Information Based Adaptive Robotic Exploration

Presented by Morten Rufus Blas

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Author: Morten Rufus Blas,
April 2004
Overview / Agenda / Outline

Motivation

Introduction

Related work

Defining problem and model

Solution:
- Minimizing localization error
- Maximize gain in explored map
- Combined Information Utilities
- Integrated Adaptive Information-based Exploration Algorithm

Results

Conclusion
- Novelty
- Problems
- Extensions

Motivation

SLAM:
- “There is little value in a robot exploring and mapping new areas when it has no idea of how accurately it knows its own location.”
- Come up with an algorithm to adapt controls to do better exploration.
Introduction

They attempt to maximize the accuracy and speed of their map building process.

- How well does the robot know its pose?
- How well have different areas been explored?

In this paper:
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Related work

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
 - Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Defining problem and model

- Problem:
 - Optimize control step in order to:
 - Minimize localization error.
 - Maximize gain in explored map.

- Model:
 - Solve problem by maximizing information gain.
Defining problem and model

- We will be using:
 - EKF to model localization (Extended Kalman Filter).
 - OG to represent map (Occupation Grid).
 - Entropy map (more about this later).

Defining problem and model

A set of possible actions

- State estimate
 - Info. in state estimate
 - Info. gain in map
 - Composite Utility
 - Select most informative action
Solution: Minimizing localization error

- Localization is linked to two uncertainties:
 - Measurement,
 - And navigational uncertainty.
- Adaptively choose actions to maximize information about:
 - Robot position.
 - Feature positions (the map).
Solution: Minimizing localization error

- This can be modeled using a cost function $C(P)$:

$$C(P) = \pi \prod_j \sqrt{\lambda_j(P_{xx})} + \pi \sum_{i=1}^{n_v} \prod_j \sqrt{\lambda_j(P_{ii})}$$

$$= \pi \sqrt{\det(P_{xx})} + \pi \sum_{i=1}^{n_v} \sqrt{\det(P_{ii})} \quad (11)$$

- Maximizing information about a state estimate is equivalent to minimizing the determinant of the corresponding covariance matrix.

- $C(P)$ represents the sum of the uncertainty ellipses of both features and robot after the expected observation from the predicted state.
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Solution: Maximize gain in explored map

<table>
<thead>
<tr>
<th>Entropy map:</th>
<th>Occupation Grid:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0 (OCC)</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0 (EMP)</td>
</tr>
<tr>
<td>0.693</td>
<td>0.5</td>
</tr>
</tbody>
</table>

0.693	0.5
0.693	0.5
0.693	0.5
Solution: Maximize gain in explored map

- The a priori entropy at time t_k for grid cell i:

$$H_{k,i} = - E[\ln P_i(x_i)] = - \sum_{x_i \in X_i} P_i(x_i) \ln P_i(x_i)$$

- Given two possible states (OCC, EMP) for OG map this becomes:

$$H_{k,i} = - P_i(OCC) \ln P_i(OCC) - P_i(EMP) \ln P_i(EMP)$$

- So for unexplored cell at time t_k:

$$H_k = -0.5 \ln 0.5 - 0.5 \ln 0.5$$

$$= 0.693$$

- For occupied explored cell at t_k:

$$H_k = -1 \ln 1 - 0$$

$$= 0$$

- Analogous for empty explored cell.
Solution: Maximize gain in explored map

- Expected mutual information gain for cell i:

\[
\hat{I}_i(x_i) \equiv -E \left[\ln \frac{P_i(x_i | z_k)}{P_i(x_i)} \right] = H_i - \overline{H}_i(x_i | z_k)
\]

Information gain = current entropy – new predicted entropy

Solution: Maximize gain in explored map

- Mean conditional entropy over all possible observations:

\[
\overline{H}_i = E[H_i(z_k)] = \int H_i(z_k) P_i(z_k) dz_k
\]

- It is the expectation of entropy left after an observation.
Solution: Maximize gain in explored map

