Handout 18: Recitation Problems

9 May 2002

Jonathan Herzog

Prof. Ron Rivest

- 1. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] \ge .9$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] \leq .1$

Is $L \in \mathcal{BPP}$?

- 2. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] \ge .6$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] \leq .4$

Is $L \in \mathcal{BPP}$?

- 3. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] \ge .9$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] \leq .8$

Is $L \in \mathcal{BPP}$?

- 4. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] \ge .1$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] = 0.$

Is $L \in \mathcal{BPP}$? Is $L \in \mathcal{NP}$?

- 5. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] = \frac{1}{2^{|x|}}$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] = 0.$

Is $L \in \mathcal{BPP}$? Is $L \in \mathcal{NP}$?

- 6. Suppose L is a language and M is a probabilistic polynomial-time decider such that
 - $Pr[M(x) \text{ accepts } | x \in L] = 1 \frac{1}{2^{|x|}}$, and
 - $Pr[M(x) \text{ accepts } | x \notin L] = \frac{1}{2^{|x|}}.$

Is $L \in \mathcal{BPP}$? Is $L \in \mathcal{NP}$?

- 7. Suppose you have a source of unbiased bits. Show how to pick a random element from $\{1, \ldots n\}$ with uniform probability. How many bits do you expect to use?
- 8. Suppose you have a source of unbiased bits. Show how to pick a random element from $\{2, 3, \ldots 12\}$ with the same probability as that of rolling two dice. How many bits do you expect to use?
- 9. Suppose you have a source of unbiased bits. Show how to pick a random permutation on $\{1, 2, ..., n\}$ with uniform probability. How many bits do you expect to use?