xn,w()FXn,w()0) )

where it is understood that we have w = ' = fnp, and we have used q = 0 in order

to integrate the iD' derivatives by parts in the J(2b) terms. From Eq. (3.127) we see

that the collinear vacuum matrix elements are the same as in the LO case. Hence

they are non-zero only for k = 1 and are given by the LO jet function JS(O) (k+) from

Eq. (3.70).

Using the trace formula in Eq. (3.73), we can simplify the spin structures in the

usoft matrix elements in Eq. (3.127), where we can now set F{' = 4/2. Here both the

P, and s terms in the Fff matrices will give non-zero contributions, so k' = 1, 2 and

we have

(-p_~j(0) I4[ 9T)3 -f ~2
2 8mb i(2a)

T
p Tr P g [8 (i 2a) Aj(2a) -

k'L8mb '

A(2 ) -*/ 3 (2A) B2)IT4 4i-~p pa 

9c3 ( 2 b)
4n-p a

-4Tr{X'=1} (BI (O + iO2) [IB)+ 4 Tr{X }= (BvI(-O + iO2)lBv)

- TrXok=2} (BVI(PeA + iP2; ) Bv) + Tr{XA (Bv I (- pZ BV'~ + iP2 ')lIBv),

(3.128)

where

T
pH-(O) [ 9 a; T (2a) (2a)

=- AF 2'/ 2 lb j['4 j

7' 2_
= rg23 .)A(-2a) 

ke [4ni g y O 2i r.

2 9, 'T (2b)A(2 b) 1

-(2b) A(2b) (2b) r
jOI j J 2 v

1()9

Xk'

X (3.129)

((B,J-,q,(P'Frj(01)F(`f~iD HI))IBV

R r us BLV\V

7i1v (X) P" (i D'U''Hl,) ( I , 

(-RV iDUS ) W Pk,~FH (0) 1_13, A 2bl ,() (D I



Note that the second trace is the complex conjugate of the first with ( -,- v), since

'o(FA)tyo = F and Tr[X] = Tr[Xt] = Tr[X*] = (TrX)*. These usoft matrix

elements give the shape functions fil, go, and f2 in Eq. (3.119) at any matching order

in a,. The index 3 is transverse to v, as follows from Eq. (3.128) with v = 0.

Combining Eq. (3.128) with the delta functions and prefactors from the jet function

and the (-i) from t(2a) gives

Jdk+J(O) (k) [Tr{x'='l+x --}(- v) fl (k- +r) (3.130)

+{X+X, 2 X g} 90 o(k++r+ ) + Tr{XX=2-X 7 2 }ic fX2)(k+r+)

We include these traces in the definition of the hard coefficients at subleading order,

as was done in Eq. (3.83), defining

h 2a]l 1 A2a) r ) ( )T(2a)(h 

3,3

h [2al2 _ P C[ TTW'P yS, P) # ie w2·>A(2a) _iE mb T(2b)A(2b)
= 2 112 4 2ip j ]

3,A

± (h.c. / v)} P(t,

h2a]oo = 1 cT -rt (2A ( 2a ) mb(2b)A(2b)2 ' 1 v/LJ' 1
'2 4 i j a v ' 2 .p jav J

+ (h.c. /i +-+ v)} Pr

For the Dirac structures T(2 a) and T(2b) that are present attree level h[2a]00 is zero, so

g9(2) cones in with a(mb) suppression. We were unable to prove our suspicion that

g) would not appear beyond this level.

Using Eq. (3.131) with Eq. (3.130) and taking (-1/7) tinmes the imaginary part

11()



gives the NLO factorization theorem for W(2a):

1i.(2a)7

+

+

h2i ]l(n p,mb, ) +
mb O

a]2 mbhi I'np, mb, P)

mb

4h2am00 b

mb

PX
dk+

Xdk + (°)(.p k+ ) (2)(k++r+, ) 
do

Explicit results for the coefficients h2a]are summarized in Sec. 3.6.6.

Calculation of T(2L)

For T(2L) the heavy-to-light currents are identical to those in T(), and so the same

Wilson coefficients appear as in Eq. (3.66), i.e.

i(2vL) _- -i Cj, (p)Cj ((np)Jd4xJd4y e-ir x T
J,)

(3.133)

The difference is the extra Lagrangian insertion with mixed collinear and usoft fields,

lnamely

(3.134)

111

(3.132)dk' (O) 0- - kI ) f(2) (k+ + +, /-t)

J() (.p k+, ) f 2) (+ +,r+, o)

[ J110 I (ii- P ) CC(2a (Y)J(?ip )

(o)t (-,,r2) L(2a ) (

- -(O)II I X - X

=- IIHIT jj XL(wt [ -- i V.~ 'qt~ I I

z~~~~~~~~ r·.(·,o) r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~()F(i' L '112s
k~k'=l

I () [\ L."j'() R'] (0

(y) F;"H r. H, (0)

[X"()FL .(X] 'L (OF 
E~n(:c>F~:L ~n,,I~>] n --w- 'VHi (n) -



where in the second line we have used analogs of the Fierz formula in Eq. (3.68) that

are appropriate with left- and right-handed projectors,

PiL = 2 k L k = F [( PL)(P )+( -7/PL) (
L 01 22 N, 22N )0(L 2

+(2PLTa) (P Ta) + (-~y PLTa) O (PL Ta)] 

PR 1 = 2 fk -[(PRN )( O ( PR) + (PR 2NP )R)2 Id ' k 2 kRNe 2 2N, 2
k'=1

+(2PROT') ( PRT) + (-PR~yT b) 2 PRTb)] (3.135)

The vacuum matrix element of the collinear four-quark operator in Eq. (3.134)

must be a colour singlet, implying that either k, k' E {1, 2}, so that both Ff's have

no Ta's, or k, k' {3, 4} and the colour structure gets reduced when we take the

matrix element, using Ta 0 Tb = TA TA Jab/(N 2 - 1). Rotational invariance then

implies that the matrix element gives k,k' so we do the sum over k' and set k = k'.

This leaves four terms in [XFLXL[XLFRnX

[F1 L] 0 [F ] = 6k1[ 1[ PL [ P] 6P] + (k2 [+2NY P] [ 2N, PR]
N, N,2 2N 2N RJ

+ k3 (46ab )[PLTA] 0 [PLT A] + k4 2 - [- A
(N 2 _ 1) 2 Nc- 2

(3.136)

When we use Eq. (3.73) to reduce the Dirac structure between the heavy quark fields

in Eq. (3.134), and take into account the 6ab's from Eq. (3.136), the usoft operators

becollme

2

Z [i r tT)r F/Ln% I F nR 3() [()FA (iD riDIT) (O)H(0 . (3.137)

Tr[k. r jFk -/ L 1 2 Fk r )] [Lv(z) Fkt T (ik j us US) S ( )],
k"- I

for C {1. 2} and A C {3. 4}, respectively. The spin-trace t)hat occurs in both terns
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can be simplified with '- = (go, -iel7Y5)0 and ?_" = f(gl 3_ -i , '35):I I I I I I I - Z~~Ez I %)

Tr [Pi rJFk½ L.2 /If - , I
["~~~~ 

[(JkI + 43)(91 i-i )

+(5k2 + k 4)(g i )( --ie) ] Tr [PkH 7j), ' PRF( )] . (3.138)

The (9gl-icE) ternms contract with the (g'l+icEp)/2's in Eq. (3.136) to give a 2.

From Eq. (3.136) there are four jet functions:

(3.139)

e-[k2 +(k - k2)Y ( 2)(i+)e__~ 2 1 -2 J 1'_ , k. ) ,

(ol [n~Y) N Xn,w Iz [Xnw N(0 p WY)] lo)

-46(w-w')2

2(01 [g.(y) O',-An X

-46(w-w') 62 (x
0.I

fd dt±)6(x+)62(y±)6(y+) dk dk

[)Xn, YI (0)) dp X k1 ())

4

(N2-1)

-46(w-w') 2= w( di dk + i2 [k2+-+(kl+k+)y-] ,(-2) +

2

(N2_-1)

-46(w -) 2 (xI)6(x+)6 2(y±)(y) +)jdkl dk e2 [k+x-+(kt-k+)y-](-2) (kU) JLJ~~~- J4r7 e21(2r)2

At tree level, only 7( - 2) is non-zero. It has the value

J 2) (n k1, .l k2 ) 1 [ 
In k, + i] [ik 2 + i]

At one-loop order, () will become non-zero, while J2) and J4(Lw2) are non-zero

only at two-loop ordler. The expansion here is in as at the jet scale, ti2 r-- m2 .x\'e

denote the imaginary parts by

g-2) = (1) Im JJ(2) (3.141)
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(3.140)

e-[kx-+( k+-k2a+)y-]((W2) (kt) 

,)6( +)j2(yj_)j~y+)

(0 [n(y)OPLT (.c·] [ ) OPLT 3mA=Xn~y)] lo)

(01 [X,,(y)#- ~L-PLT (0)#-VJ,-,LP,,T Xn(Y)lv



Eqs. (3.136) and (3.138) also show that if we work at any order in as there are four

shape functions generated by T(2L), i.e.

(gU ' rT) 32 e - [ L-+Y l KBf · i-(x)F(,, (iDL Ls ) (Y)Y V (0) I /j -- 32 e IusIu

= k"1 f 3(ft? f +) + k"2 lV/- . )1 2 ( 7 -v )y(f l +) ,

(g 2CaT)
dz- dy- +dxY 2 

32w2

-- 6kl 3(4 j2+) + 6 k"2 - nT )94(f+, ,+)I ddy ei[x-e++yei] (Dv,((~h I 7I
32w2 \vv¾k 7us us8 yh~0 ~

=- k"1 f3(t1, 2+) -- k"2 (tV n/n ) T f- , 2 n-v1

/-idy -e -2++y-e+l] (BV'v()FhTA ±(iD -xD i32wT2 \v I ( ()F/, us us

= 9k"1 93( f ) - 4k2 / V n 7 )(ll+ e+
)n-'v

Here the index i7 is from Fh = PVT, 5 PV At tree level in the jet function, only the

first of these four combinations occurs. The functions f3,4 were defined in Eq. (3.119).

The definitions of 93,4 are

= 9g g34)(e ,e+),

= _f03 (l /A ) g4) (t+, +),-E~ n 
where

(3.143)

0A(e + +) =
"7 1 2~2/

dx- dyi -2erz-e- ( -) [+) ,(.)T(iDs: USIJd dy- - 2 3 R I 32 w2 c 2 1 2 [ ( X T {2 Ds 2 D I hy)T (0)],

fdx- dy- -!,i-
i1 -32/ 2, (22 s 2 e 2 _ ( - C, i O 7 (.] ))TA[iT . 7 r.(())]

32nT218 ' us ' A(3
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(gI +z Iy )

(gu'r ±'EcT) (y)TAHvI (0) IBv)

(3.142)

\ h TA i-DI aD-L AH'(0)I (BvJ H(-flF',,T T) ( T B,



The hard coefficients can now be defined to be

-fib Zcc~{P~P) r
3,3

mb 

n-p i,/

2 pDr 0)

Cj 7 Tr P --("75 ,2

pJVl b oh,

n.p

PRr' 0 ) } P

Combining equations, we get the final result for the T(2 L) contributions:

h2 L]3 (.p, mb)

mb
/dk+dk+{ [J1(-2)(?.p k+) + J(-2)(p k+)] f3(k++r+)dk d+ 1 (ftp k

+ [(-2) (n*p k+) + j(- 2)(f.p k+)] g3(k++r+)}

+
h [2L]4(.p, mb)

mb
Jdk+dkA+{ [J(- 2)(?h.p k+)- J(-2 )(n.p k+)] f4 (k++r+)

+ [(-2) (np k+) _ (-2)(n .p k+)] g4(k++r+)}3 _P j gj kj (3.146)

Explicit results for the hard coefficients h 2L] are summarized in Sec. 3.6.6.

Calculation of T(2 q)

For T(2 q) the heavy-to-light currents are also identical to those in Eq. (3.65), but now

we have two insertions of the Lagrangian L(), i.e.

ij,

(3.147)

Owing to the hermitian-conjugate terms in each £(1). there are two ways to generate

the four-quark operator shown in Table 3.4, where the positions in the figure are

labeled either 0 - z - y - x or 0 - y - z - . This average over z - y cancels

the 1/2 in the definition of T(2 q). Fierz transforming the product of operators with
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W(2 L)I

h[2L]3

X 4y e-ir-x~ T[J(O)'(nhp,x)L()(y L(' (z JM(h- O)] .j, A JQ\yq LIq 3 V



Eq. (3.135) in order to group the collinear and usoft fields, we have

-, (() [(1) (y)L(1) (z)y) [J(' ( () (3.148)

4 Ek [(XQnigrc) (y)FkLXn,, (X)] Z7(0)F (-igvX.) (Z)
k,k'=l

x [(z)rj, F s(y)] [¢us(Z)F; Rr° )*t(0)] + (y z).

The vacuum matrix element of the collinear operator must be a colour singlet, so

either k, k' C {1, 2} or k, k' E {3,4}, and then rotational invariance implies that

k = k'. This leaves four non-trivial collinear operators, which are given by

[(gnil$) ( )Fk Xnt^·z)] X) w(() (3.149)

with the decomposition of FkL FRfn given by exactly Eq. (3.136). For the usoft

operators we always have uP, = ~!a , so this projects on to two components of the

light quark fields given by bfbA with Oj'flrj = 0. The Dirac structure can therefore be

simplified by noting that

u.S P,RFHv Tr [PPL,RrFP] V PL,R hV + Tr [y FPv] sPLRus' 2 4

t , [ru =T[rPR,LV]] APRLs + Tr[r A ]r R (3150)

and using rotational invariance of the usoft matrix element to determine that -y' and

^/ termns are restricted to appearing together. Thus [vFj, F/'p"s] [FlusF RF )7,jv]
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together with the (g p3+ie )/2 factor from Eq. (3.136) gives

()5Al {Tr [Y I PR/PV,] Tr [0PL rF PV]
jl2 2 

+Tr [ j, PL 2PY1

-- 6 2 (g + ) {Tr

[2HI 2

[j , ly PR-]P [ l

PRs1U [PUS 7PR7U]

PR(0)PV] [L7v PL j n 2PL7-tV]

+Tr [FL PL 7YIPv] Tr [ ,',PR r0)PV]

+6k3 {.*.*. + 4 {... 

[JLPL LS] [ I PL7-v] }
(3.151)

where the structures for the k3 ( 6 k4) term are identical to those of kl (k2) except

with extra TA 0 TA factors in the operators. Simplifying the Dirac structures and

using rotational invariance of the (BI ... IB,) matrix element gives

k {Tr[Il 2PLPv]T[ T PRP0)v]
j 2 2 [Lq 2 PRV)US] [U 2 PRV1]

+Tr [Y2o) a{PLPV] Tr [FA2PRrjo)Pv [V YPRV)S]j2 1 2 i 

k2 {~ Tr [ 2•PRPVI Tr [F 2R PV]- k2Tr [r Y( 2 1 2 i

+Tr [ j? APRPV] Tr [PRrF)Pv [&y PL<] [ 1L }
+ro3{ E... +(3.149) the jet functions are

From Eq. (3.149) the jet functions are

A 1 Ko( [,I C.2 

", ' YYPLT"
2

fI dk dk dk+(~ d2 3 e- [kx±-+(k.+-kj+)!t-4-(Akt-A)hz-]J (21 )3 3 3 1 J IL; 1 '(k j) ,
( ° [ ] (L) 2 X , (X) , (0) #2 PL [9 1 X( ()

4?1 Nh, fd':$ dkjjdk_I \ d 2 3 -2 [k3+x-+(k2 +-kA+))-+-(k-k2 )z ] (-
,I J (27)3 2,
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(3.152)

41 AV

Thus PLH, I
[ -V F, "u

gyrj] (y) _XL , (X
2 

-1;PRF( IPaHP 
F~~1]Tr~~iL2 ·] [' FH Oii v T7 PR'01h181 [' llsl~ I PRS t a

[41 \,� I (- I o)



NA 1 () [.'I
(y)OPLT x.W, (x), (O);PLT" [gt±\'] z() 0)n ' /~ I .~-,'0

4iN,6 Jdk+ddkS ek= l 2 ''3 e-1Wk+-+(k+-k3)y-+(k+-k+)z-]
~*: (27)3)

(0 [(' (Y) IV Xn,w (Xn,w () [4, , Xn] (
I* ..N 

4iN3
=4/

LI

Jdkl dk2 dk3 - ±[k+-+(k+-k+)y-+(k+-k+)z-]

(27r)3 11

where the common prefactor is N3 = (W-W')62(XI) )(x +)52 (y)(y+) ( z)( z + ) and

the 1/P factors in the operators do not act outside the square brackets. At tree level,

only Jl( 4) (k+) is non-zero. It has the valueJ U II WIV UII_ 3 *IM

j( 4) (n kl, n .k 2, n.k 3) =
1

(3.154)[nkl 1 ic][n k2 + i]['nk3 + i] '

As before, we denote the imaginary parts by

j;(-4) -( 1)Im 7(-4)J. 4>_ I j ,j (3.155)

From Eq. (3.152) there are eight shape functions with different Dirac and colour
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structures, namely

dx-dy-dz- -+

= g(el + , e+, e2+),

-2 Jd ydz e{e- -- + + -e+)y- +(et+-4z- ( 1v7 Pl(y)uS (z)y r/PL PR (O) I B)1287r 3

= g( e, e +,),

fdx dy-dz- + r-- + ( P + (t+ (Z)- PR- (·vL P (0) I ,)2 2 j 12PT ( e-2 0)v)

d128r3 eus ( 7 ()IPTAS () (PTA (0) B)= g5(£+, e + , +),fdxdydz- -IP¾-L' - h- /( ) yPL ,(J 128- e 2-' 3(B 2 3 1 u(() P (

2Jdxdydz , (BI7IV()PLTAPS(Y))u S(4) PLTA v(0)IB¢ )

= f6(e+, e+2, (3.156)

where 4'S' = (i)/4 b,,S and the ellipses denote exactly the same exponent as in the

preceding expressions. Only the last two of these shape functions show up when we

work at tree level in the jet functions.work at tree level in te jet fnctions.
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Wle define the hard coefficients to be

y C; Cj Tr { P, 2,g yPR}Julr 2
12- Cj'bC, TrTP, rF, /PR} Tr PVPRF) IJ<H.j ,

E Cj, Cj 'a { P ' r' ) 2
3j,

j,j'

Tr P PRFrj ) } pj p

PL} Tr{PV'y1 PRFr ) } p"

and the final result from the T(2 q) contributions is then

i ](2q)_7 fdk+dk+dk+ {J 4( 4)(- p k+)gg(k_ r+) + ,J(-4)(n.p k+-) g7 (k+ +r+)}

+ [2qdkdk +d4(- 4 )
( rip k j+)glo(kj++r+) + 3(-4) (n'p k+) g8(k +r+)}

Mb J 

+ h[2q]5 Jdkldkdk{(4)(._P k)(f T+ J(-4)(.P kj) f5(kj- +r+)}
T/'A b JS'"

Jdkl+d~k+dk3+ {c2(- 4) (.p k]+)g6(kj+ +r+)dkd1 2 kj~ lb~ + J(- 4) (.p kj) f6 (k +r+)}1 _P kj \'~

(3.158)

Explicit results for the hard coefficients h 2q]5'6 are summarized in Sec. 3.6.6.