- Conditional entropy for cell \(i \) after observation \(z_k \) at time \(t_k \):
 \[
 H_i(z_k) = - E[\ln P_i(x_i|z_k)] = - \sum_{x_i \in X_i} P_i(x_i|z_k) \ln P_i(x_i|z_k).
 \]

- Where Bayes rule says:
 \[
 P_i(x_i|z_k) = \frac{P_i(z_k|x_i)P_i(x_i)}{P_i(z_k)}.
 \]

- Using our two states (OCC, EMP) the conditional entropy can be rewritten as:
 \[
 H_{k,i}(z_k) = -P_i(\text{OCC} | z_k) \ln P_i(\text{OCC} | z_k) - P_i(\text{EMP} | z_k) \ln P_i(\text{EMP} | z_k)
 \]

Entropy map:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.693</td>
</tr>
</tbody>
</table>

Occupation Grid:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.693</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.693</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Solution: Maximize gain in explored map

Entropy map:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.693</td>
</tr>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.693</td>
</tr>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Information gain going up = 0.693 – 0.0
Going left = 0.693 – 0.0
Going down = 0.0 – 0.0

Author: Morten Rufus Blas,
April 2004
Solution: Maximize gain in explored map

Entrophy map:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>(</td>
</tr>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.0</td>
</tr>
<tr>
<td>0.693</td>
<td>0.693</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Occupation Grid:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Solution: Maximize gain in explored map

- Total expected information gain from doing a specific action:

\[
\hat{I}_{S_j}(x_i|z_k) = \sum_{i \in S_j} I_i(x_i|z_k) = \text{sum of information gain for each explored cell}
\]

- Where S_j are the cells covered by scan.

- After you have done an action you update entropy map with measurements.
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Combined Information Utilities

- Constructed by linear combination:

\[
U_k = I_{\text{composite}}(x, x_c, u_j(k)) = w_1 I_{\text{SLAM}}(x, u_j(k)) + w_2 I_{\text{OG}}(x_c, u_j(k))
\]

\[
w_1(k) = \alpha I_{\text{SLAM}}_{\text{MAX}}(k) \quad w_2 = (1 - \alpha) I_{\text{OG}}_{\text{MAX}}
\]

- SLAM_{\text{MAX}} is an upper bound for the SLAM covariance matrix given a number of landmarks.
- OG_{\text{MAX}} is total information of a perfectly known OG map.
- Increasing alpha increases accuracy of OG map. Reducing it increases amount of exploration.
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions

Integrated Adaptive Information-based Exploration Algorithm

Author: Morten Rufus Blas,
April 2004
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions
Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions
Conclusion: Novelty

- Present an information based approach for exploration.
- Present a scheme for combining different types of information.
- Outline the Integrated Adaptive Information-based Exploration Algorithm
- Tests on an actual robot indicate the validity of these approaches.

Overview / Agenda / Outline

- Motivation
- Introduction
- Related work
- Defining problem and model
- Solution:
 - Minimizing localization error
 - Maximize gain in explored map
 - Combined Information Utilities
 - Integrated Adaptive Information-based Exploration Algorithm
- Results
- Conclusion
 - Novelty
 - Problems
 - Extensions
Conclusion: Problems

☐ Local Minima:
 ■ They claim it is robust, but is it?

☐ Global optimization:
 ■ Can be used in multi-step solutions such as path planning but:
 ☐ Computational costs grows very rapidly with amount of look-ahead.

☐ No notion of “closing the loop”.

Overview / Agenda / Outline

☐ Motivation
☐ Introduction
☐ Related work
☐ Defining problem and model
☐ Solution:
 ■ Minimizing localization error
 ■ Maximize gain in explored map
 ■ Combined Information Utilities
 ■ Integrated Adaptive Information-based Exploration Algorithm

☐ Results
☐ Conclusion
 ■ Novelty
 ■ Problems
 ■ Extensions
Conclusion: Extensions

- Can easily be extended with other types of information metrics.
- It is certainly interesting to extend this for multi-robot systems.
- Further reading/different approaches: