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Abstract

In this thesis we present some works done during my doctoral studies. These results focus on two
directions. The first one is motivated by tachyon dynamics in open string theory. We calculate the
stress tensors for the p-adic string model and for the pure tachyonic sector of open string field theory
(OSFT). We give the energy density of lump solutions and attempt to evaluate the evolution of the
pressure in rolling tachyon solutions. We discuss the relevance of the pressure calculation for the
identification of the large time solution with a gas of closed strings.

In the second direction, we give some results in closed string field theory (CSFT). We consid-
ered marginal deformations in CSFT. The marginal parameter, called a, is that associated with the
dimension-zero primary operator cWcX&X. We use this marginal operator to test the quartic structure
of CSFT and the feasibility of level expansion. We check the vanishing of the effective potential for a.
In the level expansion the quartic terms generated by the cubic interactions must be cancelled by the
elementary quartic interaction of four marginal operators. We confirm this prediction, thus giving evi-
dence that the sign, normalization, and region of integration Vo,4 for the quartic vertex are all correct.
This is the first calculation of an elementary quartic amplitude for which there is an expectation that
can be checked. We also extend the calculation to the case of the four marginal operators associated
with two space coordinates.

We then try to search a critical point of the tachyon potential in CSFT. We include the tachyon, the
dilaton, and massive fields in the computation. Some evidence is found for the existence of a closed
string tachyon vacuum. It seems that this critical point becomes more shallow when higher level
contributions are considered. We also relate fields in the sigma model and those in CSFT. Moreover,
large dilaton deformations are studied numerically.

Finally, we use the low-energy effective field equations that couple gravity, the dilaton, and the
bulk closed string tachyon to study the end result of the physical decay process associated with the
instability of closed string tachyon. We establish that whenever the tachyon induces the rolling process,
the Einstein metric undergoes collapse while the dilaton rolls to strong coupling. Some more general
potentials and the possible cosmological application are discussed.

Thesis Supervisor: Barton Zwiebach
Title: Professor of Physics
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Chapter 1

Introduction

Born as a candidate to describe the strong interactions, string theory has proven to be the most

promising model of unified theory. When quantized, oscillating modes of the relativistic string rep-

resent particles with arbitrarily high masses and spins. In order to be anomaly free bosonic string

theory requires 26-dimensional spacetime. The supersymmetric string theory, including both bosonic

and fermionic excitations, selects 10-dimensional spacetime. There are five consistent supersymmet-

ric string theories in ten dimensions: Type I, Type IIA, Type IIB, Heterotic SO(32) and Heterotic

Es x E8. In the mid-1990's, it was realized that these five superstring theories are related to one

another through dualities. Furthermore, under some particular limits they arise as effective theories of

a 11-dimensional underlying theory, named as M-theory. Moreover, M-theory has a field theory limit:

11-dimensional supergravity theory.
In addition to the fundamental strings, it was discovered that all the five superstring theories and M-

theory contain "branes", extended objects in the spacetime. The branes with different dimensionalities

are related through duality transformations. A Dp-brane is defined as a p-dimensional extended object

on which open strings end. For example, Type IIA (IIB) theory contains BPS Dp-branes for even (odd)

p and a 5-brane. The BPS D-branes preserve half of the supersymmetries of the theory and carry

conserved charges associated with the Ramond-Ramond gauge fields of the theory. Their tension is

determined in terms of their charge. They are stable and all the modes of the open strings attached

on them have positive mass-squared. The BPS D-branes are oriented. Therefore, one can define an
anti-BPS D-brane with opposite orientation.

There are also some unstable Dp-brane configurations. When we consider an open string stretched

between a pair of concident BPS Dp-brane and anti-BPS Dp-brane (with opposite orientation), the

lowest mode is tachyonic with mass-squared. Moreover, type II string theories also contain unstable
non-BPS branes. These non-BPS branes break all the supersymmetries and carry no conserved charge.

The open strings that end on non-BPS branes possess tachyonic modes and thus signal the instability

of the configurations. In type IIA (IIB) theory, p is odd (even) for non-BPS Dp-branes.

Though the final purpose is to understand the instability of the perturbative vacua in superstring

theory, most of results obtained in last years are about bosonic string theory. The reason is that
both theories share many common features and Dp-branes issues in bosonic string theory are much
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simpler'. Moreover, studying tachyon dynamics of bosonic D-branes has its own importance. The
main goal of this thesis is to discuss these problems in the framework of bosonic string theory.

We will focus on bosonic open string theory first. The Dp-branes are all unstable and p is than
or equal to 25. In the classical level, closed strings are decoupled from open string, though closed
strings must appear in the loop diagrams in the quantum open string theory. Three conjectures were
proposed by Sen:

* The local maximum of the tachyon potential is the perturbative vacuum. There is a locally
stable minimum of the potential. The energy density, measured from the perturbative vacuum
is exactly cancelled by the tension of the original Dp-brane.

* Lower dimensional D(p - q)-branes are codimension q lump solutions of the string theory on the
background of Dp-brane.

* The locally stable vacuum is identified with the closed string vacuum. At this vacuum, the total
energy vanishes. Therefore, no D-brane presents. Since open string must attach on D-branes,
open string perturbative excitations disappear.

Straightforward generalizations of these conjectures exist for superstring theories. One indirect way
to verify these conjectures is to work in boundary conformal field theory(BCFT), using the correspon-
dence between classical solutions of string theory and two dimensional conformal field theory (CFT).
The first two conjectures are proved using this formalism in [1, 2, 3].

In the framework of first-quantized string theory, conformal invariance is crucial. One can map
the conformally invariant string diagrams to Riemann surfaces and do the calculations. This restricts
us on computations of on-shell scattering amplitudes only. However, in tachyon condensation, at the
stable vacuum, tachyon and infinite many massive scalars acquire nonzero vacuum expectation values
(vev) and their momenta vanish. They are spacetime independent field configurations. Therefore,
we are facing off-shell issues. Furthermore, a non-perturbative formalism of string theory would be
naturally expected to study the non-perturbative vacuum. From the lessons in usual quantum field
theory, string field theory, a second-quantized version of string theory with infinitely many fields, is
the solution. The fundamental degree of freedom of string field theory is a string field, which can be
expanded on the basis of first quantized modes of string theory. Each mode is associated with a field.
These field configurations are off-shell and do not satisfy the physical state conditions. The on-shell
conditions come from the linearized equations of motion of the string field theory.

The most widely used model of bosonic OSFT is Witten's cubic action [4]:

.-- X(I>,QBI) +l, (1.1)
92 23 *

where QB is the BRST operator and g is the open string coupling constant. The * denotes a non-
commutative, associative multiplication. Geometrically, it glues the right half of the first string with

1Another reason is that the action of closed superstring field theory is not known yet except for the Neveu-Schwarz
sector of heterotic string field theory.
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the left half of the second string. The 2-point vertex (, ) is defined in terms of CFT correlators in the

state space. The equation of motion of this action is:

QB( + * = 0. (1.2)

This action can describe the spacetime field theory of any D-brane. For an instance, with a Dp-brane,
the underlying conformal field theory is composed of p + 1 fields with Neumann boundary conditions

and 25 -p fields with Dirichlet boundary conditions.
There was considerable effort toward constructing both analytical and numerical solutions of the

equation of motion. As early as in 1987, a stable minimum of the effective tachyon potential of bosonic

string theory was found [5]. However, since D-brane had not appeared before the eyes of physicists
at that time, the physical interpretation of this critical point was unknown until Sen proposed his
conjectures. In [5, 6], a computational tool called level truncation, was introduced. Since then, very
impressive results have been obtained in [7, 8, 9, 10], where the D-brane tension was reproduced at
very high accuracy. Recently, a nontrivial analytical solution of the action was constructed [11, 12, 13].
This solution represents the stable non-perturbative vacuum. Sen's first conjecture was analytically
verified with this solution.

Another important issue in tachyon condensation is the dynamical process through which the
tachyon rolls from the perturbative unstable vacuum to the stable non-perturbative vacuum. For this
we need time dependent solutions. In the classical level where D-branes decouple from the closed

string, Sen studied this process in the context of BCFT [14, 15]. It was found that when displaced by
some amount towards the direction of the critical point from the local maximum, the tachyon evolves

to a pressureless state with positive energy density. It is of interest to study this process in OSFT and
p-adic string theory.

The p-adic model is a good laboratory to study tachyon condensation. Its action is given by:

1 d 1 El+ 1 P+1 S = dddx =22 ddx[2Q + , - = , 9 92p '(1.3)S=Jddx~=. J/ L 22p+l g 2 p-1' 2

where 0(x) is a scalar field, p > 2 is a prime integer and g is the open string coupling constant.
This model is a tachyonic scalar field theory with infinitely many derivatives. The existence of some

analytical solutions of this model makes it very attractive. It captures many non-perturbative features

of OSFT. Besides the perturbative unstable vacuum, the potential also possesses one stable minimum.
There do not exist perturbative solutions of the equation of motion at this non-perturbative vacuum.
This property is similar to the situation in OSFT where at the true vacuum, no open string excitation

exists. Furthermore, solitonic solutions of this model can be identified with lower dimensional D-branes
as in OSFT.

It turns out that the behavior of the rolling tachyon in OSFT or p-adic string theory is totally

different from that obtained by BCFT method: the tachyon rolls to the critical point and turns
around to oscillate wildly rather than approaches the stable vacuum asymptotically [16, 17]. The
pressure oscillates with ever increasing amplitude instead of asymptotically vanishing. The reason of
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this apparent contradiction is that in OSFT and p-adic model, there are infinitely many spacetime
derivatives acting on the fields. In [18], by constructing a complicated field redefinition to map one
rolling tachyon solution from OSFT to BCFT, the authors resolved this puzzle. They have shown that
the wildly oscillatory trajectory of the rolling tachyon in OSFT is stable when higher level fields are
included in the calculation.

To understand what is the end state of an unstable D-brane decay, one needs to consider the

coupling of D-branes to closed strings. With semi-classical approach, it was found that D-branes are
sources of closed string states [19, 20]. For a time dependent rolling tachyon solution, representing a
homogenous decay, all the energy of the D-brane is radiated away into closed string fields. Therefore,
the end-result of the physical decay process is an excited state of closed strings that carries the original
energy of the unstable D-brane.

Unlike the achieved progress in bosonic OSFT, the tachyon dynamics problem in bosonic CSFT
is much more difficult. Some results have been obtained for the instability of localized closed string
tachyons that live on subspaces of spacetime [21, 22, 23, 24, 25]. For the bulk bosonic closed string

tachyon, the story is very complicated with the nonpolynomial action [26]:

= 2 ; ( I 0Ql) + E N! {,N}V'N ' (1.4)
N=3

(Lo- Lo0 )I) = 0 and (bo- bo)II) = 0, (1.5)

where is the closed string coupling constant. Here the BRST operator is Q = coLo + oLo +...
where the dots denote terms independent of co and of co. Moreover, c = (co ± co). The fundamental
degree of freedom is the closed string field I), expanded on the basis of first quantized closed string
modes:

IT) = tcll I0) + d(clc_1 - cIc_1) 0) + h/,vcl lic a/ 1 _ll 0) + , (1.6)

where t is the closed string tachyon field, d is the dilaton field and h,v is the graviton. Massive modes
are represented by the dots. Since CSFT action is nonpolynomial it is not obvious how level truncation
works. If a class of closed-string computations can be done in level expansion, it is then necessary to
compute higher-order couplings efficiently. The results of Moeller [27] make this possible for the case
of four-point couplings.

It is well known that the effective potential of a marginal field must vanish. The zero-momentum
graviton-like primary operator cdXcX (dimension zero) in the closed string spectrum provides a
nice laboratory to check the calculation of elementary quartic amplitudes. Denote the field parameter
associated with the marginal operator as a. The effective potential can be expressed as power series
of the field. The leading term a4 has two contributions. One is generated from the cubic vertex

with all massive fields integrated out. The second one arises from the elementary quartic vertex. It
turns out that these two contributions are cancelled with very impressive precision. This confirms
correctness of the computation mechanism of the elementary quartic vertex. In [28], the flatness of
the zero-momentum ghost dilaton potential was checked. Though the ghost dilaton operator is not
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strictly marginal since it is not primary, the dilaton theorem states that a shift in the expectation

value of ghost dilaton field corresponds to a change in the string coupling constant. Around the flat

spacetime background there is no potential for the dilaton, so it behaves like a marginal field.

From the results in open string theory, two questions arise immediately for the tachyon in CSFT:

* Is there a ground state of the theory without the instability ?

* What is the end-result of the physical decay process associated with the instability ?

It is natural to think that there exists a stable critical point. At this vacuum there would be no closed

string excitations. Without gravity excitations spacetime ceases to be dynamical and it would seem

that the spacetime has disappeared.

Early computations showed that there is a local minimum analogous to the stable vacuum in

OSFT if we ignore the elementary vertices higher than cubic interaction in the CSFT action [29, 30].

However, when the contribution from the quartic elementary vertex is introduced, this critical point

is destroyed. It turns out that the above conclusion is not correct. One must include all the fields

sourced by the zero momentum tachyon, especially the massless ghost dilaton field in eqn. (1.6),

in the computation. Given a nonvanishing vev of the tachyon field, the quartic elementary vertices

force the ghost dilaton to be nonzero required by the equations of motion. Once the effects of all the

sourced fields are included, the critical point survives. It looks like that the contributions from higher

level massive fields make the critical point more shallow. Moreover, the ghost-dilaton has a positive

expectation value at the critical point. The string metric in eqn. (1.6) is not sourced and needs not

acquire vev. Two other questions arise in turn:

* Does the positive expectation value at the critical point of ghost-dilaton correspond to stronger

or weaker string coupling ?

* Is the string metric or the Einstein metric excited?

In order to answer these questions and gain more insights into the critical point, the low energy

effective action is studied. It is found that the positive dilaton expectation value corresponds to

stronger coupling. Furthermore, through studying a tachyon-induced rolling solution of the low energy

effective action, qualitatively consistent results are obtained. The string metric remains constant all

the time. Both dilaton and the string coupling run to infinity. Therefore, the Einstein metric crunches

up and familiar spacetime no longer exists.

Outline

In chapter 2, we construct the stress tensors for the p-adic string model and for the pure tachyonic

sector of open string field theory by naive metric covariantization of the action. Then we give the
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concrete energy density of a lump solution of the p-adic model. It has similar profile of that of 3

field theory. In the cubic open bosonic string field theory, we also give the energy density of a lump
solution and pressure evolution of a rolling tachyon solution. It turns out that the pressure oscillates
with growing amplitude rather than approaches zero, the results obtained by using BCFT method.

In Chapter 3, we study the feasibility of level expansion and test the quartic vertex of closed string
field theory by checking the flatness of the potential in marginal directions. The tests, which work out
correctly, require the cancellation of two contributions: one from an infinite-level computation with
the cubic vertex and the other from a finite-level computation with the quartic vertex. The numerical
results suggest that the quartic vertex contributions are comparable or smaller than those of level four
fields.

In Chapter 4, we focus on searching the critical point of CSFT. In bosonic closed string field theory
the "tachyon potential" is a potential for the tachyon, the dilaton, and an infinite set of massive fields.
Earlier computations of the potential did not include the dilaton and the critical point formed by the
quadratic and cubic interactions was destroyed by the quartic tachyon term. We include the dilaton
contributions to the potential and find that a critical point survives and appears to become more
shallow. We are led to consider the existence of a closed string tachyon vacuum, a critical point with
zero action that represents a state where space-time ceases to be dynamical. Some evidence for this
interpretation is found from the study of the coupled metric-dilaton-tachyon effective field equations,
which exhibit rolling solutions in which the dilaton runs to strong coupling and the Einstein metric
undergoes collapse.

In Chapter 5, we study the low-energy effective field equations that couple gravity, the dilaton,
and the bulk closed string tachyon of bosonic closed string theory. We establish that whenever the
tachyon induces the rolling process, the string metric remains fixed while the dilaton rolls to strong
coupling. For negative definite potentials we show that this results in an Einstein metric that crunches
the universe in finite time. This behavior is shown to be rather generic even if the potentials are not
negative definite. The solutions are reminiscent of those in the collapse stage of a cyclic universe
cosmology where scalar field potentials with negative energies play a central role.
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Chapter 2

Stress Tensors in p-adic String Theory
and Truncated OSFT

Much work has been devoted to looking for solutions in string field theory (SFT). Generally speaking,

physicists are concerned with two kinds of solutions with different properties. One kind of solutions

are the time independent ones which represent the tachyon vacuum or lower dimensional D-branes

[31]-[36]. Initiated by Sen [14], time dependent rolling tachyon solutions have recently attracted

much attention [15]-[46]. Studying rolling tachyon solutions can give us information about how the

tachyon approaches the tachyon vacuum. At the same time, the p-adic model [47], which exhibits a

lot of properties of string field theory, is also of interest. In this model, the potential has a stable

vacuum and a tachyon. Studying the dynamics of the tachyon may suggest to us what happens in the

same situation for the SFT. Furthermore, one also has lump solutions in the p-adic theory which are

identified as lower dimensional D-branes [48].

In [16], Moeller and Zwiebach discussed how to construct the stress tensor for the rolling tachyon

solution in the p-adic model. They obtained an unambiguous expression for the energy through

a generalized Noether procedure. This analysis could not be extended to the pressure calculation,

however, as there are ambiguities in that case. Instead, they included the metric in the action and

used the definition of stress tensor in general relativity to calculate the pressure. Then they constructed

the rolling tachyon solutions for both the p-adic model and open string field theory (OSFT) in the

form of series expansions. After that, they calculated the pressure evolution in the p-adic string case.

It is of interest to consider the stress tensor in the case when the scalar field in the p-adic model

depends on all the coordinates. Especially, for a lump solution, what is the profile of the energy

distribution along the spatial coordinate? Is it the same as what we expect intuitively? Furthermore,

in OSFT, it is important to know if the profile of the energy density has the same properties as that

in p-adic string theory. Moeller and Zwiebach showed in [16] that the pressure of the rolling solution

in p-adic model does not vanish at large times. For the rolling solution in OSFT, it is of interest to

test if one gets vanishing pressure asymptotically or not.

In this chapter, we first give the stress tensor in a general form for the p-adic model. When our

results are specialized to the time dependent solution in p-adic model, they reproduce the results in
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[16]. A nontrivial lump solution in p-adic model was given in [47], [48]. We construct the energy

density of this solution and compare it with that of the lump solution of ordinary ¢3 field theory. We
find that these two energy densities have similar spatial profiles. Section 3 is devoted to the case of
the pure tachyon field in OSFT. We again construct the stress tensor in a general form. The energy
density of a solitonic solution [34] is then constructed in subsection 3.1. Finally we calculate the
pressure evolution of a rolling tachyon solution [16].

2.1 p-adic String Theory Case

In this section, we first construct the stress tensor of the p-adic string theory by varying the metric.
We will find that the expression is exactly the same as the one obtained in [16] if we constrain scalar
field to only depend on time. We will also consider the case where the tachyon scalar only depends one
spatial coordinate. In that situation, one nontrivial solitonic solution was already given [47], [48]. We
then calculate the energy density of that solution. The results show that the total energy, integrated
over all space, perfectly agrees with the D24 brane tension as expected. The spatial profile of this
energy density looks very like the one of the solitonic solution of ordinary 3 field theory.