Calculation of T(2b) and T(2c)

For later convenience we set

B(la)J(la) + B(lb,) ,(lb)

31)( ,, 2 )

= /dwL dw9 B 'L)(wl .w2 )

1 1 ( 95, '2 r

- , , -Mb?1 ,(9N( 12f() I 
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4 7. p
Tr{Pv' 0-TPRFj) }pp

1 mb

4 n,.p

1 mb
(3.157)

h[ 2 q ]6

mb

where

(3.159)

(3.160)

h, [2q] 6
i

h[2 q ] 7
hi



and B(l) (w,w 2) =-B(la) (wl+W2 ) rmb/(wl+2) for j = 1-3 when f = u, and for

j = 1--4 when f = s and B(l)f(w, W2) = B(lb)f(wl,w2)/(n.v) for the remaining j's.

Both t(2b) and t(2c) have jet functions that vanish at tree level but are non-zero

at one-loop order. The steps are the same as in previous sections. Here we have

t(2b) = -i /dwldw 2dw 3d 4 B(1) (w1,2 )B( ( 3,4)(W3+ 4-. p)
3,3'

x d4x eirZ T [J,)t(w 3 4, x) J) (w.,2, 0)] . (3.161)

To Fierz transform we can use

PL ® PR = (PR) 0 (N PL) + ( PRTa) (PLTa) (3.162)PL 0 PR (162N, 2

and we can drop the second term, since colour implies that it does not contribute in

the matrix elements. Thus,

j(l)tJ(l) = -1 v p (O)]jj( 1 ) [2,j'a'j R ja J [1v~X)'Hv O)JR(3.163)

X [ (n,i'9 ,2 a ) (°) PL (-itgc,w 4 Xn, 3)(x )] 

where we have used the fact that the second term in the reduction in Eq. (3.73) gives

a vanishing matrix element. Between B mesons, the soft operator in Eq. (3.163) gives

the leading-order shape function f(O). The matrix element of the collinear operator

gives the jet functions

KI [ njwloYi cw2g (°) PI;, l a' :x) 1) (3.164)

= (-2i)(Lw+ w2) ((wl +2 -: - '4)2(x )b(X+) Id k e - Nk + o-

and their iaginary parts are denoted y (2)(k + ) = (-1/r)Im (k+). Noting
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the delta functions in Eqs. (3.161) and (3.164), we define the hard coefficients to be

CBB!i 'ha p [v ~(1) , l ][ Pp//av= B(1) (W3.4)Bj )(w1.2) _' 9 Tr[ y l) Y y l) ]Pi 
mb -,2 a-l3 jajj'

= EBj1)(w 3, 4 )Bj ) (W1,2)
i3,l

i.' n-mTr P
mb [

(1) (1) ] py
i", j 2 j Pi"

(3.165)

where w = lf.p, w2 = (1-zl)fn p, w3 = z2i. p, 4 = (1-z 2)i.p. This gives the
factorization theorem

W2b) /dzidz2

+ dzldz2

h] (Zl,z2, f'np )

mb

h 2 ] lo(Z 1 , Z2 , np)

mb

Pdk+ (2) (Zl,Z2, P k ) f(°)(k+ +A-p +)

d2

I dk+ '2)( ,Z2 , PX k+)
O

(3.166)

For t(2c) we have

=-iZ c
jj' e=c,d,e,f

[dWn] (w-np) Cj,(w)Aj 2e) (n) d4x e-i r x

xT [Jot(,npp,X) (W+,O)+ J(2) t( n) J(ip, 0)], (3.167)

where we have n = 1 for = c and n = 1, 2 for e = d, e, f. For convenience we set

J 2e)(wn) = Cn,- 2t),, so that C(2e) contains the product of collinear fields in each

current. Fierz transforming ]t(2) with Eq. (3.162) (again we need the first term only)

and then reducing the Dirac structure using Eq. (3.73) gives

J(o)t J(O) J(2 ) J(O) (3.168)
.i + J j,.

4 [2 J 2

+± t 1 P '.2f'r2

P( ') + h.c.]] [ (() L C,(;2'1.2

pF ()- h.c.] [ (z)Tr()] [-(oPL) c(20 

(x) + (h.c., x

(x)- (h.c., x

0)]

Tlie ulsoft operator here gives the leading-order shaI)e function f(). Next we define
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the jet functions

(-1)K°01k (0) L ig([ nSi , cjXn) x() ± (h.c., x 0) 0)
-2i 6 (W w)6(X_,)6(X+) 2 4( +)

(1 0 7,(O ) -, [(ign.c)-w2Xnw](X) ± (h.c.C, - 0)10)

6(w w -2)62(X))6(ZX+) f-e2+- 2) 
1 m, (L,( -- - W2 , )1)

KI (0 ) [Ig j, , 2,a' (iV~ ,) l]( ) 1 It
, W2 (_ Xn), ](x) -± (h.c. x -*0)I0)

- 2i ( 12)2(x)6(x+) Jdk+
mb 2

$PL 1 a
N,- [2 ( -(igt5C

-2i
_- 6(-W1 -2

m b

-Cl) 2Xn,wi (x) ± (h.c., ·x o)1o)

)6 2(X ) (X±) dA+ e k +x- ,(2)
''1.2 (k+),

and their imaginary parts 4(2)(wjk+) = (-1/T)Im ,, (k+), as well as the hard

coefficients

rF) ± h.c.] Pt ,mb 2: Cj (~ p)A(2c)(n p)

-2 ,Cj (h p)
j j'

,Tr [ P( 2c(22 T 2

A 2d) (W1,2) Tr
[ P (2d)

2 i r'(o)
2 j' b

± h.c.] P',

h[2c11516 .I ) =hZ(7np I Cc~(ii. ,~(2e) (J1;2 [ rP, y( 2 ) 
2 32 p 2
J1,

ECj (n .p)A2 ) (W1,2)
Jd'

T [ (2f) _ (0) ITr + J 2 j, ±

where ' l = t - 1 and :2 = (1-zl)hp.

Pulttilg ll the pieces together we have

[2 , ]n I (-r, P) +)
Z I i jdk ,2) -k(p () (k± A-pk)

mI =3J 1

[2clm±j+8(,(, .p ) rp+I2i (1.n? dk ( 1 /' +) bf(2)( tMt? b o k J , p7K. ) f 0)( + - 1j)

123

(3.169)

I

m b

h 12c]1'12(n p)

1

2

F(v h.c.] P?

(3.170)

1 ,(2'c)l~1

t+ 
t1i-- )

JdZI

(3.171)

e-2 IT (k+),W1.(l+)

h j"'"c] 13 W~p

vli]i~[12c 17.18 I" T1p



Calculation of the remaining T(2)'s

The remaining T(2)'s for which we have not yet defined hard, jet and soft functions

include T(2La), T(2Lb), T(2LL) and T(2Ga). These time-ordered products all have jet

functions that start at one-loop order and, unlike T(2b,2c), they also induce new shape

functions, gj. Factorization formulae can be derived for these contributions by follow-

ing similar steps to the previous cases. Rather than going through this exercise, we

instead list some of the soft operators and shape functions that would be required.

For T(2La) we have

PP (exJdvc e ~ e 2 - (e--e2)Y [[v()iz-P (~).yVE(o)] '

(BIp( 2 ))lBv) = E g) 2(4, 42) (3.172)

while for T(2Lb) we find

) e 32wr2 e 2 ) [ (

) ((l a i / Jddr e_ x- + ( 4+-e +))- -- )i '2 e 2de-dy- ,- 1 2 · (

For both T(2 L) and T(2Lb), e- induced jet functions are of order ()]while for T(2L) he necessary soft operators areO10f£+ = fdx~-dy- (E: f- (e+-t+ + --,

Io8 1 ,2)].:) 1 128

~together with operators O1- 5(e 2 3 ) and P- 5i(et 2 ) that have different colouI
contrct tween the gage-invariat objects i , and (3. The173)For both T ) and T , the induced je t functions are of order A. .

contractions between the aug-e-invariant objects 7~ , ' iT±~ iT , and 7-,.. The,

124



shape functions are

(BV 11 15(f+2 3)IBv)

(BV I P10- 15 (1,2,3) BV)

91 915-20 1 , )2 3

I-) 9VA21--26 1, '2, () -
nv/' '

For T(2LL) the jet functions are O(X-2 ).

Finally, for T(2Ga) the time-ordered product has a structure that will produce the

same soft operators, 03 and PP, as T(2L) and thus has shape functions f 4) (+, f+)

and f( 4) (+, e+). The jet functions for T(2Ga) are O(A-2 ).

3.6.6 Summary of hard coefficients

To determine hf - 6f we need to compute the traces in Eqs. (3.131), (3.145) and

(3.157). Since there is no possibility of confusion, we shall now drop the bracketed

factors, [2-], in the superscripts. For B Xuev (f = u), expanding to leading order

in YH > UH gives

h1U_ (2-YH)
2 - 2_2__

4iH _92 -22u 4YH-YH-2

h3u -- 1
2 -2 

YH

'142 = -2

- -

2 - -2
yI-I

2 =hW=o , 6 =
IIl

h"u 1

h2u_ -14mBH
,7 h

-1

12mB'H/ 4 1
13 9-2 '

5 B -1

71BY H

hU = 0,h3

hlU -1
4h=- 2-2

4 - 2-3 
BYH

h 'U = 0,

h4u - -2

4 - 23 
mB

4 2-2 
mBYH

bu 2
4 2 -2 'rBYH

h"U 4 -YH
4mBY2

2 -69,H+4
h2u - 2rnB5 932mBfi

~h3u 1

-2r'. H?

4 = 4 - H
5v _ - -3

5i (2 - 0-)
5 B

-2
h176)

(3.176)
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hlU- I
1 8

-1

1 4
-1h3u 1

1 -4J 

h5u_ -1
1 2 

(3.175)



For B - X.y (f = s) we expand around XH = 1, which gives

2
B

84 '
2

mB

4 'rn2B
4,

2

4 
2mB

2 '

= h6 = 

h' = 0,

h2 = 0,

h3S = 0,

h4S = 0,

his - mB3 4 ,

h2s mB
3 2 '

h3s - mB
2'

h4s mB
3 2 '

h2 = 0, h35s=-mB,

8 = 0, h4 h6S 
2 ' '

h s 5

h42 = 74'
3h3s_ 3_

hs = 25

= 2,

O.

hls mB
5 = _4
2s_ mB
5- 2 

2'
I4s = mB
h5 - 2 

h5S= -mB,

(3.177)

3.7 Summary of Decay Rates to NLO

3.7.1 Discussion of NLO results

To facilitate the computation of the NLO corrections to the decay rates, they were

divided into several pieces, as discussed at the beginning of Sec. 3.6. The full results

at order A/mb and all orders in a, are quite complicated. However, now that factor-

ization for the NLO rates has been achieved, we are able to expand consistently in

factors of cas evaluated at perturbative scales. In this section, we discuss which ternls

are kept for phenomenological purposes.

The most complicated contributions are the NLO correction to the Vi, namely

4 w(2) f , here f = s for B -- Xs' and f = u for B -- Xev. From Eq. (3.105) in
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Sec. 3.6, the NLO factorization theorem is

hf(YP) jdk+ ()( fpk+,p) f2)(k+ + r+, )+ E ( Y)/ dk+ f()( pk+,) f(2)(k++r+)

+ E I ) Jdkdk+ ()(n pk+, ) f(2) (k + r+, )
r= mb

h (n.p) dkl + dk +.p f(4) (k + + , )

+(p) J3dk+dkd+ i k dkhd+ j (- 4) (ji' Pkjt " p) f() (kj' -r+, p)
r-=5

- , (3.178)

where j = 1, 2 and j' = 1, 2, 3. The ellipses denote terms given in Eq. (3.105) that

have jet functions J that start at one-loop order. These additional terms are of order

as(I0O) A
7r mb

(3.179)

where po - /mbAQcD, so they are suppressed relative to the terms displayed in

Eq. (3.178). They also induce dependence on new unknown shape functions, go0-26,

which makes it prohibitive to include them phenomenologically. Thus, throughout

this section we shall stick to the terms displayed in Eq. (3.178), which enter at order

A/mb (r = 0-4) and 47ras(o)A/mb (r = 5, 6). For convenience we drop the subscript

1 on (-2,-4 ) in this section, since there is no possibility of confusion. At tree level,

the jet functions were computed in Sec. 3.6.3 and are

j(°)(k+) = (k+), j(-2) (k+)
J'"'(kf= (kk+ ) ,`7(-) ki= 47ra(p) +)(k

6(k+) - 6(k) (3.180)
- 2t (3.180)

k - +

(kf+ ) 6(k) _3+

(k+)(k) ± (k)(k) 21 3 1 2~~~~~~~~

The result for () at one-loop order can be found in Eq. (3.80). Examples of diagrams

that contribute to Eq. (3.178) can be found in Table 3.4. Results for the hard functions

h,) were given in Eqs. (3.87) and (3.88) and for hif - 6f in Eqs. (3.176) and (3.177).

The running of the hrf's in Eq. (3.178) is the sae the sae as the running of the h°f's ini i 1 ~. \l1U ~ 11~ 7lll: (3I1 CIIII ILL ~
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Eq. (3.87), and the h°f's depend only on the running of the Ci's computed in Ref. [23].

The shape functions f() are defined by Eqs. (3.119) and (3.120).

MIore O(A2) power corrections occur when one switches to hadronic variables in

the LO factorization theorem; these were given in Eq. (3.100). For phenomenological

purposes terms that start suppressed by the factor in Eq. (3.179) are not included,

so we include the (A1 + 3A2) term but not the A term.

Finally, the simplest source of power corrections is the kinematic expansion of the

prefactors in the decay-rate formulae, which depend on which rate we consider (see

Eqs. (3.39)-(3.41)).1 3 In addition there are corrections from the expansion of nq in

the hi's; these give the h f's in Eqs. (3.89) and (3.90). Both of these sources involve

the same jet function and shape function as the LO contributions but different hard

coefficients, which we shall denote by Gs, GTlb, and GD in the next section.

3.7.2 NLO Results for the Endpoint Decay Rates

In this section we combine the pieces to arrive at the NLO results for decay rates.

The hadronic dimensionless variables that we use are

2Ey 2E q2 m - ipx niPX
XH , XH -- , YH = , SH = ' YH , UHmB mB mB B mB MB

(3.181)

where only the first one is for B -- Xsy and the rest are for B - Xu. Note that

SH = UHYH and YH = (1-uH)(1-H), so these variables are not independent. The

decay rates derived with SCET are valid for spectra dominated by the endpoint or

SCET region, in which UH/YH < A and 1 - x < A , where A is a small expansion

parameter which one can choose to be 0.2 or A/mb - 0.1. In this region we

write the decay rates as

d ( dF'LO d NX'
Z Z) + ... (3.182)

1"If oe desires. he or she can straightforwardly treat XH ill the doubly and triply differential
rates in a different manner from what we have done here, by using Eqs. (3.31) and (3.32) instead of
Eqs. (3.41) and (3.40) and making the desired expansions.
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where Z denotes a generic choice of phase-space variables. The doubly differential

and triply differential decay rates that we consider were discussed in Secs. 3.2.2 and

3.2.3. W\e caution that if the SCET expansion is used for decay rates integrated over a

larger region of phase space than the SCET region then it is important to check that

sufficient smearing has occurred so that the contributions outside the SCET region do

not cause the power expansion to break down. In Eq. (3.38) we proposed a method

one could use to combine results from the local OPE with those from SCET even if

a larger region of phase space was desired (which becomes relevant when radiative

corrections are included). Note that the AH parameter provides a means of testing

for cases where a pure SCET expansion is valid. Here we present results for arbitrary

AH, and leave the investigation of the expansion in different decay rates to future

work.

For convenience, we define a shorthand notation for the convolutions that appear

at LO and NLO:

[Jo f](P+,PX) = dk+ J(PX k+, ) f (k+ + XA-P+,) (3.183)

At LO we simply combine the h°S's and h9°'s from Eqs. (3.87) and (3.88) and find

(1 dxL = Hs [j(o) 0 f ()] (mB(l-xi),I mB) (3.184)

(1IUdxt d3Fu ) LO = HT(iH) [j() 0 f(O)] (mBuH, mBYH),ru dx'u' CdH dUH

d2 = HD(YH) [(O) 0 f(O)] (mBu.H, mByH),

where the convolution of the LO jet function and shape function is given by Eq. (3.183)

(with one integration variable k +) and the hard coefficients are

H () = : [C() )2 _(t)]2 (3.185)

HT( 1i, /) = 12mBi H (1 YH) [CV) ]2 

D ( I2/) =={(- (C(V))2 + 2 C () (r (I +YH C(v)) +YH C(v) 2::2 
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Note that we have suppressed the functional dependence of the coefficients, which

once perturbative corrections are included is C t) (, mB) and C()(i, mB. YH). Our

TVl(0) 's for both B - XjeP and B - Xsy, and hence the corresponding LO triply and

singly differential rates, respectively, agree with Ref. [27]. These results also match

those of Ref. [47].

At NLO, combining all contributions, as discussed in Sec. 3.7.1, leads to the

following expressions:

(1 dES )NL (A1+3A2) HS(mb) [J (O) (]A( B(1 H)

+ (1-x) Gs [(O) 0 f()] (mB(1-x), mB)
6

+ Z Hj(mB) [J(nj) 0 fj](mB(1-x),mB), (3.186)
j=o

(1 d3Jru ) (A1 + 3A2) HT(YH) [(O) f(O)] (mBH, mBYH)

x dUH )NLO mB

+ [UH Ga(YH)+(UH+XH-1) Gb(VH)] [j() 0 f( 0 )](mBUH, mBVH)
6

+ E H(YH) [J(fi) 0 fj] (mBUH, mBYH), (3.187)
j=o

(1 dFu ) L_ _ (Al + 3A2)HD(yH) [(O) 0 f(0)] (mBUH, lBYH)ru dIH du,/ 2 B o

+ UH GD(YH) [(O) 0 f ()] (mBUH, mBYH)

+ E H (YH) 0 fj] (mBUH. mByl) (3.188)
j=(

where n = n = n = 0, n3 = n4 = -2, and n5 = n = -4, and the notation

[(n) ® fj] denotes the convolutions displayed in Eq. (3.178) (see also Eq. (3.101)).

From the NLO I)hase-spIace factors in Eqs. (3.39), (3.41) and (3.40), and fromn the
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NLO terms in the expansion of the hi, i.e. Eqs. (3.90) and (3.89), we find that

Gs'(mb) = -3rB(C( )-- Ct)-ct))2, (3.189)

Gl(H) 1)(CV))2,

Gb(H) = 12mB{2(1-H)(C(V)) - [C(V)+C)+CYH ()]2},

GD () = 2mB YH [(2-6) (C))2 - YH(YH+3) (Cv) + Cv)) C)

-_ ( 2(1 3H)(2Cu V)+CJ ')C ]

By using Eqs. (3.176) and (3.177), we find that the hard coefficients for the terms

with subleading shape functions are

H s 1
HS =2 Hs , H=- Hs = 1, Hs=- 2 , HS = 0,

HT
O = 2 HT = 6H(1-YH), H2T = -12yH(1-YH), H3 = -12(1-YH),

H4 = 12(1-YH), H5 = -2 4 (1-YH), H6 = 0,

HD

HD H D H =(1 -2H), D = 2H(2H2 + YH - 2), H3 = 4H - 6H,

H4 = 2YH - 4, H5 = 8Y -8H,, H6 = 4H. (3.190)

The H1_6 factors displayed here will be corrected by a,(mb)/7r terms at one-loop

order. Note that the shape functions f5,6 depend on the flavour of the light quark in

the four-quark operator and therefore differ for B - X, and B -- X.

