Write your full name on each page.

Problem 1: Trick Questions: (3 points each)

1. True or false: If $\mathcal{P} = \mathcal{NP}$ then the problem of determining whether or not a given integer is prime is solvable in polynomial time. Explain briefly.

2. True or false: If L is polytime reducible to a finite language, then L is in P. Explain briefly.

3. True or false: There is no language in \mathcal{NP} that is recognizable in less than linear time. (That is, requiring less than *n* steps for inputs of length *n*.) Explain briefly.

4. If the complement of the reverse of a language L is recognizable in polynomial time, and if L is in \mathcal{NP} , then the set of palindromes in L is recognizable in polynomial time. (A palindrome is equal to its reversal.) Explain briefly.

5. It is \mathcal{NP} -complete to determine if a given input formula has two or more satisfying assignments. Explain briefly.

Problem 2: (15 points) Show the following language to be \mathcal{NP} -complete:

$$SETPACK = \left\{ \langle S, C, k \rangle : \text{ and } k \text{ is an integer such that } C \text{ contains } k \text{ mutually} \right\}$$

Hint: Consider X3C.

Problem 3: (15 points) The *SQUARESUM* problem is as follows: you have before you a set of integers $a_1, a_2, \ldots a_n$, an integer K and an integer J. You must determine if you can put the integers a_1 through a_n into disjoint sets A_1 through A_K so that

$$\sum_{i=1}^{K} \left(\sum_{a \in A_i} a \right)^2 \le J$$

Show that SQUARESUM is \mathcal{NP} -complete. (Hint: consider the case where K = 2.)

Problem 4: (15 points) Show that if $\mathcal{P} = \mathcal{NP}$, there exists a polynomial time algorithm that takes in a boolean formula ϕ and returns either

- An assignment that satisfies ϕ , if one exists, or
- A special output \perp if one does not.

Note that your algorithm must return the assignment itself!

Problem 5: (15 points) We say that two languages, L_1 and L_2 are polynomial time isomorphic if there exists a mapping $f : \Sigma^* \to \Sigma^*$ such that:

- 1. f is a bijection,
- 2. f is a poly-time mapping from L_1 to L_2 , and
- 3. f^{-1} is a poly-time mapping from L_2 to L_1 .

It is conjectured that every \mathcal{NP} -complete language is polynomial time isomorphic to every other \mathcal{NP} -complete language. Prove that if this were the case, then $\mathcal{P} \neq \mathcal{NP}$.