2.1.1 Stress Tensor for p-adic model

The p-adic string theory is defined by the action:

S =JdxL= - fdd[- O 2 +l 92 P = (2.1)

where (x) is a scalar field, p is a prime integer and g is the open string coupling constant. Though
the theory makes sense even as p - 1, in most cases, we will consider p > 2 in this chapter. In this
action, there is an infinite number of both time and spatial derivatives. One defines:

p 2 -exp - lnpnO = -2 lnp) PIn, (2.2)
n=O

and
02

-O= t2 + V2. (2.3)

Now we include the metric in the action [16]:

S= S1 + S2 = 2 / d [ p- + p+

In (- lnP) 1! |d +/Hyl0, (2.4)
22 =1

where we have split the action into two parts: S1 represents the potential and S2 represents the kinetic
term. After introduction of the metric D becomes the covariant D'Alembertian.
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Bl ddx -g []1 1 Jd Xat
1 
/---19M -ggrl'/l 0.

The stress tensor is given by:
2 5S

The variation of the potential S in (2.4) contributes:

The variation of the potential S in (2.4) contributes:

2 6S1
_--5 6ga=

1 ( 12
gp - +1 P+1) gp

p + 1 ]gs

where we have set the metric to be flat with signature (-, +, + ... +) after the variation and we will
use the same convention in the rest of this chapter. As for the variation of the kinetic term S2 in
(2.4), from (2.5), we need to vary both factors of -g and giVi with respect to ga;3. First consider
varying factors of \/- in (2.5) with respect to ga:

6B1 6Vg
65\/-Tg 6g0Q

= g11 /1
9L2V2 .. i. 9Pl (OPL Vl2V2...A + L l /V 122... V2.IN + ...

(2.8)

with the definition:

C11VlI212 ... VI- /1 1 0/ 1 C0 /1/2 0 / V2 -... 110 0(X)

The variation of the factors of gAivi in (2.5) with respect to ga:S contributes:

6B1 g/1ivi

6g/iVi 6gas
92g g12V2 ... 9-- (O a 3 /lVi12V2"- .1-V1-l

(2.9)+ap1 02V2/---lV-1l + ... -+ aplvl22 2...i2'10) 

So, we can calculate 6S2. Finally, the stress tensor is:

1 p2 1l 9g

! {

+0//1Vl 0/12V2 ... L + + lVl2V2 . Al V)9a

-2g 1 V12 2 * ... 9M 1 I- 1 (OaCP1V122 2...A-lVl1

+_iQPlV1/2V2 1_... i-lVl +- + O1a$lcl/122 .-l /0) }- (2.10)

If O(x) is only time dependent, in (2.10), each gi'"i contributes one '-' sign and the second term in

the sum survives only for the component Too. This gives the same results as in [16].
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One can also use the following identity 1

5eA = dtetA(6A)e( 1-t)A

to get an alternative "closed" form of the stress tensor, compared with the series expression (2.10):

1

p+k dt(e-ktkt) (aOe-k(1-t)5)}0)
0

1

0

_9k /dt(Oe-kt)(Oe-k(1-t)[-0) ' .
(2.11)

9 0

where k 2 lnp.

In the case that 0(x) only depends on one spatial coordinate, say x x25, the last term in the

right hand side of (2.11) vanishes for all the components except for T25,25. The energy density is

1

E(x) = To= {e-k02!b- 2 p+ k dt(ekta 2 ()(82ek(1-t)o2 qS)

+k dt(e-_kt92))(e-k(l-t)2) (2.12)
00

where 2 _ -.

2.1.2 Energy of The Lump Solution

There are some previously known solutions for the p-adic model [47], [48]. One of them is the lump

solution:

0(x) = p= exp (-2 np X2) (2.13)

This solution is interpreted as a D24-brane, where x is the coordinate transverse to the brane. This

solution can be generalized to lower dimensional branes [48]. The D-brane tension of this solution is:

T24 = - dx-L((x)) -- dx 1 -P(p+l)(x)
2gp l+p

= I p- pp 2lrnp (2.14)
2(p + 1)hbl for suggestig the use of this idetity.- 1

'I thank M. Schnabl for suggesting the use of this identity.
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Using the identity x( ) 1 2 x pbx 2
exp 2 p( exp exp(-bx ) 1 abdx vlll_ -4ab - 4ab

from (2.12), we can write down the energy density:

-l 2;r_ Ip-l p - 1 ] 2(p-1)x2

p+l (p2-l)lnp fp + 1 2plnp
__+__ ;(p2w) lnp P-1 lxl Er ( 1 p Ixl e 2(P+1)np )x (2.15)

where Erf[x]- _ fo dt exp(-t 2 ) is the error function. In Figure 2.1, we plot this energy density (the

solid line) for p = 2. At x = 0 and x -+ ±oo, this energy density vanishes. By solving ~dE(x) = 0

numerically as p = 2, one can see the energy reaches its maxima at x ± ±0.9997. From (2.1), the

potential is
14)2 1
2 p+ l '

so, the D-brane vacuum is at 1 = 1. Moreover, from (2.13), one gets = 1 at x = v/- In 2 ± ±0.9803,

which are close to the locations where the energy gets its maxima.

The lump solution (2.13) we are considering here, as we mentioned at the beginning of this subsec-

tion, is interpreted as a D-24 brane sharply localized on the hyperplane x = 0. Therefore, intuitively

one may expect the energy to be sharply localized around x = 0. But from figure 2.1, one can see that

the energy is somewhat localised around x ± ±0.9997 and reaches a local minimum at x = 0.

The total energy is:

I p- _ /2I P ~rln p
dxE(x) = 2 2(p+ 1)PP 2p- 1 (2.16)

-oo

which is exactly the same as (2.14). In the limit p -4 1, E(x) becomes:

lim E(x) - 22 exp(1 - 2). (2.17)
p-l 2g2

On the other hand, from (2.1), as p 1, the action becomes:

S 12 ddX(I - 1 02 n+ 02 ).

This action has a lump solution:

O(x) = exp ((1-x2)),

whose energy density is exactly the same as (2.17).

This energy density looks very similar to that of the ordinary 03 field theory with coupling constant

go and unit mass [49]:

S=92 dd 2( ) 2 3

which has the lump solution:

(x) = (1 - tanh2 ), (2.18)2 2
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Figure 2.1: The energy distribution of the lump solution (2.13) of the p-adic model for p = 2 (solid
line, g2E(x) versus x) and that (2.18) of ordinary 53 field theory (dashed line, go2E(x) versus x).

with energy density
9 41 .2E(x)-= sech4 tanh (2.19)

-o g4 2 2'

which is plotted in Figure 1 (dashed line).

2.2 The Pure Tachyon Field of String Field Theory Case

When we expand the string field in the Hilbert space of the first quantized string theory, we can read
off the action of the pure tachyonic cubic string field theory. As in the last section, we include the
metric in the action and convert all the ordinary derivatives to covariant ones. Variations of the metric

again give the stress tensor. Then we calculate the energy density of the lump solution given in [34]
and the pressure of the rolling tachyon solution given in [16].

2.2.1 Stress Tensor for the Tachyon field in SFT

Firstly, we write down the pure tachyonic action of the cubic SFT. From Sen's conjecture [31], we
should add the D-brane tension into the SFT action to cancel the negative energy due to the tachyon.
We know that after adding the D-brane tension term to the potential of the cubic SFT, the local
minimum of the new potential vanishes [7]. In the same spirit, here we should add a term K-6 to
the potential to set the local minimum of the potential to zero.

S = 2ddx (2 (a)2 1K) (2.20)
2 2 3 6

where

= exp (n KO) 0(x) = Kc0(x). (2.21)
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go is the open bosonic string coupling constant and K = 3v'/4. O is defined as in the last section.
The equation of motion from this action is:

K-2D(1 + 0)q = K3 2.

In order to separate the term without derivatives from 5(x), we define:

+(x = 0(x)- 0(x) E ( nK)I! lt0(x)
1=1

(In K) 1 
E t ! /=l(9t -1i- "'"' a& - , 9 2" 2 . . .

1·* " /- V--geg lOt(x), (2.22)
where in the last step, we have written the expression in the covariant form. For an arbitrary differ-
entiable function f(x),

ddxf(x) ---~ = 2flgp + Aap(f) (2.23)

where

Aa ) (f = 1 o9 (lnK)' g ... 

A(f.(f)ll2V2--,lU1 + f ) !2V2. gAl V+ ***+ f.lgl lVll

E• (In K)lgv ... g _-v- (fa¢ivi..._,vi_ +
1=1

~f-jAlV1O#12V2 ... 141-1VI-1 + *.. + f1v1 i... MIiiVI-S) (2.24)

Again, we set the metric to be flat with signature (-1, 1, 1 ... 1) after the variation. Replace by
0 + ?p in (2.20), expanding and coupling to the metric:

d - 2 g&"av - K3A3 16\
02 2 2 3 -6

-K 3 (02 + 0,52 + 3) }(2.25)

Varying the first term in the last right hand side of (2.25) with respect to ga gives

dX.\I- 1 _
6S $ $ dd~ (2 _ 1 K303 K -)

9g 2 i _ _ 6_ go00
gc9i Jdd c(a2 --_ K - --22 -

(2.2)

(-- 1, (2.26)
g62
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where we have defined Cap to simplify our notation. As for the second term in the last right hand
side of (2.25), note

-K369a, J ddxv (~2 +OV2 + _ 

= K3 (2 + O)2 + 1,03) -K 3
2 3 )91 j0 8 I

3)

ddXH/g2 6 g fgc432

So, from (2.23) and (2.24) the variation of the second term in the last step of (2.25) contributes:

( go )
J ddrjq (q2++i ± g# +

l 2 2-{K3 A () += go A,(' 23)

Finally, from (2.24), (2.26) and (2.27), the stress tensor is:

2 SS
- g 6ga3

2K-3-goA-(5 2 )-

In the case that 0(x) only depends on one spatial coordinate, say x25, from (2.24),

(lnK) 21-1 1
Aa,3(¢2) = 1 ){ 2)9a3 E (m21-m - JQ,256,25 E ¢2-1421-2m+l

1=1 m=l m=l
(2.29)

Plug it into (2.28), we obtain the stress tensor for lump solutions. Similarly, if 0(x) only depends on
time, we can write:

A.(2 ) = -K 3 (-lnK)'
1=1

1 21-1 1

29a E 021-m + 72,0, E 02m-1021-2m+1 
m=l m=l

Plug it into (2.28), we obtain the stress tensor for rolling solutions

2.2.2 Energy distribution of the SFT lump solution

In [34], a lump solution of OSFT has been given in the form of an expansion in terms of cosines. We
are only concerned with the pure tachyonic mode here, so drop the higher modes:

q(x) = to + tco () +t2cos ( ) .--
where R is the radius of the circle on which the coordinate x is compactified. We can calculate the
energy distribution of this solution, from (2.21), (2.22), (2.28) and (2.29):

O(x) = K9q0(x) = to + tK - 7 cos (R) + t2 K- cos () +-..- 

+(x) = (x) - (x) = t (K- '

21
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(2.30)

(2.31)
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E(x) Too= -Too

-1 (! (6 K-6 + K3(1 2 + 3 )
g 2 3 2 6 3

K 3 0 (In K) 121-1

g 2 E l! E (2) 021_m. (2.32)
-1=1 1m=l

In R = case, using the method introduced in [34], one can obtain:

to = 0.216046, t1 = -0.343268, t2 = -0.0978441,

when we plug these values into (2.32), we find:

E(x) = 2 (0.0206937 + 0.0242345 cos R

2x 3x
-0.00780954 cos - - 0.0204855 cos -

4x 5x 6x
-0.0111187 cos - 0.00218278 cos - 0.000177055 cos .

This lump solution has the interpretation of D24 brane, the tension is:

7rR

24= dx-E(x) 0.225206 .
-rR

On the other hand, q = 0 is supposed to represent the D25 brane. We have T25 = -V(O = 0) =

K 6
_ 0.0346831-u. Therefore,

1 24 - 1.03343
2ir T2 5

a ratio that is unity in string theory.
Figure 2 shows the energy density E(x). As the lump solutions in the p-adic string theory, the

energy density is not localised around the hyperplane x = 0. Instead, E(x = 0) is a local minimum.
A difference from the p-adic model is that E(0) does not vanish here.

2.2.3 Pressure evolution of the SFT rolling tachyon solution

In [16], a rolling tachyon solution of OSFT is expressed as a series expansion in cosh(nt):

0(t) = to + tlcosht + t2cosh2t + ... -

,From (2.21), (2.22), (2.28) and (2.30):

0(t) = K-°t20(t) = to + t1
K - cosht + t2K-4 cosh 2t +. ,

4'(t) = ~(t) - (t) = t (K-1 - 1) cosht + t2 (K-4 - 1) cosh2t + .. ,
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Figure 2.2: The Energy density of the pure tachyonic lump solution 0(x) = to + tlcos + t2cos2 of
OSFT theory with R = 4v. the plot is goE(x) versus x .

p(t) =-T11
1 K33 + )2 K-6 + K3 b 2 + 3K 3)

K 3 (-In K) 2-l (2.33)
+ -, F 11 Y, (P) 021-m- (2.33)

LFrom section 7 in [16],

to = 0.00162997, tl = 0.05, t2 = -0.000189714,

and therefore,

p(t) = -- 0.0346844 + 0.0000416895 cosh t + 0.00124462 cosh 2t

-0.0000416042 cosh 3t + 2.59666 x 10-7 cosh 4t

-3.97466 x 10- 10 cosh 5t + 2.09045 x 10- 13 cosh 6t).

Figure 2.3 shows the pressure evolution. It has the same property as the pressure in p-adic theory
(Figure 10 in [16]).The pressure starts from negative value at time t = 0 to force the tachyon roll to
the vacuum. But instead of decreasing to zero as t -+ oo, it oscillates without bound at large times.
So, this solution does not seem to represent tachyon matter.

2.3 Conclusion

By introducing the metric, we have obtained general expressions for the stress tensors both for the
p-adic model and for the pure tachyonic sector of open bosonic string field theory [31], [7], [8], [34].
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Figure 2.3: The pressure evolvement of the rolling tachyon solution 0(t) = to + t1 cosh t + t2 cosh 2t of
OSFT theory. go2p(t) versus t . As t becomes larger, p(t) oscillates rapidly.

Furthermore, we considered some available solutions and wrote down the corresponding energy

densities for space dependent ones and pressure evolutions for time dependent ones. In conformal field

theory, D-branes are boundary conditions and one could expect the energy to be sharply localized at

the D-brane position. It was not clear whether or not the lumps of the padic string theory would

have this property. Our results show that they do not. The energy density vanishes at x = 0, ±oo.

It has two maxima. These two maxima are symmetrically localized with respect to x = 0. In the

pure tachyonic sector of OSFT, the energy density for the lump solution reaches a local minimum

at x = 0. For the rolling tachyon solution, the pressure oscillates with growing amplitude instead of

asymptotically vanishing. Therefore, as in the p-adic model, the rolling solution we considered in this

chapter does not seem to represent tachyon matter.
There are two shortcomings of the calculations in OSFT. The first is not including the massive

fields. The second is that the coupling of open strings to the metric could have additional terms

that vanish in the flat space limit but contribute to the stress tensor. Such phenomena happens in

noncommutative field theory [50]. Open-closed string field theory [51] might be needed to calculate

the stress tensor with complete confidence. I thank M. Schnabl for bringing this point to my attention.
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Chapter 3

Testing Closed String Field Theory
with Marginal Fields

Marginal deformations have provided a useful laboratory to deepen our understanding of open string

field theory. The effective potential for a marginal field must vanish, but in the level expansion one sees
a potential that becomes progressively flatter as the level E is increased [52, 53, 54, 55]. The marginal
operator was taken to be caX and corresponds to a constant deformation of the U(1) gauge field in
open string theory. The associated spacetime field as can be viewed as a Wilson line parameter. For
small as the potential can be expanded in the form

92Ve(as) = a4(£) as4 + (a.) (3.1)

Numerical evidence was found that the coefficient a4(£) decreases as £ increases. Eventually, a(f) was
elegantly shown to be exactly zero as goes to infinity [56]. This is, of course, a necessary condition
for the potential to vanish completely at infinite level. One can also study large marginal deformations
and the relationship between the string field marginal parameter a and the conformal field theory
marginal parameter [57, 52].

In this chapter we use the closed string marginal operator cOXOX to test closed string field
theory [26, 58] and to study the feasibility of level expansion in this theory. In order to do this we
compute the effective potential for the associated marginal parameter, which we denote as a. We
focus on the leading a4 term in the expansion of this potential for small a. This term receives two
contributions. The first one, C(£), arises from the cubic vertex by integration of massive fields of level
less than or equal to . The second contribution, I4, arises from the elementary quartic vertex of
closed string field theory and it has no open string field theory analog. General computations with the
quartic vertex are now possible thanks to the work of Moeller [27]. If we denote by E the maximum
level for the massive closed string states that are being integrated, the total potential is

K2 V) (a) = (c(e) + I4 ) a4 + O(a6). (3.2)
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It is natural to write the coefficient C(e) as

C() = Ec(e'), (3.3)
e£=0

where c(e') is the contribution from the massive fields of level E'. Marginality of a requires that the
term in parenthesis in (3.2) vanishes as e - oo, or equivalently, that

00

C(o) + =4 e ')14 = c(') + O. (3.4)
e'=o

We find strong evidence for this cancellation by computing 14 and the coefficients c(e) to high level.
This provides a test of the quartic structure of closed string theory. It is, in fact, the first computation
with the quartic vertex in which there is a clear expectation that can be checked. Quartic terms have
been computed earlier, most notably the quartic term in the (bulk) tachyon potential [30, 59]. In that
case, however, there was no prediction for the magnitude or the sign of the result. Our present work
gives us confidence that these early computations are correct.

In open string field theory the level of a cubic interaction is defined to be the sum of the levels
of the three states that are coupled. It seems likely that the level of cubic closed string interactions
should be defined in the same way. It is less clear how to define a level for quartic interactions in such

a way that cubic and quartic contributions may be compared. Equation (3.4) allows us to do such
comparison. In particular we can determine the level e. for which c(e.) 1I4. Since lc(f)l decreases
with level, e. is the level at which inclusion of the quartic interaction seems appropriate. Our results

suggest that e. > 4.

A puzzle arises in the computations. The value of C(oo) depends only on the cubic vertex of

the string field theory. The value of 14, which must cancel against C(oo), depends on the quartic
vertex. It is well known that the quartic vertex is not fully determined by the cubic vertex (although

there is a canonical choice). How is it then possible for the cancellation to work for all four-string

vertices consistent with the cubic vertex? This happens because of two facts: first, the cubic vertex
determines the boundary of the region V0,4 of moduli space that defines the quartic vertex and, second,

the integrand for 14 is a total derivative and the integral reduces to the boundary of Vo,4.