Equation (3.186) describes B - X, in the endpoint region. In Eqs. (3.187) and

(3.188), convergence of the SCET expansion requires UH < YH. For Eq. (3.187), we

have in addition made a cut on XH such that 1- XH A2. In contrast, for Eq. (3.188)

the full range of .x' has b)eenl integrated over. We can also straightforwardly obtain

the rate d2 '/dq 2drrl2 . or equivalently d2rF"/dsHdyH, by changing variables from

{YH, UH} to {y/S,9s } in the W14 and re-expanding. This is done by using :H =

- SH/(-... and 1ul = SH/( + ... , where = 1 - YH + SH and the ... !" terms
are not needed at NLO in the power expansion. The result may then be substituted
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into Eq. (3.42). Integration over YH then gives the m 2 spectrum, dr/dsH, for which

restriction to the endpoint region requires cut(sH, YH) {SH/~2 < X/(1 + A2 )2}

3.7.3 Singly Differential Spectra

In this section we give results for singly differential spectra at NLO that are useful

for measurements of Vubl. Since our goal is to explore the effect of the subleading

shape functions, in this section we shall work at lowest order in ac, for the hard and

jet functions, both at LO and NLO. For the shape functions we shall use f(2 )((W) =

2wf(°) (w) [26] and define

1 (2) + 3A2F(p+) = f(0)(A -P++ fo(A - - A1 f(0)(A -p+), (3.191)
2 mB 2mB

F2(p+) = f 2) ( - p+),

where a prime denotes a derivative, as well as

6(k+)- (k+) ](4)F = Jdk+ dk+ [(k)-l 2 jf, 4(k+ + A-p+), (3.192)

Fs,6(p+) dk + dk+ dk+ [ (k)+ () _ 7r2(k+)(k+)(k+)2 3(k(k) (kl)(k+) + (kl+)(k+)

Xf(6 )(kj+ + A-p+).

We shall put an additional superscript s or u on F5 ,6(p+) to distinguish the origi-

nal four-quark operator with strange- and up-type quarks. For B -- X5y the rate

dFr/dx' in the endpoint region is equivalent to making a cut on x . The necessary

results already appear in Eqs. (3.184) and (3.186) and combining them gives

1 dF s

1s dID5 = rlB [1 - 3(1-xH)]F(nm. B(1 - x)) + [mB(I1-x7)-A]F(m1B(l-xf ))Fs dxY >Y HB

+ F2 (m B(1-x)) - F3(rMB (1 -x)) + F4(mH(1-x))

- 87ra(,Uo) F(mB(1-x ' )). (3 193)
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where 1 - '- A2 . Here the -3(1 - xI) term comes from expanding the kinematic

prefactors, while the term that depends on [mB(1 - XH) - A] comes from reducing

f (2 ) to f(O) (and we write it in terms of F for convenience, even though this includes

some formally higher-order terms). The rate in Eq. (3.193) for B -- X-y has been

computed previously at NLO in Ref. [26]. The relation of our shape functions to

those in Ref. [26] is shown in Table 3.7. Our result in Eq. (3.193) agrees with theirs,

up to the F6) term, which was computed here for the first time.14

To compute drF/dxH for B -, X 0v, we can use Eq. (3.31) and case i) of Table 3.2.

Treating r = 0.026 - A4, we can set r = 0 even at NLO. To ensure that the SCET

expansion converges requires that one makes a cut on UH. First consider the XH

spectrum. Since UH < 1 - XH, making a cut XH > 4 restricts UH to the desired

small values. However, at NLO accuracy this is not equivalent to our UH < AH H

definition of the SCET region of phase space, and an additional term, K(AH, XH), is

added to correct for this. Depending on the choice of other cuts, the error in including

a larger region of phase space may be power suppressed. The parameter AH provides

us with a way of testing this by comparing AH = 0.2 and AH = 1. We present our

final results in a manner that makes it easy to take the AH -- 1 limit for situations

where a large enough region has been smeared over that this is the case. For the XH

spectrum the result is

min1l-XHH

1 d 2i zH> | dUH lmB(1 - 4uH)F(mBuH) + (-mBuH) F(mBuH)F dx 1 XH>XCH = (
YHH 0

-F2(mBUH) - 3F3(mBH) + 3 F4(mBUH) -247ras(pO) F5'(mBUH)}

+ K(AH, H), (3.194)

41In making this comparison, note that Ref. [26] gave their result with partonic variables, whereas
wTe have expressed ours in terms of hadronic variables here.
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where

min{ 1-H, 

K(AHIXH) = 2 J dUH { u (2UH-3A2) [mBF(mBuH) (3.195)
(1-XH)A2

+ (-mBuH)F(mBUH)- F2(mBUH)]

- 4 (UH-2A 2 ) [3F3(mBUH)- 3 F4(mBUH)+ 247ra(uo)F'(mBUH)]

2UH(3UH(1-XH)2 +U-3(1 XH)A- 43UHH) (}

The AH-dependent term, K(AH, XH), arises when one writes the integral over YH as

f1XHdYH + fH/I2 dYH 0 ( -1 + XH), which is done to ensure that UH < A YH

After inputting models for the shape functions one can use the K(AH, XH) term to

check the consistency of the operator product expansion with this level of smearing.

The rate d/dxH has been computed at NLO in Ref. [25] and we can compare

our result with theirs. To do this we take AH - 1, which sets K(AH, XH) - 0,

since the restrictions we imposed on the phase space were not considered there. We

also must convert back to partonic variables, which means dropping the (A1 + 3A2)

term in Eq. (3.191). After doing this, we find agreement with their Eq. (35) 15 on

the coefficients of the LO F term and the F2 and F4 terms, but we disagree on the

UHF term and the F3 term. (Again the F5 term is computed for the first time here,

so no cross-check on this is possible.) The coefficient of our F3 term also disagrees

with the RPI constraint derived in Ref. [56], which predicted that it occurs in the

combination mBF- F3.1 6 We found that this combination occurs for B -, Xy, but

not for B -+ XJO. In the next section, we present a non-trivial cross-check of the

coefficients of our result in Eq. (3.194), namelv that when re-expanded it correctly

repro(llices terms in the local OPE up to 1/ni..

Next we consider the Px spectrum, Ianlelv dF/dH. Integrating the doubly differ-

' 15XW foull that they have an overall 2 typographical error in this equation (see also [127]).
'"Not.e that. from the point of view of the factorization theorem, such a reparanleterization con-

straint. would be very interesting, since it would give a relation between the jet functions j(- 2 )
and (o) to all orders in a,, even though these operators appear to be defined by unrelated matrix
elemelnts. Eqs. (3.70) and (3.139).
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ential rate from Eqs. (3.184) and (3.188) with a cut on UH, i.e. UH < AHYH. restricts

one to the triangular SCET region shown in Fig. 3-2 and gives

1 dFr = 2J duH {mB[(3YH-2YH) + 2UH( H-3H)]F(mBuH)

i0 dYH- UHayH _

+ (A-mBUH)(H-2H)F(mBH) + (2y+yH-29H)F2(mBuH)
+ (2YH -3YH)F3(mBUH) + (YH-2YH)F 4 (mBUH)

+ 167ra,(po)(H- H)F(mBUH) + 8iraS,(o)Y HF6(mBUH)}.

(3.196)

Another possibility is to consider the p+ spectrum, which is dr/duH, where we now

integrate with the cut on YH, obtaining

rU dU = mB [(1-2U +U4 )- UH(5--6U+U)] F(mBUH) (3.197)
H

1-3 1
- (A-mBUH)(1+2U23 -3u 4 ) F(mBuH) - -(1-6U2 +2u3 +3u4) F2(mBuH)

3 3
1 _92 31
- (5-92 +4i ) F3(mBuH) - -(1+3i2-4i3 ) F4(mBUH)
3 3

316r8 () (1- 3 2+2i3 ) F5 (mBUH) + 8i7rC((po) (1 -2) F6(msuH)}

where = H/XA is a parameter of order 1 for AH 0.2. Given sufficient smearing,

one can take AH 1 and the ut terms become subleading. The subleading terms

in d"/duH provide power corrections to the phenomenological analysis using this

spectrum in Ref. [48]. We leave the derivation of drU/dsH with phase-space cuts to

future work, and so have not compared this rate with Ref. [55].

3.7.4 Comparison with the local OPE

A Ilon-trivial check on our power-correction results can be obtained by expanding the

sulleading shape functions in a manner appropriate to the case whllere the local OPE
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is valid. Essentially this means expanding

6(f+ - in.D) = 6(f+) - '(e+)in-D + .... (3.198)

The comparison will be made at the level of the partonic dFU/dx decay rate, and we

define w = mBUH - A. From Eq. (3.194) we have

1 d it I-mB\4 -H I ~fo2)( -mBUH)d = 2(- ) dfUH -mB(1- 4uH) f )(A-mBuH) +2 (-BUH)

(+3) f() (A-mBuH) + (A-mBuH) f(O)(X-mBu) - f(2)(-mBUH)
2

3F3(mBUH) + 3F4(mBUH) - 24ra8(0o) F5(mBUH)} + K(AH, XH)

m4 mb(l-x) W _ IAo,,(W1 Wf(O)()
=2(B) J dw {[1- 4w -- ]f()(w) + ( w fb (W)

mb - mb mb 2mb mb

1 (2) 3 3 - 247r (puo)
f2)(-w)- -F 3(W+A) + -F 4 (w+A) - F(0)F(w+A)}

' b M b TMb Mb

+ K(AH, XH), (3.199)

where x = 2Ee/mb and ]Fu = mb/m5 r7. In writing the second equality, the (A1+3A2 )

term was cancelled by the change in the upper limit of integration. The -4A/mb term

cancels the leading term in the expansion of (mB/mb) 4, while the terms that cancel

higher terms are beyond order A2 in the SCET result. The F5 term gives an a0/m3

term, which we shall drop below. In expanding the shape functions, we obtain singular

functions peaking at x = 1, so it is safe to take AH = 1 and drop K(AH, XH). For the

remaining shape functions, the local expansion gives [25]

f(°)(-w) = 6(w) - l 6"(w) - 6"(w) +...
6 18

.f(,)(-u) = -(A, + 3A2) 6'(w)+ ± 6"(w) +.
= / P2 

.2(-1 ,) = A.,(w) + - (w) + ... 
2

F(A+ ,,) = -2,(w)+...,
3

F4(A-+-) = -A2 6'(w)± +, (3.200)
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where A1. 2, P P2 are the standard HQET parameters, which are matrix elements

of local operators, T is a combination of time-ordered products of HQET operators.,

and terms beyond 1/m have been dropped. Substituting this result into Eq. (3.199)

and integrating by parts using the relations [25] f dw[w6"(w)] = f dw[-26(w)] and

f dw[w6"'(w)] = f dw[-36"(w)], which are valid with smooth test functions, we find

1 d 20(1 )- 3 1 6') ( 1 )- 2 (1-X) (3.201)
3inb 3 mb 2 l (3.201)

+ 2 6'(1-x)- P3 "(1-x) - 3m 5(1 -x) -P2 6(1
b b b mb

This agrees exactly with the result obtained from the local OPE in Refs. [119, 79].

(Note that we do not compare the I/m3 annihilation term, which does not arise from

one of the shape functions appearing at order A2 in SCET.)

Of the terms in Eq. (3.201), it is those proportional to A1 and p, that test the

difference between our results and those in Ref. [25]. Ref. [25] also obtained the Al1

result in Eq. (3.201), and even though we disagree on the UHf(O) and F3 terms, the

combination of the two gives the same Al result. For the Pi terms, their plS" term

agrees with Eq. (3.201), but the pd' term does not. In the very recent paper [117] it

was pointed out that from the local OPE the coefficient of the p15 ' term should be

-5/3, as in Eq. (3.201), rather than the -1/3 quoted in [25].

Ref. [117] went further to advocate a different approach to the shape-function

region that involves using an unexpanded b-quark field, and doing this obtained a

result with subleading shape functions whose expansion is consistent with the local

OPE in Eq. (3.201). However, their result for the power-suppressed d/dx decay

rate does not agree with the rate obtained here. In particular, our -4uHF term is not

present there, and instead of our -3F 3 term they have the result "4F1 + 2G2 - 3G:".

Their "G2 " term is defined by operators that, in our analysis, can only show up

suppressed by at least one factor of a, through jet functions. In fact., the operator

structure of our result actually agrees with the original one in Ref. [25], rather than

the one in Ref. [117]. No proof of factorization has yet been achieved for this approach

with the unexpanded b-quark field. and it is conceivable that this may help to explain
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why a different structure of operators was obtained.

3.8 Conclusions and Discussion

In this chapter, we have computed a factorization theorem for the leading-order power

corrections to inclusive B - X"a and B - XuJ£ decays in the endpoint region, where

the X is jet-like. In particular, we have shown that these power corrections can be fully

categorized and thus treated in a systematic fashion using the Soft-Collinear Effective

Theory. A main result of our analysis is that perturbative power corrections to the

decay rates can be systematically computed, and our result explicitly disentangles

hard factors of sa,(m'), collinear jet-induced factors of as(m'), and soft ("as(A 2)")

non-perturbative QCD effects.

In addition, our results can be used as a starting point for the systematic resum-

mation of Sudakov double logarithms in the power corrections. To achieve this, one

needs to compute the anomalous dimensions of all the operators we have defined that

appear in the subleading factorization theorem. Some of the terms here are already

known. In the body of the chapter, we have shown that if we consider only subleading

terms with non-vanishing jet functions at lowest order in as, then the logarithms that

can be resummed into the hard function in these NLO contributions are identical to

the analogous logarithms in the LO result. (These logs can be thought of as occurring

between the scales m2 and mbA.) There are additional logarithms that are sensitive

to the split between the jet and soft functions (logs between umbA and A2), which

require knowledge of the anomalous dimensions of subleading soft operators. The

latter are very unlikely to be universal, and have not been computed here.

Our main final decay-rate formulae have been collected in Sec. 3.7. At lowest order

in a,, they include a derivation of the power corrections for the triply differential B

XJei rate. Results have been derived in the literature for dr/dEF in B -+ Xsr [26]

and the singly differential B - X,,te rate d/dEe [108, 25, 117] (and dF/dm2 [55]),

and a comparison was given in Sec. 3.7.3. Agreement was found for B -* X,-y. but

for dFrdEe we found disagreement on two terms at subleading order. (A check on our
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dF/dEe result was obtained by expanding it to compare with the local OPE, and full

agreement was found up to /m, as discussed in Sec. 3.7.4.) Using our results, we

found it straightforward to present the power corrections to doubly differential rates,

as well as other singly differential rates such as dF/dpx and dF/dp +.

On the phenomenological side, a potentially interesting result is the identification

of two new shape functions, which involve four-quark operators and have not been

previously considered in the literature. They are denoted by f5,6 (F5,6), and definitions

can be found in Eq. (3.120). In the endpoint decay rates they induce power-suppressed

terms, which are quite large, of order

A
47ra -. (3.202)

mb

Since 4a, 4, these power corrections might numerically dominate over those that

are simply of order ao A/mb. We have given results for the effect of these shape

functions in all the considered decay rates. In our results for the decay rates, the

numerical prefactors for f5,6 turned out to be sizeable (e.g. 247ra, for f5 in d/dEe),

which justifies including the factor of 4 in Eq. (3.202). For the extraction of IVb

from d/dEe, the important thing to consider is the difference between how these

new shape functions affect B -- XevP and B -- X,y. In this case, comparing the

combinations of F and F5 in Eqs. (3.193) and (3.194), we see that the mismatch is

- -8rwa,(uo) [3F5 - F] , (3.203)

where the index u or s denotes the fact that these shape functions involve different

flavours of light quark. To obtain a numerical estimate we approximate F5'/(mBF) 

F.S/(rntlF) A/mbe' " 0.1e' and find that they can cause a deviation of

-167ra(l0o) 0.1c' - (180%)e', (3.204)

where ' denotes any additional dynamical suppression from the non-perturbative

functions. This suggests that, even for ' 0.1 - 0.3, these terms provide a size-
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able new uncertainty for the cut spectrum dF/dEe approach to measuring JVubl.

From Eq. (3.197) we see that the situation seems to be only slightly better for a

cut dF/dp spectrum. On the other hand, since the completion of the research

described in this chapter, other groups have used model-dependent arguments, in-

corporating the vacuum-insertion approximation and numerical work, to estimate

that the effects of f5,6 are - 5% [128, 36]. One possible future direction is to de-

rive experimental bounds on the new subleading shape-function effects by comparing

endpoint-dependent methods with different spectra and different cuts on the phase

space. It would also be useful to find model-independent ways of determining the

size of the subleading shape functions that go beyond the simple dimensional analysis

used here.

Theoretically, there are several avenues for future work on B - Xsy and B

XuJ0. These include the calculation of perturbative corrections in the factorization

theorems at subleading order, as well as a complete resummation of Sudakov log-

arithms. It would also be interesting to consider the structure of the subleading

factorization theorems in moment space, as opposed to the momentum-space ver-

sion considered here. Starting with our triply differential B - XJPv result, one

could derive other doubly and singly differential decay spectra and consider their

phenomenological implications. More formally, it remains to be checked that the

convolutions that appear in our subleading factorization theorems actually converge

when the functional forms of the jet functions are considered at higher orders in °a.

From a formal standpoint this is necessary for a complete "proof" of these results as

factorization theorems. However, from a pragmatic standpoint this can be checked

as each new phenomenologically relevant term is computed. We are not aware of

any factorization formulae where convergence problems occur at higher orders in the

pI')rtllll)ative expansion of the kernels when they are not present in the leading non-

vanislinlg kernel results (the convergence of which we have checked). Finally, it should

also b)e possible to extend the techniques used here to closely related physical cases

slluch as deep inelastic scattering for x -- 1 (i.e. Bjorken :r- 1 - A/Q).
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Chapter 4

Shape-Function Effects and Split

Matching in B - XSk+-

4.1 Introduction

In this chapter, we study B -+ xje+f- ( = e, ) in the shape function region for the

first time. We derive the proper theoretical expression for the leading-order triply

differential decay rate, which incorporates non-perturbative effects that appear at

this order and a correct treatment of the perturbative corrections at each of the

scales. Using the Soft-Collinear Effective Theory (SCET) we prove that the non-

perturbative dynamics governing the measurable low-q2 spectra in B - XS+ - is

determined by the same universal shape function as in endpoint B -- Xuev and

B - X,-y decays. We also prove that the decay rate can be split into a product of

scale-invariant terms, capturing physics at scales above and below mb. We show that

this procedure. which we call "split matching", can be used to deal with a tension

between the perturbative corrections that come from these two regions. Implications

for elating the B -- Xst+- measurements with the mx cut to the Wilson coefficients

arc presented in Chapter 5.

As stated previously, the inclusive rare decay B -- Xst+f- is complementary to

B - Xsy in the search for physics beyond the Standard Model. Provided that one

ilakes sitable phase-space cuts to avoid c resonances, B --+ X+f- is dominated
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by the quark-level process, which was calculated in Ref. [84]. Owing to the disparate

scales, mb << mTV, one encounters large logarithms of the form ca (mb) log" (mb/mw)

(leading log [LL]), a+l(mb)logn(mb/mw) (next-to-leading log [NLL]), etc., which

should be summed. The NLL calculations were completed in Refs. [54, 121], and the

NNLL analysis, although technically not fully complete, is at a level that the scale

uncertainties have been substantially reduced, after the combined efforts of a number

of groups [45, 63, 10, 8, 75, 9, 44, 77, 76].

Non-perturbative corrections to the quark-level result can also be calculated by

means of a local operator product expansion (OPE) [131, 58, 43, 119], with non-

perturbative matrix elements defined with the help of the Heavy Quark Effective

Theory (HQET) [120]. As is the case for B -* Xsy and B Xjuv, there are no

O(l/mb) corrections. The O(1/mb) corrections and OPE were considered in Ref. [70]

and subsequently corrected in Ref. [7]. The O(1l/mb) corrections were computed in

Ref. [21, 20]. There are also non-perturbative contributions arising from the c inter-

mediate states. The largest c resonances, i.e. the J/ and ', can be removed by

suitable cuts in the dileptonic mass spectrum. It is generally believed that the op-

erator product expansion holds for the computation of the dileptonic invariant mass

as long as one avoids the region with the first two narrow resonances, although no

complete proof of this (for the full operator basis) has been given. A picture for the

structure of resonances can be obtained using the model of Kruger and Sehgal [101],

which estimates factorizable contributions based on a dispersion relation and experi-

mental data on o(e+e- - c +hadrons). Non-factorizable effects have been estimated

in a model-independent way by means of an expansion in 1/mc [61, 50] which is valid

only away from the resonances.

Staying away from the resonance regions in the dileptonic mass spectrum leaves

two perturbative windows, the low- and high-q2 regions, corresponding to q 2 < 6 GeV2

and q2 > 14.4 GeV2 respectively. These have complementary advantages and disad-

vantages [771. For example, the latter has significant 1/mb corrections but negligible

scale and charm-mass dependence, whereas the former has small 1/mb corrections

but non-negligible scale and charm-mass dependence. The low-q2 region has a high
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rate compared to the high-q2 region and so experimental spectra will become pre-

cise for this region first. However, at low q2 an additional cut is required, making

measurements less inclusive. In particular, a hadronic invariant-mass cut is imposed

in order to eliminate the combinatorial background, which includes the semileptonic

decay b -, c(-- se+v) e-v = b -- se+e- + missing energy. The latest analyses

from BABAR and Belle impose cuts of mx < 1.8 GeV and mx < 2.0 GeV respec-

tively [14, 91, 12, 95], which in the B-meson rest frame correspond to q > 2.3 GeV

and put the decay rate in the shape function region. This cut dependence has so far

been analyzed only in the Fermi-motion model [5, 6].

Existing calculations for B Xt+f- are based on a local operator product

expansion in AQcD/mb. When m < mbA (2GeV) 2, this operator product ex-

pansion breaks down, and, instead of depending on non-perturbative parameters

(A1, A2,...) that are matrix elements of local operators, the decay rates depend on

non-perturbative functions. Furthermore, in this region the standard perturbative a,

corrections to the partonic process b sf+- do not apply, since some of these cor-

rections become non-perturbative. Thus, even at leading order there does not exist

in the literature a model-independent computation of the B - X,+- decay rate

that can be compared directly with the data at low q2.

As should be clear from Chapter 3, the endpoint region has been the focus of much

work in the context of B --+ Xy and B --+ X(vi (see e.g. Refs. [125, 124, 41, 99, 30,

113, 112, 111, 116, 27, 47, 26, 108, 25, 106, 49, 36, 102]). Recall that in B -- Xe

this is because of the cuts used to eliminate the dominant b -* c background. In

B - Xsy, it is known that cuts with q > 2.1 GeV put us in the shape function

region.'

In the small-q2 region of B -- Xs+f- with q > 2.3 GeV, shape-function effects

also dominate rather than the expansion in local operators. To see this, we note that

the mx cut causes 2mBEx = m +m 2 q2 mx. Decomposing 2E = pk+p- with

'In Ref. [1291 it was pointed out that even a cut of Ew > E = 1.8GeV, corresponding to
nmx< 3GeV, might not guarantee that a theoretical description in terms of the local OPE is

sufficient, owing to sensitivity to the scale A = rrb - 2Eo in power and perturbative corrections.
Using a multi-scale OPE with an expansion in A/A allows the shape function and local OPE regions
to be connected [27, 47, 129].
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Figure 4-1: The kinematic range for Px and p+ given the experimental cuts of q2 <

6 GeV2 and mx < 2.0 GeV for B --+ Xs+e -.

mx = PxP, we see that the Xs is jet-like with Px >> p, and the restricted sum over

states in the X, causes the non-perturbative shape functions to become important.

For the experimental cuts on q2 and mx, values for pi are shown in Fig. 4-1. It should

be clear from this figure that the measurable spectrum is dominated by decays for

which Px > p+.

To compute B - Xf£+£- in the shape function region with renormalization-group

evolution requires the following steps:

i) matching the Standard Model at p _ mw on to Hw,

ii) running Hw to p _ mb,

iii) matching at p _ mnb on to operators ill SCET,

iv) running in SCET to p, -ibA,

v) computation of the imaginary part of forward-scattering time-ordered products

in SCET at pu - r/-mbA. This leads to a separation of scales in a factorization

144

(GeV)
(GeV)



theorem, which at LO takes the form2

d3r() = H dk j(°) (k) f(°)(k),

with perturbative H and (0), and the LO non-perturbative shape function

f (0),

vi) evolution of the shape function f(O) from AQCD up to 2- /mbAQcD.

For the shape-function decay rate, steps i-ii) are the same as the local OPE results for

B -* Xst+-. Furthermore, based on the structure of leading-order SCET operators

that we find for B --+ Xf+f - , we demonstrate that results for other inclusive endpoint

analyses can be used in steps iv) and vi) [22, 23, 47].3 Because of this our computations

focussed on steps iii) and v). In step iii) we show how to implement the split-matching

procedure to formulate the perturbative corrections, which we elaborate on below. In

step v) we derive a factorization theorem for B - X~+ - . This includes computing

the hard coefficient functions H at NLL order and formulating the structure of these

terms to all orders in a,. It also includes a derivation of formulae for the decay rate

and forward-backward asymmetry that properly take into account the effect of the

current experimental cuts and the perturbative and non-perturbative corrections.

At leading order in the power expansion the result of steps i)-vi) takes the schematic

form

d3Fr0) = £(Uw)Uw( w, ItO)B(O)UH(tO, /i)y(Pi)US(pzi, [tA)f()(/A),

/AW mw, (0 -mb, ,ui P (m) /, HA 2 1 GeV (4.1)

where £, B and J represent matching at various scales, and Uw, UH and Us represent

the running between these scales. Eq. (4.1) shows only the scale dependence explicitly,

2Note that the operator product expansion used here occurs at u _ bA, rather than at nmb,
as in the standard local OPE.

3In step iv) we can run the hard functions down using results from Refs. [22, 23]. In step vi) we
can run the shape function up to the intermediate scale using the simple result from Ref. [47]. An
equally valid option would be to evolve the perturbative parts of the rate down to a scale p - 1 GeV,
as considered earlier [112, 113, 111, 27, 22].
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not the kinematic dependences or the convolutions between J, Us, and f(O). which

we describe later on.

InI a standard application of renormalization-group-improved perturbation theory

(LL, NLL, NNLL, etc.), the results at each stage of matching and running are tied

together, as depicted in Eq. (4.1). Usually this would not be a problem, but for

B - X~s+f- the nature of the perturbative expansion above and below _u ta mb is

different. Above ,_ - mb the series of (a, ln)k terms are of the traditional form, with

a basis of 10 operators (including four-quark operators), whose mixing is crucial.

Below ,u _ mb we demonstrate that the evolution is universal (to all orders in as) for

the leading-order operators, but there are Sudakov double logarithms of the ratios of

scales, which give a more complicated series. It turns out to be convenient to decouple

these two stages of resummation so that one can consider working to different orders

in the a, expansion above and below p = mb. There is a simple reason why this

decoupling is important: for > mb the power counting and running are for currents

in the electroweak Hamiltonian and dictate treating C9 - 1/as with C7 1 and

Clo ~ 1. However, at = mb the coefficients C9 and Clo are numerically comparable.

For _< mb in the shape function region we must organize the power counting and

running for time-ordered products of currents in SCET rather than amplitudes, and

it would be vexing to have to include terms oc C to 0((a2) before including the C12

and C72 terms at order 0((a°). Thus, once we are below the scale mb, a counting with

C9 - C10 rV C7 1 is more appropriate.

To decouple these two regions for B -- Xs+e- decays we make use of two facts:

i) for u > mb the operator C(9o involves a conserved current and has no operators

mixing into it, so it does not have an anomalous dimension, and ii) for A < mb all

LO biquark operators in the Soft-Collinear Effective Theory have the same anomalous

dimension [23]. 'W"e shall show that the operators for B - Xs+- are related to these

biquark operators. These properties ensure that we can separate the perturbative

treatments in these two regions at any order in perturbation theory. This is done by

introducing two matching scales, o -mb and b -r mb. The two aforementioned
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facts allow us to write

U1V (P vW, po)B(Po)UH (p , ui) = Uw (UW, Po)O)B(o, Pb)UH (Ub, i)

= Uw (w, PILo)B1(I)B2 (Lb) UH (b, /li), (4.2)

with well-defined B1 and B 2. We define B 2(Pb) by using the matching for the operator

010 and extend this to find B2 matching coefficients for the other operators using

property ii) above. The remaining contributions match on to B 1. Diagrams which

are related to the anomalous dimension for ,u > mb end up being matched at the scale

lUo on to B1, while those related to anomalous dimensions for < mb are matched at

a different scale, /b, on to B2. This leaves

d3 r (0) [(w)Uw(p , o)Bl(ao)] [B2(Pb)UH( Cb, P2i)J(i)US(i, PA)f( )(A)],

(4.3)

which is the product of two pieces that are separately -independent. We refer to

this procedure as "split matching" because formally we match diagrams at two scales

rather than at a single scale. The two matching 's are "split" because they are

parametrically similar in the power-counting sense.

We organize the remainder of this chapter as follows. We begin by using split

matching to determine the hard matching functions, B = B1B2, for B -- Xe+e- in

SCET; this is one of the main points of this chapter. It is discussed in Sec. 4.2.1 at

leading power and one-loop order (including both bottom-, charm-, and light-quark

loops and other virtual corrections). The extension to higher orders is also illustrated.

Steps i) and ii) are summarized in Sec. 4.2.1, together with Appendix C. In Sec. 4.2.2

we discuss the running for step iv) and give a brief derivation of why the anomalous

dimension is independent of the Dirac structure to all orders in v,. In Sec. 4.2.3, we

discuss the l)asic ingredients for the triply differential decay rate and the forward-

backward asymmletry in terms of hadronic tensors. A second main point of this

chapter is the SCET matrix-element computation for B -- X,+ '- , step v), which is

performed in Sec. 4.2.4. In Sec. 4.2.5 we review the running for the shape function,
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step vi). In Sec. 4.3 we present our final results for the differential decay rates at

leading order in the power expansion, including all the ingredients from Sec. 4.2 and

incorporating the relevant experimental cuts. The triply differential spectrum and

doubly differential spectra are derived in subsections 4.3.1-4.3.4. Readers interested

only in our final results may skip directly to Sec. 4.3. We compare numerical results

for matching coefficients at mb with terms in the local OPE in subsection 4.3.5. In

Appendix D we briefly comment on how our analysis will change if we assume a

parametrically small dileptonic invariant mass, q2 A 2, rather than the scaling q2

A° used in the body of the chapter. (For the case q2 A2, the rate for B - xse+e-

would not be determined by a factorization theorem with the same structure as for

B Xu v.)

4.2 Analysis in the Shape Function Region

4.2.1 Matching on to SCET

We begin by reviewing the form of the electroweak Hamiltonian obtained after evo-

lution down to the scale - mb, and then perform the leading-order matching of

this Hamiltonian on to operators in SCET. For the treatment of y5 we use the NDR

scheme throughout. Below the scale /u = mw, the effective Hamiltonian for b -, s+f -

takes the form [84]

10
4GF 10

H W =- G Vtb Vt E C(A)Oi(A) (4.4)

where we have used unitarity of the CKM matrix to remove VbV dependence and

have neglected the tiny l,bV, terms. The operators 01 (p) to Os () are the same ones

we have alreacd encountered in studying B --+ Xsy. The two additional operators

are

2 e2
O,9{) = .16722sLT=6Y bL%,e, (4-5)

165O -- 167r2
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In the following, we shall once again neglect the mass of the strange quark in 07.. For

our analysis, m, is not needed as a regulator for IR divergences, which are explicitly

cut off by non-perturbative scales AQCD. In the shape function region, the m,8

dependence is small and was computed in Ref. [60]. Non-perturbative sensitivity to

ms shows up only at subleading power, while computable (m2/mbAQcD) jet-function

corrections are numerically smaller than the AQCD/mb power corrections.

At NLL order, one requires the NLL Wilson coefficient of 09 and the LL coeffi-

cients of the other operators. For 07,9,10 these are given by [121, 54]

16 8 1i 16 8
CrNDR(,) = 2 C(M ) + - ) C8(Mw) + E t r ', (4.6)

3 \/ i=l

CDR) PNDR( Y(m/M ) - 4Z(m2/MW) + PE(p)E(m/MW),

sin 2 w
C1o(H = Cio(Mw) - sin2 Ow

where C7(mw), C8(mw) and the Inami-Lim functions Y, Z, and E are obtained

from matching at [u = mw, and are given in Appendix C. The -dependent factors

include [121, 54]

8Po (a,= (Mvv) 75 + 0~i ro i ) + 12468

8+ E rai NDR + sir-1)
PE(p.) = 0.1405 + qi- ai (4.7)

q i r a r cl(mr) -

The numbers ti, ai, p, si, qi that appear here are listed in Appendix C. Re-

sults for the running coefficients of the four-quark operators, C1-6(p), can be found

in Ref. [54]. NWe have modified the standard notation slightly (e.g. r((t)) to con-

form with additional stages of the RG evolution discussed in sections 4.2.2 and 4.2.5.

Contributions beyond NLL will be mentioned below.

At a scale t rn.b. we need to match b - s+ - matrix elements of 'HN,, on to
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matrix elements of operators in SCET with a power expansion in the small parameter

A, where A2 AQCD/mb. For convenience, we refer to the resulting four-fermion scalar

operators in SCET as "currents" and use the notation Jee. In SCET we also need

the effective Lagrangians. The heavy quark in the initial state is matched on to an

HQET field h, and the light energetic strange quark is matched on to a collinear

field Jn. For the leading-order analysis in A/mb we need only the lowest-order terms,

H.w = - Ga ( VtbV ) Je L = £ HQET + (SC)ET (4.8)

where J(o) is the LO operator.

To simplify the analysis we treat both mc and mb as hard scales and integrate out

both charm and bottom loops at ~- mb. At leading order in SCET, the currents

that we match on to are

Je = E Cs9i(s) (n,pr(v)P)87)(-E) + E Coi(s) (Xn,(prv) ,,)(r 5e)
i=a,b,c i=a,b,c

- E C7j(s) 2 mB (X,pr(t)OI) ( Ye), (4.9)
j=a,...,d

where the sum is over Dirac structures to be discussed below. The simple structure of

these LO SCET operators is quite important to our analysis: for example, by power

counting there are no four-quark operators that need to be included in SCET at this

order. The B momentum, total momentum of the leptons, and jet momentum (sum

of the four-momenta of all the hadrons in X,) are

P =flB , q" = /I÷ PI P ='p -I Žpx-, (4.10)
PB = mBqv, qd = Pa + tI'- : pX = n ' p -X 2 RX 2

respectively. As in the previous chapter. we shall use the hadronic dimensionless

variables

2Ee- h -Px n Px q2
H = -- , YH , YH- 2 (4.11)el7 It B mB

1.5(0



In SCET the total partonic n .p momentum of the jet is a hard momentum mb

and also appears in the SCET Wilson coefficients. At LO, fnip = (m2 - q2 )/mb and

demanding that ni.p is large means only that q2 cannot be too close to m2. For

example, neither q2 M 0 nor q2 m/2 modifies the power counting for i.p. Thus,

there is no requirement to impose a scaling that q2 be small. For convenience, in the

hard coefficients we write

q2
C('p, mb, o, Lb) -- C(S, mb,o, pb) , s = 2 , (4.12)

since the partonic variable s is a more natural choice in b -- se- and is equivalent

at LO. For purposes of power counting in this chapter we count s - A° . We shall

see in section 4.3.5 that varying s causes a very mild change in the coefficients. In

Appendix D we briefly explore a different scenario, in which s A2. A distinction

between two matching scales Plo and Ab is made in C in order to separate the decay

rate into two pu-independent pieces, as displayed in Eq. (4.3). For power counting

purposes, , 0 I -b mb and formally puo >_ b. For numerical work one can take

Lo = PL,.

In Eq. (4.9) we begin with a complete set of Dirac structures for the vector and

tensor currents in SCET, namely

ra )= PR{'"v"r , = PR i ,y[v, (4.13)
n-v1 n-qv n-v

These come with Wilson coefficients C9a,b,c and C7a,b,c,d respectively. This basis is

over-complete for B - Xt+f - , but considering a redundant basis makes it easy to

incorporate pre-existing perturbative calculations for the currents into our computa-

tions. Only the coefficients C7a,9a appear at tree level. but for heavy-to-light currents

it is known that the other structures become relevant once perturbative corrections

are inlll(led. For simplicity of notation. we treat the 1/q2 photon propagator in r t)

as part of the effective-theory operator.4

-If we instead demand that the momentum q2 be collinear in the n direction, with s A2, then
the SCET operator with a photon field strength should be kept, and will then he contracted with

1 51



To reduce the basis in Eq. (4.13) further, we can use i) current conservation,

q'[%tf : = 0, ii) q,/Yst 5 = 0 for massless leptons, iii) a reduction of the tensor

1 (t) Dirac structures into vector structures, since they are all contracted with q.

Constraint ii) allows us to eliminate C0c. Taken together, constraints i) and iii)

allow us to reduce the seven terms Cgi and C7i to two independent coefficients. For

our new basis of operators we take

7 () C 2mB q(je) C_ (Xn,pPR Hv ( e) - C7 (XnpPR i-.Tv ) ()

+ ClOa (Xn,pPR Y"Htv) (,Y15f) + ClOb (Xn,pPRv'Hv) (/%y,/ 5e), (4.14)

and find that

C9b mB 2mB(C7 - C7d) +q- nq C(
C9 = C9 + C7b + (4.15)2 n.q n-q-n.q

0 7b n-q 1 q
C7 = 0 7a - 2 q C9b + [ C9qc - 7c+ -q7d2 4 mB n.q-.q 2mB

ClOa = ClOa 

ClOb = ClOb + q ClOc nrq--q

Our Dirac structures for the C9 and C7 terms in Eq. (4.14) were deliberately chosen, in

order to make results for the decay rates appear as much as possible like those in the

local OPE. The fact that the basis of SCET operators for B - X,+e- involves only

bilinear hadronic currents at LO means that in the leading-order factorization theorem

we find the exact same non-perturbative shape function as for B -+ X-y and B -4

Xuiv. This is immediately evident from the operator-based proof of factorization in

Ref. [30], for example. While the coefficients Cgi, C7i, C1oi in Eq. (4.9) are functions

only of s = (n-q) (iq)/mb, the reduction of the basis of operators brings in additional

kinematic dependence on n.q and n.q for the Ci's (which is also the case in analyzing

exclusive dileptonic decays [83]). At tree level we have 09,10 contributing to C9a and

an operator with collinear leptons within SCET. In this case there will also be additional four-quark
operators needed in the basis in Eq. (4.14).
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e+ t

e-

p

Figure 4-2: Graphs from Hw for matching on to SCET.

a) b)

- - -)- - -bv Sn

C) A

e- e+ e- e+ e- t +

Figure 4-3: Graphs in SCET for the matching computation.

Cloa, and a contribution from 07 with the photon producing an e-+- pair, which give

C9 = cNDR(), C7 = 0) N D R(0), Cloa = ClO 70, ClOb = 0. (4.16)
mB

Beyond tree level there will be C7 dependence in C9, and C9 dependence in C7.

Eq. (4.16) indicates that with our choice of basis the same short-distance depen-

dence dominates in SCET: C9 C9, etc. We explore this further in Section 4.3.5. In

Eq. (4.16) there is no distinction as to whether this matching is done at A = Po or

A = Alb. The effective-theory operator in Eq. (4.14) was defined with a factor of mB

pulled out so that the p-dependent factors rbC 7
N D R are contailled in the coefficients

C 7.

At one-loop order, the full-theory diagrams needed for the matching are shown

in Fig. 4-2 (plus wave-function renormalization, which is not shown). At this order

the four-quark operators 01-6 contribute through Fig. 4-2a. The one-loop graphs

in SCET with the operators in Eq. (4.14) are shown in Fig. 4-3 (plus wave-function

renormalization, which is not shown). There are no graphs with four-quark operators

within SCET since we treat q2 - A0. so Fig. 4-2a matches directly on to C9.
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As discussed in the introduction, we perform a split-matching procedure from the

full theory above mb on to SCET below mb, making use of two matching scales o

and Pb. Contributions from this stage of matching therefore take the form

B(pO, Pb) = B (o)B 2(ub). (4.17)

Since 010 has no anomalous dimension above mb and there is a common universal

anomalous dimension for all the operators in J(O) below mb, there is a well-defined

prescription for carrying this out. We take all contributions that cause perturbative

corrections to CIoa and ClOb to be at the scale Pb, SO for this operator Bl(po) = C1o,

and at one-loop order B2(,Ub) includes ac (b) ln 2 (b), a(b) ln(Pb), and a, (b) terms

from matching the vertex diagram Fig. 4-2b and wave-function diagrams on to SCET.

The analogous contributions from vertex diagrams for C9 and C7 are also matched at

P = b to determine their B 2( Pb)'s (for C7 the full-theory tensor current has a In p

that is matched at p = oP0). The universality of the anomalous dimensions in SCET

guarantees that this procedure remains well defined at any order in perturbation

theory and can be organized into the product structure displayed in Eq. (4.17). For

C9 and C7 there are additional non-vertex-like contributions that are matched on to

B l ( po) at a scale o > Pb. These include contributions from four-quark operators

01-6 in the full theory, which will match on to C9 and C7 in SCET.

The difference between the full-theory diagram in Fig. 4-2b and the SCET graphs

in Fig. 4-3b,c is IR finite (where we must use the same IR regulator in both theories,

as is always the case for matching computations). In the UV the full-theory graph

in Fig. 4-2b plus wave-function renormalization is -independent since the current is

conserved. The graphs in SCET induce a p dependence and an anomalous dimension

for the effective-theory currents. These terms are matched at I r= t Pb. We start with

the basis in Eq. (1.9) and find

Clao(. b)= C10 1 + i + (S, Pb)] 

ClOb.10(o(lIO, b) = Clo (Pb)c(S (4.18)7T b~~~~~~~~~4.8
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with a constant ,/o-independent Clo. The perturbative coefficients were computed in

Ref. [23], and setting p/mlnb = (1 - s) we find

Wa(S, b) ='(,,) -1 [21n2(1s) + 2Li2(s) +ln(1-s) (1 )3 ( S 

+ 2In2 ( )
mb

+ 51n( Ib)

b (S) = 3 I [+ 2(1- s)(1

) = 1 [(2s - 1)(1 - s) ln(1C'(S) =3 S[ 

- 41n(1-s)

s)] 

-) (1- s)]
$i

For the matching on to C9a,b,c in the basis in Eq. (4.9) we have the same pertur-

bative coefficients Wa,b,c as for ClOa,b,c, because only the leptonic current differs:

= cg i(o) [1 + a (b) W(S

= CMix(L) [Wb Wc(s)] _9 /1)I 7 (4.20)

However, for Ci there are additional contributions, Cnix"(o), from the matching at

,u = ,uo, which at one-loop order and O(a °) includes Fig. 4-2a:

ix NDR 2 1
Cg (/o) = CsDR( 0 ) + (3C3 + C4 + 3C5 + C6) - h(1, s) (4C: + 4C4 + 34C4 + C6)9 2

+ h( ,s) (3C1 + C2 + 3C3 + C4 + 3C5 + C6) - h( s) (C3 + 3C4)

ats (zo) crIix(l)
+ a , ( C5i(d l)°) (4.21)

where all running coefficients onil the RHS are Ci = Ci(/Io). We shall discuss the

relation of C'mix to Cff in in the local OPE analysis [121, 54] after Eq. (4.28). In

Eq. (4.21) tle funlctions h(1..s) h(z.s), and h(0. s) for the b-quark. c-quark, and
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light-quark penguin loops are [84, 121]

8l'uo 8 8 4 2
h(z, s) = nt ) + 8 + (2

9 mb 9 27 9 9

x (1-C) -i Trn - -- + n l + ((- 1) 2arctan 1 ,

h(Os) 84 O)_a4 41h(O,s) = 27 + In( Mb Ins + 9i7, (4.22)

with = 4z2 /s. Higher-order (a,) corrections in Eq. (4.21) are denoted by the

Cnix(l ) term. An important class of these corrections from mixing can be determined

from the NNLL analysis in Refs. [10, 8, 75, 9, 77, 76]:

C9ix( l)( (0) = CNDR 8- 9 (S, i-o) + C1 C1- 9(S, -0, f0c) + C2 K2- 9 (S, P0, c) (4.23)

To determine these terms one must be careful to separate out the factors in square

brackets in Eq. (4.20). However we shall not attempt to include all NNLL terms

consistently here. Contributions to C9gix(l) from the penguin coefficients C3-6 are

unknown but expected to be small (at the -l- 1% level).

Lastly, we turn to the results for C7i. From the vertex graphs we have

C7a (-0, ib) = C7iX(o) [1 + as(b) T(s, 8 )]

C7b,7c,7d(MO, ib) = C7mix(Pt) a T(b) d(s)' (4.24)
7r

The wT perturbative corrections are again determined from the SCET matching in

Ref. [23], which (switching to s) gives

b = -1 [22(1s) + 2Li2(s) + ln(-s) (+ 12 + 6
(- 5 ( - (s (12

rnb / - lb / mb) _
4b (S) = (S) = 0.

VT(S) = 1 [ 2(1 s) ln(- s)] (4.25)
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Additional contributions from other diagrams are matched at the scale o into C7nix([o).

Note that, unlike the vector currents, the tensor current for 07 gets renormalized for

[ > nmb and we must include the corresponding ln(lo/mb) in C7mix(po), i.e.

ix( =mb(lto)
C7iX(A(o) = MB

mB

2a, (,o)
37r

+ a3 (Cto) 0 rix(l)+ I C (4.26)

where, much like in the case of Cgni x, we have

cnix(l) ( =o) = cNDR, K(S po) + C1 (s, o0,i c) + C2 Ka(S, Lo, fcn),C~ OLO --- a ) a a (4.27)

and the results for I 8-- 7(S, po), 1- 7 (, 0o, c), and n2- 7 (, Po, ro, ) can be found in

Ref. [81]. Contributions to C7niX() from the penguin coefficients C3-6 can be found

in Ref. [52].

Using Eq. (4.15), n.qn.q/m2 = YH, and n.q/mB = 1 - UH, we can use the above

results to give the final coefficients for our basis of operators with the minimal number

of Dirac structures, namely

C9 = c9mix(,){ 1 + as (Cb)
7r

"n2 WV \S)

'(S, Ab) + 1W kS) + IH[a 2b) + 2 S (1-UH) 2 -yH

+ 0C, (1 )~a(Ib)

C7 = C7niX(A) 1 +

[

(Ib)
7r

(1-UH)2 -YH

[ (S. b) - - Wb (S) -
2

W(S) 1

(1-UH) '

YH WdT(S)- (1-UH)2WT) }
(1-UH)2-YH J

_ Cix,( .)_b) , YH_ _ (S)+ YH (1-uH)w (S)1

- L4(1-uH) 2[(1-uf) 2 -yH] J

Co=C100 {1 Wa (s, Ab) ) 7r~~~

Clob = C'10o() [Wv(S) +
2(1-u1)2

(1-UH)2 -Y
W((' )] (4.28)

where the terms have the structure of a sum over products B(pOu()B2(tb), as desired.

In sing the results in Eq. (4.28) one can choose to work to different orders in
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the Hl(o- and [Lb-dependent terms, as shown ill Eq. (4.3). For the P-o dependence,

Cix(lo) and C7nix(Lo0 ) include terms from matching at mw and running to mb, as

well as matching contributions at mb that cancel the po dependence from the other

pieces. Thus, these coefficients have only a small residual /uo dependence, which is

canceled at higher orders, just as in the local OPE. The Ci coefficients depend on Pb,

both through a,(i-b) and through explicit iPb dependence in wT and wV. The n/-tb

dependence in wV and wT is identical, as expected from the known independence

of the anomalous dimension on the Dirac structure in SCET. The ib dependence

in Ci(pb, o) is universal, and will cancel against the universal b dependence in the

jet and shape functions, which they multiply in the decay rates. We consider the

phenomenological organization of the perturbative series for u0o and [tb terms in turn.

First consider the P0 terms. Because of mixing, the sizes of contributions to CNDR

are comparable at LL and NLL orders [121, 54], so a reasonable first approximation is

to take the NLL result (just as for the local OPE decay rate). This entails dropping

the ((s) matching corrections C9ix( l) and C i ( l) , and running C9 at NLL order

with C7 at LL order. As an improved approximation, we would then adopt the

operationally well-defined NNLL approach [10, 8] of running both C9 and C7 to NLL

order and keeping the 0(as) matching corrections at mb.5

Below ml, there are Sudakov logarithms. For the b dependence, the RG evolution

in SCET sums these double-logarithmic series. As a first approximation we could take

the LL and NLL running in UH(-b, pi) and Us(pi, A) in Eq. (4.3), while using tree-

level matching for B2(Pb) and J(/i). This is consistent because the NLL running is

equivalent to LL running in a single-log resummation. As a second approximation

we could then take NNLL running in both terms and include one-loop matching for

both B2(l,) and ,(pi). However since the scales rn2 >> mbA > 1 GeV 2 are not as

well seplarated as rr... >> mb, we could instead consider the second approximation to

includ(e the one-looI) matching for B2(P.b) and J(li) with NLL running, but without

including the full NNLL running (for which parts remain unknown).

's\Xe assulne that mnatching at the high scale, ml.r, is always done at the order appropriate to the
runniniig f Ul'I (u- Io) in Eq. (4.3).
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Our procedure for split matching above was based on the non-renormalization of

O10 in QCD. It can also be thought of as matching in two steps. First one matches

at po on to the scale-invariant operators

J(0) = Cgnix (PRypb)(ff,le) + Clo (PRyP'b)(E¥?5' )
2mBqm

_ C7ix 2 [(PRi&Tb)(p = mb)] (-Ye), (4.29)
q2

to determine the coefficients C79x. These coefficients are ju0 independent at the order

in perturbation theory to which the matching is done. Secondly, the operators in

Eq. (4.29) are matched on to the SCET currents in Eq. (4.14) at the scale Alb to

determine the coefficients C7, C9, ClOa,b. In Eq. (4.29) the operators for Cg"x and C1o

are conserved, but the tensor current has an anomalous dimension, and so we take

= mb as a reference point for matching on to a scale-invariant operator. This choice

corresponds to the Inmb factor in Eq. (4.26) for C7 iX. A different choice will affect

the division of a,(i0) or a,(Ab) terms. Note that Eq. (4.29) should be thought of

only as an auxiliary step to facilitate the split matching; there is no sense in which

the running of the tensor current is relevant by itself. In general the split-matching

procedure could be carried out in a manner that gives different constant terms at

a given order, but any such ambiguity will cancel order by order in C7 and C9 (and

explicitly if lo = lb).

Finally, note that our w, differs from the result for wOPE identified in Ref. [121]

for the partonic semileptonic decay rate when using the local OPE,

OPE 1 r__ .. _. . ._2(s)+ 1n(1-,, 5+4s 2s(.1+ s)( - 2s).o=E 1 - 21n(s)ln(1-s)+4Li2(s)+ln(1-s) l2 + (1 s)(12s) ln(s)
seMi 1-- (1--s)2(1±2s)

(5+9s-6s2) 2r 2 1 (.30)

2(1-s)(1+ 2s) + 3]

Here ,;ET. contains both vertex and bremsstrahlung contributions evaluated in the

full theorv. Grouping these contributions with the Wilson coefficient for O9 gives

C(1cal(,I) = OiX(P) + pDR (p) aS() OPE (4.31)
l4
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which is C9ff in the notation in Ref. [54]. At LO. the restricted phase space in the

shape function region causes bremsstrahlung to contribute only to the jet and shape

functions, and not at the scale - mb. The shape function and jet function also

modify the contributions from the vertex graphs. Thus, instead of WOPE the final

results in the shape function region are given by our wiV and wT factors appearing in

Cgi and C7i. Consequently, the main difference is in the terms we match at L = b,

while the terms matched at /t = /p0 that appear in C ix and Cm'x are identical to

terms appearing in the local OPE analysis.

4.2.2 RG Evolution Between /ib and i

The running of the Wilson coefficients in SCET from the scale p 2 m2 to /p2

mbAQcD involves double Sudakov logarithms and was derived in Refs. [22, 23] at NLL

order. The SCET running is independent of the Dirac structure of the currents, which

is a reflection of the spin symmetry structure of the current. We briefly outline a short

argument for why this is true to all orders in perturbation theory. The leading-order

currents in SCET have the structure

J = (W),r(Yth,), (4.32)

and we wish to see that their anomalous dimension is independent of r. The anoma-

lous dimensions are computed from the UV structure of SCET loop diagrams, with

the leading-order collinear- and heavy-quark Lagrangians. Soft gluon loops involve

contractions between the Wilson line yt and the h and do not change the Dirac

structure. Next consider the collinear loops. The attachment of a gluon from the

Wilson line W to the collinear quark gives a factor of a projection matrix, which can

be pushed through y's to give &,0$/4 = . Thus it does not modify the Dirac struc-

ture, so only insertions from the iIcl/(i. Dc)i] term are of concern. These terms

give structures of the form u()' *Y . f f2ku(), where all i indices are contracted

with each other. Using {-y '} = 2g"j and Y-y = -2, we can reduce this product
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to terms with zero hY's since all vector indices are contracted. Hence all diagrams

reduce to having the Dirac structure that was present at tree level, ()u(b) .)

Thus, all the LO coefficients obey the same homogeneous anomalous dimension

equation,

Cd c(l) = [-rcusp (a) In ( ) +(s)] Ci () (4.33)

= [-Fcsp((s,) n () + {c(us) +Fcusp(a,)l n ( ) }] Ci()

This must be integrated together with the beta function 3 = ud/dpu as(p) to solve

for UH in

Ci (pi) = UHPi C (p, b) (4-34)

In the second line of Eq. (4.33) we used the fact that P gives the total partonic -.p

momentum of the jet Xs in the B - XSt+- matrix element, and we introduced

artificial dependence on the matching scale [b in order to make the n-p dependence

appear in a small logarithm. Here n-p = mb - -q. We write

rcusp = cusp ( , n+l E ' s nn+l+1

n (4-771. a= (4,7Cp,) 45~W)7
n=O n=O n=O

(4.35)

At NLL order we need o = 11CA/3 - 2nf/3, /1 = 34CA2/3 - 10CAnf/3 - 2CFnf and

rcusp = 4CF, rP = 8CFB = 8 CF [A( ) 9nf] Y F, (36)

where CA = 3 and CF = 4/3 for SU(3). For the number of active flavours we take

nf = 4 since we're running below mb. The cusp anomalous dimension rUsP was

computed in Ref. [98, 96], and the result for rc'"sp was recently found in Ref. [122].

RG evolution in SCET at NNLL order has been considered in Refs. [129, 104]. For

the NNLL result one needs FUSP, yl, and /32. For Il an independent calculation does
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not exist, but a conjecture for its value was given in Ref. [129] based on the structure

of the three-loop splitting function [122]. For the sake of clarity we stick to NLL order

here. The result is

UH (i, I-b) = exp 2go(rl) 1,-p) ]
-0s(Aub)d-2lrn, (4.37)

where the independent variable is pi and

a (i)ri(pi) = a, (i-b)

27r

27r + POa ,(b) ln(/i//b) 

gO(r l)

gl(rl, np)

4 CF [-l1+lnrl],

CF 11-n1 -lnl2 1~1- I [1-1- 1- r1 -i I ln2 r1]

3o p 2b 2 

(4.39)

This is the form for the universal running of the LO SCET currents found in Ref. [23].

Switching to a,(pi) as the independent variable, with rl = Ca(Pi)/as(Lb), gives

4CF Ib nr

-Lb 
exp 2go(r1) )

[ a (i-b) g1 r )

where go(r1 ) is as in Eq. (4.39) and

S(ri) = CF ln2r1 + C n 11 + X (2B/3o - 1) (1 - r + In rl).
gl ) - 2/03 2I30 -I3

(4.40)

(4.41)

This form of the evolution with a(p,) as the variable was used in Ref. [47], and is

also the one we adopt here. The decay rate is computed from a time-ordered product

of' currents and so at the intermediate scale p,2 mbA will involve products

Ci(1 i? 10) Cj(]li, /1o) = UH(-li, Ib) Ci(Pb ]tO) Cj(1b: l0O), (4.42)
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explaining why we used a notation with VUWH in Eq. (4.34).

4.2.3 Hadronic Tensor and Decay Rates

In the last two sections we constructed the required basis of SCET current operators

with matching at / 2, A ,, m 2 and evolution to 2, mbA. At the scale pi we

take time-ordered products of the SCET currents and compute the decay rates using

the optical theorem. In this section we discuss the tensor decomposition of the time-

ordered products and results for differential decay rates.

In order to simplify the computation of decay rates it is useful to write the sum of

hadronic operators as a sum of left-handed and right-handed terms since for massless

leptons we have only LL or RR contributions [7]. Doing this for our current, we have

Je() = [C9 - C 0a] (Xn %APL -[H) (APL e) + [C9 + ClOa] ( yn yPL Nv) (ey" PR e)

+ClOb (/5n vPR 7-4v) (_"yL 5 2e)-C7 2 (g, ZU11r H2) (._ _ 1)
qV

- (JL L + JR L) , (4.43)

where

LI' = ey PL , L = PR , (4.44)

JL(R) = XnPR [(C9 T Cla)O'y - + C7 q2 TClOb V]7v

Xn L(R) 1 7 v .

