

2.771J BEH.453J HST.958J Spring 2005

Lecture 8 February 2005

General Principles of Client–Server Architectures

2.771J BEH.453J HST.958J Spring 2005

General Principles of Client-Server Architectures

- •The parts: client, server, and "glue"
- Dividing the tasks
- •Re-usable code
- •Return to client-server architecture with web-based computing

Evolution of client-server systems

- •Batch cards the client walked to the machine
- •ASCII Terminals connected by RS-232 lines
- Shift to PC-Based systems: Client = Server
- •Return to client-server architecture with webbased computing

Client-server paradigm for distributed computing **Open Systems = Lower Cost** Figure by MIT OCW

2.771J BEH.453J HST.958J Spring 2005

© cfdewey 2005

Case Study at Hospital das Clinicas, Sao Paolo

<u>Before</u>

Prodesp System_with Mainframes

•\$5M/yr Maintenance

•IBM 3090 Mainframe

•\$250K/yr SW License

Implementation . . .

•\$4 M Total Investment

(Unix, Alphas, Client-Server, Fiber)

•\$1M/yr Maintenance

Result

- •Personnel from 75 to 30
- •Backup 6 hrs ⇒ 45 minutes
- •Dramatic Increase in Procedures

2.771J BEH.453J HST.958J Spring 2005

Ref.: Lincoln Moura, Ph.D.

Open Systems = Lower Cost

Figure by MIT OCW

Basic Application Structure

User I/O
Presentation Logic
Application Logic
Data Management
File I/O

Client-Server Model

Advantages of client-server architecture

- •Central storage and backup of critical data
- •Single copy of application programs
- •Scalable computing to supercomputer levels

•Negligible latency above 10 Mb/s network speeds for most non-graphics applications (100+ Mb/s networking for graphics)

Duke University Medical Center

- *1996 Implementation: Louis Humphrey and Minh Do Van
- ATM Image Server Network
- Switched Ethernet to Image Sources
- RAID Image Storage
- *****DICOM Format for Images
- Sybase System 10 Database
- Switched Connection to Ethernet
- ♦ Supports US, CT, MR

Refs: J. Digital Imaging 8:43 (1995)

2.771J BEH.453J HST.958J Spring 2005

Hospital Integrated Delivery Network

Conceptual connections between information entities

Using a Request Interpreter

Accessing multiple information entities

2.771J BEH.453J HST.958J Spring 2005

Client-server implementation

- Network strategies
 - Direct connect
 - > Web browser
 - Down-loadable application
 - ➤ Caching
- Interface requirements
 - ➤ Graphics
 - Client-side calculations

Reusable code

- Down-loadable applications
 - Always current
 - Perfect for Java
 - Networks are now capable (>1 Gb/s)
- **Use databases and stored procedures*
 - Very robust engines
 - > Will support many downloadable clients
- Reusable data exchange formats

➤ CORBA and XML

Projecting the future

*Wireless and the WWW

- Contracted compute services
- > Example: airline reservation systems
- Can submit data for analysis

Medical computing

- "Portable" medical records
- 4-D image-based diagnosis
- Rules-based expert systems

Biological computing Semantics is a key technology Progression to predictive models

The whole nine yards ... caBIO

2.771J BEH.453J HST.958J Spring 2005

NCICB National Cancer Institute

© cfdewey 2005