Let's review the organization of this chapter. In section 2 we state our conventions and carry out

the computation of the coefficients c(e) for e < 4. In section 3 we obtain a simple relation between
the coefficients c(t) and the analogous coefficients in the open string potential for the marginal Wilson
line parameter. Using this relation and the results in [52, 55] we obtain c(e) for e < 20. With this
data we find a fit for C(e) and extrapolate to find C(oo). This projected value gives an accurate
cancellation against I4, the value of which is calculated in section 4. In fact, using the unpublished

numerical work of [60, 61] the cancellation works to five significant digits. In section 5, we extend
our discussion to the case of the four marginal operators associated with two spacetime directions.
The 0(2) rotational symmetry implies the existence of two independent structures that can enter into
the effective potential to leading (quartic) order in the fields. We compute the contributions to these
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structures from the cubic and quartic string field vertices and again find convincing cancellations. We
offer a discussion of our results in section 6.

3.1 Marginal field potential from cubic interactions

The bosonic closed string field theory action [26, 58] takes the form

2S 2 ( (c , QI ,) + .{ , , } +. . + (3.5)

Here Q is the BRST operator, co = 1 (co + co), and the string field Ii) is a ghost number two state
that satisfies (Lo - L0)I) = 0 and (bo - bo)I) = 0. In this chapter we only consider states with
vanishing momentum. After setting ca' = 2 and rescaling - ,-lI, the potential V = -S is given
by

K2 V = ('co QI'r) + .{I', ', '} + {4r, ', ', '} + . (3.6)

We fix the gauge invariance of the theory using the Siegel gauge (bo + bo) I) = 0 . The level e of a state
is defined as = Lo + Lo + 2. The tachyon state clcl 10) has level zero and marginal fields have level
two. For a convenient normalization we assume that all spacetime coordinates have been compactified
and the volume of spacetime is equal to one. We then use (Olc_lc-_lc c0+ccll 0) = 1, or equivalently,

(C(Zl)C(I1) C(Z2)C(Wz2) C(Z3 )C(W3 )) = 2(Z1 - Z2)(Wi1 - iW2)(Z1 - Z3)(i1 - iV3 )(Z2 - Z3)(W2 - iW3) (3.7)

Since open string field theory uses (c(zl)c(z 2)c(z 3 ))o = (Zl - z2)(Zl - z3 )(z2 - z3) we can write

(C(Zl)C(z2)C(Z3 ) (Wl)C(W2)c( 3 )) = -2 (C(ZI)C(Z2 )C(Z3 ))o (C(Wl)C(ti2 )'(W3))o . (3.8)

This closed/open relation can be used to calculate the cubic coupling of three closed string tachyons:

{ClEl,Clel, ClCl} = 2. (Cl, Cl, Cl)o (Cl,l,Cl) = 2- T3 . 7 3 = 2T 6, (3.9)

where R =_ = 3v 1.2990, p is the (common) mapping radius of the disks that define the three-
string vertex, and (cl, l, Cl)o = R3 is the coupling of three tachyons in open string field theory (see,
for example, [35], eqn. (5.6)).

In this section we only examine quadratic and cubic interactions. We begin by considering the
effects of the level zero tachyon t on the potential for the (level two) marginal field a. The string field
is therefore

[4o) = t ClC1 10) + a a-la-l cil 10) . (3.10)

The subscript on the string field indicates the level of the highest-level massive field - in this case zero,
because the tachyon is the only massive state. The kinetic term and cubic vertex give the following
potential:

2V -2 1 6t3 2ta2 = _ 656 1 t3 27
K () = t + R6 P + 4-2 = _t2 + -t3 = t a 2. (3.11)

3 4096 16
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To find an effective potential for a we fix values of a, solve for the tachyon field, and substitute back

in the potential. For each value of a there are two solutions for the tachyon. One gives the vacuum

branch V while the other one gives the marginal branch M. The tachyon values are

tV/M = 8192 ± /67108864 -544195584 a2 (3.12)
39366

As in open string field theory, the marginal parameter is bounded al < 0.3512. It is not clear how

higher level and higher order interactions will affect this bound. In the marginal branch we can expand

the potential for small a and find ,2V(o) 0.7119 a4 + 0.9622 a6 + .. The quartic coefficient can be

computed directly using the potential in (3.11) without including the t3 term. The equation for the

tachyon becomes linear and we get

36
r2V(0) = 210 a4 0.71191 a4 C(0) = c(0) = 0.71191, (3.13)

using the notation described in the introduction. In general, to find the contribution to a4 from a

massive field M we only need the kinetic term for M and the coupling a2M. In terms of Feynman

diagrams we are simply computing a tree graph with four external a's, two cubic vertices, and an

intermediate massive field.

The string states needed for higher-level computations are built with oscillators an<-l, &n<-l of

the coordinate X, Virasoro operators Lm< 2 , Lm<_2 for the remaining coordinates (thus c = 25), and

ghost/antighost oscillators. We can list such fields systematically using the generating function:

f0x,0y,~)1 1 c 1 1
f(,,Y,) I 1--1_nXn 1-_nX n H2 1-L' mxm 1-L' m

n=l =2 -m
00 00i (1 + c_kxky)( + C_kxky) fI(1 + bixly'1) (1 + b_ll-l1). (3.14)

k=-1 1=2
k•0

A term of the form xnxfym mn corresponds to a state with (Lo, Lo) = (n, in) and ghost numbers

(G, G) = (m, ). A massive field M is relevant to our calculation if the coupling Ma2 does not

vanish. This requires that M have (G, G) = (1, 1), an even number of a's, and an even number of &'s.

At level two we get three states: the marginal field itself, cllc10), and c_1-110). One linear

combination of the last two is the ghost dilaton and the other is pure gauge. Since none of the three

states couples to a2, we have c(2) = 0. At level four Lo = Lo = 1 and the coefficients of (xtyq) give

all possible terms. With the above rule the set is reduced to

TI4) = cfl C-1_j + f2 L' 2L 2 1l + (f3 L' 2ClC-1 + f3 L' 2 - 1 1) + rl Z 2_1 C 1C 1

+ (r2 a02C1C-1 + r2 2-1C_1cE) + (r3 a?-1Lt-2Cll + r3 L' 22 cllc) (3.15)

The corresponding terms in the potential are

2 2 121 2 + 625 2 15625 2 2 5 2 1 1375 (f2 f3V2V(4) =f12 + 432afl + - f22 f2- 2 [f32 + 32]- 864a (f3 + f3
43l2 +12 22 4 1728 1a J 2 + LJ +2J 3 864 \-32 r+ (316)

2 27 2 + f2 1132 2 1252 (32
+ 4r 1 + - r -2 2 +-a (r2 + 2 ) -- 25[3r3 3 ]- a (3 - 3 )

16 l,, · 2 16 32

28



where we used the conservation laws in [35] to evaluate the cubic interactions. Solving for all the
massive fields and substituting back into V(4) we obtain

iV(4)=-46656 a4- -0.41412a4 - c(4) =-0.41412. (3.17)

To get the total contribution up to level four we add the above to the result in (3.13):

2V(4) = 66222305 a4 . 0.29780 a4 C(4) = 0.29780. (3.18)
746496

The contribution from level six string fields vanishes because none of the string fields has even number

of a's as well as even number of &'s and satisfies the condition that (G, 0) = (1, 1). Therefore c(6) = 0.
We note that C(4) < C(0). To get additional information we turn to open string field theory.

3.2 Contributions to a4 calculated using OSFT

As long as we consider closed string states of ghost number (1, 1), work in the Siegel gauge, and restrict
ourselves to quadratic and cubic interactions, closed string field theory functions as a kind of product
of two copies of open string field theory. This will enable us to relate the contributions to the a4 term
in the effective potential to the similar contributions to a4 in the case of open string field theory.

In classical open string field theory the marginal state is Iba) = cl 0) and the marginal field is
called as [52]. To calculate the quartic potential a4 it suffices to consider

9V(e) = E - - 9 )=_ 2 1 ( lQBl)) + (e) ., ) a2 (3.19)
e=0,2,...

where O is for open string, g is the open string coupling, QB is the open string BRST operator, and e
is open string level: (Lo 1)l() = el ()). Only even levels contribute because states of odd level are
twist odd and their coupling to a2 vanishes. For each e we sum over all basis states of ghost number

one in the Siegel gauge:

lI>e) -it E egt), Lo Iot) ) = (E- )lo?). (3.20)
i

We will leave out the superscript e whenever possible and define

mij (flIcolOi), Ki (Oi, 'a, a) (3.21)

where mij is a symmetric nondegenerate matrix. In Siegel gauge QB = coLo and therefore

-92S) = 2 i mij j + Kiia2v (3.22)

where summation over repeated i and j indices is implicit. Using matrix notation, [M]ij = mij, [K]i =
Ki, []i = i, we readily find the solution for 0 and the value of the action:

1 (MiK) 2 1 4

(M-- -_g2S()_ KT a. (3.23)
C- 2(£ - 1) s
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Back in (3.19) we have

e 1
g2Vo(e) = a4 (f) a4 = a4 x,, with e - 2( 1)KTM-K. (3.24)

£~=0,2,...

Let us now turn to closed strings. Because of level matching and the constraints (bo ± bo)I = 0,
a closed string field of level Lo + Lo + 2 = 2e in the Siegel gauge can be written as a sum of factors:

Q(2e) = -ij Ie? )} X O*i)) where the open string states are those in (3.20). Therefore

(oi ®Oj IcoQB il 0 oj') = 2 (0i j coco(Lo + Lo)lOiX ( oj,) = 2(e- 1) mii mjj, (3.25)

where the factor of two in the last step is from the normalization (A.1). For closed strings the marginal
state is G = a X xlci ClEl0). Since G = ma 0 qPa, the cubic interaction factorizes: {Oi ® Oj,G, G} =

2 Ki Kj. Therefore, up to the order a4, the potential is calculated from

2(2) = E -n2S(21'), _c2S(2) =1 (-S(2e) icoQB l(2e)) + 1 {jl(2te) G}a2 (3.26)
et=0,2,...

Our earlier comments allow explicit evaluation:

-K2S(2t) = ( - 1) ijPij,mii,mjj, + a'2 lijKiKj. (3.27)

The equation of motion for 1ij is readily solved:

1 - -1KK.a 2 (3.28)
Aij =-2(f - 1) m ii j, (3.28)

Substituting back into S(2t) and using (3.24) we find

-s (2t) = -)( )I 'KTM-K )2a 4 = -(- 1) 2 4 (3.29)

We recognize that the contribution to a4 from the open string fields of level e determines the contri-

bution to a4 from the closed string fields of level 2. With the notation described in the introduction,

e

Kn2V(2) = C(2£) a4 = a4 E c(2e'), with c(2£) = -( - 1)Xt. (3.30)
e'=0,2,...

The values of a4(f) (recall (3.24)) for = 0,2, and 4 can be read from Table 1 of [52], and values

up to e = 10 from Table 1 of [55] (with extra digits provided by [61]). We reproduce them in Table 3.1,

along with the corresponding values of Xe. For £ = 0, 2, we confirm the closed string results of section 2.

Since fits in powers of 1/e, where e is open string level, accurately describe the behavior of coefficients

in open string effective potentials [9], we use the data for £ = 4, 6, 8, and 10 to fit a4 to bo+b/e+ b2/ 2:

0.35681 0.12893
a4(e) -0.00026 + J2 (3.31)
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This is a good fit since a4(#) must vanish for infinite level. We now use this fit and (3.30) to predict
the behavior of C(f) as a function of the closed string level e. It follows from (3.24) and (3.31) that

0.71361
Xe = a4(e) - a4(- 2) -07361 (3.32)

Equation (3.30) then gives

C(2f) -C(2 -4) = -( -1)X -0.50(333)
£3

This equation is consistent with the extrapolation

C(2f) - fo + 0.50925 (3.34)

Comparing with the open string result (3.31) we see that the potential converges faster in closed string
theory. Given (3.34) we now make a direct fit of C to do + d2/e2 + d3/e3 using the closed string data

in the table for f = 4,6,8, and 10:

0.50581 1.06366
C(2) 0.25585+ (50)81 + (2)66 (3.35)

jFrom this projection we find
C(oo) _ 0.25585. (3.36)

Recalling (3.4), this number must be cancelled by the elementary quartic contribution I4.

e Xe a4( ) c(2e) c(2/)
0 0.84375 0.84375 0.71191 0.71191

2 -0.64352 0.20023 -0.41412 0.29780

4 -0.10323 0.09700 -0.03197 0.26583

6 -0.03420 0.06280 -0.00585 0.25998

8 -0.01646 0.04634 -0.00190 0.25808

10 -0.00962 0.03672 -0.00083 0.25725

oo - -0.00026 - 0.25585

Table 3.1: Xe and a4(e) give the contribution of level e fields and the total contributions up to level e,
respectively, to the quartic term in the potential for the Wilson line parameter as. The last two columns give
the contribution c(2e) = -(e- l)X2 of closed string fields of level 2e and the total contributions C(2) up to level
2e to the quartic term in the potential for the closed string marginal field a. The last row gives the projections
from fits.

3.3 Elementary contribution to a4

We now compute the coupling of four marginal operators through the four-string elementary vertex
of closed string field theory. If all fields have the simple ghost structure i = OiclclO0), with Oi a
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primary matter operator of conformal dimension (hi, hi), the elementary quartic amplitude is [30]:

1, 2 f dxdy (01(0)0 2(1)0 3(~)O4 (t = 0)) (3.37)
71, 2, 3, 4 2-2hl 2-2h2 2-2h3 2-2h4

,4 Pi P2 P3 P4

Here pi's are the mapping radii and the correlator has the operators inserted at z = 0, 1, = x + iy,

and t = 1/z = 0. In this chapter all matter operators have dimension (1, 1) and the mapping radii

drop out. For the marginal field a the corresponding operator is G = ccOx with O( = -dXX.

Using (X(zl)aX(z 2)) = 1/(zl - z2)2, as well as the antiholomorphic analog we find

(O..(0) O..(1) O.z( ) Ox(t = 0)) = 1 + i+ (1 1 )2 (3.38)

Therefore, the amplitude {G4} ={G, G, G, G} is

{G4} = -- 0,4, with I,4 dxdy1 + + (1 )2 (339)
7r 4 -- )2

The moduli Vo,4 space is comprised of twelve regions, a region A ([27], Fig. 3) and eleven regions
obtained by acting on A with the transformations E - 1-, f -, , f - , and their compositions [27].
The integrand in (3.39) is invariant under these transformations, so we integrate numerically over A
using the quintic fit provided by Moeller ([27], eqn. (6.5)) and multiply the result by twelve:

10,4 = 12 dxdy l+1 + (1- 9.65029. (3.40)

The contribution to the potential from the elementary quartic interaction is then

2V4 = 4!{G 4 }a4 = -1 IO,4 a4 -0.25598a 4 14 =-0.25598. (3.41)4! ~ 127r
Recalling (3.36), the test indicated in (3.4) gives

C(oo) + 14 = 0.25585 - 0.25598 = -0.00013. (3.42)

The cancellation is impressive: the residue is about 0.05% of I4.

Best estimates: With the most accurate description of A, Moeller [60] has calculated the integral I0,4
and his result gives I4 = -0.255872(±2). Coletti, Sigalov, and Taylor [61] provided us with the Xe
for £ < 150. With this data we found C(300) = 0.255 876 575 2, a good estimate of C(oo). Fitting C to
do + d2/le2 + d3 /e3 using 2e = 204 to 2e = 300 gives C(oo) = do = 0.255 870 8731, which agrees with 14
to five significant digits. With the data for < 78, M. Beccaria obtained C(oo) = 0.255 870 870 6 (3)
using Levin acceleration and the BST algorithm [62].

The cancellation confirms that the sign and the normalization in (3.37) are correct. This is the
same sign that implies that the quartic tachyon self-coupling is negative [59, 27]. We have thus extra
confidence of the correctness of the early calculation of the quartic term in the tachyon potential.

One can readily see that the integrand in the amplitude {G4 } is a total derivative. It is of
the form f(E)f(~)d, A d, with f(E) = 1 + + (1)· We then note that f(,) = Og(,) with
g(4) = 4- + - -, well defined in Vo,4 since this region excludes ~ = 0, 1, and 4 = oo. Finally,

f(,)f (,)d A d, = i d(g()f ()d - f ()g(t)d,), which establishes the claim.2 \\/ ~C bY~wj '~U U"""UY~ IUII
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3.4 A moduli space of marginal deformations

If multiple marginal operators define a moduli space the potential for the corresponding fields must
vanish identically. An instructive example is provided by the four marginal operators that can be
built using the fields X and Y associated with the spacetime coordinates x and y. We will study the
potential for the string field

1) (axxzl ayyol + axyX + _ll + ayxaYlX ) ci1°0). (3 43)

The marginal fields ax, ayy, and axy + ayx are metric deformations while axy - ayx is a Kalb-Ramond
deformation. The marginal fields are conveniently assembled into the two-by-two matrix M:

axy ayy

It is useful to consider the global 0(2) rotational symmetry of the (x, y) plane. The potential for
M should be invariant under an 0(2) x 0(2) symmetry where the first 0(2) rotates the (X, DY) and
the second rotates (X, dY). Consider two rotation matrices R and S (RTR = STS = 1). Together
they define an element of 0(2) x 0(2) which acts on M as M - RMST. To quadratic order in M
there is an invariant U and a quasi-invariant V:

U = Tr(M T M), V = det M. (3.45)

In general V -* ±V, since R and/or S may have determinant minus one. An example is provided by the
parity transformation S = diag(1, -1). In fact, the Z2 symmetries that arise because correlators must
have even numbers of appearances of holomorphic and antiholomorphic derivatives of each coordinate
are taken into account by the various parity transformations. It follows that to quartic order in the
fields we have two invariants:

U2 and V 2 . (3.46)

There are no more independent invariants: the candidate Tr(MTMMTM) is equal to U2 - 2V2.
The lowest level potential involves the tachyon and M and requires no new computation. Since U

contains a 2 the coefficient coupling t to U is the same as that coupling t to a2 in (3.11). We thus
have, as in (3.13),

362V(o) = 210 U2 0.7119 U2 . (3.47)

At level four 25 states enter the computation. We calculated the effective potential, solved the
equations of motion, and verified that all terms assemble into the two anticipated invariants, giving

2 19321 344V2 U 2 V 2 .

nV(4) U2 + 34 V2 -0.4141 U2 + 0.4719 V2. (3.48)46656 729

The total effective potential up to level four from the cubic interactions is therefore:

2¥(4) 222305 U2 + V2 - 0.2978 U2 + 0.4719 V2 . (3.49)
746496 729
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At infinite level the coefficients of U2 and V2 must be cancelled by elementary quartic interactions.

The quartic interactions contribute

n2V4 = Y1 U2 + y2V2 = (a4xz + 2a2a2 + +) +2(axa + ). (3.50)

where ?lY and 72 are constants to be determined. The value of yl is determined by our earlier calculation
of the quartic amplitude for a. Therefore (3.41) gives 7Y1 -o ,4/(127r). The coefficient of axa in

the potential, to be calculated next, will give us the value of 2 yl + iy2, from which we find Y2.