Thus. the inclusive decay rate for i - Xj+ - is proportional to (WLL +

IILV') where the leptonic parts L) ad hadronic parts II and roni parts byL(R L L(R) are given by

L_(R) = X, [1L(R)(P+) Y" lL(R)(P-)] [IL(R)(P-) " IL(R)(P+)]
spin

= 2 [p p + p p - g p+ .p_ Ti e"V" P _+ , P-,3], (4.45)
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and

11,L(R)
AV I= 21- q(2r)54(pB-q-PX){JL(R)* X){ JL(R)I/)2mB Z(2r)'(pB-- px)(BI J IX)(XI2Tn

(4.46)

-= gvWL (R)+ V1 v,vW2L(R) + iE±,ao qW3(R)+ q ,qWL(R)

+(Vqv + Vq ) W ( ) 

The optical theorem relates WLR) to the forward scattering amplitude defined as

-2 mB- e-i (4.47)

= -g,TL + vuV,T2 + i,vavc'qT3 + qqvT4' + (viqv + v~,q,)T5L,

with an analogous definition for TR, giving

W = Im TL, WzR 1 (4.48)

Contracting the lepton tensor LL(R) with W(R) and neglecting the mass of theL(R) L(R) ngetg t m o

leptons give the differential decay rate

d3 r
dq2dE_dE+

= rO - [q2W + (2EE -q2/2)W2 + q2(E -
B

E+)W3]0(4E_E+ - q2) ,

(4.49)

where E = v .p, W1 = WL + WR, W2 = W2L + W2
R, W3 = W3L - W3R and the

normalization factor is

G2 5
°7 = 

192r 3 (4.50)
162 
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The H 1 are functions of q2 and v · q = v · (p+ + p_). Another quantity of interest is

the forward-b)ackward asymmetry in the variable

p_ -p! - .p+
/(v. q)2 _ q2 (4.51)

164

(-13 T JAI (x JV () i P



where 0 is the angle between the B and f+ in the CNI frame of the fe+- pair:

d2 AFB d sign(cos 0)
di, q dq2 -]d(cos 0)

dv~~q dq2
- Po~

d3F

dv.q dq2 d cos 0

48 q2

- [(v )2 _ q2] W3. (4.52)mB

In terms of the dimensionless variables

2Ee-
XH -

mB
n'Px

YH -
mB

n Px
UH -

mB

the triply differential decay rate is

1 d 3 F

d = 2 4 mB(YH-UH){(1-UH)(1H)W1F dH dCH dUH
(4.54)

+ (1-XH-UH)(XH+YH- 1)W2

+ mB (1-UH)(1-H)(2XH+UH+Y-2)W3+2 (1-uH)(1-s)( 2xH+uH+yH-2)W} '

where Wi = Wi(uH,VH). For a strict SCET expansion we want n px << fipx i.e.

UH < YH. However, it is useful to keep the full dependence on the phase-space

prefactors rather than expanding them, because it is then simpler to make contact

with the total rate in the local OPE, as emphasized recently in Refs. [135, 104], and

so we keep these factors here. We shall also keep the formally subleading kinematic

prefactors in our hard functions rather than expanding them as we did in Ref. [106].

Other variables of interest include the dileptonic and hadronic invariant masses,

q2
YH 2 

B

2
MX

SH = 2
B

(4.55)

where

·SIH = 'HIHH YH = (1 - u1 )(1 - VI),

so that [yEl > UH]

{ VI[} = [1 YH+SH i /(1 -i + S) 2 -4sH ]9~~~~~~~~~~~~
165

(4.53)

(4.56)

(4.57)



A few interesting doubly differential spectra are

1I d217 24 ( '-2f(1UH1U W H)w2i ! (4.58)
i- d2 = 24mB(Y-UH) (1-H YH)W1 + (4.58)r d H dH 12

1 1
- d m d =MB\I(1-YH+SH)2-4H 12YHW1+ [(1-YH+SH) -44 VH]VW2}

1 d2F 2 mrB l 21 2 [(1-2UH)2_ 2
- 3 [(1-UH) 12YHW + W2},

1 d2F 2mB(SH - U) 2

2UHd -- {U) (12UH(1-UH)(UH-SH))W 1 + (SH U)2 W2} Fo dSH dUH UH H

For doubly differential forward-backward asymmetries we find

d2 AFB
= 6m2 (H-UH) 3 (1 H)(1-U (1- ) W3, (4.59)

dyH dUH B

d2rB -= 6m2 YH [(1 -YH+SH) 2 - 4sH] W3 ,
dyH dSHu

d2AFB = 6m2 YH [(1-uH) 2 -YH] 3

dyH duH (1 -UH)4

d2 AFB 2 (SH-UH) 3 (UH-SH)(1-UH)

dSH dUH UH

4.2.4 LO Matrix Elements in SCET

At lowest order in the A/mb expansion, the only time-ordered product consists of two

lowest-order currents e ) as shown in Fig. 4-4. The factorization of hard contribu-

tions into the SCET Wilson coefficients and the decoupling of soft and collinear gluons

at lowest order are identical to the steps for B -* Xy and B -+ Xuv, and directly

give the factorization theorem for these time-ordered products [30]. The SCET result

agrees with the factorization theorem of Korchemsky and Sterman [99]. However, the

structure of (,( rbA) and (X,(7nrb) corrections differs from the parton-model rate, as

mentioned i Refs. [27, 47]. Beyond lowest order in a,(m.b) the kinematic dependences

also differ. as mlentioned in Ref. [106]. For B -+ Xjei, the final triply differential rate

with perturbative corrections at 0(as) can be found in Refs. [27, 47].

The factorization and use of the optical theorem is carried out at the scale it = ti
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X

0

'J(0)

Figure 4-4: Time-ordered product for the leading-order factorization theorem.

and we expand Wi = W + + (2) +... in powers of A - (AQcD/mb)1/ 2 (with no

linear term). For B - Xsf+- we have bilinear hadronic current operators in SCET

in Eq. (4.14) and so, as is the case for B -* XjuP, we find

= hi(p+,px, i) dk+ J(O)(p-
XO

(4.60)

This result is important, since it states that the same shape function f(O) appears in

B -- Xs+e-- as appears in B -+ Xsy and B -* Xue,. This formula relies on the

power counting s - YH - AO that we adopted (and would not be true for the counting

s - A2 discussed in Appendix D). At tree level the structure of this factorization

theorem is illustrated by Fig. 4-4. The hard coefficients here are

hl(px,px, i) =

h2 (P, PX, i) =

h3(p, PX, Hi) =

I Tr [P r r] P]ip +
4 P V

4 Tr [P r, P L] P +
4 [V 2L / I v]P

4 FLi

with Pv = (1 + r)/2 and r = °ort0. In Eq. (4.60) we have the same leading-order

shape fnction as in B --, XSy and B Xu£e.

4.2.5 RG Evolution Between ,u and i

The function f(O) cannot be computed in perturbation theory and must therefore be

extracted from data. This same function appears at LO in the B -+ XSy, B - XjFe

and B - Xe+e - decay rates. In practice, a model for f(0) is written down with a

few parameters, which are fitted to the data. The support of f(0)(A- r + ) is -oc to A
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since r+ E [0, oc). It is often convenient to switch variables to f(°)(r+)= f(°)(A- r+)

which has support from 0 to oc, although we shall keep using f(O) here. A typical

three-parameter model is [108, 103]

ab(r+ )b- 1 -_~
f(°)(- r+ , A) = f(° )(r+, A) = F(b) Lb exp( ar )O(r+), (4.62)

where a, b are dimensionless and L AQCD. These parameters can be fitted to the

B - XSy photon spectrum and the function f(O) can then be used elsewhere. The

most natural scale to fix this model at is Pu = /A 1 GeV, at which it contains no

large logarithms. The result of evolving the shape function to the intermediate scale

is then [47]

r+ fP)
f()(A-r+ ui) = eVs ( i' uA ) ILF() r 7 d (r - r+' 1-) (4.63)

(The structure of this result also applies at higher orders in RG-improved perturbation

theory [129], and at one-loop order a similar structure was considered earlier, in

Ref. [17].) At NLL order

vs (Pi, PA) = u ,7 - - In 2) +01 In'r2 + 1 1 - - - In r2
22 (A) (r2 -1-lnr 2)+ ln2r2+c usp /3o 1- -lnr 2

rcusp %
0- -YE In r 2 -- nr 2Po nr

rcusp

= o In r2 . (4.64)

Here, r2 = a,(IiA)/a,(Pi), ruSP and rUSP are the same as in Section 4.2.2 and yo =

-2CF. For numerical integration this can be rewritten in the form

f(1 + r(-) T f -) dt f() (A-r+(1- t/v), A) . (4.65)
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4.3 B Xs+- Spectra in the Shape Function Re-

gion

4.3.1 Triply Differential Spectrum

At lowest order in the power expansion, Eqs. (3.17) and (4.60) give the result

hi (pX, PX, mb, Li) dk+ j(o) (p-
i'

, k+, Pi) f(°)(k+ +A-p+, pi)

where RG evolution from the hard scale to the intermediate scale gives

hi(pX, , pi) = UH (i, b) hi(px, , b),

and the results at pu = Pb are determined from the traces in Eq. (4.61):

1 (IC912 + IC10a2) 2 Re [C7 C ]

(1-YH)

h2 (px, PX, b)

h3 (px,y p, Pb)

2 (1- u) (IC12 +

8lC 7 12

(1-ReH)[(YH-UH) 

-4 Re[Clo. C7 *]

mB(1 - H)(YH - Ui)

ICloa 2 +Re[Coa Cob] )

2 Re[Cloa Cs]
mB(YH -UII) '

Here Ci = Ci(px,p +, b, po, mb), so these hard coefficients also depend on mb and

have residual o scale dependence. Explicit formulae are given in Eq. (4.28).

(convenience we define

F(O) ()h+ P) = UH (i, Apb)

= pX UH (Pi, b)

PX dk+ (O)(p- kt, Pi) f(°)(k+ +Ap -p + ,i)
0

I
dz ( )(p-,z p+, P i) f ( )(-P+(1- Z), i) .
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(1-P)2 ' (4.68)

2

For

(4.69)
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where p- = p- + A. In terms of this function,

(4.70)W(O) = hi (p+, pX, b) F(°)(P+, X )

We find that to NLL order

F(°) (p PX) = UH(Ai, Pb)f( (A-pX, P'i)

+ Ul(Ai, /b) °'(&)CF {(2 1n2
47r

+j- [4in 4-p _n

/ Ili

+ 2+

tI tt + 7 - 7r2) f(o ) (-p+ Pi)

3] [f(°) (A-p+ (1 -z), i) - f(°)(A-P,i)] }

Note that, until we include the as corrections from the jet function, F(O) is indepen-

dent of Px, so that all of this dependence is in the hi(p+, p-, tb) functions.

Now, the triply differential decay rate in Eq. (4.54) becomes

1 d3r

Fo dH d7H dUH
= 24(-H-UHHh+ )(1-UXH-UH)(XH+H-1)h2

2

+ (1 -UH)(1 Y-) H)(2XH+H+HH- 2 )h3 F(°)(mBUH, mByH),

(4.72)

with hl.2,3 from Eq. (4.68). As a check on this result, one can make the substitutions

C9a = -ClOa

GFa VtbVt G FO7I

(4.73)= 1/2, C7 = ClOb =- O,
4 GF

after which the h and h2 terms in Eq. (4.72) agree with terms in the leading-order

shape-function spectrum for B -- XUJE [27, 55]. The h:3 term for B - Xe was the

difference of products of left- and right-handed currents and so should not agree in

this limlit.
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4.3.2 d2F/dq2dmX Spectrum with q2 and mx Cuts

Next we discuss doubly differential rates and forward-backward (F.B.) asymmetries.

For d2 r/dq2 dmn the rate is obtained from Eq. (4.72) by integrating over XH and

changing variables. In terms of dimensionless variables YH = q2 /m2 and SH =

mx/m.2 we have

1 d2 r

Fo dyHdSH

1 d2 AFB

r0 dHdSH

= HY(YH, SH) mBF() (mBUH(YH, SH), mBYH(YH,SH)), (4.74)

= K(YH, SH)mBF(O) (mBH(YH, SH), mBH(YH, SH)) I

HY(YH,SH) = 2 -(1-yH+sH)2 - 4SH 12yHhl + [(1-yH+SH)2-4sH]h2},

KYS(YH, SH) = 6YH [(1-yH+SH) 2 - 4sH] h3

and we need to substitute h1,2,3 from Eq. (4.68) and UH(YH, SH) and YH(YH, SH), as

given in Eq. (4.57). When one takes experimental cuts on q2 and mX,

min H < axYH <YH <YH 0 < SH < SH, (4.76)

the limits on the doubly differential rate and F.B. asymmetry in Eq. (4.74) are

min max
1) YH < YH < YH ,

2) 0 < SH < SOH,

0 < SH < min{sH, (1- H)},
ymin Y ax) 2}S
YH - YH < minW , (1- H)2),

depending on the desired order of integration.
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4.3.3 d2F/dm2dp4 Spectrum with q2 and mx Cuts

The hadronic invariant-mass spectrum and forward-backward asymmetry can be ob-

tained by integrating the doubly differential spectra

1 d2 r

ro dSHdUH

1 d 2AFB

ro dSHdUH

= H(SH, UH) mBF() (mBUH, mB-H ),

= KS(SH, UH) mBF(O) (mBuH, mB-)

over UH . Here

H4(SH, UH) = (H - {(1-UH)(uH-sH)(3uH-2sH-u)(c 912+ lCa 2)

+ 4 uH(3UH-sH-2uH) C712 + 12UH(1-UH)(UH-SH)Re[C7 Cg*]

+ (1-LH)(uH-SH)(SH-UH)Re [CI0a Clob] + (H-sH)(H U) 2 IClOb2}I /1 nr__\ln · __ /)* 4 u

KS(SH, UH) =
-12(SH- H )2 (uH - SH)(- UH)

U4
{Re[C Cloa] +

2 UH

UH -SH
Re [C7 Ca] } 

(4.79)

and the limits with q2 and mx cuts are

O < H < SH ,

U1(SH) =

U2(SH) =

maX(SH, U1(SH) < UH < min /H, U2(sH) } 

l + SH-YH- V(1i + SH-yin)2-4SH
2

1 + SH-y)ax _ /(1 +SH- y )2-- 4sH
2

4.3.4 d2F/dq2dpy Spectrum with q2 and mx Cuts

From Eqs. (4.58) and the above results, we can obtain the dileptonic invariant-nmass

spectrunlm and forwa rd-ba ckNward asymmetry, for example by integrating the doubly
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differential spectra

1 d 2 F

rI, dyHduH
1 d2 AFB

Fo dyHduH

= HY((YH, UH) mBF(O) (mBUH, mB

= KY(YH, UH) mBF(O)

1 -YH-UH

1-YH-UH)(mBUH, mB

over UH. Here

HY (YH UH) =
4[(1 -UH) 2-yH] 2

YH(1-UH) 3 {YH[(I-UH)2 +2YH ([C9
2 + Cloa 2)

+ [8(1-UH)+4yH] 1C712 + 12yH(1-uH)Re[C7 C9]

+ YH[(1 -uH) 2 -yH] Re [CloaCob] + YH[(1UH) YH ]2 C 2
4(1-UH ) 2

KY(YH, UH) =
-12yH [(1-UH)2 -YH] 2

(1-UH) 3
Re[C9CO] + 2(1-uH)al] + YH Re [C7 Cl*a]

and the limits of integration with cuts are

YH < YH < YH , 0 < UH < min {1-xyH,
1+SH-YH- Y/(1+s -YH)2-4s 'H

2 J'

(4.83)

The opposite order of integration is also useful:

0 < UH < 1, Y1(UH) < YH < Y2(UH),

Y1 (UH) = max{Y,
(1- UH)(UH - SH) 

UH
y2(UH) = min{yYax, (1-uH)2} ·

The doubly differential rate can also be expressed in terms of the coefficients C mix

C70 m, and Clo. This is one step closer to the short-distance coefficients C9, C7 , and Clo

of Hw, which we wish to measure in order to test the Standard Model predictions for
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the corresponding FCNC interactions. Substituting Eq. (4.28) into Eq. (4.82) gives

HY(YH, UH) =
(1 -UH) 3 { C ix(s, o)2 [4Q(sb)+ 8(1 - UH)2 Q(S7, b)]

+ [Cix(s,) +0] [2YH A(s b)+( UH) QB(YH, UH, b)]

+ Re C7 (s, o) (s, [12(1-b)] }

KY(YH, UH) =
- 1 2 YH [(1- UH)2 -YH] 2

(1-UH)3 {Re [C (sx, O) C, 0 ]Q(s, b)

2(1--u) .ix+ .Re[Cnix(s, i-o) CO]QA(S, [b)QD(S,
YH

where s = q2/m2 and

QA = 1+ wa ( b),
7r

QB = 1 +as(Pb)
7r

2QC = 1 +(b)
7r

QD = 1+

[Ea'(, -b) - Wb'(, itb) -

[a (S, b) - WU'(S, b) -I a ( b Wc ( l~

.- ( i-b)] I

(1-UH)2+yH
2(1-UH) 2

QE = (2QAQD + QBQC)/3.

This is the form that turns out to be the most useful for the analysis in Chapter 5.

4.3.5 Numerical Analysis of Wilson Coefficients

As shown in Fig. 4-1, for the small-q 2 window (q2 < 6GeV 2 ) we have p+ < Px.

Generically, the hard contributions in C9, C7. and C10a,lob from our split-matching

procedure depend on the variable q2 . In Fig. 4-5 we plot the q2 dependence of the

real part of the coefficients and see that there is in fact very little numerical change

over the low-q2 window. Here Re[Cl°cal] varies by ±1.5%, Re[C mix] by +1%, and the

real parts of {C9, C7, CIOa, Clob} by {+1%, ±5%, ±2%, ±3%}. The imaginary parts are

either very small or also change by only a few percent over the low-q2 window. The
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Figure 4-5: Comparison of the real part of Wilson coefficients at PO = Pb = 4.8 GeV
with me/mb = 0.292, mb((po) = 4.17 GeV, and mb = 4.8 GeV. For C9, C7, and Clob we
take p+ = 0.

analytic formulae for the q2 dependence mean that there is no problem keeping the

exact dependence, but this does make it necessary to perform integrals over regions in

q2 numerically. A reasonable first approximation can actually be obtained by fixing

a constant q2 in the hard coefficients, while keeping the full q2 dependence elsewhere.

Since the coefficients change very little with q2 we continue our numerical analysis

by fixing q2 = 3 GeV 2. If we then take uo = Atb = mb = 4.8 GeV, mb(po) = 4.17 GeV,

mC/mb = 0.292 and p+ = 0 we find that Eq. (4.28) gives

C = 0.826 Cg'i + 0.097 C7'x = 3.448 C9 - 0.030. C~ND RN 'R
Clix C1mix

C7 = 0.823 C i x + 0.001 C" i x = -0.239 C7 t + 0.005 (4.87)

These numbers indicate that, despite the entanglement of C7nx in C7,9 due to aS(mb)

corrections, nmnerically C9 is dominated by C and C7 is dominated by C7 in the

Staiindard Model.
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For the coefficients at q2
= 3.0 GeV2 , with the other parameters as above, we have

C' = 4.487 + 0.046i, Crix = -0.248

C9 (uIj = 0) = 3.683 + 0.038i, C7(UH = 0) = -0.198 + 6 x 10-5i,

C9(UH = 0.2) = 3.663 + 0.038i C7(uH = 0.2) = -0.193 + 10-4 i,

Cloa = -3.809, Clob(uH = 0) = 0.214,

ClOb(UH = 0.2) = 0.237. (4.88)

The relevant range of p+ in Fig. 4-1 gives 0 < UH < 0.2. From the above numbers it

is easy to see that the UH dependence of C9, C7, and ClOb is very mild over the range

of interest. The perturbative a, corrections due to wV T reduce both C9 and C7 by

17% relative to CMix and C7i x respectively, and Cloa by 15%. This can be seen both

in Fig. 4-5 and in Eq. (4.88), when one notes that Clo = -4.480. Comparing with

coefficients in the local OPE, we note that the woPE' factor, which accounts for the

difference between C°ocal and Cgx, is significantly smaller than the combination of a,

corrections in the wv terms that shifts Cg from its lowest-order value.

In quoting the above numbers, we have not varied the scales 0o and t b. The main

point was to compare the size of the hard corrections in the shape function and local

OPE regions, and to see how much deviation from C7mX they cause. The dependence

on ,u0 for the Ci is similar to that in the local OPE analysis at NLL [121, 54] and

will be reduced by a similar amount when the full NNLL expressions are included

in C7x. The [Lb dependence of the Ci is fairly strong because of the appearance of

doullle logarithms, but it is canceled by the PLb dependence in the function F(), which

contains the NLL jet and shape functions.

4.4 Conclusion

In this chapter we have performed a model-independent analysis of B -- e+ e-

decays with cuts giving the small-q2 window and an mx cut to remove b -- c back-

grounlds. These cuts put us in the shape finction region. We analyzed the rate for
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the formal counting with q2 A0 and m. A2 and showed that the same universal

shape function as in B - X and B - Xs is the only non-perturbative input

needed for these decays. We also developed a new effective-theory technique of split

matching. Split matching between two effective theories is done not at a single scale

pL, but rather at two nearby scales. For B - XS+f- this allowed us to decouple the

perturbation-theory analysis above and below mb, which simplifies the organization

of the a contributions.

In Section 4.3 we presented the leading-power triply differential spectrum and

doubly differential forward-backward asymmetry with renormalization-group evolu-

tion and matching to 0(as). Above the scale mb, we restricted our analysis to include

the standard NLL terms from the local OPE, but illustrated how terms from NNLL

can be incorporated. Below mb we considered running to NLL and matching at

one-loop (NNLL evolution will be straightforward to incorporate if desired). We then

computed several phenomenologically relevant doubly differential spectra with phase-

space cuts on q2 and mx (from which the singly differential spectra can be obtained

by numerical integration). In section 4.3.5 we discussed the numerical size of our

perturbative hard coefficients and compared them to the local OPE results.

Our results for the doubly differential rate in Eqs. (4.81) and (4.82), together with

F(®) from Eq. (4.71), determine the shape-function-dependent rate for B - Xs+e- .

Using as input a result for the non-perturbative shape function f(O) from a fit to

the B - X, spectrum or from B XJv gives a model-independent result for

B - XS+e- with phase-space cuts.
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Chapter 5

Universality and mX-cut Effects in

B --t t

5.1 Introduction

In this chapter we compute the B --- X+ - rate with an mx cut in the low-q2 region

in a model-independent framework, using the results of Chapter 4. This enables us

to carry out a full investigation of the mx-cut dependence and phenomenology. An

intriguing universality of the cut dependence is found, which makes the experimental

extraction of short-distance Wilson coefficients in the presence of cuts much simpler.

To be more specific, we shall compute

2 cut r

ut= dqI2 j dmx Re(cic) dq2 x (5.1)

,o f q2 q2)2
= r A -) 5- dq2Re(cicj*)(m ~ - G '

where i = 77, 99 00 7(q9} label contribution, of time-ordered products T{, i}.where ij {77, 99 00, 79} label contributions of time-ordered products T 0 }.

The hij's contain the effects of the mx cut, and the short-distance coefficients c7,9.0

track the C7.910 dependence in the effective Hamiltonian. Here c7 = CiX(q 2), c9 =

C9lix(q2), and co = Clo can be obtained from local OPE calculations [54, 121] at each
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order, as discussed in Ref. [107]. The functions

G99,oo = (2q2 + m), (5.2)

G77 = 4m2(1 + 2m2/q2 ),

G7 9 = 12 mBmb

arise from kinematics. Here and below, mb is a short-distance mass, such as m'S [89,

88], and ro = [G2 /(1927r3 )] [2m/(47r 2 )] ItbVt* 12. We also study j ',(p+cut q2 q2),

which are defined by

2 P+cut

fPx d22Cuit = d dpx Re(cica) dq(53)
JqiJoQ2dpx

I q2 2t (m - q 2)2=- j(pcut,q2,q) dq2 Re(cic)b M / Gij
-(p+CUt, ql 2 q2 ) Foe f3

At leading order in AQcD/mb and a8, 1ij = 1 for mct = mB, and 1ij give the frac-

tion of events with mx < mt. This is altered at subleading order by a, corrections,

but rij still determine the total rate with cuts,

pcu t = Z 7cu t (5.4)

ij

In principle, rij depend in a non-trivial way on ij (and q2 and q2) because of their

different dependence on kinematic variables, a, corrections, etc. At leading order in

AQCD/mb, we demonstrate that r7ij are independent of the choice of ij; this is what we

mean by "universality". We first show this formally at leading order in p+ /mB < 1

for (p+Cut) and then numerically for the experimentally relevant r/(mut), including

the c, corrections and phase-space effects. Since the same shape function occurs in

B --+ X&+f- , e£, and X3'. the mcut or p+"t dependence in one can be accurately

determined from the others. For current experimental cuts this is a 10-30% effect.

We shall also discuss another possibility: because of universality, normalizing the

B Xe+f-- rate to B X,,t'1 with the sanle cuts removes the main uncertainties.
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Figure 5-1: hase-space cuts. A substantial part of the rate for q2 < q2 < q2 falls in
thle rectangle bounded by p+ < Px·.

5.2 rx-cut Effects at leading order

The phase-space cuts are shown in Fig. 5-1. Recall from Chapter 4 that, of the

variables syrnletric in pe+ and pe- (px, Ex, q2, m 2 ), only two are independent: we

work with q2 and p+ or mx. As discussed in Chapter 3, for the p+ << Px region,

factorization of the form d = HJ 0 f(0) (where H contains perturbative physics at

lb - mb, J at pli vAQcDmb, and f(°)(w) is a universal non-perturbative shape

function) has been shown for semileptonic and radiative B decays. In Chapter 4, we

found that this factorization also applies for B - Xjf+f- with the same f(O), as long

as q2 is not parametrically small [107].

In the q' < 6GeV 2 region, IC9ix(q2 , /_o = 4.8 GeV) = 4.52 to better than 1%,

and (can be taken to be constant. We neglect corrections ill this section, using

Eq. (4.81) with F(O) - f():

dlr _ ()(t ro [(lB_ - )2 _(12]

lp+ dq2 x JkX 5 (m1 - p- ):

x c{(lix2-+ C-()) [ 2 + (B17 - p+ )2]

+ 4LB lC i-ix 2 [1 + 22(2

+ 12mB Re[CixC(-'ix*] ( -p )} (5.5)
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where f(")(w) has support in w C [0, oc). As a function of p+, the kinematic terms

in Eq. (5.5) vary only on a scale mB, while f(O)(p+) varies on a scale AQCD. Writing

m-B = r,b + A and expanding in (p+ - A)/mB decouple the p+ and q2 dependences

in Eq. (5.5):

dF' r(O)o+'~Fo [m - q2122 + ixdr JP I ~B) mo [ 2 Cl{(lC)mix2+ c 2) [2q +mb] (5.6)
dp+dq2 f(O)(p +) m~ { 5 +03 + m ]

2]+ 4m cix 2 [ + 2 + 12B mbRe[C7ixCix* ] }.

Hence, we obtain the local OPE prefactors, (m2 - q2 ) 2 Gij(q 2), in Eq. (5.1). For

77/j(px q, q2) the p+ integration is over a rectangle in Fig. 5-1, whose boundaries

do not couple p+ and q2. Thus,

7= dp4 f () (p) (5.7)rl = (5.7)

which is independent of ij and ql 2. While the mx cut retains more events than the

p+ cut, the latter may give theoretically cleaner constraints on short-distance physics

when statistical errors become small.

The effect of the mx cut is q2 dependent, because the upper limit of the p+

integration is q2 -dependent, as shown in Fig. 5-1. When one includes the full p+

dependence in Eq. (5.5), the universality of 77ij(mc ut, q, q) is maintained to better\X 2 X 

than 3% for 1GeV 2 < q 2 < 2 GeV 2, 5 GeV 2 < q2 < 7GeV 2, and m"ct > 1.7 GeV,

because the region where the p+ and q2 integration limits are coupled has a small

effect on the ij dependence. This is exhibited in Fig. 5-2, where the solid curves show

/j(mxlt, 1 GeV2, 6 GeV2 ) with the shape function set to model 1 of Ref. [135], with

Mr'S = 4.68 GeV and Al from Ref. [24]. (Taking q2 = 1 GeV 2 instead of 4m2 increases

the sensitivity to C9, 0lo, but one may be concerned by local duality / resonances near

q2 = 1 GeV2. To estimate this uncertainty, assume the is just below the cut and

B(B - X8 ) 10 x B(B - K(*)O). Then B - Xq --+ Xf-+f - is 2% of the

X + - rate.)

The LO local OPE results for r/ij(m tlqq2) are obtained by replacing f()(p)
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Figure 5-2: 'f}ij (m'Xt, 1 Gey2 , 6 Gey2) as functions of m'Xt. The dashed curves show
the local OPE result, the solid curves include the leading shape-function effects. The
uppermost, middle, and lowest curves are 'f}00,99, 'f}79, and 'r/77, respectively.

by 8(A-Pk) in Eq. (5.5). Performing the pi integral sets (mB-pk) = mb and implies

that m~ > A(mB _q2 1mb)' This makes the lower limit on q2 equal max{qr, mb[mB-

(m'Xt)2 IAl), and so the 'f}i/S depend on the shape of drij. In Fig. 5-2 the local OPE

results are shown by dashed lines, and clearly 'f}77 =f 'f}99. However, the local OPE is

not applicable for pi rv AQCD.

The universality of 'T/ij found here could be broken by as corrections in the H or

J functions, or by renormalization-group evolution, since these effects couple pi and

q2 and have been neglected so far. We consider these next.

5.3 Calculation and Results at O(as)

The shape function model is specified at /-LA, and we now implement the convolution

of jet and shape functions at NLL order, including as corrections, using Eqs. (4.71)

and (4.65). The hard as 'corrections are included by using Eqs. (4.85) and (4.86).
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The model we use for f() is a generalization of model 1 of Ref. [135]:

fmiod('+;a, b, c, p,q) = fmod(r+; ca, bn(p, q), p, q) (5.8)

+ fmod ( +, (1 - a), b n(p + 1, q), p + 1, q),

- , +( a' +)q' b+ p [ J re+ ]
fmod(r7+; a', b', p', q) = ((p+ q') exp -

F((x + 1)/y)
r((x + 2)/y)

The model parameters (a, b, c) are determined (in terms of the remaining parameters,

p and q) by the known constraints on the first three moments of the shape function [47]

converted to the S mass scheme. We estimate the shape-function uncertainties by

varying p and q to obtain five different models, each chosen to be consistent with

B - Xsy data. Since we also use two different values of [uA, this results in a total of

ten fnctional forms for f(O) for each value of miS.

For each shape-function model, the deviations of the t/ij's from being universal

when we include all NLL corrections are still below 3%. Thus, the picture of univer-

sality in Fig. 5-2 remains valid at NLL order. This means we can explore the overall

shift by just studying ro0.

In Fig. 5-3, we plot hO(mcut, 1 GeV 2, 6 GeV 2 ), including the a corrections. The

ten orange, green and purple (medium, light, dark) curves correspond to m'S =

4.68 GeV, 4.63 GeV, and 4.73 GeV, respectively, where the central values o = =

4.8 GeV and pi = 2.5 GeV have been used. The curves with slightly lower (higher)

values of 700 at large mcut correspond to uA = 1.5 GeV (2 GeV). For mcut = 2 GeV,

varying 1'b in the range 3.5 GeV < b < 7.5 GeV changes roo by ±6%. We find a ±5%

variation for 2 GeV < i < 3 GeV.

Using the ci's at NLL order, for 1GeV2 < q2 < 6GeV 2 and m~ct = 1.8 and

2.0 GeV, we obtain F ctt TB = (1.20±0.15) x 10-6 and (1.48±0.14) x 10- 6, respectively,

where uncertainties from mb, b, i, and f(O) are included. Changing Pto to 3.5 GeV

(10 GeV) changes both of these rates by -2% (+7%), and this uncertainty will be
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reduced by including NNLL corrections [45, 10, 44, 75, 9, 77].

The largest source of universality breaking in the rij's and one of the largest

uncertainties in the rate is the subleading shape functions, which affect the rate by

5% for mt = 2 GeV and by - 10% for mcUt = 1.8 GeV.

If the mct dependence were not universal, it would modify the zero of the forward-

backward asymmetry, AFB(q02) = 0. The quantity q is interesting because at LO in

the local OPE it is determined by the equation

2

2Re[Colocal(q2)] + 2CNDR =0, (59)
mb

which makes it sensitive to physics beyond the Standard Model. We find that im-

posing the cut m3ct = 2 GeV shifts the zero at NLL by Aq0 m -0.04 GeV2, which is

much less than the higher-order uncertainties [75, 9, 77]. We obtain the central value

q02 = 2.8 GeV2 , which is lower than earlier results [75, 9]. The reason is that in the

SCET calculation of AFB, using K in Eq. (4.85), the pole mass mbe never occurs,

only mB -p + and mb (at this order, C7 Tx = (mb/mB)C7ff [107]). Thus, schematically,

q02 , 2ms[mb( to))7(/o)]/R e[Co(qo)] and there is no reason to expand mb in terms of

mPole. Using mpole in Eq. (5.9) would give large central values for q.

Let's now consider how one might best minimize the hadronic uncertainties. We

previously mentioned that one strategy is to extract the incalculable shape function

f (0) from the B -+ X-y data and use it as an input to our B -- X,+f- results. In

the latter process, the theoretical uncertainties are reduced by raising the value of

mct. Another possibility is to keep mct < mD and measure

FrUt(B - X+e-)
R = rcut (B XeP) (5.10)

with the same cuts used in numerator and denominator. The point of this approach

is that we have found that the mx-cut effects are universal (to a good approximation)

for all short-distance contributions. The semileptonic decay essentially corresponds

to the IClo12 term (refer to Eq. (4.73)). Thus, the effects of mcxt, as well as the mb

dependence, are drastically redutced in the ratio R.
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Figure 5-3: 'TJoo( mCXt, 1 Ge V2
, 6 Ge V2

) as a function of mCXt. The orange, green and
purple (medium, light, dark) curves show mtS = 4.68 GeV, 4.63 GeV, and 4.73 GeV,
respectively.

In conclusion, we pointed out that the experimentally used upper cut on mx makes

the observed B ~ Xsf+f- rate in the low-q2 region sensitive to the shape function.

We found that the 'TJ'S for the different operators' contributions are universal to a

good approximation. Thus, one can either use the shape function measured in other

processes or use the ratio R above, with the result that the sensitivity to new physics

is not reduced. These results also apply for B ~ Xdf+f-, which may be studied at

a higher-luminosity B factory. Subleading AQCD/mb as well as NNLL corrections to

the rate and the forward-backward asymmetry will be studied in the future.
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Chapter 6

Conclusions

Heavy-quark physics plays a crucial role in the study of physics both within and

beyond the Standard Model. Within the Standard Model, QCD and the flavour sector

can be probed rigorously. The search for new physics is aided by the examination of

FCNC processes, which are absent at tree level in the Standard Model.

On the theoretical side, effective field theories are a powerful technique. The basic

idea is that, in order to describe a physical system, one should determine the relevant

degrees of freedom, exploit the symmetries to constrain the possible interactions, and

identify a suitable expansion parameter. This enables one to provide a lowest-order

description and incorporate higher-order corrections systematically, while avoiding

any ad hoc models or assumptions.

In this thesis, we have focussed on inclusive semileptonic and rare decays in the

shape function region, to which one is restricted by experimentally required cuts.

Here, the operator product expansion is invalid. The relevant degrees of freedom

include collinear and ultrasoft modes and the appropriate effective field theory is

SCETI, which has an expansion in A v/AQc)/mb.

In order to make predictions, one has to disentangle short- and long-distance

effects. a process known as factorization. One can then treat the hard and soft effects

separately, using whatever tool is appropriate for each. In endpoint decays, there

are three scales. The contributions at the hard and intermediate scales are both

calculable perturbatively, whereas the long-distance hadronic physics is described by
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non-perturbative but universal shape functions. SCET helps to simplify the derivation

of factorization theorems. We used it in Chapter 3 to derive a factorization theorem.

at order A2 and all orders in a,s for the processes B XuOe and B - Xsy in

the endpoint region. This involved constructing all O(A2 ) time-ordered products of

the form J(rl)t(n2)...,(ni-l)J(nj), with Eini = 2, a task made possible by the

transparent power counting of SCET. We obtained the complete list of subleading

shape functions and the triply differential rate at this order for the first time. If one

works at tree level in the jet function, the relevant subleading shape functions are f),

f(2), (4) and (6) the last two of which are due to four-quark operators. Now, f(O)1,2, fJ3,4 J5,6,

can be absorbed into the leading-order shape function, f (0), and f(2) can be expressed

in terms of f(O); this leaves five independent subleading shape functions. However, if

one includes one-loop corrections to the jet function, then prohibitively many shape

functions appear.

We next considered the decay B -- Xs+ - , in which the small-q2 region is im-

portant for achieving sensitivity to new physics, but the experimentally used cut on

mx leads to shape-function effects being significant. Here, we encountered a problem

in the perturbative power counting. Above the scale mb, one usually expands in a,s

with czs log(rnw/mb) = 0(1). Because of mixing with 01,2, C9 log(mw/mb) - a

whereas C7,10 1. This power counting is important for cancelling scheme and scale

dependence in the running. However, numerically C9(mb)l - C1o. This conflict is

exacerbated by the fact that in the shape function region only the rate is calculable,

not the amplitude. It would not make sense to have to have to count (B 9/B) , but

(BLO310001oB) 1. The solution to this problem was to use "split matching", which

decouples the scale dependence above and below i = mb and thereby allows one to

use different perturbative power counting in these two regions.

The decay spectra derived were used to calculate the effect of the mx cut on the

B - X,+t--- rate. We found approximate universality, i.e. the contributions from

different operators were affected in approximately the same way. Consequently, one

can minimi ze uncertainties and maintain sensitivity to new physics either by using

B -, X,y data to determine the leading-order shape flnction or by normalizing with
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respect to the B - Xu rate with the same cuts.
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Appendix A

Expansion of the heavy quark field

and derivation of the currents

To derive the power expansion of the heavy-to-light current J = j(q)rf(b) at tree

level we just need the expansion of the light- and heavy-quark full-theory fields, O/(q)

and +(b), in terms of SCET collinear fields (n) and soft heavy fields (h,) respectively.

b(q) also contains terms with usoft light quark fields, but they do not contribute for

inclusive processes until higher order, and so we neglect these terms here. For the

light quark field we have [118]

b(q) = Wt(i#+WiZ+ L Wt)n (A.1)
if, D- + Wif D,,W 2

+--- D i wten- wtiL own + (4)
in*D, C2 Pt 2 2 2

Here we have used the collinear fields [321

in.D = in+gnA,+gnA,, , iD' = iD +WiDWt ,

it. D = i. Dc + WVin Dts ,WT, (A.2)

which obviously will give an expansion with terms that are individually usoft and

collinear gauge covariant at each order in A.

For the heavy quark fields we start with the QCD Lagrangian = '-(b)(iO-
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mb)Vib). We then divide the quark fields into on-shell and off-shell terms, °(b) =

exp(-imv.x)(hv + 7'B), where Y4h, = h,,. Unlike in HQET, the off-shell field DVB does

not satisfy $'V)B = -B, since collinear gluons give off-shell quark fields that have

quark components, f0B = V)B. This gives the Lagrangian

£ = hviv. 8Dushv + OB[iP+ mb(# - 1)]QB + hv(ip- ?P')B + OB(ip- hv, (A.3)

where the subtraction in (i - ) removes the terms that vanish by momentum

conservation. Varying with respect to VB gives

[iP+ mb($ - 1)]lbB = -(i4-- )hv, (A.4)

which is a higher-order version of the LO equation for V1B derived in Ref. [30]. To

solve for OB in terms of h, at higher orders we use a strategy proposed in Ref. [37],

namely expanding ObB = IB3) + +() +..., and considering the solutions order by order

in A (noting that h, A3 ). To facilitate this we rewrite Eq. (A.4) as

[() + it + A(2)] (3) + 4) +..) =-[ A + + A(2)] h, (A5)

A(° ) = 4ifiDc+mb(-1), A(2) = W(.inDUs+i uLs)Vt+0in D.
2 2 2

The complete set of equations to solve is then

A(0)?(3)= - gn -A,h,, (A.6)
2

/= ,-iA?4 -g4c h_ ,
A( )V)(5= -i pj - A(2)(VB3) + hv),

he > . Obviously, the crucial point is to invert the operator (2)(n-2 )

where n > 6. Obviously, the crucial point is to invert the operator A . When acting
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on a collinear field, the inverse [A(°)]c1 is simply given by

(1 + )
I2m \ I 

2Mbn. v n. v ifDc

Owing to the 1/(i. D,), this solution is ill-defined when acting on an ultrasoft field

and will not suffice to solve for .>5). For the solution to the first equation we find

3 i--i-- Dgn AChv = (W- 1)h,
iii -D

(A.8)

which, as expected, is in agreement with the LO solution in the appendix of Ref. [30].

Thus, at lowest order the solution for the full-theory field is O = h, + ( ) = Whv.

At the next order, we find that

(4)
'YB = -[A()]C'(ipcW - )hv =-[A( 0)]c1 D iggWhvC c ffl -DC _Liilhv

(A.9)

=- _ W [_WtigW]
mb n v 2 P

- 2
n-V

where

igB" = [in -DC, iD'?]. (A.10)

The result agrees with Refs. [37, 130], except that we have written the last term as

v. Bc to emphasize that it must start with at least one collinear gluon.

To proceed we let

,(n) = WZ, (A.11)

and then write the remaining equations for · ). Using the equation of motion for 14

gives

,(o) = _ +mb('- 1 ) ,
2 2 1 n. 

2~C n 

(1+ ~Y)

71-1' '
(A.12)
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antld so, afte]N we multiply on the left by It, the remaining equations become

(() (5)

(0) (n)

-= -_,(1)B) _- h2, - puh
_ A(1) (n -1) _ (2)n( -2 ) - Q (n-2)VB IB _IPSVkB I

= (wtiglw), i(2) = (TWItin. D1 - in .Du),
2

where n > 5.

To solve Eqs. (A.13) we invert A(0). For terms with at least one collinear gluon

field, such as (1 '2 ), we can use the inverse [(°)]1 from Eq. (A.12). Only terms that

are purely usoft, including i,,hv and possibly i us, (- 2), need to be handled with

care. For these terms a purely usoft (n) suffices, in which case M(0) = m(~ - 1).

The subset of purely usoft terms in Eqs. (A.13) is given uniquely by the terms m(4

- 1)~/(5) = --ig)hhv and m(- l)3 (n3 ) = -i4}9 (n - 2), which are the same as we would

find in pure HQET. Thus, the solution for the pure usoft terms is

1
2mob + iv. Dusi sh I (1-i )

2 mb 2

where it is sufficient to use this [( 0)]-l since (1 - ~)/2 bs = ;b. From Eq. (A.13),

the solution for 'B5) iS then

, (5)
't/'B :-= T4'l -hv _ W[A(O)]clA(1)b4) _ W[A(°0 )]cl(2)h,

2 7nfb 
(A.15)

:-= 11' 2 bh,-W mvI E-Wtign B.Bc hv-
2rnzb 4mb n v 

' p wtign BcW] hv

1 n [piTt .] [ Wti Wgl ] h1

+11 - ( 2 [ 1Wtiv. D,11'1 L AWIig4 t"I] h,

+1I.1- 1 Fptgj Il/T] [ Bp2lj-

Fronii the ex·pansion of the fields we obtain the expansion of the crrents at tree
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level.

J = [ + + (3) + ...] r [Whv + ) + ... ] (A. 16)

= [Er·WVhv]+ + (2)WhV]+ r) + + rWhh, + : )]r + ....

The leading-order SCET heavy-to-light current is

J(O) (w) = (&nw)Irhv. (A.17)

For the currents suppressed by A we obtain

- 1
= -nip,-)=F rWhv-

2 i. De
1 - r n 1 ig.Wh

n.-vm 2 i- De

2 1
- v Gr - O igv. BWhv.

n.v (iA.D) 2 I

Making the field redefinition and putting in the most general wi dependence consistent

with RPI gives [130]1

J(la) (W)

J(lb)(W1, W2)

J(C) (w)

1 (&n Lw)r(F(Ythv)

rn= --1 nWwi (i9gz)w2 (Ythv),
mb (v 2

=_--(&n 2.2igv. BW) F (Ythv),
n . v (w De) W

INote that for J1(I ) we find a field strength B rather than a tv- D acting on 1'.
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where B3 is defined i Eq. (2.70). For the currents suppressed by A2 we find

= rg,14ALS hv
2m

1 -!

n± v 2 

1- 0
n v 4m

1
r r

in Dc

nv
+in D

2m i- D -

) D ign. MWhv

+ (. D)2igv. B) Wh

+- 4~ 1 1 1 1- F Wi uWt F=Whv - &F i ig hv
2 i. Dc n-vm n- Dc a. Dc

+ (n.v)m in-D.iDc a DigcWh v

4 - 1 iv 1
+ (n 1 iv'D'1 igv .B(Whv

(nn> ih-DD, C (ih D,)2

1

(r.v)2m
1
' igv BW hv,

ift-DC

ign. M = [if. DC, in. D].

It will be convenient for us to label the terms as follows:

= 2nrW Shv,2m
j(2b) = )-_- --_ _ I.n ,~wi w, 1 FWhv,

gv- M1
= - vn--F ign MWh,,

nvm 4 iDWhv
1 ~i~ I 1 1

= - lr. ,_ F igWh,,
n- vm 2inDc 2i-Dc'

- 1 1
=____il/F 2i c igAWhv,nvm i· D, zi· D,

12nr _ _Fi iv.D~ ._ igFWhv,
(n.v) 2 m ihnDc i zn D c 

1 -F I 1-=n.. 1,)2 i.Dili rD) i gvBWh, "
2 r - 1 1

-G F 2igv. BWh.,
.,,., 2 , DOc) 2

4- 1
= (n~v)2~, Fi v. D' 1 iD2vB-, W h'
(n. )2 iDi, C (If -

The terms J(2a) to j( 2 f) agree with those found in Refs. [37, 38], which use the
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j(2) (A.19)

where

(A.20)

J(2c)

j( 2d)

j(2e)

j(2f)

j( 2g)

j(2h)

j(2j)
(A.21)

I----ik
iih -DC(ipp 1D



position-space formulation of SCET. J(2 a), J(2b) and j( 2c) correspond to the third.

last and fourth terms, respectively, of Eq. (41) in Ref. [38], while J(2d), j( 2 e) and j(2f)

correspond to the second, last and third terms, respectively, of their Eq. (43). The

rest of their second-order terms correspond to Lagrangian insertions in our SCET

calculation. The terms j( 2 g) to (2j) do not appear in Refs. [37, 38], because they

set v - A (more generally, the assignment v 1 used here is allowed). We follow

the common practice of dropping the vl terms in our analysis of the factorization

theorems by picking a frame where vl = 0.
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Appendix B

Reparameterization invariance for

the currents

It is useful to separate the RPI transformations according to the power suppression

in A that they cause. We shall denote this by a bracketed superscript.

transformations we have, at the same order in A,

61(i-.D) = 61(W) = 0,

6(A)(n-D) = A'2D- ()(D ,) - D,

6(A)(n) = 0.

Type-I transformations one order higher in A are

6(A)(Do) + (AO) (D1t) = l X DIL¢5(A )( ) = a o2
4
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For type-II transformations we have, at the same order ill A,

6 1(n-D) = 0.

(IO) (D1 ) A= _ °

(ASlio) = i ('r,

Type-II transformations one order higher in A are

( ) (D: - ) + (1)(WD Wt)

11 )(()1 A
OI,11 (~n) = FPC,~n Y/~c 2

iiD 2 '

/ n. D - n W . DsWt,

II (V) = IW-. D1W
h-Dc

(B.4)

where the differential operators do not act outside the square brackets. Furthermore,

(B.5)/6(2 )( -n) =~ nW W I 2
n-D, 2

Note that Table I of Ref. [118] seems to suggest that the transformation of W involves

the full covariant derivative with both collinear and usoft parts. However, the Wilson

line referred to in that table is constructed from n (Ac+ A,,s); for the Wilson line built

out of n-,Ac alone, the equation of motion is iDjV = 0, and hence 6 II(W) = 6(')(VV).

Using the above transformations and the definitions (A.10) and (A.20), we obtain

1A (igB ) = -- n/'A1 [ii.n Dc, iDcl'] + [( )I I(I D i ut L"T) in De]
2 

- nhig i .B .= -'lZA -B (B.6)

since thlle sc,(1 ( commutator in the first line above elquals [IIT -() (iD1 ' -tT 11'Tl t]=

ll[ej5A )(iD ±l '",). p]TT = 0. Similarly, we find that,

(A')) (, C ) = 0,I (lcl, =O (B.7)
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Then, it is straightforward to show that

j(A1)j(la) + 6(A
° ) J(2b)

6(A1 ) (lb) + (A O) (2d) + 6(AO) (2e) + 6(AO) (2f) + 6 (AO) (2g)

6(A1) j(lc) + 6(Ao) (2C) + A ) j(2i) + i(A) J(2j)

= 0,

= 0,

= 0. (B.8)

It follows that +(> J(' ) + (A°)j(2) = 0.

Repeating the process for type-II transformations, we obtain

= [ riD ,iDCL]- -[in D,in D]

-2 2
- n- [i1A -D Wie-'- D-L WtI - [ifbD, 6 (A) (WiD P4Wt)]2 7usII usYZS · /

igeL.Gcl - -ign M,

where gG"c = i[iDe4, iDlYv]. Similarly, we find that

\II) (igBe") = -igel . Bc, 6I ) (ign M) = 0.

(B.9)

(B.10)

Then,

(A2 ), (0) + j(X\)J(1a) + 6(A')J(1C)
II II 11

-I i D 2

ifi,. 2

+ 6 (A°) j(2b) +

+-, 1
ip lF rWhv

2 in D
+11 O 1 . - 1<iri D, n FWh,DTh* -. Dc

9-- 1+ -r r
nr-, r (i1. Dc_)2

+

+

S(A) J(2c) + 6A0) j( 2 i) + 6 (,\)j(2j)

n in2D rWhi zn D

n D ic - i-c DCWh ,.
2 '~'D

+ig, B . D ie-t D V]
I 11 · D, c

2 hv - W

t < 1 F liI4 1h2", i 2 (iD )2 -Whv
2 IF ('fi -D, z )2 1

1 ±DW 1

if.D, C (ifi,-)2, D 2B ll)

(B.11)
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Now, since (in JDc ) -igE.B Whv = e (iDlW - Pl)h,, we can write

-D'I] 1 1
, = -DE (iDW-P)h= (iD=) 2ige '.B W h . (B13.12)

Substituting this into Eq. (B.11) and combining the first and third terms, we obtain

(A2)J(O) + 6(>)J(la) + 6 (Al)J(lc) + (A° ) j(2b)+I (~I1)j~la) _ I_ ~II
_ 1- <ni , Dc

C 
ih. De

2 - 1 (1 .1 1 1 YD -
nv (i. De)2 C -h

-(iE'. Dc v (iDW - ) - (iv- DcliE. DW
-iv. D El. -(i DW- p1)hv)

I= -(n ic
2 -

+ -nr-

- 0.

+ +)J(2c) 6(>)J(2i) + 6 ( 0>)j(2j)
I II 1Ir

- i'l. Dcv.pl) hv

01 1

4 iD h

1 +-

- i D
ii Dc

1
i~.D~)(iv Dc6DY Pi- - i' . Div P±)hv

(B.13)

The first term of the second-last equality above is zero, owing to the equation of

motion obtained from Eq. (2.45). In the second term, the expression in brackets begins

at one collinear gluon, ensuring that the 1/(ii. De) does not cause any singularities.

Thus the label operators make this term zero.

Using completely analogous manipulations, we also find the closure relation that

involves the J(lb) current. Thus the type-II constraints are

5(j2) J(O) + A( )J (la) + 6(il)j(lc) + 6(A°)j(2b) + i(i)J(2c) + i(XO)J(2i)
II I II II II + ()) (2j) = 0O

(A') J(lb) + -(A°) j(2d) + (A°) j(2e) + 6(A) j(2f) 6 0 (2g) + 6(A)J(2h) ( . (B.14)

It then follows t 'hat 6iA(i> )J()+(A j()+6( ) J(2) = 0. Dropping the J(2g)-(2j) currents,

these relations agree with Ref. [37].

From the results in Eqs. (B.8) and (B.14) we see that the currents split into two
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sets:

J(O) + (la) + j(lc) + j(2b) + (2 c) + J(2i) + j(2j)

J(lb) + J(2d) + (2e) + (2 f) + (2 g) + J(2 h). (B.15)

When we add non-trivial Wilson coefficients to all the currents, the number of wi

parameters they depend on is restricted by RPI, i.e. in the set with J(O) they have

one parameter w and in the second set with j(lb) they have two parameters, w1 ,2.

In the second set the combination of fields restricted to have momentum wl and w2

is determined by the manner in which the terms in the RPI-transformed currents

cancel. Making the Y field redefinition in Eq. (2.48) and putting in the most general

wi dependence consistent with RPI, we find

J(2a) (w)

J(2 b) (W)

J(2 c) (w)

j( 2d) (wl, w2)

j( 2 e) (1, W2)

J( 2f) (w1 , w 2)

( 2h) (1, W02)

J(2i) (W)

J(2j) (,)

2mb ((W)wF(YiITh,) 

- -(, eW) (Yt ifJ- rhK) I
W U2

- -n W(nr(i D)ignBcW) (Ythv),

- (Gw) r (iWign- BcW) (Yth,),
mbn-v 4T 7' W2

= 1 (ni W)W1 2 (ig C )o2(Yth,),
- Mbnvw 1 ii)(yth)
= nW) rF(1WWti.i D igW (Yh),

mb nv w 2

Mb(.v) 2 (cnW)wF r(1WtivDC i D igD W) (YthV
1 / 1

- 2 (~ .~ i 1 1 2~ T)C T~ r\ t W ) v)

n v(n "w)L'r igD D) 2 iigv . D) 2B

(n.,) 2 D (i .D )2 igv. BW) (Ytht,), (B.16)? r,·D, (·i· · D, )2~O

where

igBL = [i. DC, iDl] ].C I Z r ign. Bc = [ini. D, inO + gn A,] 
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Appendix C

Wilson Coefficients

The coefficients and functions that appear in Eq. (4.6) are defined as follows [54].

= - 1A(mt2/MW2),

= -2 F(m2/MW),
2

= C(x)-B(x),

= C(Z) + D(),
x(8x 2 + 5x - 7)

12(x- 1)3

(C.1)

x2(2 - 3x)
+ In x,

2(x - 1)4
X X

- + In x,
4(1 - x) 4(x - 1)2

x(x- 6) x(3x + 2)
8(x - 1) 8(x - 1)2
-19x 3 + 25X2

4-
36(x - 1)3

x(18 - 11x - 2)

12(1 - x)3

x(x 2 - 5x - 2)
4(x - 1)3

x2(52 - 2x - 6) n -

18(x - 1)'
In x ,

9

X2(15- 16x + 4x 2) 2+ I n - n x,+ 6(1 -:r) 3
3x 2

2(x - 1)-
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Cs(Mw)

Y(x)

Z(x)

A(x)

B(x)

D(x)

E(x)

F(x)



and

t = (2.2996, -1.0880

ai = (lI_1 16
23 ' 23'

pi =( 0, 0,

pNDR = ( , 0,

Si = ( O, 0,

qi = ( 0), 0,

3
7'

6
23'

80
203'

0.8966,

-0.2009,

0,

1'? 0.6494, -0.0380, -0.0186,

12 0.4086, -0.4230, -0.8994,

8, 0.0433. 0.1384, 0.1648,

-0.1960, -0.2011, 0.1328, -0.0292,

-0.3579, 0.0490, -0.3616, -0.3554,

0, 0.0318, 0.0918, -0.2700,
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-0.0057),

0.1456),

-0.0073),

-0o.1858),

0.0072),

0.0059).
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Appendix D

The Case of Collinear q2

In the body of the chapter we used q2 AO. We were free to choose this counting

since the power counting for the leptonic variable q2 does not affect the counting

for pi in the shape function region. (The only restriction was not to have q2 too

close to mb.) However, we are free to consider other choices. In this appendix we

consider how our analysis will change if we instead take q2 A2. With this scaling,

new physical degrees of freedom are needed at leading order in SCET, making the

analysis more complicated. In particular we must consider graphs with quark fields

that are collinear to the collinear photon (or dilepton pair), since with this power

counting we have (q0 )2 >> q2.

An example of a new nonzero graph is the one generated by four-quark operators

within SCET. as shown in Fig. D-1, which involve these additional degrees of freedom.

In this graph we have a light-quark loop of collinear-n fields that are collinear to the

virtual photon. The presence of this type of diagram changes the hard matching at

tlb = m1 b It also means that we have a more complicated pattern of operator mixing

within SCET, since divergences in the displayed diagram will cause an evolution for

C9, etc. Therefore, the running below mb will no longer be universal. In the presence

of these diagramis the jet function will also no longer be given by a single bilinear

operator, since it will also involve some contributions with a factorized matrix element

of n-fields, which are also integrated out at p2 mbAQCD. Finally, the appearance of

these additi(olal (legrees of freedom might also affect the number of non-perturbative
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A-

bv Sn

Figure D-1: Additional graphs in SCET for the matching computation for the case
where q2 A, A2

shape functions that appear in the factorization theorem. It would be interesting to

carry out a detailed analysis of this q2 A A2 case in the future.

In B -+ X 8 y at lowest order, the analog of the graph in Fig. D-1 vanishes at one-

loop order, and this argument can be extended to include higher orders in a, [129].

This relies on the fact that here q2 = 0 and does not generate a scale. We find that

the same reasoning does not apply for B -- X,Se for parametrically small but finite

q2

Finally, we comment on the possibility of penguin charm-loop effects. In our

analysis we integrated out the charm loops at the same time as the bottom loops.

This is reasonable when treating q2 AO 0. One could also consider the case m'2 mbA,

which is also reasonable numerically. This type of power counting was considered for

the simpler case of B - Xcv decays with energetic Xc in Ref. [46] and it would be

interesting to extend this to B -- XSf. We remark that the problematic region for

B - 7rir factorization theorems [28, 71, 35, 29], which is near the charm threshold,

q2 4M2, is not relevant for our analysis. The experimental cuts on q2 explicitly

remove the known large contributions from this region.
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