To compute the elementary quartic amplitude axxayy, we put the operator Oxx associated with

axx at 0 and 1 and the operator Oy associated with ayy at and oo. This choice is arbitrary and

does not affect the value of the integrated correlator; this is not manifest but is guaranteed by the

symmetry of the four-string vertex and can be checked explicitly. The matter correlator is:

( 0(9 xx(O),(l)o,() Y(t = 0))= (axx(0)xax(1))(a YaY()0YY(t = 0)) 1. (3.51)

Since the correlator is just one, the amplitude is proportional to the area A0,4 of the region V0 ,4 viewed

as a subset of the z plane (with metric dzdz):

22 2 2
{(OX YQ } - X dxdy= - A0,4 (3.52)

,4 -
;

Since the contribution of a region S is the same as that of 1 - S, S, and 1 - S we have

Ao,4 = dxdy = 4 ( +| + )dxdy = 4 dxdy(1 + ±I- +1 4) - 6.0774. (3.53)
]0,4 14 1d14 -- 1 

Of course, the integrand for area is a total derivative: d A d = ld(d- d). Back to to the amplitude

in question,
K~v 6 02 y1 A xa (3.54)2V = 4 xx Y axx ayy = , y

We thus find:

Y2 - (A, 4 - 1,4 . (3.55)

Collecting our results, equation (3.50) gives

n2v/ = 1 i0,4U2 1(124 -- - Ao,4 - Io,4) V2 _ -0.2560 U2 - 0.4552 V2 . (3.56)

This quartic contribution cancels most of the potential in (3.49). The small residual potential is

2Vres = 0.0418 U2 + 0.0167 V2 . (3.57)

The data is collected in Table 3.2. The data for U2 does not represent a new test, higher level

computations would reproduce the result of section 4. The residual coefficient for V2 is 4% of the

original contribution. This is evidence that the infinite-level computation would give the expected

cancellation.
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level U2 V2

0 0.7119 -

4 -0.4141 0.4719

quartic -0.2560 -0.4552
residual 0.0418 0.0167

Table 3.2: Contributions from the given level to the coefficients that multiply the invariants U2 and V2 in
the effective potential for the marginal fields. The row "quartic" gives the contributions from the elementary
quartic interactions. The last row is the residual quartic potential, obtained after adding all contributions.

3.5 Conclusion

In this chapter we have tested the quartic vertex of bosonic closed string field theory and the concrete
description of it provided by Moeller [27]. The sign, normalization, and region of integration V0,4 of the
quartic interaction were all confirmed. This region comprises the set of four-punctured spheres that
are not produced by Feynman graphs built with two cubic vertices and a propagator. Our calculations
checked the flatness of the effective potential for marginal parameters; this required the cancellation
of cubic contributions of all levels against a finite set of quartic contributions. We examined this
cancellation in two examples, one with one marginal direction and one with four marginal directions.
In the first one, which we could carry to high level, the cancellation was very accurate and became
almost perfect once we used additional numerical data provided by [60, 61]. In the second example,
carried to low level, the cancellation was less accurate but still convincing. Amusingly, one of the
quartic couplings is equal to the area of V0,4 in the canonical presentation.

The cancellations were guaranteed to happen if closed string field theory reproduces a familiar on-
shell fact: the S-matrix element coupling four marginal operators vanishes. Closed string field theory
breaks this computation into two pieces, one from Feynman graphs and one from an elementary
interaction, thus giving us a consistency test. Our test has verified that the moduli space M0 ,4 of four
punctured spheres is correctly generated by the Feynman graphs and the region V0,4.

We found a simple relation between the quartic terms in the closed string potential for the marginal
parameter a and those in the open string potential for the marginal parameter as: the contribution
to a4 from closed string fields of level 2 is given by c(2e) = -( - 1)X2, where Xe is the contribution
to a4 from massive open string fields of level . Since Xe 1/ 2, we have c(e) - 1/ 3. Convergence is

faster in closed string field theory.
We have gleaned some information about level expansion in closed string field theory by comparing

contributions obtained from the cubic and quartic vertices. The natural counter here is the level of the
massive fields that are integrated using the cubic vertex and the propagator. Recalling that the quartic
vertex contribution is I4 - -0.2560, the column for c in Table 3.1 shows that Ic(8)1 < 1141 < Ic(4)1,
namely, the quartic contribution is smaller than that of level four fields and larger than that of level
eight fields. For the case of the invariant V2 in Table 3.2, the quartic contribution is only slightly
smaller than that from level four fields. These results indicate that the quartic elementary vertex
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should be included once the level of fields reaches or exceeds four. It remains to be seen if this result

holds for other types of computations.
It has been suggested (see [22], for example) that quartic interactions may carry an intrinsic level.

The level L4 of a quartic coupling could be given by L4 = + i = 1£i, where a and d are constants to
be determined. There is scant evidence for any such relation, but we might assume 3 = 1 and attempt
to estimate oa as follows. We learned that 1141 was bounded by the contributions from level four and

level eight massive fields. Since the cubic couplings involve one massive field and two marginal (level

two) fields, I4 is bounded by contributions from level 8 and level 12 interactions. It would be plausible

to say that I4 carries level 10, in which case a 2. The same logic applied to the computation of the
invariant V2 would suggest oa - O. More work will be necessary to uncover a reliable formula for the
level of the quartic interaction in closed string field theory.

There are some obvious questions we have not tried to answer. Is the range of a finite or infi-
nite ? The cubic tachyon contribution suggests the range is finite, but higher level and higher order
interactions could change this result. There are also questions related to the zero-momentum dilaton,
a physical, dimension-zero state that fails to satisfy the CFT definition of marginal state because it
is not primary. The dilaton theorem, however, implies that the dilaton has a flat potential. This
potential is hard to compute because the dilaton is not primary. This computation, which will appear
in a separate paper [28], provides new stringent tests of the quartic string vertex, in particular, of the
Strebel quadratic differential that determines local coordinates at the punctures. Since the dilaton
state exists for general backgrounds its potential is part of the universal structure of string field theory.
The dilaton potential is also an important ingredient in any complete computation of the potential
for the bulk closed string tachyon.
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Chapter 4

A Closed String Tachyon Vacuum ?

In the last few years the instabilities associated with open string tachyons have been studied extensively
and have become reasonably well understood [81]. The instabilities associated with closed string
tachyons have proven to be harder to understand. For the case of localized closed string tachyons -
tachyons that live on subspaces of spacetime - there are now plausible conjectures for the associated
instabilities and a fair amount of circumstantial evidence for them [21, 22, 23, 24, 25].

The bulk tachyon of the closed bosonic string is the oldest known closed string tachyon. It remains
the most mysterious one and there is no convincing analysis of the associated instability. The analogy
with open strings, however, suggests a fairly dramatic possibility. In open bosonic string in the back-
ground of a spacefilling D-brane, the tachyon potential has a critical point that represents spacetime
without the D-brane and thus without physical open string excitations. In an analogous closed string
tachyon vacuum one would expect no closed string excitations. Without gravity excitations spacetime
ceases to be dynamical and it would seem that, for all intents and purposes, it has dissappeared.

There has been no consensus that such a closed string tachyon vacuum exists. In fact, no analysis of
the closed string tachyon potential (either in the CFT approach or in the SFT approach) has provided
concrete evidence of a vacuum with non-dynamical spacetime. Since the analogous open string tachyon
vacuum shows up quite clearly in the open string field theory computation of the potential it is natural
to consider the corresponding calculation in closed string field theory (CSFT) [26, 58].

The quadratic and cubic terms in the closed string tachyon potential are well known [29, 30]:

K2V(3 ) = t2 + 456 t3, ( = 2). (4.1)
0 4096

These terms define a critical point analogous to the one that turns out to represent the tachyon vacuum
in the open string field theory. In open string field theory higher level computations make the vacuum
about 46% deeper. Since CSFT is nonpolynomial, it is natural to investigate the effect of the quartic
term in the potential. This term was found to be [59, 27]

2V0(4 ) = -3.0172 t4 . (4.2)

This term is so large and negative that V(3) + V4) has no critical point. In fact, the quartic term in
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the effective tachyon potential (obtained by integrating out massive fields) is even a bit larger [59].

The hopes of identifying a reliable critical point in the closed string tachyon potential were dashed1.

Recent developments inform our present analysis. The tachyon potential must include all fields

that are sourced by the zero-momentum tachyon. As discussed in [64], this includes massless closed

string states that are built from ghost oscillators, in particular, the zero-momentum ghost-dilaton state

(cic_l - cc_l)10). The search for a critical point cannot be carried out consistently without including

the ghost dilaton. Computations of quartic vertices coupling dilatons, tachyons, and other massive

fields are now possible due to the work of Moeller [27] and have been done to test the marginality of

matter and dilaton operators [65, 28].

As we explain now, ghost-dilaton couplings to the tachyon restore the critical point in the potential.

The key effect can be understood from the cubic and quartic couplings

n2V(t, d) -_ t d2 + 3.8721t3d + .... (4.3)
32

The cubic coupling plays no role as long as we only consider cubic interactions: d can be set consistently

to zero. The quartic coupling is linear in d. Once included, the equation of motion for the dilaton

can only be satisfied if the dilaton acquires an expectation value. Solving for the dilaton one finds

d = 2.2944 t2 and substituting back,

n2V(t, d) = 4.4422 t5 +.. (4.4)

This positive quintic term suffices to compensate the effects of (4.2) and restores the critical point.

Our computations include additional couplings and the effect of massive fields as well. The critical

point persists and may be reliable, although more work is needed to establish this convincingly.

In order to interpret the critical point we raise and answer a pair of questions. The ghost-dilaton

has a positive expectation value at the critical point. Does this correspond to stronger or weaker string

coupling ? We do a detailed comparison of quadratic and cubic terms in the closed string field theory

action and in the low-energy effective field theory action. The conclusion is that the positive dilaton

expectation value corresponds to stronger coupling. In our solution the ghost-dilaton is excited but

the scalar operator caX · X, sometimes included in the dilaton vertex operator, is not. We ask:

Is the string metric excited? Is the Einstein metric excited? These questions are only well-defined

at the linearized level, but the answers are clear: the string metric does not change, but the Einstein

metric does. We take the opportunity to explain the relations between the four kinds of "dilatons"

that are used in the literature: the ghost-dilaton, the matter-dilaton, the dilaton, and the dilaton of

the older literature. It is noted that one cannot define unambiguously a dilaton vertex operator unless

one specifies which metric is left invariant; conversely, the metric vertex operator is only determined

once one specifies which dilaton is left invariant.

1In the effective open string tachyon potential a negative quartic term also destroys the cubic critical point. Never-
theless, the critical point can be gleaned using Pade-approximants [9]. For closed strings, however, the quartic term is
too large: for a potential v(t) = v2t2 + v3t3

+ v4t
4

, with v2, V4 < 0, the approximant formed by the ratio of a cubic and
a linear polynomial fails to give a critical point when v2v4 >_ v32.

38



In a companion paper [66] we attempted to gain insight into the tachyon vacuum by considering

the rolling solutions2 of a low-energy effective action for the string metric g,,, the tachyon T, and the

dilaton 4I:

S = 2n2] dDx/,e-- 2 (R + 4( B)2 _ (T) 2- 2V(T) (4.5)

This action, suggested by the beta functions of sigma models with background fields [71], is expected

to capture at least some of the features of string theory solutions. The potential is tachyonic: V(T) =

-m 2T2 + O(T3 ), but is otherwise left undetermined. We found that solutions in which the tachyon

begins the rolling process always have constant string metric for all times - consistent with the type

of the SFT critical point. The dilaton, moreover, grows in time throughout the evolution - consistent

with the larger dilaton vev in the SFT critical point. Rather generally, the solution becomes singular

in finite time: the dilaton runs to infinity and the string coupling becomes infinite. Alternatively, the

Einstein metric crunches up and familiar spacetime no longer exists. This seems roughly consistent

with the idea that the tachyon vacuum does not have a fluctuating spacetime.

Perhaps the most subtle point concerns the value of the on-shell action. In the open string field

theory computation of the tachyon potential, the value of the action (per unit spacetime volume)

is energy density. The tachyon conjectures are in fact formulated in terms of energy densities at

the perturbative and the non-perturbative vacuum [81]. Since the tree-level cosmological constant in

closed string theory is zero, the value of the action at the perturbative closed string vacuum is zero.

We ask: What is the value of the potential, or action (per unit volume) at the critical point ? The

low-energy action (5.1) suggests a surprising answer. Consider the associated equations of motion:

R,, + 2V1,V,A - (T)(avT) = O,

V2T - 2(,94')(&'T) - V'(T) = 0, (4.6)

V2o - 2(a o)2 - V(T) = 0.

If the fields acquire constant expectation values we can satisfy the tachyon equation if the expectation

value T, is a critical point of the potential: V'(T,) = 0. The dilaton equation imposes an additional

constraint: V(T,) = 0, the potential must itself vanish. This is a reliable constraint that follows from

a simple fact: in the action the dilaton appears without derivatives only as a multiplicative factor.

This fact remains true after addition of a' corrections of all orders. It may be that V(T) has a critical

point To with V(To) < 0, but this cannot be the tachyon vacuum. The effective field equations imply

that a vacuum with spacetime independent expectation values has zero action.

The action (5.1) can be evaluated on-shell using the equations of motion. One finds

Son-shell = dd+l x- e-2 (_4V(T)) (4.7)

In rolling solutions the action density changes in time but, as < -- oo at late times the action density

goes to zero [66]. This also suggests that the tachyon vacuum is a critical point with zero action.
2Rolling solutions have long been considered using Liouville field theory to provide conformal invariant sigma model

with spacetime background fields that typically include a linear dilaton and a constant string metric [67, 68, 89, 70].
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In Figure 4.1 we present the likely features of the tachyon potential. The unstable perturbative

vacuum T = 0 has zero cosmological constant, and so does the tachyon vacuum T = oo. The infinite

value of T is suggested by the analogous result in the effective open string theory tachyon potential

(see conclusions). In SFT the tachyon vacuum appears for finite values of the fields, but the qualitative

features would persist. The potential is qualitatively in the class used in cyclic universe models [72].

V (T)

Figure 4.1: A sketch of a closed string tachyon potential consistent with present evidence. The perturbative
vacuum is at T = 0. The closed string tachyon vacuum would be the critical point with zero cosmological term,
shown here at T - oo (in CSFT this point corresponds to finite tachyon vev). A critical point with negative
cosmological constant cannot provide a spacetime independent tachyon vacuum.

In our calculations we find some evidence that the action density, which is negative, may go to

zero as we increase the accuracy of the calculation. To begin with, the value A0 of the action density

at the critical point of the cubic tachyon potential (4.1) may be argued to be rather small. It is a

cosmological term about seventy times smaller than the "canonical" one associated with D = 2 non-

critical string theory (see [22], footnote 5). Alternatively, A0 is only about 4% of the value that would

be obtained using the on-shell coupling of three tachyons to calculate the cubic term. The inclusion

of cubic interactions of massive fields makes the action density about 10% more negative. This shift,

smaller than the corresponding one in open string field theory, is reversed once we include the dilaton

quartic terms. In the most accurate computation we have done, the action density is down to 60%

of A0. Additional computations are clearly in order.

As a by-product of our work, we investigate large dilaton deformations in CSFT. For ordinary

marginal deformations the description reaches an obstruction for some finite critical value of the string

field marginal parameter [52, 57]. The critical value is stable under level expansion, and the potential

for the marginal field (which should vanish for infinite level) is small. For the dilaton, however, the

lowest-order obstruction is not present [28]. We carry this analysis to higher order and no reliable

obstructions are found: critical values of the dilaton jump wildly with level and appear where the

dilaton potential is large and cannot be trusted. This result strengthens the evidence that CSFT
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can describe backgrounds with arbitrarily large variations in the string coupling. If the infinite string
coupling limit is also contained in the configuration space it may be possible to define M-theory using
type IIA superstring field theory.

Let us briefly describe the contents of this chapter. In section 2 we reconsider the universality
arguments [64] that require the inclusion of the ghost-dilaton, exhibit a world-sheet parity symmetry
that allows a sizable truncation of the universal space, and note that universality may apply in circum-
stances significantly more general that originally envisioned [73]. Our computational strategy for the
tachyon potential, motivated by the results of [65, 28], goes as follows. We compute all quadratic and
cubic terms in the potential including fields up to level four. We then begin the inclusion of quartic
terms and obtain complete results up to quartic interactions of total level four. The results make it
plausible that a critical point exists and that the value of the action density decreases in magnitude as
the accuracy improves. In section 3 we find the linearized relations between the metric, dilaton, and
tachyon closed string fields and the corresponding fields in the sigma-model approach to string theory.
These relations allow us to establish that the dilaton vev at the critical point represents an increased
string coupling and that the string field at the critical point does not have a component along the
vertex operator for the string metric. We discuss the vertex operators associated with the various
definitions of the dilaton, determine the nonlinear field relations between the string field theory and
effective field theory dilatons and tachyons to quadratic order and at zero-momentum, and examine
large dilaton deformations. In the concluding section we discuss additional considerations that suggest
the existence of the tachyon vacuum. These come from non-critical string theory, p-adic strings, and

sigma model arguments. Finally, the details of the nontrivial computations of quartic couplings are
given in the Appendix.

4.1 Computation of the tachyon potential

In this section we present the main computations of this chapter. We begin by introducing the string
field relevant for the calculation of the tachyon potential, giving a detailed discussion of universality.
This string field contains the tachyon, at level zero, the ghost-dilaton, at level two, and massive fields
at higher even levels. We then give the quadratic and cubic couplings for the string field restricted
to level four and calculate the critical point. Finally, we give the quartic couplings at level zero, two,
and four. The critical point survives the inclusion of quartic interactions and becomes more shallow -
consistent with the conjecture that the tachyon vacuum has zero action.

The computations use the closed string field action [26, 58, 22], which takes the form

S 2 ( o + {+ {, (4.8)
a '2 3! 4!

The string field *i lives on KH, the ghost number two state space of the full CFT restricted to the
subspace of states that satisfy

(Lo-Lo0)I)= 0 and (bo-bo)l I)=0. (4.9)
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The BRST operator is Q = coLo + aoLo + ... , where the dots denote terms independent of co and

of co. Moreover, c1 - 1(co ± co), and we normalize correlators using (OIc_l _lcc c+cil 10) = 1. All

spacetime coordinates are imagined compactified with the volume of spacetime set equal to one.

4.1.1 Tachyon potential universality and the ghost-dilaton

The universality of the closed string tachyon potential was briefly discussed in [64], where it was also

noted that the ghost number two universal string field that contains the tachyon should include the

zero-momentum ghost-dilaton state (cl-1 - Lcl)10). In here we review the universality argument

and extend it slightly, offering the following observations:

* The ghost-dilaton must be included because closed string field theory is not cubic.

* A world-sheet parity symmetry of closed string field theory can be used to restrict the universal

subspace.

* The arguments of [64] do not apply directly to general CFT's, linear dilaton backgrounds, for

example. If the closed string background is defined by a general matter CFT, solutions on the

universal subspace may still be solutions, but there is no tachyon potential [73].

The original idea in universality is to produce a subdivision of all the component fields of the

string field theory into two disjoint sets, a set {ti} that contains the zero-momentum tachyon and a

set {ua} such that the string field action S(ti, Ua) contains no term with a single u-type field. It is

then consistent to search for a solution of the equations of motion that assumes ua = 0 for all a.

To produce the desired set ti} we assume that the matter CFT is such that X0 is the usual

negative-metric field with associated conserved momentum ko and the rest of the matter CFT is

unitary. The state space 'H (see (4.9)) is then divided into three disjoint vector subspaces 'Hl,X 2, and

-3. One has 'Hi = Mi ® ), where [1) denotes a state built with ghost and antighost oscillators only

and M1, M 2 , and M 3 are disjoint subspaces of the matter CFT whose union gives the total matter
CFT state space:

M1: the SL(2, C) vacuum 10) and descendents,

M 2 : states with k0o 0, (4.10)

M 3 : primaries with ko = 0 but different from 10) and descendents.

In the above, primary and descendent refers to the matter Virasoro operators. Note that the primaries

in M 3 have positive conformal dimension. The BRST operator preserves the conditions (4.9), and

since it is composed of ghost oscillators and matter Virasoro operators, it maps each -i into itself.

Finally, the spaces -i are orthogonal under the BPZ inner product; they only couple to themselves.

The claim is that the set {ti} is in fact 'H1, the states built upon the zero momentum vacuum.

The "tachyon potential" is the string action evaluated for - 1.

42



We first note that because of momentum conservation fields in 7-2 cannot couple linearly to fields
in 7-1. The fields in 7-3 cannot couple linearly to the fields in 1 either. They cannot do so through
the kinetic term because the BRST operator preserves the space and H1 and 'H3 are BPZ orthogonal.
We also note that the matter correlator in the n-string vertex does not couple n- 1 vacua 10) from 'l

to a matter primary from 'H3: this is just the one-point function of the primary in 73, which vanishes
because the state has non-zero dimension. The (matter) Virasoro conservation laws on the vertex then
imply that the coupling of any (n - 1) states in -'H to a state in 'H3 must vanish. This completes the
proof that 'HI is the subspace for tachyon condensation.

The space 'HI can be written as

SpanILmj~ . . L. Lm . ..Lm .- 11 ..* -Span{ 1 ..L LT L 1 . L b b (4.11)

where

jl > 2 > ... _j >p, ji2, jI j2 >... , ji > 2, (4.12)
as well as

ki,ki >2, li,i -1, and r +-q-q=2. (4.13)

Finally, the states above must also be annihilated by Lo - Lo as well as bo - b0.
There is a reality condition on the string field [26]: its BPZ and hermitian conjugates must differ

by a sign. We show now that this condition is satisfied by all the states in (4.11), so the coefficients
by which they are multiplied in the universal string field (the zero-momentum spacetime fields) must
be real. Suppose a state is built with p ghost oscillators and p- 2 antighost oscillators. The BPZ and
hermitian conjugates differ by the product of two factors: a (-1)P from the BPZ conjugation of the
ghost oscillators and a (-1)(2 p-2)( 2p-1 )/2 = ( 1)P- from the reordering of oscillators in the hermitian
conjugate. The product of these two factors is minus one, as we wanted to show.

In open string theory twist symmetry, which arises from world-sheet parity, can be used to fur-
ther restrict the universal subspace constructed from matter Virasoro and ghost oscillators. In the
case of closed string theory the world-sheet parity transformation that exchanges holomorphic and
antiholomorphic sectors is the relevant symmetry.3 World-sheet parity is not necessarily a symmetry
of arbitrary matter CFT's, but it is a symmetry in the universal subspace: correlators are complex
conjugated when we exchange holomorphic and antiholomorphic Virasoro operators as T(z) - T(2).
More precisely, we introduce a *-conjugation, a map of 'HI to 'HI that is an involution. In a basis of
Virasoro modes * can be written explicitly as the map of states

*: AL_i..L_i ... L_j, L- 1) A*L_i. .. L_-iL_j.l .L-jn ,1, (4.14)

where A is a constant and A* denotes its complex conjugate. Given the operator/state correspon-
dence, the above defines completely the star operation * : - O* on vertex operators for vacuum

3We thank A. Sen for discussions that led us to construct the arguments presented below.
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descendents. It results in the following property for the correlator of n such operators placed at n
points on a Riemann surface:

(01.. On) = (* ... O)* . (4.15)

In the ghost sector of the CFT a small complication with signs arises because the basic correlator is
odd under the exchange of holomorphic and anti-holomorphic sectors:

C(Zzl)C(2)C(Z3) (W1)C(I2)(3)) =--( C(1)C(Z2)C(3) C(wl)C(W2)C(W) )* (4.16)

Since two-point functions of the ghost fields are complex conjugated by the exchanges c(z) E(2z) and
b(z) ÷- b(z), it follows from (4.16) that performing these exchanges on an arbitrary correlator of ghost
and antighost fields will give minus the complex conjugate of the original correlator. We will define
*-conjugation in the ghost sector by:

* : A cil .Cin b bjl bm ckl kr, bll b bls 10 ) A* il C' 'in bjl' 'bjm Ck ckr bl -bl 1) (4.17)

For a general state T of the universal subspace we define I* to be the state obtained by the simul-
taneous application of (4.14) and (4.17). It is clear from the above discussion that the correlators
satisfy

(<IF1 2 ... 9n) =(1 -2-* *... *n) pi E tH1. (4.18)

We now define the action of the world-sheet parity operation P on arbitrary states of the universal
subspace:

P9F - E -, (4.19)

We claim that the string field theory action, restricted to '71, is P invariant:

S(9) = S(P'I), for F E iti . (4.20)

First consider the invariance of the cubic term. Using (4.19) and (4.18) we have

('F>, P), P7 = -(*, *, T*) = (, , )* = (,, , ), (4.21)
where in the last step we used the reality of the string field action. The kinetic term of the action is
also invariant. First note that (coQ4I)* = -co Q'i*. It then follows that

(P1-I, coQPX) = (', cQ*) = -(*, (cQ,)*) = (, coQg)* = (, cQ9') . (4.22)

For higher point interactions, the invariance follows because the antighost insertions have the appropri-
ate structure. Each time we add a new string field we must add two antighost insertions. For the case
of quartic interactions they take the form of two factors BB* (see eqn. (A.3)). Since (BB*)* = -BB*,
the extra minus sign cancels against the minus sign from the extra string field. This can be seen to
generalize to higher order interactions using the forms of the off-shell amplitudes discussed in section
6 of [30]. This completes our proof of (4.20).
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Since P2 = 1 the space '1, can be divided into two disjoint subspaces: the space 1T+ of states with
P = 1 and the space 71- of states with P = -1:

= +I+, I+ EH+
P(-) = -4-, _ -1. (4.23)

It follows from the invariance of the action that no term in the action can contain just one state in
1H-. We can therefore restrict ourselves to the subspace 'H+ with positive parity.

The string field is further restricted by using a gauge fixing condition. The computation of the
potential is done in the Siegel gauge, which requires states to be annihilated by bo + bo. To restrict
ourselves to the Siegel gauge we take the states in (4.11) that have neither a co nor a co.

The Siegel gauge fixes the gauge symmetry completely for the massive levels, but does not quite
do the job at the massless level. There are two states with Lo = Lo = 0 in tl that are in the Siegel
gauge:

(clcl--lclE)10) and (clc_+ _l + l-)J0). (4.24)

The first state is the ghost dilaton and it is proportional to Q(co - o)I0). Since (co - o)1) is not
annihilated by bo - bo the gauge parameter is illegal and the ghost dilaton is not trivial. The second
state is proportional to Q(co + co)10), so it is thus trivial at the linearized level. Although trivial at
the linearized level, one may wonder if the triviality holds for large fields. Happily, we need not worry:
the state is P odd, so it need not be included in the calculation. The ghost-dilaton, because of the
relative minus sign between the two terms, is P even and it is included.

Had the closed string field theory been cubic we could have discarded the ghost-dilaton state and
all other states with asymmetric left and right ghost numbers. We could restrict 1-+ to fields of ghost
number (G, G) = (1, 1). Indeed, the cubic vertex cannot couple two (1, 1) fields to anything except
another (1, 1) field. Moreover, in the Siegel gauge coQ acts as an operator of ghost number (1, 1),
so again, no field with asymmetric ghost numbers can couple linearly. The quartic and higher order
interactions in CSFT have antighost insertions that do not have equal left and right ghost numbers.
It follows that these higher order vertices can couple the ghost-dilaton to (1, 1) fields. Indeed, the
coupling of a dilaton to three tachyons does not vanish. We cannot remove from 7H+ the dilaton, nor
other states with asymmetric left and right ghost numbers.

The construction of the universal string field and action presented here does not work fully if the
matter CFT contains a linear dilaton background. Momentum conservation along the corresponding
coordinate is anomalous and one cannot build an action with states of zero momentum only: the
action restricted to 71 is identically zero. There would be no universal "potential" in /-1. It appears
rather likely, however, that any solution in the universal subspace would still be a solution in a linear
dilaton background. In fact, any solution in the universal subspace may be a solution for string field
theory formulated with a general matter CFT [73].
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We conclude this section by writing out the string field for the first few levels. The level e of a
state is defined by e = Lo + Lo + 2. The level zero part of the string field is

T0o) = t cll 10) (4.25)

Here t is the zero-momentum tachyon. The level two part of the string field is

RI12) = d (cic_ - ic_1)) 0). (4.26)

Here d is the zero momentum ghost-dilaton. It multiplies the only state of P = +1 at this level. At
level four there are four component fields:

1I4) = (fi -1EC-1 + f2 L 2c L- L-2 1 + f3 (L-2cc-1 + c-1L-2c1)

+ gl (b- 2cl - 2 c - c-2cl b-2cl)) 10). (4.27)

Note that the states coupling to the component fields all have P = +1 and that gl couples to a state
with asymmetric left and right ghost numbers. In this chapter we will not use higher level terms in
the string field.

With a' = 2 the closed string field potential V associated with the action in (4.8) is

I 1 1, 2V = 2('l'Co QI,) + {, ,+ {', {,,o IF} +--- . (4.28)

Here I) = Io) + 12) + 1'4) + .... Our computations will not include quintic and higher order
interactions in the string action.

4.1.2 The quadratic and cubic terms in the potential

Let us now consider the potential including only the kinetic and cubic terms in (4.28). To level zero:

2V(2) = _t2 2V(3) = 6561t3 (4.29)
0 ' 0 4096

All potentials introduced in this subsection have a superscript that gives the order of the interaction
(two for quadratic, three for cubic, and so on), and a subscript that gives the level (defined by the sum
of levels of fields in the interaction). The next terms arise at level four, where we have couplings of
the tachyon to the square of the dilaton and couplings of the level four fields to the tachyon squared:

2 V(3) 27 d2 3267 f + 114075 19305 ) t 2 (430)
32 4096 4096 2048

At level six we can couple a level four field, a dilaton, and a tachyon. Only level four fields with G : G

can have such coupling, so we find:

62 V(3) = 25 t d. (4.31)

At level eight there are two kinds of terms. First, we have the kinetic terms for the level four fields:

2 V(2) = fi 2 + 169 f22 - 26 f32 - 2 912. (4.32)
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Second, we have the cubic interactions:

K2 V(3) 1 2 4225 2 65 2d--f - f 2d + f3d8 96 864 144

361 2 511 2 2 5 57047809 2 4 7 08 7 3 2 49 2

12288 55296 110592 27648 f 3 2t- 4 t (433)
13585 5400395

flf 3t- 2 f2f3 t.
9216 27648

As we can see, these are of two types: couplings of a level four field to two dilatons (first line) and

couplings of two level four fields to a tachyon (second and third lines).
The terms at level 10 couple two level four fields and a dilaton. Because of ghost number conser-

vation, one of the level four fields must have G $ G:

2 V1(3) =- 25 (361 fi + 4225 f 2 - 2470 f3 ) dgi. (4.34)

Finally, at level 12 we have the cubic couplings of three level-four fields:

2 (3) 1 3 1525225 2 1235 f2 6902784889 2K V12 f + 5 f2f2 9 f3 + 4096 8957952 55296 f 80621568 

102607505 1884233 2

6718464 flf2f3 + 2239488 ff3
7 4 1816 0 3 7 6 9 3 22628735129 2 + 4965049817 2

+ 26873856 - 13436928 2 20155392

31167227 3 961 2 207025 f2g2 14105 2
- --~-- f3 - f191 - fi9 + f39i -3359232 157464 17496 262443g 1

4.1.3 Tachyon vacuum with cubic vertices only

With cubic vertices only the dilaton expectation value is zero. In fact, only fields with G = G = 1
can acquire nonvanishing expectation values. To examine the tachyon vacuum we define a series of
potentials:

v(3) v(2) + v(3)

V(3 ) V(3) + + 3)) + + V(2) + V( 3) (4.36)

v(3) v(3) + v(3) + Vl(23)

A few observations are in order. In all of the above potentials we can set d = gl = 0. As a consequence,
V(3) and V1(3) do not contribute. Since the level-two dilaton plays no role, once we go beyond the

tachyon we must include level four fields. The kinetic terms for these fields are of level eight, so V(3)

is the simplest potential beyond level zero. With level-four fields the next potential is V3 ).

The critical points obtained with the potentials (3), (3), and 3) are given in Table 4.1. We call

the value of the potential K2V at the critical point the action density. The values of the action density
follow the pattern of open string theory. The original cubic critical point becomes deeper. It does so
by about 10%, a value significantly smaller than the corresponding one in open string field theory.
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Potential t fl f2 f3 Action density

V(3) 0.41620 -- -- -- -0.05774

Vr) 0.43678 -0.06502 -0.00923 -0.02611 -0.06329

V(3) 0.43709 -0.06709 -0.00950 -0.02693 -0.06338

Table 4.1: Vacuum solution with cubic vertices only

4.1.4 Tachyon vacuum with cubic and quartic vertices

We can now examine the quartic terms in the potential. The associated potentials are denoted with

a superscript (4) for quartic and a subscript that gives the sum of levels of the fields that enter the
term. The quartic self-coupling of tachyons has been calculated in [59, 27]:

2V4) = -3.0172t 4 . (4.37)

With total level two we have a coupling of three tachyons and one dilaton. This is
Appendix A.2 and the result is

V2(4) = 3.8721t 3d.

With total level four there is the coupling of two tachyons to two dilatons (Appendix
coupling of three tachyons to any of the level-four fields (Appendix A.3):

calculated in

(4.38)

A.2) and the

c2V4(4) = 1.3682 t2d2 + t3 (-0.4377 f - 56.262 f2 + 13.024 f3 + 0.2725 gi) . (4.39)

With total level six there are three types of interactions: a tachyon coupled to three dilatons, two
tachyons coupled to a dilaton and a level-four field, and three tachyons coupled to a level-six field. We
have only computed the first one (Appendix A.2):

/2V(4) = - 0.9528td3 + .... (4.40)

The terms that have not been computed are indicated by the dots. Finally, the quartic self-coupling

of dilatons was computed in [28], where it played a central role in the demonstration that the effective
dilaton potential has no quartic term:

K2V(4) = -0.1056 d4 + .... (4.41)

We use the dots to indicate the additional level eight interactions that should be computed.
Let us now consider the potentials that can be assembled using the above contributions. We use the

following strategy: we include cubic vertices to the highest possible level and then begin to introduce
the quartic couplings level by level. The most accurate potential with quadratic and cubic terms that

48



we have is V(3 and the tachyon vacuum it contains appears in the last line of Table 4.1. The lowest
order quartic potential that we use is therefore:

V(4) - V()- V (4) (4.42)

This potential has a familiar difficulty: the quartic self-coupling of the tachyon is so strong that the
critical point in the potential disappears. As we have argued, once additional terms are included
the critical point in the potential reappears. The higher level potentials are defined by including
progressively higher level quartic interactions:

v(4)-v(4) + (4)
+2 0~~ V 2 ,~ ~(4.43)

V4) V(4) V4(4)

Since our computations of V ) and V( 4) are incomplete, the results that follow from ( 4 ) _ 44) + V(4 )

and V(4 ) (4) + V(4) cannot be trusted.

We are now in a position to calculate the critical points of the potentials V(4 ). In our numerical
work we input the cubic coefficients as fractions and the quartic coefficients as the exact decimals given
above (so the t4 coefficient is treated as exactly equal to 3.0172.) Our results are given in Table 4.2.
For ease of comparison, we have included the cubic results for V3) as the first line. Furthermore, we
include a line for V(4) even though there is no critical point. The next potential is V(4) which contains
only the additional coupling t3d. The significant result is that the critical point reappears and can
be considered to be a (moderate) deformation of the critical point obtained with V(3). Indeed, while
there is a new expectation value for the dilaton (and for gl), the expectation value of the tachyon does
not change dramatically, nor do the expectation values for fi, f2, and f3. The critical point becomes
somewhat shallower, despite the destabilizing effects of the tachyon quartic self-couplings.

Potential t d f1 f2 f3 gl91 Action density

V(3) 0.43709 0 -0.06709 -0.00950 -0.02693 -- -0.06338

V(4) 0.33783 0.49243 -0.08007 -0.00619 -0.02607 -0.10258 -0.05806

V?4) 0.24225 0.45960 -0.04528 -0.00140 -0.01233 -0.07249 -0.03382

Table 4.2: Vacuum solution with cubic and quartic vertices. We see that the magnitude of the action density
becomes smaller as we begin to include the effects of quartic couplings.

At the next level, where t2d2 and t3M4 (M4 denotes a level-four field) terms appear, the critical
point experiences some significant change. First of all, it becomes about 40% more shallow; the change
is large and probably significant, given the expectation that the action density should eventually reach
zero. The tachyon expectation changes considerably but the dilaton expectation value changes little.
Due to the t3M4 terms the expectation values of some of the level four fields change dramatically.
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Glancing at Table 4.2, one notices that the tachyon expectation value is becoming smaller so one

might worry that the critical point is approaching the perturbative vacuum. This is, of course, a

possibility. If realized, it would imply that the critical point we have encountered is an artifact of level

expansion. We think this is unlikely. Since the dilaton seems to be relatively stable, a trivial critical

point would have to be a dilaton deformation of the perturbative vacuum, but such deformations have

negative tachyon expectation values (see Figure 4.2).

At this moment we do not have full results for higher levels. The computation of V(4) would require

the evaluation of couplings of the form t2dM4 and, in principle, couplings t3M6 of level-six fields, which

we have not even introduced in this chapter. The only additional couplings we know at present are

td 3 , which enters in V(4) and d4 , which enters in V(4) (see eqns. (4.40) and (4.41)). Despite lacking

terms, we calculated the resulting vacua to test that no wild effects take place. The incomplete V(4)
leads to t = 0.35426, d = 0.40763 and an action density of -0.05553. The incomplete V(4) leads to

t = 0.36853, d = 0.40222 and an action density of -0.05836. In these results the action density has

become more negative. Given the conjectured value of the action, it would be encouraging if the full

results at those levels show an action density whose magnitude does not become larger.

One may also wonder what happens if terms of order higher than quartic are included in the

potential. Since the tachyon terms in the CSFT potential alternate signs [30], the quintic term is

positive and will help reduce the value of the action at the critical point. The coefficient of this

coupling will be eventually needed as computations become more accurate. The sixtic term will have

a destabilizing effect. Having survived the destabilizing effects of the quartic term, we can hope that

those of the sixtic term will prove harmless. If, in general, even power terms do not have catastrophic

effects, it may be better to work always with truncations of odd power.

4.2 The sigma model and the string field theory pictures

In this section we study the relations between the string field metric hiv and the ghost-dilaton d and

the corresponding sigma model fields, the string metric h,v and dilaton . These relations are needed

to interpret the tachyon vacuum solution and to discuss the possible relation to the rolling solutions.

We begin by finding the precise linearized relations between the string field dilaton and the sigma

model dilaton. The linearized relations confirm that the CSFT metric hH,, which does not acquire an

expectation value in the tachyon vacuum, coincides with the string metric of the sigma model, which

does not change in the rolling solutions. Moreover, the relation (4.57), together with hi, = 0, implies

that our d > 0 in the tachyon vacuum corresponds to · > 0, thus larger string coupling. This is also

consistent with what we obtained in the rolling solutions.

Our discussion of the linearized relations also allows us to examine the various vertex operators

associated with the various dilaton fields used in the literature (section 3.2.). In section 3.3 we examine

the nonlinear relations between the CSFT tachyon and dilaton and the effective field theory ones. We

work at zero momentum and up to quadratic order. Finally, in section 3.4, we present evidence that

CSFT can describe arbitrarily large dilaton deformations.

50



4.2.1 Relating sigma model fields and string fields

Consider first the effective action (5.1), suggested by the conditions of conformal invariance of a sigma
model with gravity, dilaton and tachyon background fields. If we set the tachyon to zero, this action
reduces to the effective action for massless fields, in the conventions of [78]. In this action g,,v is the
string metric, () is the diffeomorphism invariant dilaton, and T, with potential V(T) = - T 2 + , is

the tachyon. In order to compare with the string field action we expand the effective action in powers
of small fluctuations using

g~v = /IV, + hlw, (4.44)

where we use a tilde in the fluctuation to distinguish it from the metric fluctuation in the string field.
The result is

Sa = 2 J dDx ( 4h1 o2 hlv2- ha + ( h )2 + (,v) + hah

+ 2h a2( - 2 a,,h " _- 4 92( (4.45)

- (oT) 2 + ,T2+ haTaT + ( 2)(T)2+ ),
where we have kept cubic terms coupling the dilaton and metric to the tachyon. Such terms are needed
to fix signs in the relations between the fields in the sigma model and the string fields.

Let us now consider the string field action. The string field needed to describe the tachyon, the
metric fluctuations, and the dilaton is

I) = ( 2 )D (t(k) ClCl - IhV(k)aoA_1 lcl1 + d(k)(clc_l - lc-) (4.46)

+- i , (k)c (Cal -ClB l)) k)

Here t(k) is the tachyon, hv(k) = h,(k) is a metric fluctuation, d(k) is the ghost-dilaton, and B,(k)
is an auxiliary field. The sign and coefficient of h,, have been chosen for future convenience. The
linearized gauge transformations of the component fields can be obtained from 6]i) = QBIA) with

i
jA) -= E(CelC 1 - Cl~_l1) IP) (4.47)

The resulting coordinate-space gauge transformations are:

1 1
Jhtv = Ove + ev, d = - a e, B - S2 t=O. (4.48)

2 2

We now calculate the quadratic part of the closed string field action, finding

S(2) = (' Io QBlI),

= 2 2 dDx (hdV2h. - 2dd - 2B,(Oh/ v + 2Id)-2B 2 _ (t)2 + 4t2), (4.49)

_ 1, .fD ( 2 + -( + .a 2

51



In the last step we eliminated the auxiliary field B, using its algebraic equation of motion.

The gauge transformations (4.48) imply that the linear combination d + h is gauge invariant. It

follows that the sigma model dilaton must take the form

h
= d+ , ' (4.50)

4

where A is a number to be determined. Using (4.50) to eliminate the ghost-dilaton d from the action

(4.49) we find

S(2) D12 dD x( 1 h,82hh - 4hd2h + 2 (avh,)2 + haauh "a22,.~~2 , 4 ~' ~~(4.51)

+ 2A h82I - 2A D aahtv - 4A2 D2(I - (at)2 + 4t2)

We also use the string field theory to calculate the on-shell coupling of hV to two tachyons. This

coupling arises from the term

S(3)= -2 (TM, T) (4.52)
a K2

where T and 7H denote the parts of the string field (4.46) that contain t(k) and hlv(k), respectively.

We thus have

S(3)= -2( I / dDk (Ci C-eik'X, Cl la(lEeik2X, C l- eik3'X) t(kl)t(k3)hiv (k2) (4.53)
(2r)D /

The on-shell evaluation is readily carried out using k1hAv(k) = O. We obtain

2S d kl d k3 k k 3t(kl)t(k3)h(-kl - k3)= 22 dDxhVatavt. (4.54)
S()_J r (2,7r)D (27r)D (4.54

Combining this result with (4.51) we obtain the closed string field theory action

Scsft = 2 2 d x _ h2h + (ah )2 + 
4 2 2

+ 2A h 2 b - 2A a,ah'v - 4A2 )2 (4.55)

-(at) 2 + 4 t + h tavt +...).

We are finally in a position to identify the sigma model action (4.45) and the string field action

(4.55). Comparing the quadratic terms in h, and those in htt we see that hi = +h,,. We also note

that T = ±t. The coupling h~1LvT,,T in (4.45) coincides with the corresponding coupling in (4.55)

if and only if
hv = hiV. (4.56)

This simple equality justifies the multiplicative factor of (-1/2) introduced for h,, in the string field

(4.46). The string field h,, so normalized is the fluctuation of the string metric. Comparing the
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couplings of metric and dilaton in both actions we also conclude that A = +1 and, therefore, equation
(4.50) gives

h
4= d+ (4.57)4

This expresses the sigma model dilaton 4I in terms of the string field metric trace and the ghost dilaton
d. It is important to note that when we give a positive expectation value to d (and no expectation
value to h) we are increasing the value of T and therefore increasing the value of the string coupling.

4.2.2 The many faces of the dilaton

Equipped with the precise relations between string fields and sigma-model fields we digress on the var-
ious dilaton fields used in the literature. Of particular interest are the corresponding vertex operators,
which are determined by the CFT states that multiply the component fields in the closed string field.

We introduce the states

CV(p) = 4 (aLi 1 + aV I 1)p), 0 d(P)) = (lc - lcl)lp) . (4.58)

The corresponding vertex operators are

O(9'(p) = (aXAOXv + aXX) )eipx, d(p) = 1(CO2c- c2c)eiPX. (4.59)
2o! 2

Working for fixed momentum, the string field (4.46) restricted to metric and dilaton fluctuations is

I1) = hAV, 10) + d Od). (4.60)

This equation states that Od is the vertex operator associated with the ghost-dilaton field d. An

excitation by this vertex operator does not change the metric hV. Our transformation to a gauge
invariant dilaton gives

1
P = d + h, hv = h,,. (4.61)

4

Here h,, is the fluctuation of the string metric. Inverting these relations

1
d= I- h, hL = hw. (4.62)

4

Subtituting into the string field (4.60) we obtain

IT) = 1V - 1 [Lvd)) + q, Iod). (4.63)

It is interesting to note that Od is the vertex operator associated with a variation of the gauge-invariant
dilaton I) and no variation of the string metric. On the other hand, O'v - d varies the string

metric and does not vary the gauge-invariant dilaton (although it varies the ghost-dilaton).
Finally, we consider the formulation that uses the Einstein metric gEv and the dilaton . The field

redefinition is
g~~~E ().h= 2gnE=exp(2w) g,, with w= D--2 . (4.64)D -
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Expanding in fluctuation fields we obtain

hE = h . D - 2 ). (4.65)

Solving for d and h, in terms of I and h we get

2 1 4d=- 2 - hE, h, =hE - (4.66)D-2 4 A" D 

Substituting into the string field (4.60) we obtain

11F=) h_ (I ) _ lod1 ad)) + 2 P (2.I. O"v') _ Od)) (4.67)

Interestingly, the vertex operator that varies the Einstein metric (without variation of the dilaton) is

the same as that for the string metric (see (4.63)). It is the dilaton operator that changes this time.
The vertex operator

t=wtuarnt (= ( X Xl(c 2c -T 2c)h)eiPX (4.68)

varies the dilaton without varying the Einstein metric. This is the dilaton vertex operator used

almost exclusively in the early literature - it is naturally associated with the Einstein metric. The

corresponding state D(p)) has a particularly nice property: it is annihilated by the BRST operator
when p2 = 0. Indeed,

QB ID(p)) = p2ci+lD(p)) q (4.69)

The dilaton ) is in fact the unique linear combination of the matter and ghost dilatons that has

this property. For other combinations, terms linear in the momentum p (such as (p a1)cCl ElE_ip)),

survive.

4.2.3 Relating the sigma model and string field dilaton and tachyon

The closed string theory potential V, as read from the effective action (5.1) is

2V = e- 2 (V(T) +...), with V(T) = -T 2 +... (4.70)

Here I and T are the zero momentum dilaton and tachyon fields in the effective field theory. The

purpose of this section is to discuss the relation between TX and T and the corresponding string fields

d and t, both sets at zero-momentum. To do this we must consider the effective potential for d and t
calculated in string field theory. We only have the potential itself. Collecting our previous results, we
write

K2V = _t 2 + 1.6018t3 - 3.0172t4

+ 3.8721 t3d + (-0.8438 t + 1.3682 t2) d2 - 0.9528 t d3 - 0.1056 d4 . (4.71)
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The contributions from massive fields affect quartic and higher order terms. In our setup, the relevant
terms arise when we eliminate the level-four massive fields using their kinetic terms in (4.32) and their
linear couplings to t2 in (4.30), to td in (4.31), and to d2 in (4.33). We find

V = -624 25329 d2 t2 - 89629 t4 -0.0334 d4 + 1.5460 d2 t2 _ 0.4521 t4 (4.72)
186624 16384 4194304 -

It follows that the effective potential for the tachyon and the dilaton, calculated up to terms quartic
in the fields and including massive fields of level four only, is given by:

K2 Veff = -t 2 + 1.6018t3 - 3.4693t4

+ 3.8721 t3d + (-0.8438 t + 2.9142 t2) d2 - 0.9528 t d3 - 0.1390 d4 + .... (4.73)

The dots represent quintic and higher terms, which receive contributions both from elementary inter-

actions and some integration of massive fields. We write, more generically

t2Veff = -t 2 + a3,0t 3 + a4,0 t4

+a3,1 t3 d + (al,2 t + a2,2 t 2 ) d2 + al, 3 t d3 + ao,4 d4 + .... (4.74)

The values of the coefficients ai,j can be read comparing this equation with (4.73).
There are two facts about Vff that make it clear it is not in the form of a ghost-dilaton exponential

times a tachyon potential. First, it does not have a term of the form t2d that would arise from
the tachyon mass term and the expansion of the exponential. Second, it contains a term linear in
the tachyon; those terms should be absent since the tachyon potential does not have a linear term.
Nontrivial field redefinitions are necessary to relate string fields and sigma model fields.

To linearized order the fields are the same, so we write relations of the form:

t = T+alT+) 242+ . .,

d = +,/3oT2 + P1T4 + I32 2 + , (4.75)

where the dots indicate terms of higher order in the sigma model fields. We found no need for a T2

term in the redefinition of tachyon field, such a term would change the cubic and quartic self-couplings
of the tachyon in V(T). Since d gives rise to pure tachyon terms that are quadratic or higher, only at
quintic and higher order in T will V(T) differ from the potential obtained by replacing t -- T in the
first line of (4.73). We thus expect that after the field redefinition (4.73) becomes

2 V = e-2 (- T 2 + 1.6018T 3 - 3.4693 T4 + ... ), (4.76)

at least to quartic order in the fields. We now plug the substitutions (4.75) into the potential (4.73)
and compare with (4.76). A number of conditions emerge.

* In order to get the requisite T 24 term we need al = -1.

* In order to have a vanishing TŽ 2 term at2 = al,2 must be half the coefficient of td2 in (4.73).
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· Getting the correct T3I coupling then fixes 30 = (a3,o - a3,1)/(2al,2).

· Getting the correct value of T 2 I)2 fixes P1 = -(1 + a3,0oa1,2 + a2 ,2)/(2a1,2). The vanishing of

TI 3 fixes /32 = -a1,3/(2a1,2). All coefficients in (4.75) are now fixed.

* The coefficient of 4, which should be zero, turns out to be (ao,4 + al,2) - 0.0389, which is

small, but does not vanish.

Our inability to adjust the coefficient of 4 was to be expected. The potential (4.73) contains the terms

-t 2 + al,2 td2 + ao,4d4 and, to this order, integrating out the tachyon gives an effective dilaton quartic

term of (ao,4 + a,2) With the contribution of the massive fields beyond level four this coefficient in

the dilaton effective potential would vanish. This is, in fact, the statement that was verified in [28]. It

follows that we need not worry that the quartic term in b do not vanish exactly. Following the steps
detailed before we find

t = T-T - 0.4219 2+- . ,

d = · + 1.3453T2 + 1.1180T - 0.5646 )2 + - . (4.77)

t
d

Figure 4.2: The solid line is the dilaton marginal direction defined by the set of points (d, t(d)) where t(d) is
the expectation value of t obtained solving the tachyon equation of motion for the given d. The dashed line
represents the direction along the sigma model dilaton (thus T = 0). It is obtained by setting T = 0 in
equation (4.77). The two lines agree well even reasonably far from the origin.

In string field theory the dilaton deformation is represented in the (d, t) plane by the curve (d, t(d)),

where t(d) is the expectation value of the tachyon when the dilaton is set equal to d. This curve,

calculated using the action (4.73), is shown as a solid line in Figure 4.2. On the other hand, it is

clear that ~ (with T = 0) defines the marginal direction in the effective field theory. Setting T = 0 in

(4.77) we find the pair (d(q), t(()), which must be a parameterization of the fiat direction in terms of

. This curve is shown as a dashed line in Figure 4.2. It is a good consistency check that these two

curves agree well with each other over a significant fraction of the plot.
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4.2.4 Dilaton deformations

In Ref. [28] we computed the effective dilaton potential that arises when we integrate out the tachyon

from a potential that includes only quadratic and cubic terms. We found that the domain of definition

of this potential is the full real d line. This happens because the (marginal) branch t(d) that gives
the expectation value of t for a given value of d is well defined for all values of d. In this section
we extend this computation by including higher level fields and higher order interactions. As we
will demonstrate, it appears plausible that the domain of definition for the effective dilaton potential
remains d C (-oo, oo).

The marginal branch is easily identified for small values of the dilaton: as the dilaton expectation
value goes to zero all expectation values go to zero. For large enough values of the dilaton the marginal
branch may cease to exist, or it may meet another solution branch. If so, we obtain limits on the

value of d. Since the dilaton effective potential is supposed to be flat in the limit of high level, we
propose the following criterion. If we encounter a limit value of d, this value is deemed reliable only if
the dilaton potential at this point is not very large. A large value for the potential indicates that the
calculation is not reliable because the same terms that are needed to make the potential small could
well affect the limit value. In open string field theory a reliable limit value was obtained for the Wilson
line parameter: at the limit point the potential energy density was a relatively small fraction of the
D-brane energy density. The purely cubic potential for t gives a critical point with ,i2V _/ -0.05774.
We define RZ(d) 74, d)where V(d) is the effective dilaton potential. A critical value of d for which
R > 1 will be considered unreliable.

We start with cubic potentials and then include the elementary quartic interactions level by level.
With cubic potentials, the effective dilaton potential is invariant under d -. -d. With V3) dilaton
deformations can be arbitrarily large [28]. We then find

* The dilaton potential derived from (3 ) is defined for Idl < 624. This is plausible since, at this
level, the equations of motion for the level-four fields are linear.

* The dilaton potential derived from V132) is defined for Idl < 1.71. Since R(±1.71) = 42.4, there
is no reliable limit value.

* The dilaton potential derived from V(4) is defined for Idl < 4.67, where R(±4.67) = 49.5. The
large value of R indicates that there is no evidence of a limit value.

* The dilaton potential derived from V4 ) is not invariant under d - -d. We find a range d E
(-oo, 3.124) . Although R(3.124) = 0.387, the potential has a maximum with R = 3.325 at
d = 1.92. This fact makes the limit point d = 3.124 unreliable.

* The dilaton potential derived from V4 ) , the highest level potential we have computed fully, is
regular for d E (-2.643, 6.415). Since 7R(6.415) = 1502.4 and 7.(-2.643) = 89.2, there is no
branch cut in the reliable region.
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We have also computed the higher level quartic interactions td3 and d4 . We have checked that

V4), supplemented by those interactions does not lead to branch cuts in the potential for the dilaton.

This result, however, is not conclusive. Additional interactions must be included at level six (the level

of td 3 ) and at level eight (the level of d4 ).

V

d
-u. -U.U U.U:3 U.I

Figure 4.3: Dilaton effective potential. The dashed line arises from ( 3), the solid line arises from ( 3) , and

the thick line arises from V( 4) .

We tested in [28] that cubic and quartic interactions combine to give a vanishing quartic term in

the dilaton effective potential. We can ask if the potential for the dilaton becomes flatter as the level

of the calculation is increased. We find that it roughly does, but the major changes in the potential

are due to the elementary quartic term in the dilaton. For the cubic vertex, the interactions of the

type d2M, with M massive give rise to terms quartic on the dilaton. Other cubic couplings that do

not involve the dilaton typically induce d6 (and higher order) terms, which play a secondary role in

flattening the potential if the quartic terms have not cancelled completely. Therefore, the potentials

that arise from V(3) , 130) and V3 (without the contribution from level six massive fields) have no

obvious difference. The potentials obtained at various levels are shown in Figure 4.3. The dashed line

arises from V (3) , the solid line arises from V (3) , and the thick line arises from V(4)

4.3 Conclusions

In this chapter we have presented some calculations that suggest the existence of a tachyon vacuum for

the bulk closed string tachyon of bosonic string theory. We have discussed the physical interpretation

using the effective field theory both to suggest the value of the action density at the critical point

(zero!) and to obtain rolling solutions [66] that seem consistent with the interpretation of the tachyon

vacuum as a state in which there are no closed string states.

The numerical evidence presented is still far from conclusive. A critical point seems to exist and
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appears to be robust, but it is not all that clear what will happen when the accuracy of the computation
is increased. If the action density at the critical point goes to zero it may indeed define a new and
nontrivial tachyon vacuum. Conceivably, however, the critical point could approach the perturbative
vacuum, in which case there would be no evidence for a new vacuum. Alternatively, if the action
density at the critical point remains finite, we would have no interpretation for the result.

t
non-critical

string background

Figure 4.4: A non-critical (p + I)-dimensional string theory would correspont to a solitonic solution of critical
string theory in which, far away from the reduced space, the fields approach the values of the closed string
tachyon vacuum.

Let us consider some additional indirect arguments that support the existence of a closed string
tachyon vacuum. The first one arises from the existence of sub-critical bosonic string theories. The
evidence in string theory is that most string theories are related by compactifications and/or defor-
mations. It seems very likely that non-critical string theories are also related to critical string theory.
It should then be possible to obtain a non-critical string theory as a solution of critical string theory.
Certainly the view that D = 2 bosonic string theory is a ground state of the bosonic string has been
held as likely [80]. In non-critical string theory the number of space dimensions is reduced (at the
expense of a linear dilaton background). The analogy with lower-dimensional D-branes in open string
theory seems apt: the branes are solitons of the open string field theory tachyon in which far away
from the branes the tachyon sits at the vacuum. It seems plausible that non-critical string theories are
solitonic solutions of the closed string theory tachyon. As sketched in Figure 4.4, far away along the
coordinates transverse to the non-critical world-volume, the background would approach the closed
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string tachyon vacuum. The universality of the tachyon vacuum would imply that a noncritical string

theory could be further reduced using the same background configuration used to reduce the original

critical theory.
In fact, in the p-adic open/closed string theory lump solutions of the closed string sector appear

to describe spacetimes of lower dimensionality, as explained by Moeller and Schnabl [77]. Indeed, far

away from the lump the open string tachyon must be at its vacuum and therefore there are no D-brane

solutions with more space dimensions than those of the lump. Away from the lump the closed string

tachyon is at its vacuum, and no linearized solutions of the equations of motion exist.

A suggestive argument for zero action at the tachyon vacuum follows from the sigma model ap-

proach. As discussed by Tseytlin [74], it seems likely that the closed string effective action for the

spacetime background fields may be written in terms of the partition function Z of the two-dimensional

sigma model as well as derivatives thereof (this does work for open strings [76]). The conventional

coupling of the world-sheet area to the tachyon T results in a partition function and an effective

action with a prefactor of e- T . Thus one expects a tachyon potential of the form e-Tg(T) where g

is a polynomial that begins with a negative quadratic term4. In this case, for a tachyon vacuum at

T - oo the action goes to zero.

The computations and the discussion presented in this chapter have led to a set of testable conjec-

tures concerning the vacuum of the bulk closed string tachyon of bosonic string theory. It seems likely

that additional computations, using both string field theory, effective field theory, and conformal field

theory will help test these ideas in the near future.

4In [74], a tachyon potential of the form -T 2e- T is considered. Complications in fixing the kinetic terms made it
unclear if T = oo was a point in the configuration space (see the discussion below eqn. (4.13)) of [74]. For additional
comments on the possible form of the tachyon potential, see Andreev [75].
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Chapter 5

Rolling Closed String Tachyons and the
Big Crunch

A tachyon of closed string theory is said to be a bulk tachyon if it lives throughout spacetime. In the
presence of a tachyon one has an instability and two important and related questions arise:

1. Is there a ground state of the theory without the instability ?

2. What is the end-result of the physical decay process associated with the instability ?

The answers are presently known for the open string theory tachyons that live on the world-volume
of unstable D-branes [81]. The ground state, or tachyon vacuum, is a state without the D-brane and
without open strings - it is in fact the vacuum state of closed strings. In the associated physical decay
process the D-brane dissappears but the result is not quite the closed string vacuum but rather an
excited state of closed strings that carries the original energy of the D-brane. The decay process is
not simply a transition from the unstable to the stable vacuum.

The purpose of the present chapter is to study the physical decay induced by the bulk closed string
tachyon of bosonic closed string theory - the second question above applied to bulk tachyons (for
localized closed string tachyons, see [82].). Our work was prompted by new information about the first
question: recently-found evidence that the closed string field theory "tachyon potential" has a critical
point - a candidate for a closed string tachyon vacuum [83]. A set of considerations suggests that in
such vacuum closed string states would not propagate and spacetime would cease to be dynamical.
Our analysis of the physical decay aims to illuminate the nature of the tachyon vacuum. This may
be possible because the physical decay turns out to be rather insensitive to the specific details of the
tachyon potential, about which little is known.

We study here the low-energy field equations that couple the metric, the dilaton, and the tachyon.
These equations are motivated by the conditions of conformal invariance of sigma models [71] and are
expected to provide solutions that capture relevant features of exact string theory solutions. The low-
energy field equations have been used in many papers to study all kinds of dynamical and cosmological
issues (for a review and references see [84]). Few of these works, however, deal with key features

of our present problem: a standard minimal coupling of the dilaton to other fields, an unstable
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closed string vacuum with zero cosmological constant, a tachyon potential that is not positive, and

a rolling process induced by the tachyon. The related problem of light (bulk) tachyons that arise

from circle compactification has been studied by Dine et. al. [85] and Suyama [86]. These authors

compute quadratic and quartic terms in the tachyon potential and consider a cosmological evolution

that involves the metric, the dilaton, the radion, and the tachyon. The authors of [85] state that

numerical studies show that rather general initial conditions lead to a radius that evolves to make the

tachyon more tachyonic and a dilaton that evolves to make the system strongly coupled (the simplicity

of a light tachyon seems to be illusory). The author of [86] freezes the radion and discusses explicitly

the simplified system, showing in a numerical solution how it appears to be driven to strong coupling.

Our analysis assumes arbitrary tachyonic potentials V(T) = -½m2 T2 + O(T3 ) and reveals a few

surprises. We have found that if the rolling process is triggered by the tachyon the string metric

does not evolve. Moreover, the dilaton expectation value · will always increase as time goes by. If

the tachyon history T(t) is such that the potential is negative, V(T(t)) < 0, the evolution reaches a

singular point in finite time: both T and become infinite, and so do T and I). In the string frame

this is a system with infinite string coupling, while in the Einstein frame the universe undergoes a big

crunch. While negative potentials help accelerate its occurrance, a crunch occurs at finite time (both

in the string and Einstein frames) for a wide class of potentials that grow arbitrarily large and positive

for large T, V(T) = -T 2 + T4, for example. The growing dilaton acts on the tachyon like anti-friction,

a force proportional to the tachyon velocity in the direction of the velocity. This generally enables the

tachyon to reach infinite value in finite time, even if it has to climb an infinite potential.

This chapter is organized as follows. In Section 2 we write the relevant coupled equations and

examine them in the cosmological setting. We use the string metric and emphasize how the dilaton

time derivative plays a role similar to that of minus the Hubble parameter H(t). In Section 3 we define

tachyon-induced rolling and show that it results in a constant string metric. The rolling problem

simplifies considerably and becomes the coupled dynamics of a dilaton and a tachyon. Analytic

solutions are possible if one can solve a certain first-order nonlinear differential equation. Up to

numerical constants, the dilaton-tachyon equations can be mapped to those that describe a single

scalar field rolling in Einstein's theory. In Section 4 we establish that the Einstein metric crunches in

finite time if the tachyon potential is negative throughout the rolling solution. In Section 5 we consider

potentials that can be positive and develop tools to decide if there is a big crunch and if it occurs in

finite time. Conclusions are offered in Section 6.

5.1 The coupled system of rolling fields

Consider the action that describes the low-energy dynamics of the metric, the dilaton, and the tachyon:

S = J dd+lx-e-2 (R + 4(O4)2 - (,T) 2 - 2V(T)) . (5.1)

Here g,, is the string metric, · is the dilaton, and T is the tachyon, with potential V(T). The number

of spatial dimensions is d. We are following the conventions of [88], with their dilaton 0 replaced by
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(-2Ž). The metric-dilaton part of the action is that in [78]. The equations of motion are:

R,, + 2VV,I - (a,T)(aT) = 0,
V2T - 2(a,,)(MaT) - V'(T) = 0, (5.2)

V21 - 2(dl,) 2 - V(T) = 0.

To evaluate the action on-shell we multiply the first equation by gp, use the third equation to eliminate
V2 D, and find that R + 4 (cj) 2 - ( T)2 = -2V(T). Using this,

Son-shell = 22J dd+lx e-2 (-4V(T)). (5.3)

We look for solutions of (5.2) that represent a rolling tachyon field T(t) accompanied by a time
dependent dilaton D(t) and a time dependent string metric of the form

ds2 = -(dt)2 + a2(t)(dx 2 dx + ... dx), H(t) () (5.4)2 da(t)(
With this metric, the gravitational equations of motion (first line in (5.2)) give two equations

.. .. ., a . .1) a2

d 2 0,a + (d- - = o . (5.5)a a aia

The equations of motion for the dilaton and the tachyon are:

+ (dH-22) +V(T) = 0, (5.6)

T+ (dH-2+)T+ V'( T) = 0. (5.7)

We recognize the familiar Hubble "friction" term that couples H to the field velocity. Indeed, for
H > 0 the force is opposite to the velocity and slows down the field. Similarly, the dilaton velocity
> is anti-friction: if i > 0 the force is in the direction of the velocity and accelerates the field. The

dilaton is driven by -V(T); it will tend to go to strong coupling while V(T) < 0.
The gravity equations (5.5) can be rearranged into two equivalent equations:

(d - 1) = -2T 2 + - H , (5.8)

2d(d-1)H 2 = T2-'+dHc. (5.9)

It can be shown that if equation (5.9) holds at some time, equations (5.7), (5.6), and (5.8) guarantee
that it holds for all times.

It is instructive to compare of the previous equations with those that govern the dynamics of a
scalar field 0 with potential V(O) coupled to gravity without a dilaton:

_ (d- 1)H -= _1 2, (5.10)

d(d-1)H 2 = - 2 + V(O), (5.11)

+ dH + Vt'(0) = 0. (5.12)
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Note that H - _-2 < 0, which means decelerating expansion or accelerating contraction. On the

other hand, the analogous equation in the presence of a dilaton, (5.8), allows the possibility that H

vanishes. Equation (5.11) is analogous to (5.9). Comparison of (5.12) with (5.7) confirms that the

rolling scalar is only affected by the addition of the dilaton-induced anti-friction (I > 0).

The Einstein metric gEv is determined by the string metric and the dilaton: g v = exp(- I ) gv.

For a fixed string metric, the Einstein metric goes to zero if the dilaton expectation value goes to

infinity. This corresponds to infinite string coupling.

5.2 Tachyon-driven rolling and the string metric

We now consider a general class of potentials V(T) for a tachyon T that satisfy the condition V(0) = 0
and can be written as

V(T) =--m2T 2 + O(T3). (5.13)

We build a solution where T -, 0 for t -- -oo, and the field rolls to positive values:

T(t) = emt + tent . (5.14)
n>2

The first term in this ansatz is the solution to the linearized tachyon equation of motion. The arbitrary

constant multiplying this term can be absorbed, as we did, by a redefinition of time. The exponentials

in the sum are subleading to emt for large negative t. We say that the tachyon drives the rolling if the

other fields, in this case H(t) and P(t), have solutions with exponentials subleading to emt:

(t) = > qOn enm, H(t) = E hn enmt (5.15)
n>2 n>2

Given (5.14), the dilaton equation (5.6) gives

'(t) = - e2mt + (e3 mt) (5.16)

This leading behavior is valid for all potentials of the form (5.13). The dilaton begins to run towards

stronger coupling. Evaluating the right-hand side of equation (5.8) we see that

_T2 + 2i) = -m 2 e2mt + 2 1 (4m 2 )e2 mt + O(e3mt) = O . e 2m r + O(e3mt). (5.17)

Since the other term on the right-hand side, Hi - e4mt, we deduce that H - e3mt and therefore the

contribution of order e2mt to H vanishes: h2 = 0. The string metric is not affected to this order. This

is actually the beginning of a pattern: we now prove that H(t) vanishes identically for tachyon-induced

rolling. Adding equations (5.8) and (5.9) we find

H = -(dH- 2) H. (5.18)

Now assume that h2 = h = ... = hN = 0 for some N > 2. Since e2mt, the above equation gives

H ' e(N+3)m t, which implies that hN+l = 0. By induction, H(t) vanishes identically.
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We now reconsider the equations of motion with H = 0. The gravitational equations (5.8) and
(5.9) give a single equation, ~ = ½ T2 . Additionally, we have the equations of motion (5.7) and (5.6).
With small rearrangements, the equations are:

= ½ 2, (5.19)
2 2 = T2 + V(T), (5.20)

T -2T+ V'(T) = 0. (5.21)

Since ~ > 0, the dilaton velocity (t) never decreases. Given that 4(t) > 0 for sufficiently early times
(see (5.16)), the dilaton b(t) increases without bound. If the evolution is regular, -- oo as t - oo
(the universe takes infinite time to crunch). More generally, the evolution produces a singular point
at some finite time for which, as we shall see, both T and TX become infinite. Note also the complete
correspondance between the above equations and equations (5.10), (5.11), and (5.12) for an ordinary
scalar coupled to gravity. The sets of equations match, up to constants, when we set H -. Out of
the three equations above, the last two suffice. Taking the time derivative of (5.20) and using (5.21),
we find that (5.19) holds as long as 0. The rolling of ordinary scalars with negative potentials
was studied by Felder et.al.[87], who noted that the final state is roughly independent of the shape of
the potential. Given the correspondance with dilaton/tachyon rolling, this is also true in our problem.

We derived the final equations (5.21) and (5.20) using a class of initial conditions that implied
H = 0. These equations, viewed as the original equations with the ansatz H = 0, allow more general
initial conditions. For an initial time ti we can take arbitrary T(ti) and T(ti) as long as

(T2 + 2V(T)) It > 0. (5.22)

The evolution is fixed by choosing a square-root branch for TX in (5.20). Since TX is positive for
tachyon-driven rolling, we take

2= vT 2 + 2V(T). (5.23)

This enables us to rewrite (5.21) as a second-order nonlinear differential equation for the tachyon
alone, an equation that is quite convenient for numerical integration:

T- T2 + 2V(T) T + V'(T) = 0. (5.24)

The general rolling problem can be reduced to the problem of solving a first-order nonlinear
differential equation. For this we consider the "energy" E defined as

EE2 _T2 + V(T). (5.25)

One readily checks that
dE

d= TT·~·(2) . (5.26)dt
Since > 0, E can only increase. The desired equation arises by rewriting (5.26) as

dE dT dEE _ - V d dE - = ±2VE(E - V). (5.27)
dt dt dT
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This is an equation for E(T). The sign choice arises from solving for T in terms of E and V. During
evolution the sign must be changed each time T goes through zero. We will use the above mostly
when T > 0, so we will take the plus sign. The equation becomes a little simpler in terms of £ = -E:

dT = Vr62 V . (5.28)

Equipped with £(T), one finds T(t) by solving the first-order linear equation that follows from (5.25).
A reverse engineering problem can also be solved. Suppose we are given a tachyon rolling solution

specified by a function T(t) that has an inverse t(T). It is then possible to find the associated dilaton
)(t) and the potential V(T). We use (5.19) to find (t) by integration, and (5.20) to find V(t), which

gives the potential V(t(T)). As a simple illustration we take the leading solution in (5.14) to be exact:

T(t) = emt. Setting integration constants to zero we find

T(t) = emt, (t) = 1e2mt, V(T) = m2( 1 T2 + 1T4). (5.29)

In this solution the crunch happens at infinite string time (but finite Einstein time). Related rolling

solutions have been considered using two-dimensional Liouville field theory to provide conformal in-
variant sigma model with spacetime background fields that typically include a linear dilaton and a
constant string metric [67, 68, 89, 70]. In some of these solutions T(t) = emt and the linear dilaton
vanishes. This is unexpected given our analysis, which shows that the dilaton is sourced. It would
be interesting to use this discrepancy to find constraints on the form of the effective action for the

coupled system of fields.

5.3 Finite-time crunch with negative scalar potentials

We now show that for non-positive potentials V(T) < 0, if (6(to) > 0 for some time to then (6(t.) = oo
for some finite time t > to. To do this we combine (5.19) and (5.20) to write

V(T)
- -2 + , ,2 . (5.30)

Integrating both sides of the equation from an initial time to up to a time t we find

dit1 ( 1_ _ ~ _ l V (T ( t')) 1
(t) (to) t (t(5.31)

To have a divergent (~ we need the terms on the right-hand side to add up to zero. If we ignore the

integral on the right-hand side, the first two terms cancel for t = tl, with tl - to = 1/(2(6(to)). Since

the integral vanishes at t = to and can only decrease afterwards, the cancellation will actually occur

for a time earlier than tl:
1

t, to + (5.32)
2 (to)

This is what we wanted to prove. It follows from (5.23) and V < 0 that as oo we also have

T - +oo. The time evolution reaches a singular point at finite time.
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To understand how the dilaton 1( itself diverges we can do an estimate that proves to be self-
consistent. The integral term in (5.31) is assumed to be negligible. This is certainly the case if V(T)
is also bounded below since then, the integral is negligible for sufficiently large c(. In fact, we will see
that the integral is negligible under far more general circumstances. It then follows that

1 ±1
(t) 2(t,- t) and T(t) (t t------ (5.33)

For such solutions the tachyon and dilaton diverge logarithmically:

4 (t) = -½ In (t, - t) + o T(t) = F In (t, - t) + To. (5.34)

For any polynomial potential V(T) the integrand in (5.31) is of the form (t, - t)2 V(ln(t, - t)) and
goes to zero as we approach collapse, thus justifying our approximations. Note that T2 is much larger
than both V(T) and V'(T). This fact alone implies finite time collapse: the tachyon equation (5.24)
becomes T iF T2 _ 0, whose general solution describes a T that diverges at an adjustable finite time.
Note that the dilaton prefactor in the spacetime action, e- 2 -- e - 24° · (t, - t), vanishes linearly with
time as we approach the collapse. The string coupling becomes infinity, the Einstein metric crunches,
and the value of the on-shell action (5.3) goes to zero. Since the Einstein metric becomes much smaller
than the string metric as the dilaton diverges, the collapse also occurs in finite time in Einstein frame.

5.4 Crunching with arbitrary potentials

In this section we consider rolling solutions for rather general potentials V(T), not necessarily tachy-
onic. As before, we take H = 0 and > 0; these conditions ensure that we are dealing with a problem
qualitatively related to tachyon-induced rolling. As a warmup we consider the case where the poten-
tial is positive and bounded and show that for a sufficiently large initial tachyon velocity the Einstein
metric crunches in finite time. We then discuss a related question for more general potentials: is there
an initial tachyon velocity T > 0 for which T = oo (and crunching) is reached in finite time even if
V(T -- oo) -, oo? We discuss a set of tools that enable one to approach this question systematically,
at least in a case by case basis. We find that potentials of the form V(T) ' exp(nT) with n > 2 are
too steep, and no positive tachyon velocity allows the tachyon to reach T = oo. We also analyze in
detail the simple potential V = -T 2 + T4 .

Crunching with bounded potentials. We claim that for a bounded potential 0 < V(T) < 2 with
bounded derivative V'(T) < y2, there is an initial tachyon velocity T(t = 0) for which crunching
occurs in finite time. Here is a short proof. Take T(0) = V/a2+ 2/32 with a2 > 72. Since the energy
E (see (5.26)) cannot decrease in time, for t > 0:

2E(t) = T2(t) + 2V(T(t)) > 2E(O) = a2 + 232 + 2V(T(o)) > a2 + 232. (5.35)

Therefore, T2(t) > a2 + 2/32 - 2V(T(t)) > a 2 and, as a result, T2 (t) > a2 for all times. The tachyon
equation of motion (5.24) then gives

1T(t) > a + 2V(T) a- _ 2 > a2 _ 2 > 0. (5.36)
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Since 4 = 1T2, one finds 'i;(t) = T(t) T(t) > 0, so 4(t) is convex and grows without bound. On the
other hand, with our bounds, equation (5.31) gives

(1 < ,( - (2- (tto). (5.37)4)(t) (,(to) (t- o)

Since $ grows without bound, there is a time to for which 2 - -2- > 0. Then at some time tl, thec12(to)

right hand side of equation (5.37) vanishes. Therefore, at some finite time t, < tl, 4(t,) = oo.

General techniques. We now consider a general class of potentials V(T), well-defined for all T, and
unbounded above as T grows positive and large. We examine an initial configuration with some fixed
value T(to) and variable initial velocity T(to) > 0. We wish to find out if the tachyon reaches T = oo
and if it does so in finite time, causing the dilaton to diverge and the Einstein metric to crunch. We
find that, typically, there is a critical tachyon velocity for which it takes infinite time to reach T = oo.
For velocities larger than critical, T = oo is reached in finite time. For velocities smaller than critical
the tachyon evolution gives a turning point.

Three curves can be defined in the (T, £) plane and help us understand the integral curves £(T)

that solve our first-order differentail equation = /£2 - V(T) _ h(T, £):

* h(T, £) = 0 is the turning point curve.

* dTh(T, E) = 0 is the inflection curve. It separates a region where the integral curves are convex
from a region where they are concave.

* £2 - V(T) = f(T), with f specified below, is the separating curve. Any integral curve starting

above the separating curve will remain above it.

Since d = v 2 - V = 1 T(t)l the turning point curve is the locus of points where we getdT -
turning points for the tachyon time evolution. If an integral curve hits the turning point curve, the
time evolution of the tachyon has a turning point. Moreover, since = the inflection curve also

controls the convexity or concavity of T(t).

Consider the curve £2 - V(T) = f(T). On this curve the slope of the integral curve is /fi).
Moreover, the slope of this curve itself is I +V In order to be a separating curve we require the
former to be larger than the latter:

V17 _(T > 2 VI *(5.38)

The equality gives an integral curve - integral curves separate because they cannot cross, but are hard

to find. If V(T) _ 0, a suitable f(T) is obtained by setting:

T-- f+ V 2f - =f'= V'. (5.39)
2For a polynomial V(T), a convenient choice is f(T) l 21 

For a polynomial V(T), a convenient choice is f(T) = I -i.
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Figure 5.1: Tachyon histories T(t) in the potential V(T) = -T 2 + 8T4 , starting with T(t = O) =- 2.
The critical trajectory is dashed, begins with critical velocity T(0) = 2, and crunches at infinite time.
The solid line turning upwards starts with T(0) = 2.01 and hits T = oo at t - 0.9808. The solid line
turning downward starts with initial velocity T(0) = 1.99, encounters a turning point, and actually
reaches minus infinity at t _ 1.1609.

A worked out example. We illustrate the above discussion with the potential V = -T 2 + 8T4, which
is tachyonic near T = 0, vanishes for T = ±2, and grows arbitrarily large for large TI. We consider
arbitrary velocities for a tachyon for which T = 2 for t = 0. The potential was chosen so that it has an
easily obtained solution with critical velocity: T(t) = 2 exp(t). This is, in fact, the tachyon-induced
rolling solution that starts at T = 0 for t = -oo. Here T(0) = 2, T(0) = 2, E(T = 2) = vf2, and
the solution reaches T = oo at t = oo. We have verified numerically that solutions with larger initial
velocity reach T = oo in finite time, while solutions with lesser initial velocity encounter a turning
point. In Fig. 5.1, we show the critical trajectory T(t) and two additional solutions corresponding to
initial velocities slightly higher and slightly lower than critical.

For the potential in question, the turning point curve E(T) = VVT) lies below the inflection
curve £(T) = (+v7l+V2)l/2, which in turn lies below the separating curve (T > 2) defined with
f(T) = -1 (1 + 2T - 6T2 - 4T 3). In Fig. 5.2 we plot these three curves along with three solutions.
The solution with lowest initial energy has velocity smaller than critical: it crosses the inflection curve
and hits the turning point curve. We also show the critical solution and a solution with velocity larger
than critical that lies above the separating curve. By construction any solution above the separating
curve cannot have a turning point.

Potentials of the form V(T) = exp(nT). We now show that for V(T) = exp(nT), with n > 2, there is
no initial (positive) tachyon velocity for which the tachyon can reach T = oo. When V(T) = exp(nT)
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Figure 5.2: Curves and solutions for = 2 V with potential V = -T 2 + T 4 , plotted in
the (T, £) plane with vertical axis at T = 2. From bottom to top, the three dashed curves are:
the turning point curve (E(T = 2) = 0), the inflection curve ((2) = 1), and the separating curve
(£(2) = Vf5/4 - 1.7854). The three solid curves are solutions. From bottom to top they are: a
solution with subcritical £(2) = 1.20 that hits the turning point curve, the critical solution, with
£(2) = v/2, and a solution above the separating curve, with E(2) = 2.0.

the differential equation (5.28) is solvable. Setting £ = x/Vg(T), we find

V t n
9 + g = Vg2 91 = 9/-2 - -g. (5.40)

We have a turning point at T, if g(T,) = 1. Dividing both sides of the equation by g and integrating,

Ing(T) = Ing(To)-(TTo) + dT'- < Lng(To) - 1)(T- To). (5.41)

For n > 2, the right hand side vanishes at some T1 > To. There is therefore some T, < T1 with

g(T,) = 1, and thus a turning point, as we wanted to show. The above argument in fact applies for

any potential V such that V > 2 for sufficiently large T. For n = 2, the solution of (5.40) is

T = To + 2 (F(g) - F(go)), F(g) ln(g + /g2- 1) - g(g + V- ). (5.42)
2

It is readily checked that F(1) = -1 and F(g) decreases monotonically for g > 1. Therefore, g(T*) = 1
for T* = To - 1 (1 + F(go)) > To. This proves that all solutions have a turning point.

5.5 Conclusions

Our analysis of tachyon-induced rolling has revealed two general facts: 1) the string metric is constant

and, 2) the dilaton rolls toward stronger coupling. These facts match precisely the properties of the
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candidate tachyon vacuum identified in [83]. Consider fact one. In the tachyon vacuum both the
tachyon and the dilaton take expectation values, and so do an infinite number of massive fields. The
string metric, however, is not sourced and need not acquire an expectation value - this is guaranteed
by rather general string field theory universality arguments [64, 83]. The cosmological constancy of
the string metric appears to be the sigma model version of the universality result. Consider now fact
two. It was shown in [83] that the dilaton expectation value in the candidate solution corresponds
to stronger string coupling. The qualitative agreement makes it plausible that the rolling solutions
discussed here represent rolling towards the tachyon vacuum conjectured in [83]. In the case of open
strings, the end-product of the rolling solution is different but somewhat related to the tachyon vacuum.
Our rolling solutions represent an Einstein metric big crunch or closed strings at infinite coupling. The
tachyon vacuum may represent the dissappearance of dynamical spacetime. We feel these two states
could be related. The crunch certainly lies beyond the applicability of the action (5.1), which should be
supplemented by terms of higher order in a'. The generality of the evolution and the almost complete
independence on the details of the tachyon potential' suggest to us that the cosmological solutions
presented here are relevant, modulo some stringy resolution of the big crunch singularity. It would
be rather interesting if the stringy resolution would push the crunch to infinite time. A big crunch,
followed by a big bang, is the key element in cyclic universe models [72]. The crunch is induced by a
scalar field rolling down a negative potential with a steep region - the rest of the potential is largely
undetermined. Negative, initially steep potentials, are the hallmark of bulk closed string tachyons. We
found that generally a big crunch ensues, although in our case the gravitational part of the solution is
carried by the dilaton, and thus the crunch has the alternative interpretation of a closed string theory
at infinite coupling. It is tempting to speculate that closed string tachyons may play a role in cyclic
universe scenarios - the central difficulty remaining the mysterious transition from a big crunch to a
big bang. In such studies it would be useful to focus on tachyonic heterotic models and Type-0 strings.

If the vacuum of the bulk closed string tachyon truly represents the demise of fluctuating spacetime,
understanding properly this state and how it fits into a consistent cosmology would give invualuable
insight into the mechanisms by which a universe could come into existence. The tachyon vacuum
would be roughly imagined to be the state of a universe before the Big Bang.

1For comments on the specific form of the tachyon potential in closed string theory see Figure 1 and the conclusion
section of [83].
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Appendix A

Quartic Computations

A.1 The setup

We normalize correlators using (Oc_l_icco+ c6lclO) = 1 with c = (co i co). All states in this

chapter have zero momentum. For convenience, all spacetime coordinates have been compactified and
the volume of spacetime is equal to one. To use results from open string field theory, we note that

(c(zl)c(z2)c(z3) E( 1)C(fV2 )6(fV3)) = -2(c(z)c(z 2 )c(z 3 )). (C(w1)C(zi2)c(w 3)) , (A.1)

since open string field theory uses (c(zl)c(z 2)c(z 3))o = (Zl - Z2)(Z - Z3)(Z2 - Z3). Then:

(ClC1 , C1Cl, Clcl) = 2 (1, C1, Cl) ( l, Cl)o = 2 3 R 3 = 216 , (A.2)

where R _ lip = 3V/34 - 1.2990, and p is the mapping radius of the disks in the three-string vertex.
To construct four-string amplitudes we use antighost insertions [26, 30]

4 oo 4 oo

B = E ~ (B b + bm), * = _ E (C b + B b), (A.3)
I=1 m=-1 I= m=-1

where B* is the *-conjugate of B. The multilinear function in string field theory is

{1,I2,1I/3,I/4} dx A dy ( B* T1)1I2) 13)I4> (A.4)
I ,4

The first, second, third, and fourth states are inserted at 0, 1, x = z + iy, and oo, respectively. Op-
erationally, the fourth state is inserted at t = 0 with z = l/t, where z is the global uniformizer. For
further details and explanations the reader should consult [28]. We record that

BJ =63J/P3, C 1= 0,
B I = pI8/ir + P3636I3, C = PI, 3I, (A.5)

B2= 1p2(232 - E) + p2(-46 - 2EI3I 8P3)631, C2 = pI8(2,I -EI)
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Here 9 and - . Since our string fields are annihilated both by bo and bo, the coefficients Bo
and CoI are not needed. Taking note of the vanishing coefficients, we see that for states in the Siegel
gauge the antighost factor B is given by

4 4

= B1b(3 (BI bJ + C1bl) + B2 / bJ + V b2) 4. . (A.6)
I=1 I=1

The Strebel quadratic differential on the surfaces determines:

a I= a-2 a-2 a]1 = 2 1, P2 = 2(1- ' f3 = 2(- 1)' ]4 = - 1-. (A.7)

Here a(5, ~) is a function that determines the quadratic differential completely. We also have

61 =2+ (a- 2) + (2 + a- 5a2)

-5a 2 + 16 ( - 3) + 8a ( + 3)
62

( - 1)2

16 + 8a - 5a2 + 24(a - 2) 
63 2 ( -- 1)2

4 =2 + a - a2- 2 + a + 22
8

The function a(,) is known numerically to high accuracy for E A, where A is a specific subspace
of V0,4 described in detail in Figures 3 and 6 of ref. [27]. The full space V0,4 is obtained by acting on

A with the transformations generated by - 1 - 6 and - 1/a, together with complex conjugation
- . In fact V1,4 contains twelve copies of A. Let f(A) denote the region obtained by mapping each

point E A to f(). Then V0,4 is composed of the six regions

1 1 1 A
A, A A, 1 -A 1 A' 1 -A' (A.9)

together with their complex conjugates. The values of a in these regions follow from the values of a
on A via the relations

a(1-)=4-a(), a 6 a() = a( (A.10)

For states of the form Mi) = OiclS110), where Oi is built with matter oscillator, one finds

{M1,M2 ,M3, M 4 } = _2 dx A d34)2 ((0102030 4))¢ (A.11)' ir ,4 (PlP2PP4)2

Here ((O1020304))¢ - (h o 01 h2 o 02 h3 o 03 h4 o 04)., where the right-hand side is a matter
correlator computed after the local operators Oi have been mapped to the uniformizer.
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A.2 Couplings of dilatons and tachyons

Elementary contribution to t3d. We insert the dilaton on the moving puncture to make the integration

identical over each of the 12 regions of the moduli space. Since all the states inserted on the fixed

punctures have ghost oscillators clel, the antighost factor BB* is only supported on the moving

puncture:

BB*(clc_1 - Clc)(3 ) = -(B3 1C3 + B31 C3)0) = -(0ap3 + 933) 0). (A.12)

There are no matter operators, thus the correlator just involves the ghosts:

(Ep PBB* IT)IT) D)IT) = -(P/33 + tp93) ((Cll)(1) (Cll) (2) (Cl1) (4 ) )

-(3 + 3) (pP2p4)2 (A.13)

Using (A.4), the amplitude is:

3D _24 1{TD} = -- J dxdy (03 c3 ) (pl 2P4)2 = 23.2323. (A.14)

The contribution to the potential is ff2V = 4{T 3 D} t3d = 3.8721 t3d.

Elementary contribution to t2 d2 . We insert the dilatons at z2 = 1 and z3 = J. The amplitude to be

integrated is identical to the ghost part of the amplitude for the quartic interaction a2d2, as given

in [28], equation (4.9):

(IBB*IT)ID)ID) T) = )2 *conj) (A.15)

The four-point amplitude is then

{T 2D2} = 4.o (pdxdy2 Re (,3 2 (/3) - 9/32 ( 3)) (A.16)

Since we have the same states on punctures one and four, and these punctures are exchanged by the

transformation z - l/z, the integral over A gives the same contribution as the integral over 1/A. The

conjugation properties of the amplitude also imply that A contributes the same as A. Consequently,

the four regions A, 1/A, A, and 1/A all give the same contribution. To get the full amplitude we

must multiply the contributions of A, of 1 - A, and 1 - 1/A by four:

{T 2D 2} [I + J7-+j( ] (pp 4)2 Re(/2.(,/3)- 0320(,3)) (A.17)A)-- -- (1)( (PlP4)2

The transformation laws given in Appendix B of [28] allow one to rewrite the second and third integrals

as integrals over A, where they can be easily evaluated. We find

{T2D2} = 4. (-0.2410 + 0.4031 + 1.2065) = 5.4726. (A.18)

74



The contribution to potential is n,2V = 6 T 2D2} t2d2 = 1.3682 t2d2.

Elementary contribution to td3. The tachyon field is inserted at z3 = . We then have

B B* (Cl ) ( 3)D(1)D(2)D( 4) 10)

= {B3 b(3) + E (BJb(J)
J#3

+ 1 l' ) } { bJi + (B b
- \"1 IJ3

J3
+ Cjb(J) ) }(clCl)(3)D(1)D(2)D(4)10)

= (B 1CfD(J) D(K) (I)(3) ± c(()(3)CI) J)( K)) -*-conj.

I 54 J-Kl3
(A.19)

Therefore, the correlator CtdS = (E B 3B*TD3 0) is:tI c 1 1 +-
Factorizing into holomorphic and antiholomorphic parts we get

Ctd3 = 2 E (B 3lC 1BKI(BJ3 )*- BICJiDIJ(BK3 )*) + *-conj,
I7J$K73

(A.20)

where Bj - ((_lCl)(I),c J )) was introduced and evaluated in [28], eqns. (4.18), (4.20), and (4.21).

Additionally,

DIJ (c(i), Cj)c(3)) = ZIJZI3ZJ3
PIPJP3

213D14 = -D4I = ZI3
PIP3P4

I, J#4.

The full amplitude is

{TD 3} = 12 dxdy Ctd3= -5.7168.

(A.21)

(A.22)

The contribution to the potential is K2V = {TD 3} td3 = -0.9528 td3 .

A.3 Couplings of tachyon to massive fields

In all cases the massive field will be inserted on the moving puncture Z3 = .

Elementary contribution to t3 fi. With F1 - c-le-1 inserted at Z3 = ¢ we find:

B * (C_i_)( 3) ) (C3C - B3 B33)0).

{T3F1} = 12 Jdxdy (23ZB 32.6261-I- (p-p2p4)2(c1 B13)= -2.6261
(T3F~7 Pl2P) )1 

(A.23)

(A.24)

The contribution to the potential is: r.2 V = 4 {T 3F1}t 3fl = -0.4377t 3 f1 .

Elementary contribution to t3 f. With F2 c1Cl1L- 2L-2 at Z3 = , the ghost part is that of the four-
tachyon amplitude (eqn. (3.34) of [28]). With w = 0 corresponding to z = Z3, and S(z, w) denoting
the Schwarzian derivative, the holomorphic matter correlator is:

(A.25)
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(L(3)) = (T(3)(w = 0)) = p3(T(z 3 )) + 26S(z,w)= 13p (2,32 -63) 



Therefore, the amplitude is

(T 3F2 }_ 24 dxdy 136 P(232 _ 3) = - 337.571.

The contribution to the potential is K2V = 4.T3F2}t3f2 = -56.262 t3 f 2.

Elementary contribution to t3 f. With L- 2c1c-1 inserted at z3 = we find

B B*(Cl _l)(3) 10) = -BlB310).

Ct3f3 - (jBB*TT(cl-l)( 3 )TIO) ) (L(3 ) = _-2B- B
(plP2P4)2

3p32(2P32 - 63)
6

With F3 L-2C1l- 1 + c-lL- 2 1, the string amplitude relevant to t3f3 is:

{T 3 F3 } = dxdy(Ct3f 3
+ Cf 3) = 78.1432. (A.29)

The contribution to the potential is: r,2 V = 4{T 3 F3 } t 3 f 3 = 13.024 t 3 f3 .

Elementary contribution to t3aq. With b- 2c1C-2El at Z3 = , one finds

B B* (b 2 cl_2C)( 3) 10) = C23 B31(clb- 2 )(3 )10). (A.30)

The state clb_2 10) is created by the non-primary ghost current j(z) = cb(z) by acting on the vacuum.

For the ghost current

j(w) = (Z) dw
dw

3 z"

2 z'
- j(w = 0) = p 3(j(z3) - 33 ) (A.31)

We thus have the correlator:

Ct3gl = ( B B*TT(b_2cl C2E1 )(3)TO)

= 3 B3) (c(0) c(1)p3(j(z3) - 3f3)cE(t = 0))C3 B3 (plp2p4)2

CAB 3 P32 l (plp24) 2

(A.32)

1E - - 333).

With G1 b-2c l C-21 - c 2 clb-2Cl, the amplitude relevant for the t 3 gl coupling is

{T3 G1i = fj dxdy (Ct39g + Ct3g) = 1.6350.
71'

(A.33)

The contribution to the potential is K2V = {T3G1 } t3gl = 0.2725 t3gl.
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